EP2834490B1 - Schätzung des wärmezustandes eines motors - Google Patents

Schätzung des wärmezustandes eines motors Download PDF

Info

Publication number
EP2834490B1
EP2834490B1 EP13715353.2A EP13715353A EP2834490B1 EP 2834490 B1 EP2834490 B1 EP 2834490B1 EP 13715353 A EP13715353 A EP 13715353A EP 2834490 B1 EP2834490 B1 EP 2834490B1
Authority
EP
European Patent Office
Prior art keywords
module
temperatures
engine
correction
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13715353.2A
Other languages
English (en)
French (fr)
Other versions
EP2834490A1 (de
Inventor
David Zamparutti
Tarek MADANI
Xavier Rolland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2834490A1 publication Critical patent/EP2834490A1/de
Application granted granted Critical
Publication of EP2834490B1 publication Critical patent/EP2834490B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting

Definitions

  • the present invention generally relates to the temperature monitoring of motor vehicle engines, and more particularly to a cooling circuit for a combustion engine, as well as a method of controlling such a cooling circuit.
  • Cooling control is however only possible by knowing and controlling the thermal state of the motor. This can be obtained by measuring the temperature of the cooling fluid as it circulates in the circuit, which is the most representative information of this thermal state, but this temperature measurement is only relevant if the cooling fluid circulates sufficiently in the engine.
  • the efficiency of the engine is lower because of its too low temperature.
  • DE102009056783 A1 discloses a cooling circuit implementing a thermodynamic model for calculating a coolant temperature. As this model is based on the fact that the circulation pump runs continuously, the value obtained at the model output is significantly different from the value measured when the circulation pump is not running.
  • the invention relates for this purpose to a cooling circuit for a combustion engine according to claim 1, comprising a control device adapted to temporarily maintain the cooling circuit in a non-active state following a start of the combustion engine. and thus temporarily preventing circulation of a cooling fluid in the cooling circuit,
  • this control device being characterized in that it comprises an iterative temperature estimation module capable of delivering on (N + 1) channels on the one hand N estimated values of the respective temperatures of a plurality of thermal nodes considered as essential engine locations for monitoring the thermal state of said engine and on the other hand an (N + 1) th value which is an estimated value of the coolant temperature, where N is an integer, an input data presentation module, fit providing the iterative temperature estimation module with a first series of M input signals, respectively associated with M operating parameters of the motor, and a second series of (N + 1) input signals, constituted by the (N + 1) preceding available estimated values, present at the output of said iterative temperature estimation module, M representing an integer, a comparison module, able to provide a difference signal between the
  • the advantageous solution thus proposed consists in modeling the heat exchanges in the engine by a system with several nodes. thermals each characterizing a temperature of a physical solid or liquid element of the engine, then iteratively perform estimates of these temperatures and corrections of the estimated temperatures.
  • One of the thermal nodes corresponds to the coolant temperature sensor, and the corrections made during the successive iterations are based on the difference between the estimated coolant temperature and the measurement provided by this sensor.
  • the robustness of the process is related to the fact that this deviation, being zero at the optimum operating speed of the engine, can be used reliably as a basis for the progressive correction of the estimated temperatures until the end of the start-up period.
  • the iterative temperature estimation module comprises the implementation of a thermal exchange modeling occurring between the N thermal nodes considered in the engine.
  • the input data presentation module it comprises an initialization module, intended to provide the iterative temperature estimation module with said first series of M input signals, and a delay module. , provided to provide said iterative temperature estimation module with said second series of (N + 1) input signals.
  • a single correction stage is provided, and it then comprises on the one hand an adjustment module, said adjustment being obtained by applying a function to the difference signal available at the output of the comparison module and said function being a linear function, such as a multiplication by a gain value, or a nonlinear function, such as a correspondence from a table or a mapping, and secondly a correction module, said correction being respectively performed in each of the (N + 1) output channels of the iterative temperature estimation module from (N + 1) output signals of said module. 'adjustment.
  • control device of said circuit comprises a second correction stage, adapted to perform on the M input signals of the M input channels of the estimation module. iterative temperature a second correction based on the result of said comparison.
  • the latter successively comprises a module for calculating the integral of the difference signal delivered by the comparison module, a clipping module of the output signal of said calculation module.
  • integral an adjustment module, said adjustment being obtained by applying a function to the output signal of said clipping module and said function being a linear function, such as a multiplication by a gain value, or a non-function linear, such as a correspondence from a table or a map, and a correction module, said correction being respectively performed in each of the M input channels of the iterative estimation module of temperatures from M output signals of said adjustment module.
  • the invention also relates to a method of controlling a cooling circuit for a combustion engine according to claim 5, wherein the cooling circuit is temporarily maintained in a non-active state following a start of the engine. thereby temporarily preventing a circulation of a cooling fluid in the cooling circuit, which method is characterized in that it comprises an iterative temperature estimation step, designed to perform an iterative estimate of the value of the coolant temperature and iterative estimates of the temperature values in a plurality N of thermal nodes considered as essential engine locations for monitoring the thermal state of said engine, an input data presenting step, provided for present at the iterative temperature estimation stage on the one hand a first ser ie M input signals, respectively associated with M operating parameters of the motor, and secondly a second series of (N + 1) input signals, constituted by the (N + 1) last estimated values available after the previous step of iterative temperature estimation, a comparison step, wherein a difference signal between the estimated value of the coolant temperature and a measured value of said temperature is provided, and a first step of correcting the N +
  • it further comprises a second step of correcting the M input signals, in which a second correction is performed on the M input signals before the iterative estimation step of temperatures, based on the result of said comparison.
  • the invention also relates to a computer program comprising a set of program code instructions recorded on a computer-readable medium, for carrying out the steps of this method of estimating temperatures when said program is running on a computer. .
  • This invention is applicable to any motor vehicle equipped with a combustion engine and which comprises, on board, a combustion engine cooling circuit according to the characteristics defined above.
  • the figure 1 shows very schematically a cooling circuit 11 of a combustion engine 100.
  • the cooling circuit 11 comprises ducts 12 in which a cooling fluid (generally water with an antifreeze) can circulate.
  • the conduits on the one hand enter the motor 100, so that the fluid, while circulating, can cool it, and on the other hand feed a radiator 13, so that the cooling fluid can itself be cooled by transfer of the heat it has accumulated to the outside of the vehicle.
  • a not shown sensor, placed in the engine on the path of the cooling fluid, provides a measurement of the temperature of this fluid.
  • the cooling circuit 11 also comprises a pump 14 intended, according to the adjustment imposed on it, to vary the flow rate of the cooling fluid in the cooling circuit (as a function of input data, denoted ID, such as engine load, amount of fuel injected, air flow, etc.).
  • This input data ID is received by a control device 15.
  • This control device can be implemented by corresponding wired circuits, but in the embodiment described below, this device is of preferably a computer, incorporating a processor or a microprocessor, which comprises or software for performing the series of instructions.
  • This control device is, in particular, able to determine at regular intervals the optimum flow rate of the pump which, depending on the received parameter values, allows the cooling of the engine and its maintenance in the thermal state corresponding to its optimal operation.
  • control device 15 When the engine is started, however, the operation of the control device is different. When powering up for a start of the vehicle engine, the control device 15 requires that the cooling circuit is temporarily kept inactive. In the embodiment described, where the control device 15 is a computer incorporating a control software or software, this result is obtained using a specific instruction present in the computer memory and activated during the detection of power up for startup.
  • the idle time of the cooling circuit is more or less long depending on the duration of the stop which preceded the start, which means that the controller 15 is able to adjust the initial conditions based on a history (stored in memory) of the conditions that preceded this start.
  • control device means all the functions which are useful for the implementation of the invention, but this does not exclude that the control device can also include, in hardware form or in software form, other subsets called to control, control or manage, in the motor vehicle, other functions not having a direct relationship with the implementation of the invention. These subsets and these other functions are then not mentioned in the present description, although present in the control device.
  • the control device shown on the figure 2 First, it comprises an iterative temperature estimation module 20, for the purpose of making temperature estimations at a number of engine locations considered essential for monitoring the thermal state of the engine.
  • This objective is achieved by means of a thermal modeling of the engine, intended to express the heat exchange in the engine and comprising for this purpose the different temperatures at said locations as variables of the modeling process.
  • thermo nodes A number N of locations considered essential in the engine are selected. These locations of particular interest, called temperature nodes, correspond in the embodiment described to solid physical elements (for example, a cylinder head, a piston, a housing, etc.) or liquid (for example, oil, water, air, etc.), not shown.
  • the temperatures of these nodes are initialized to the value of the outside ambient temperature, if the engine had been stopped for a long time and thus completely cooled, or to higher temperatures which had been memorized at the last stop, in case of a short stop that has not allowed the engine to cool completely.
  • the iterative temperature estimation module 20 receives a number of inputs distributed as follows.
  • the controller 15 includes an initialization module 21 providing the module 20 with a first series of M input signals, which are values of M engine operating parameters necessary to perform the thermal modeling of the engine. These input signals, supplied on input channels in parallel, are denoted by Input_1, ..., ..., Input_M, with the index i of the input concerned varying from 1 to M. They These include vehicle speed, engine speed, engine torque, fuel quantity, heat flow, outdoor temperature, fan speed, combustion mode, etc.
  • the module 20 receives on the other hand a second series of input signals, which includes the initial values (at startup, during the first iteration), or the values previously estimated (during subsequent iterations) of the temperatures in each of the temperature nodes defined above, and looped back to the input of the module 20.
  • These input signals in number N, are denoted T ° _1 (t-1), ..., ..., T ° _N ( t-1) before the iterative estimate of temperatures has occurred.
  • the N values of the temperature of the nodes after the iterative estimation of temperatures has taken place are denoted T ° _1 (t), ..., ..., T ° _N (t).
  • the index j of the input concerned varies from 1 to N, and t denotes the successive instants of estimation from the initial moment.
  • the module 20 finally receives an additional input T ° _capteur (t-1) which is included in said second series of input signals and consists of the initial value (at start, during the first iteration) or the previously estimated value ( during subsequent iterations) of the coolant temperature, taking into account the operation of this module 20, which is now described.
  • the nodes are modeled, by applying the laws of thermodynamics, in the form of a mathematical representation constituted by a state equation.
  • This equation takes into account, on the one hand, for each node, the interaction with the environment of the engine, by involving the M input signals, M being an integer, constituting the main inputs of the model (the M values of parameters provided by the initialization module 21) and secondly, to take account of the evolution of the heat balance, the (N + 1) initial or estimated values corresponding respectively to the N initial temperature values or estimated for the N nodes and supplemented by the initial or estimated temperature value for the cooling fluid.
  • the temperature of the cooling fluid is not representative of the thermal state of the engine. This temperature of the cooling fluid is therefore, on the one hand, an incorrect basis for monitoring this thermal state.
  • anomalies could appear, for example drifts relating to the parameters taken into account, or defective initializations, due to a bad initialization of the engine. memories.
  • a temperature sensor 22 provides the measured temperature of the cooling fluid, denoted T ° _ measurement.
  • the difference signal Diff (t) thus obtained is sent to a correction stage located in a so-called proportional action channel.
  • This floor of correction comprises an adjustment module 24 and a correction module 25.
  • the adjustment module 24 is intended to develop the necessary corrections to ensure the progressive convergence of the temperatures estimated by the module 20 to temperatures close to the actual temperatures at the different nodes. of the motor.
  • the module 24 comprises (N + 1) calculation units 24_ (1),..., 24_ (j),..., 24_ (N + 1) in parallel, representing a linear function (action of a constant gain, for example) or a non-linear function (use of maps, for example).
  • the correction module 25 comprises for this purpose (N + 1) adders 25_ (1) to 25_ (N + 1) respectively arranged in the output channels of the module 20.
  • the temperatures estimated by the iterative temperature estimation module 20 and corrected by the action of the correction module 25 are transferred to the input of the module 20 via a delay module 26.
  • the delay module 26 and the initialization module 21 constitute, considered together, an input data presentation module.
  • the (N + 1) delays introduced in parallel in each of the output channels of the module 20 make it possible to deliver, synchronously with the M input signals presented, the temperatures of the (N + 1) nodes at the instant which precedes the one for which the module 20 will provide new estimated values.
  • These new estimates will, in turn, be transferred, after another crossing of the delay module 26, at the input of the module 20 for (N + 1) new estimation steps of temperatures T ° _1 (t + 1),. ..., ..., T ° _N (t + 1), T ° _captor (t + 1) at the next instant, and so on.
  • the operation continues in the manner just described, by successive iterations, until the difference between the temperature of the cooling fluid measured by the sensor 22 and the estimated temperature T ° _capteur (t) estimated present at the input of the delay module 26 is below a predetermined threshold, previously fixed.
  • a predetermined threshold previously fixed.
  • the temperature of the cooling fluid as estimated by the module 20 is substantially equal to the measured temperature and can again be considered as representative of the thermal state of the engine.
  • the control device 15 which had temporarily kept the cooling system in an inactive state, terminating this inactivity and allowing the flow of coolant to be established, which, at the same time, marks the end of the start-up period and the cooling operations. iterative and correction estimates made during this period.
  • the exemplary embodiment of the cooling circuit control device which has just been described with reference to the figure 2 is an implementation of a method which, according to the principle of the invention, comprises the following steps. Since the combustion engine of a motor vehicle is in the starting phase, the engine control method consists first of imposing the temporary maintenance (that is to say, only during the whole start-up period) of the cooling circuit. in a non-active state by preventing the flow of cooling fluid in this circuit.
  • a first step is first of all provided for iteratively estimating temperatures at a plurality of engine locations (for example, at the number of N) considered as essential points for monitoring its thermal state, as well as a estimation of the temperature of the cooling fluid.
  • This objective is achieved by means of a thermal modeling of the engine, intended to express the heat exchanges in the engine and comprising for this purpose different temperatures as variables of the modeling process.
  • This iterative temperature estimation step is performed from input data which are on the one hand M input signals associated with M operating parameters of the motor and on the other hand (N + 1) input signals constituted by the (N + 1) values estimated during the previous iteration.
  • control method further comprises a step of comparing the estimated value for the temperature of the cooling fluid and a measured value of said temperature, followed by a step of correcting the (N + 1) signals resulting from said estimates, based on the result of this comparison step.
  • the method may further comprise a second step of correcting the M input signals associated with the M operating parameters, also on the basis of the result of the comparing step.
  • control device which incorporates for this purpose a computer program comprising a set of program code instructions.
  • This program is recorded on a support, which is readable by a computer or a processor supervising the implementation of the steps of the method.
  • This control method can be used in a motor vehicle comprising a cooling circuit as described above.
  • This embodiment variant consists of the establishment of a second correction stage (31, 32, 33, 34), located in a so-called integral action path and represented in broken line on the figure 2 .
  • the difference signal Diff (t) obtained at the output of the comparison module 23 is sent to this second correction stage, which comprises an integral calculation module 31, a saturation module 32, a (second) adjustment module 33 and a (second) correction module 34.
  • the module 31 calculates the integral of the output signal of the comparison module 23.
  • the saturation module 32 imposes a limitation on possible overruns of the integral calculation module 31.
  • the adjustment 33 is similar to the first adjustment module 24 and comprises for example, like him but in number M this time, calculation units 33_ (1), ..., 33_ (i), ..., 33_ (M ) in parallel, representing a linear function (action of a constant gain, for example) or a non-linear function (use of maps, for example).
  • the second correction module 34 is similar to the first correction module and comprises for example, like itself but in number M this time, adders 34_ (1) to 34_ (M) respectively arranged in the input channels of the module 20, between the outputs of the input data presentation module and the corresponding inputs of the module 20. This second correction module 34 makes it possible to apply a so-called integral correction to the input signals of the module 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (7)

  1. Kühlkreislauf (11) für eine Brennkraftmaschine (100), der eine Umwälzpumpe eines Kühlmittels, eine Steuervorrichtung (15), die geeignet ist, um den Kühlkreislauf vorübergehend in einem inaktiven Zustand im Anschluss an ein Starten der Brennkraftmaschine zu halten und daher vorübergehend eine Zirkulation des Kühlmittels in dem Kühlkreislauf durch Stoppen der Pumpe zu verhindern, umfasst,
    dadurch gekennzeichnet, dass die Steuervorrichtung (15) Folgendes umfasst:
    ein Modul zum iterativen Schätzen von Temperaturen (20), das geeignet ist, um während des vorübergehenden Zirkulationsstillstands der Kühlflüssigkeit auf (N+1) Ausgangskanälen einerseits N geschätzte Werte der jeweiligen Temperaturen einer Vielzahl von Wärmeknoten, die jeweils eine Temperatur eines festen oder flüssigen physischen Elements der betreffenden Maschine, die als Stellen der Maschine betrachtet werden, die für die Überwachung des Wärmezustands der Maschine wesentlich sind, und andererseits einen (N+1)-ten Wert, der ein geschätzter Wert der Temperatur der Kühlflüssigkeit ist, zu liefern, wobei N eine Ganzzahl darstellt, wobei dieses Modul das Umsetzen einer Modellierung der Wärmeaustausche umfasst, die zwischen den N Wärmeknoten, die in der Maschine betrachtet werden, auftreten,
    ein Modul zur Präsentation von Eingangsdaten (21, 26), das geeignet ist, um während des vorübergehenden Zirkulationsstillstands des Kühlmittels dem Modul zur iterativen Schätzung von Temperaturen (20) eine erste Reihe von M Eingangssignalen zu senden, die jeweils mit M Betriebsparametern der Maschine assoziiert sind,
    sowie eine zweite Reihe von (N+1) Eingangssignalen, die aus den (N+1) vorhergehenden verfügbaren geschätzten Werten bestehen, die am Ausgang des Moduls zur iterativen Schätzung von Temperaturen (20) vorhanden sind, wobei M eine Ganzzahl darstellt,
    ein Vergleichsmodul (23), das geeignet ist, um während des vorübergehenden Zirkulationsstillstands des Kühlmittels ein Unterschiedssignal zwischen dem geschätzten Wert der Temperatur des Kühlmittels und einem Messwert der Temperatur zu liefern,
    eine erste Korrekturstufe (24, 25), die geeignet ist, um während des vorübergehenden Zirkulationsstillstands des Kühlmittels auf den (N+1) Ausgangskanälen des Moduls zur iterativen Schätzung von Temperaturen (20) eine Korrektur auf der Basis des Unterschiedssignals, das aus dem Vergleich resultiert, durchzuführen, und
    eine zweite Korrekturstufe (31, 32, 33, 34), die geeignet ist, um auf den M Eingangssignalen der M Eingangskanäle des Moduls zur iterativen Schätzung von Temperaturen (20) eine zweite Korrektur auf der Basis des Resultats des Vergleichs auszuführen.
  2. Kühlkreislauf nach Anspruch 1, wobei das Modul zur Präsentation von Eingangsdaten (21, 26) ein Initialisierungsmodul (21) umfasst, das vorgesehen ist, um dem Modul zur iterativen Schätzung von Temperaturen (20) die erste Reihe von M Eingangssignalen zu liefern, und ein Verzögerungsmodul (26), das vorgesehen ist, um dem Modul zur iterativen Schätzung von Temperaturen (20) die zweite Reihe von (N+1) Eingangssignalen zu liefern.
  3. Kühlkreislauf nach Anspruch 2, wobei die erste Korrekturstufe (24, 25) einerseits ein Einstellmodul (24) umfasst, wobei die Einstellung durch Anwenden einer Funktion an das Unterschiedssignal, das am Ausgang des Vergleichsmoduls (23) verfügbar ist, erhalten wird, und wobei die Funktion eine lineare Funktion ist, wie zum Beispiel eine Multiplikation mit einem Verstärkungswert, oder eine nicht lineare Funktion, wie zum Beispiel eine Entsprechung ausgehend von einer Tabelle oder einer Kartographie, und andererseits ein Korrekturmodul (25), wobei die Korrektur jeweils in jedem der (N+1) Kanäle des Moduls zur iterativen Schätzung von Temperaturen (20) ausgehend von (N+1) Ausgangssignalen des Einstellmoduls (24) ausgeführt wird.
  4. Kühlkreislauf nach einem der Ansprüche 1 bis 3, wobei die zweite Korrekturstufe (31, 32, 33, 34) nacheinander ein Modul (31) zum Berechnen des Integrals des Unterschiedssignals, das von dem Vergleichsmodul (23) geliefert wird, ein Modul (32) zur Scheitelwertbegrenzung des Ausgangssignals des Moduls zum Berechnen des Integrals (31), ein Einstellmodul (33), umfasst, wobei das Einstellen durch Anwenden einer Funktion auf das Ausgangssignal des Moduls (32) zur Scheitelwertbegrenzung erhalten wird, und die Funktion eine lineare Funktion ist, wie zum Beispiel eine Multiplikation mit einem Verstärkungswert ist, oder eine nicht lineare Funktion, wie zum Beispiel eine Entsprechung ausgehend von einer Tabelle oder einer Kartographie, und ein Korrekturmodul (34), wobei die Korrektur jeweils in jedem der M Eingangskanäle des Moduls zur iterativen Schätzung von Temperaturen (20) ausgehend von M Ausgangssignalen des Einstellmoduls (33) ausgeführt wird.
  5. Verfahren zum Steuern eines Kühlkreislaufs (11), der eine Zirkulationspumpe eines Kühlmittels für eine Brennkraftmaschine (100) umfasst, wobei der Kühlkreislauf vorübergehend in einem inaktiven Zustand im Anschluss an ein Starten der Brennkraftmaschine gehalten wird, indem daher vorübergehend eine Zirkulation des Kühlmittels in dem Kühlkreislauf durch Stoppen der Pumpe verhindert wird,
    dadurch gekennzeichnet, dass das Verfahren während des vorübergehen Zirkulationsstillstands des Kühlmittels Folgendes umfasst:
    einen Schritt des iterativen Schätzens von Temperaturen, der vorgesehen ist, um eine iterative Schätzung des Werts der Temperatur des Kühlmittels auszuführen, und iterative Schätzungen der Temperaturwerte an einer Vielzahl von N Wärmeknoten, die als Stellen der Maschine betrachtet werden, die für die Überwachung des Wärmezustands der Maschine wesentlich sind, wobei N eine Ganzzahl darstellt, auszuführen,
    einen Schritt des Präsentierens von Eingangsdaten, der vorgesehen ist, um bei dem Schritt der iterativen Schätzung von Temperaturen einerseits eine erste Reihe von M Eingangssignalen zu präsentieren, die jeweils mit M Betriebsparametern der Maschine zusammenhängen, und andererseits eine zweite Reihe von (N+1) Eingangssignalen, die aus den (N+1) letzten geschätzten Werten bestehen, die nach dem vorhergehenden Schritt der iterativen Schätzung von Temperaturen verfügbar sind, wobei M eine Ganzzahl darstellt,
    einen Vergleichsschritt, bei dem ein Unterschiedsignal zwischen dem geschätzten Wert der Temperatur des Kühlmittels und einem Messwert der Temperatur geliefert wird,
    einen ersten Korrekturschritt der (N+1) Ausgangsschätzungen, wobei eine erste Korrektur auf den (N+1) Ausgangssignalen, die nach dem Schritt der iterativen Schätzung von Temperaturen verfügbar sind, auf der Basis des Resultats des Vergleichs ausgeführt wird, und
    einen zweiten Korrekturschritt der M Eingangssignale, bei dem eine zweite Korrektur auf den M Eingangssignalen vor dem Schritt des iterativen Schätzens von Temperaturen auf der Basis des Resultats des Vergleichs ausgeführt wird.
  6. Computerprogramm, das einen Satz von Programmcodeanweisungen umfasst, die auf einem Träger, der von einem Computer gelesen werden kann, gespeichert sind, das die Schritte des Verfahrens zum Schätzen von Temperaturen nach Anspruch 5 ausführt, wenn das Programm auf einem Computer läuft.
  7. Kraftfahrzeug, das an seinem Bord einen Kühlkreislauf für Brennkraftmaschine nach einem der Ansprüche 1 bis 4 umfasst.
EP13715353.2A 2012-04-04 2013-03-20 Schätzung des wärmezustandes eines motors Active EP2834490B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253063A FR2989112B1 (fr) 2012-04-04 2012-04-04 Estimation de l'etat thermique d'un moteur
PCT/FR2013/050594 WO2013150207A1 (fr) 2012-04-04 2013-03-20 Estimation de l'etat thermique d'un moteur

Publications (2)

Publication Number Publication Date
EP2834490A1 EP2834490A1 (de) 2015-02-11
EP2834490B1 true EP2834490B1 (de) 2017-05-03

Family

ID=48083521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13715353.2A Active EP2834490B1 (de) 2012-04-04 2013-03-20 Schätzung des wärmezustandes eines motors

Country Status (3)

Country Link
EP (1) EP2834490B1 (de)
FR (1) FR2989112B1 (de)
WO (1) WO2013150207A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3091557B1 (fr) 2019-01-09 2020-12-04 Continental Automotive Contrôle thermique pour moteur de véhicule

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2796987B1 (fr) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa Dispositif de regulation du refroidissement d'un moteur thermique de vehicule automobile
US6321695B1 (en) * 1999-11-30 2001-11-27 Delphi Technologies, Inc. Model-based diagnostic method for an engine cooling system
JP3956663B2 (ja) * 2001-02-15 2007-08-08 株式会社デンソー 内燃機関の冷却水温推定装置
US7409928B2 (en) * 2006-01-27 2008-08-12 Gm Global Technology Operations, Inc. Method for designing an engine component temperature estimator
DE102009056783B4 (de) * 2009-12-03 2014-01-02 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines vereinfachtmodellierten Kühlmitteltemperaturwertes für einen Kühlkreislauf einer Brennkraftmaschine
DE102010035366B4 (de) * 2010-08-25 2014-01-02 Audi Ag Verfahren und Vorrichtung zur Diagnose einer Kühlmittelpumpe für eine Brennkraftmaschine

Also Published As

Publication number Publication date
WO2013150207A1 (fr) 2013-10-10
FR2989112B1 (fr) 2014-04-25
FR2989112A1 (fr) 2013-10-11
EP2834490A1 (de) 2015-02-11

Similar Documents

Publication Publication Date Title
EP2516819B1 (de) Kühlvorrichtung für ein kraftfahrzeug
EP2744677B1 (de) Kühlungssystem für ein elektrisch angetriebenes fahrzeug
EP2932063B1 (de) Verfahren zur verwaltung eines antriebsstranges mittels schätzung der motortemperatur am ende einer abschaltzeit eines elements für den antriebszug
FR2954462A1 (fr) Optimisation d'une capacite de chauffage globale d'un systeme de climatisation
WO2020144292A1 (fr) Contrôle thermique pour moteur de véhicule
EP2834490B1 (de) Schätzung des wärmezustandes eines motors
EP3120012B1 (de) Verfahren zur steuerung des betriebs eines anlassers eines verbrennungsmotors um eine mögliche überhitzung beim start zu vermeiden
EP2494161B1 (de) System und verfahren zur steuerung des kühlkreislaufs eines verbrennungsmotors
EP2310648B1 (de) Verfahren zur steuerung des flusses einer kühlflüssigkeit
FR2928193A1 (fr) Dispositif et procede de protection thermique d'une boite de vitesses
FR2989113A1 (fr) Estimation d'une temperature virtuelle dans un moteur
EP3066329B1 (de) Testverfahren und elektronische steuerungseinheit
EP2556229B1 (de) Verfahren zur kalkulation der ausgangstemperatur eines mechanischen elements eines fahrzeuges beim fahrzeugstart
FR3018556B1 (fr) Methode de prediction de l'etat thermique d'un demarreur
FR3080239A1 (fr) Dispositif et procede d'estimation et de correction d'une erreur de mesure d'un capteur de position d'un rotor de machine electrique tournante
FR3042028A1 (fr) Procede de caracterisation d'un aerorefrigerant d'une installation thermique destine a fonctionner dans un environnement donne
FR2910062A1 (fr) Procede et dispositif de controle en continu de la fiabilite mecanique d'un moteur a combustion interne en utilisation
EP3907394A1 (de) Verfahren zur thermischen steuerung eines hybridfahrzeugs
WO2020249477A1 (fr) Procédé de contrôle thermique d'un moteur
FR3064604A1 (fr) Procede de pilotage d'une baie multimoteurs, systeme de commande pour baie multimoteurs et baie multimoteurs
FR3040332A1 (fr) Circuit de gestion thermique d'un vehicule automobile comprenant une boucle de rankine et procede de pilotage associe
FR2989111A1 (fr) Diagnostic de validite d'estimation de temperature
FR2996253A1 (fr) Dispositif de calcul d'un modele de temperature d'huile pour un moteur thermique equipe d'un rechauffeur additionnel
FR2980529A1 (fr) Commande d'injection de carburant au demarrage d'un moteur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013020592

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20170703

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 890264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013020592

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180312

Ref country code: FR

Ref legal event code: CD

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130320

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240319

Year of fee payment: 12

Ref country code: GB

Payment date: 20240220

Year of fee payment: 12