EP2832182A1 - Induktionsheizvorrichtung - Google Patents

Induktionsheizvorrichtung

Info

Publication number
EP2832182A1
EP2832182A1 EP13721073.8A EP13721073A EP2832182A1 EP 2832182 A1 EP2832182 A1 EP 2832182A1 EP 13721073 A EP13721073 A EP 13721073A EP 2832182 A1 EP2832182 A1 EP 2832182A1
Authority
EP
European Patent Office
Prior art keywords
heating
unit
current sensor
sensor unit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13721073.8A
Other languages
English (en)
French (fr)
Other versions
EP2832182B1 (de
Inventor
Daniel Anton Falcon
Carlos CALVO MESTRE
Pablo Jesus Hernandez Blasco
Sergio Llorente Gil
Daniel Palacios Tomas
Ramon Peinado Adiego
Diego Puyal Puente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP2832182A1 publication Critical patent/EP2832182A1/de
Application granted granted Critical
Publication of EP2832182B1 publication Critical patent/EP2832182B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils

Definitions

  • the invention is based on an induction heating device according to the preamble of claim 1.
  • an induction hob which comprises an induction heating device with two heating frequency units and four heating inductors. Between the Schufrequenzajien and the Schuinduktoren a switching unit is arranged, which is intended to assign the Schuinduktoren the Schufrequenzüen.
  • the induction heater further comprises four identical current sensor units which are connected in series with the heating inductors.
  • the object of the invention is, in particular, to optimize a generic Indulementswvoroplasty advantageous.
  • the object is achieved by the features of claim 1, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
  • the first current sensor unit and the second current sensor unit are of different types.
  • the two current sensor units are formed differently by a current sensor unit integrated in a power supply unit. "Intended” is especially intended to grammed and / or designed and / or equipped understood.
  • heating inductor is to be understood in particular a heating element with at least one induction heating, which is provided by induction effects, in particular by an induction of electric current and / or by Ummagnetleitersemble, in a, preferably ferromagnetic, in particular metallic, heating means, In particular, in a cooking utensil, in an oven wall and / or in a radiator, which is arranged in an oven, to cause heating of the heating means.
  • the induction heating is intended, in at least one operating mode in which the induction heating to a supply electronics, in particular the Schufrequenzaise, is connected to a power of at least 100 W, in particular of at least 500 W, preferably of at least 1000 W and particularly advantageous to transmit at least 2000 W, in particular to convert electrical energy into electromagnetic field energy ln, which is finally converted into heat in a suitable heating medium.
  • heating frequency unit is to be understood in this context, in particular an electrical unit, which is an oscillating electrical signal, preferably at a frequency of at least 1 kHz, in particular at least 5 kHz, preferably at least 10 kHz, more preferably at least 15 kHz and
  • the heating frequency unit is intended to provide a maximum electrical power required by the heating inductor of at least 1000 W, in particular of at least 1500 W, preferably of at least 2000 W and particularly advantageously of at least 2500 W.
  • Heating frequency unit comprises in particular at least one inverter, preferably at least two, preferably in series, bidirectional unipolar switches, which are formed in particular by a transistor and a diode connected in parallel, and particularly advantageous at least in each case s a damping capacitance connected in parallel to the bidirectional unipolar switches, which in particular is formed by at least one capacitor. det is.
  • the heating frequency unit is supplied by a rectifier unit with a rectified alternating current.
  • a “resonance capacitor unit” is to be understood in particular as meaning a unit which has at least one resonance capacitor in at least one operating state with a frequency of at least 1 kHz, in particular of at least 5 kHz, preferably of at least 10 kHz and particularly advantageously of at least 15 kHz is alternately charged and discharged, in particular in a predetermined by the heating frequency unit clock.
  • a "resonant circuit” is to be understood in particular as meaning a circuit and preferably an ac circuit which has at least one heating inductor and preferably a resonant capacitor of the resonant capacitor unit and in which in at least one operating state high-frequency alternating current with a frequency of at least 1 kHz, in particular of at least 5 kHz, preferably of at least 10 kHz and particularly advantageously of at least 15 kHz flows
  • the current sensor units are arranged on a side facing away from the rectifier unit side of the Schufrequenzillon viewed circuitry.
  • a "heating current characteristic” is to be understood in particular as a variable characterizing the heating current, in particular a voltage drop and preferably an induction voltage, whereby the current sensor units are provided for measuring at least one heating current characteristic Current sensor units are provided to detect a presence and / or a nonexistence of the heating current.
  • accuracy should in this context be understood in particular as a collective term for an example. precision and / or correctness.
  • a “precision” is to be understood as meaning in particular a quantitative measure for a scattering of measured values of several measurements of an electric current about an average value of the measured values.
  • “Correctness” in this context should in particular be a quantitative measure for a deviation of an average value of several measured values from measurements of an electric current from the true value of the electric current.
  • switching unit is to be understood as meaning in particular a unit which comprises at least one switching element with preferably at least three electrical connections
  • the switching element is designed as a changeover switch which opens at least one first circuit during a switching operation and closes a second electrical circuit.
  • the first current sensor unit has an at least substantially higher accuracy than the second current sensor unit.
  • An "at least much higher accuracy” is to be understood in particular as meaning an at least substantially higher precision and / or an at least significantly higher accuracy.
  • "At least substantially higher precision” is intended in particular to mean at least 20%, in particular at least 40%, preferably At least 60% and particularly advantageously at least 80% smaller scattering of measured values of a plurality of measurements of an electric current about an average of the measured values are understood.
  • at least much higher accuracy should in particular a by at least 20%, in particular by at least 40%, preferably at least 60% and particularly advantageous order at least 80% less deviation of an average of several measurements from measurements of an electric current from the true value of the electric current.
  • only the first current sensor unit is provided for this purpose and in particular suitable for carrying out a precise measurement of a time profile of the heating current for an estimation of a heating power and / or an effective value of the heating current. This can reduce costs.
  • the first current sensor unit is provided in at least one operating state to measure a total current supplied by the heating frequency unit.
  • an advantageous hob control can be realized.
  • overstressing and in particular overheating of the heating frequency unit can be avoided.
  • the induction heating device comprises at least one switching unit, which is provided in at least one operating state to assign the heating frequency unit one of the heating inductors.
  • a number of heating frequency units can be advantageously reduced compared to a number of heating inductors, which in particular can save costs.
  • space can be saved and a cooling unit for cooling the heating frequency units can be made smaller.
  • a time-division multiplexing method in which certain heating inductors are periodically supplied with energy by certain heating-frequency units, an advantageously high operating comfort can still be achieved.
  • the first current sensor unit is arranged in terms of circuitry between the heating frequency unit and the first switching unit.
  • a first unit is "arranged in terms of circuitry between a second and a third unit"
  • at least one current path exists from the second unit to the third unit, which in particular depends on a masthead unit. is different and in which the first unit is arranged.
  • a measurement of a total current supplied by the heating frequency unit can be made particularly advantageous.
  • the first current sensor unit is arranged in terms of circuitry between one of the heating inductors and the resonance capacitor unit and, in terms of circuitry, immediately adjacent to the resonance capacitor unit.
  • a first unit is arranged "in terms of circuit technology immediately adjacent to a second unit should in particular mean that, in particular, between the first unit and the second unit only electrical conductors and components with an electrical resistance of at most 50 ⁇ , in particular of a maximum of 10 ⁇ , preferably of at most 5 ⁇ , and particularly advantageously of at most 1 ⁇ are arranged, and in particular that a current path from the first unit to the second unit is unbranched, thereby enabling further advantageous control variants.
  • the second current sensor unit is at least provided to determine a presence of the current through one of the heating inductors.
  • the second current sensor unit is arranged in circuit technology directly adjacent to one of the heating inductors.
  • the second current sensor unit is formed so simple that it is only suitable for detecting the presence of the current. As a result, costs can be reduced particularly advantageous.
  • the induction heating device comprises at least three connection points, which are intended to be connected to at least two outer conductors and at least one neutral conductor of a power supply network.
  • the second current sensor unit comprises at least one conductor loop, which is provided to measure the Schustromkenniere inductively.
  • a conductor loop is meant in particular a shaping of at least one electrical conductor to be understood which preferably has at least one corner and / or at least one bend.
  • a "electrical conductor” is intended in particular an electrically conductive member having an electrical resistance of at most 10 " 6 square meters, in particular of maximum
  • the conductor loop is arranged on a circuit board and particularly advantageously on both upper sides of the circuit board In this way, a particularly cost-effective second current sensor unit can be provided, Furthermore, galvanic isolation can advantageously be achieved.
  • FIG. 2 is a circuit diagram of the induction heater of FIG. 1 including first and second current sensor units.
  • FIG. 3a shows a part of the second current sensor unit of FIG. 2 in a schematic representation
  • Fig. 3b shows the part of the second current sensor unit of Fig. 3a in one
  • Fig. 5a shows a part of a further second current sensor unit in one
  • Fig. 5b shows the part of the second current sensor unit in a mounted
  • FIG. 6 shows a circuit diagram of a further induction heating device with a first and a second current sensor unit, wherein the first current sensor unit is arranged at a first position
  • FIG. 7 shows a circuit diagram of a further induction heating device with a first and a second current sensor unit, wherein the first current sensor unit is arranged at a second position, and
  • FIG. 8 is a diagram of a generalized induction heating apparatus.
  • FIG. 1 shows a cooking appliance designed as an induction hob 54a in a plan view.
  • the induction hob 54a includes a cooktop panel 56a.
  • the cooktop panel 56a is made of a glass ceramic.
  • the hob plate 56a is arranged horizontally and provided for setting up cooking utensils (not shown).
  • On the hob plate 56 a four heating zones 58 a, 60 a, 62 a, 64 a are marked in a known manner.
  • the induction hob 54a comprises an induction heating device for heating the heating zones 58a, 60a, 62a, 64a.
  • FIG 2 shows a circuit diagram of the induction heater of Figure 1.
  • the induction heater has below the hob plate 56a four heating inductors 10a, 12a, 14a, 16a, wherein each of the heating inductors 10a, 12a, 14a, 16a a the heating zones 58a, 60a, 62a, 64a is assigned.
  • the heating device has two heating frequency units 18a, 20a, by means of which the heating inductors 10a, 12a, 14a, 16a can be supplied with high-frequency alternating current.
  • the two heating frequency units 18a, 20a each include an inverter 66a, 68a.
  • the inverter 66a includes a first insulated gate bipolar transistor (hereinafter abbreviated as "IGBT") 70a and a second IGBT 72a connected in series with the first IGBT 70a Alternatively, instead of the IGBTs, any other switching unit that appears appropriate to those skilled in the art may be used, but preferably a bidirectional unipolar switch Have damping capacitor.
  • IGBT insulated gate bipolar transistor
  • the induction heating device is intended to be connected via connection points 42a, 44a, 46a to two outer conductors 48a, 50a and a neutral conductor 52a of a country-specific power supply network. Between one of the outer conductors 48a, 50a and the neutral conductor 52a is in each case an electrical voltage with a frequency of 50 Hz and an effective value of 230 V at.
  • the induction heating device described is intended in particular for operation in Germany.
  • the voltage tapped between the outer conductor 48a and the neutral conductor 52a is filtered in one operating state by a rectifier unit 78a and rectified, and then supplied to the heating frequency unit 18a.
  • the voltage tapped between the outer conductor 50a and the neutral conductor 52a is filtered and rectified in an operating state by a rectifier unit 80a, and then supplied to the heating frequency unit 20a.
  • a rectified voltage is applied to an output of the rectifier unit 78a, which is applied between a collector of the IGBT 70a and an emitter of the IGBT 72a.
  • a rectified voltage is output at an output of the rectifier unit 80a. which is applied between a collector of the IGBT 74a and an emitter of the IGBT 76a.
  • the induction heating device has a switching unit 38a.
  • the switching unit 38a comprises four switching elements 82a, 84a, 86a, 88a.
  • the switching elements 82a, 84a, 86a, 88a are identical.
  • the switching elements 82a, 84a, 86a, 88a are SPDT relays.
  • Each of the switching elements 82a, 84a, 86a, 88a has first, second and third contacts.
  • the first contact can be conductively connected to the second or the third contact by means of a corresponding activation.
  • the first contact of the switching element 82a is conductively connected via a line 89a to an emitter of the IGBT 70a.
  • the second contact of the switching element 82a is conductively connected to the first contact of the switching element 84a.
  • the third contact of the switching element 82a is conductively connected via a line 90a to a first contact of the heating inductor 14a.
  • the second contact of the switching element 84a is conductively connected via a line 92a to a first contact of the heating inductor 10a.
  • the third contact of the switching element 84a is conductively connected via a line 94a to a first contact of the heating inductor 12a.
  • the first contact of the switching element 86a is conductively connected via a line 95a to an emitter of the IGBT 74a.
  • the second contact of the switching element 86a is conductively connected via the line 94a to the first contact of the heating inductor 12a.
  • the third contact of the switching element 86a is connected to the first contact of the switching element 88a.
  • the second contact of the switching element 88a is conductively connected via the line 90a to the first contact of the heating inductor 14a.
  • the third contact of the switching element 84a is conductively connected via a line 96a to a first contact of the heating inductor 16a.
  • the induction heating apparatus further includes two resonance capacitor units 22a, 24a.
  • the resonant capacitor unit 22a comprises two series-connected resonant capacitors 98a, 100a.
  • the resonant capacitor unit 24a comprises two series-connected resonant capacitors 102a, 104a.
  • a first contact of the resonant capacitor 98a is conductively connected to the collector of the IGBT 70a.
  • a second contact of the resonance capacitor 98a is conductively connected to a second contact of the heating inductor 10a.
  • a first contact of the resonance capacitor 100a is conductively connected to the second contact of the resonance capacitor 98a.
  • a second contact of the resonance capacitor 100a is conductively connected to the emitter of the IGBT 72a.
  • a first contact of the resonant capacitor 102a is conductively connected to the collector of the IGBT 74a.
  • a second contact of the resonant capacitor 102a is conductively connected to a second contact of the heating inductor 16a.
  • a first contact of the resonant capacitor 104a is conductively connected to the second contact of the resonant capacitor 102a.
  • a second contact of the resonant capacitor 104a is conductively connected to the emitter of the IGBT 76a.
  • the induction heating device has a further switching unit 106a.
  • the switching unit 106a comprises two switching elements 108a, 110a.
  • the switching elements 108a, 110a are identical to the switching elements 82a, 84a, 86a, 88a.
  • the first contact of the switching element 108a is conductively connected to a second contact of the heating inductor 12a.
  • the second contact of the switching element 108a is conductively connected to the second contact of the heating inductor 10a.
  • the third contact of the switching element 108a is conductively connected to the second contact of the heating inductor 16a.
  • the first contact of the switching element 1 10a is conductively connected to a second contact of the heating inductor 14a.
  • the second contact of the switching element 110a is conductively connected to the second contact of the heating inductor 10a.
  • the third contact of the switching element 1 10a is conductively connected to the second contact of the heating inductor 16a.
  • the induction heating device comprises two first current sensor units 26a, 28a, which measure a heating current supplied by the heating frequency units 18a, 20a, wherein a control unit, not shown, of the induction hob 54a uses this information in a known manner to control and / or regulate the heating frequency units 18a, 20a.
  • the first current sensor unit 26a measures the heating current flowing through the line 89a.
  • the first current sensor unit 28a measures the heating current flowing through the line 95a.
  • the first current sensor units 26a, 28a respectively measure a total heating current supplied by the respective heating frequency unit 18a, 20a.
  • the first current sensor units 26a, 28a are each arranged in a resonant circuit.
  • the first current sensor units 26a, 28a measure the heating current in each case by electromagnetic induction in a conductor loop, whereby a galvanic separation can be achieved directly.
  • the first current sensor units 26a, 28a are specially designed for measuring the high-frequency heating current and have a correspondingly high accuracy in the frequency range between 20 kHz and 100 kHz.
  • an assignment of the heating frequency units 18a, 20a to the heating inductors 10a, 12a, 14a, 16a can be made by the control unit.
  • an allocation of the resonance capacitor units 22a, 24a to the heating inductors 10a, 12a, 14a, 16a can be made by the control unit.
  • second current sensor units 30a, 32a, 34a, 36a are provided, which detect at least one presence of the heating current in the lines 90a, 92a, 94a, 96a.
  • the second current sensor units 30a, 32a, 34a, 36a are respectively arranged in the immediate vicinity of the heating inductors 10a, 12a, 14a, 16a and thus in resonant circuits.
  • the second current sensor units 30a, 32a, 34a, 36a also operate on the principle of electromagnetic radiation. table induction, whereby also a galvanic separation can be achieved.
  • the first current sensor units 26a, 28a and the second current sensor units 30a, 32a, 34a, 36a are of different types.
  • the first current sensor units 26a, 28a each have at least substantially higher accuracy than the second current sensor units 30a, 32a, 34a, 36a.
  • the second current sensor units 30a, 32a, 34a, 36a can be designed such that they are only suitable for determining the presence of the heating current in the relevant line 90a, 92a, 94a, 96a.
  • control unit determines whether current is flowing only through those lines 90a, 92a, 94a, 96a through which current should actually flow. If an unexpected current flow occurs in one of the lines 90a, 92a, 94a, 96a, this is an indication of a malposition of the switching unit 38a. When such a malposition occurs, the control unit causes at least a shutdown of the heating frequency units 18a, 20a and optionally an output of an error message and / or a maintenance request.
  • any current-current sensor units which appear reasonable to the person skilled in the art are possible, in particular those shown in FIGS. 3a, 3b, 4, 5a and 5b.
  • the second current sensor units 30a-c, 32a-c, 34a-c, 36a-c shown here have in common that they each comprise a conductor loop 40a-c, which is provided to inductively measure the heating current.
  • FIG. 3 a shows a part of the second current sensor unit 30 a in a schematic representation. Corresponding parts of the second current sensor units 32a, 34a, 36a are constructed identically.
  • the conductor loop 40a of the current sensor unit 30a is mounted on a board 136a.
  • the conductor loop 40a extends partially on an upper side 138a and partly on an underside 140a of the board 136a. Parts of the conductor loop 40a, which run on the underside 140a of the board 136a, are shown in dashed lines in FIGS. 3a and 3b.
  • Through ducts 142a of which only one is designated in each case in FIGS.
  • the parts of the conductor loop 40a are through the board 136a is conductively connected from the top 138a to the bottom 140a.
  • the conductor loop 40a has at least substantially a cuboid outer contour and, together with the feedthroughs 142a, forms a coil whose coil surface is oriented perpendicular to the printed circuit board 136a.
  • FIG. 3b shows a schematic representation of the second current sensor unit 30a in an assembled state.
  • the line 92a which is electrically insulated from an environment, is guided along the top side 138a of the board 136a and at least substantially parallel to the coil surface.
  • a voltage proportional to the time change of the heating current is induced in the conductor loop 40a by the high-frequency heating current in the line 92a.
  • a suitable measuring circuit not shown
  • the presence of the heating current in the line 92a can thus be detected.
  • even a frequency of the heating current can be determined, whereby an association with one of the heating frequency units 18a, 20a can be made possible, namely the heating frequency unit 18a, 20a, which is operated at the same frequency.
  • FIGS. 4, 5a, 5b, 6, 7 and 8 show five further exemplary embodiments of the invention.
  • the following descriptions are essentially limited to the differences between the exemplary embodiments, reference being made to the description of the other exemplary embodiments, in particular FIGS. 1, 2, 3a and 3b, with regard to components, features and functions remaining the same.
  • FIGS. 1, 2, 3a and 3b To distinguish the embodiments of the letter a in the reference numerals of the embodiment in Figures 1, 2, 3a and 3b by the letters b to f in the reference numerals of the embodiments of Figures 4, 5a, 5b, 6, 7 and 8 is replaced.
  • FIG. 4 shows a part of a further second current sensor unit 30b in a schematic representation.
  • the conductor loop 40b of the current sensor unit 30b is also mounted on a board 136b.
  • components which are arranged along an underside 140b of the board 136b are also shown in dashed lines in FIG.
  • the present embodiment differs from the previous exemplary embodiment only in that a return line 144b coming from a heating inductor 10b and insulated from an environment is additionally arranged in antiparallel to a line 92b leading to the heating inductor 10b, so that a heating current flows in anti-parallel.
  • the line 92b is guided along an upper side 138b of the board 136b and the return line 144b is guided along the lower side 140b.
  • Both the line 92b and the return line 144b are aligned at least substantially parallel to a coil surface of a coil formed by the conductor loop 40b and feedthroughs 142b.
  • FIG. 5a shows a part of a further second current sensor unit 30c in a schematic representation.
  • the conductor loop 40c of the current sensor unit 30c is also applied to a board 136c.
  • the conductor loop 40c runs partially on an upper side 138c and partly on an underside 140c of the board 136c.
  • Parts of the conductor loop 40c, which run on the underside 140c of the circuit board 136c, are shown by dashed lines in FIGS. 5a and 5b.
  • Via passages 142c of which only one is designated in FIGS. 5a and 5b for the sake of clarity, the parts of the conductor loop 40c are conductively connected by the board 136c from the top 138c to the bottom 140c.
  • the conductor loop 40c has at least substantially a toroidal outer contour and, together with the feedthroughs 142a, forms a Rogowski coil.
  • a recess 146c is provided in the board 136c.
  • the recess 146c is circular in a vertical view of the board 136c.
  • FIG. 5b shows a schematic representation of the second current sensor unit 30c in a mounted state. A relative to an environment electrically insulated line 92c, which is provided to a power supply of a heating inductor 10c, is guided in the mounted state through the recess 146c.
  • a voltage proportional to the time change of the heating current is induced in the conductor loop 40c by the high-frequency heating current in the line 92c.
  • a suitable measuring circuit (not shown) the presence of the heating current in the line 92c can thus be detected.
  • a frequency of the heating current can also be determined here, whereby an assignment to a heating frequency unit 18c, 20c can be made possible, namely to the heating frequency unit 18c, 20c, which is operated at the same frequency.
  • FIG. 6 shows a circuit diagram of a further induction heating device of an induction hob 54d.
  • the induction heating device is intended to be connected via connection points 42d, 46d to only one outer conductor 48d and one neutral conductor 52d of a country-specific power supply network. Between the outer conductor 48d and the neutral conductor 52d, an electrical voltage with a frequency of 50 Hz and an effective value of 230 V is applied.
  • the induction heating device described is intended in particular for operation in Germany. For an induction heating apparatus intended for US operation, the frequency is 60 Hz and the rms value is 1 10 V.
  • the voltage tapped between the outer conductor 48d and the neutral conductor 52d is filtered and rectified in an operating state by a rectifier unit 78d and then two heating frequency units 18d, 20d supplied in parallel.
  • the heating frequency units 18d, 20d each include an inverter 66d, 68d each having two IGBTs 70d, 72d, 74d, 76d.
  • a rectified voltage is applied, which is applied between a collector of the IGBT 70d and an emitter of the IGBT 72d.
  • the induction heating device has a switching unit 38d.
  • the switching unit 38da comprises six switching elements 82d, 84d, 86d, 88d, 108d, 11d.
  • the switching elements 82d, 84d, 86d, 88d are identical.
  • the switching elements 82d, 84d, 86d, 88d are SPDT relays.
  • Each of the switching elements 82d, 84d, 86d, 88d, 108d, 11d has first, second, and third contacts and a coil.
  • the first contact can be conductively connected to the second or the third contact by means of a corresponding activation.
  • the first contact of the switching element 82d is conductively connected via a line 89d to an emitter of the IGBT 70d.
  • the second contact of the switching element 82d is connected to the first contact of the switching element 84d.
  • the third contact of the switching element 82d is conductively connected to the first contact of the switching element 86d.
  • the second contact of the switching element 84d is conductively connected via a line 92d to a first contact of a heating inductor 10d.
  • the third contact of the switching element 84d is conductively connected via a line 94d to a first contact of a heating inductor 12d.
  • the second contact of the switching element 86d is conductively connected via a line 90d to a first contact of a heating inductor 14d.
  • the third contact of the switching element 86d is conductively connected via a line 96d to a first contact of a heating inductor 16d.
  • the first contact of the switching element 88d is conductively connected via a line 95d to an emitter of the IGBT 74d.
  • the second contact of the switching element 88d is connected to the first contact of the switching element 110d.
  • the third contact of the switching element 82d is conductively connected to the first contact of the switching element 108d.
  • the second contact of the switching element 110d is conductively connected via the line 92d to the first contact of the heating inductor 10d.
  • the third contact of the switching element 1 10d is conductively connected via the line 94d to the first contact of the heating inductor 12d.
  • the second contact of the switching element 108d is conductively connected via the line 90d to the first contact of the heating inductor 14d.
  • the third contact of the switching element 108d is conductively connected via the line 96d to the first contact of the heating inductor 16d.
  • the induction heating apparatus further includes two resonance capacitor units 22d, 24d.
  • the resonant capacitor unit 22d comprises two series-connected resonant capacitors 98d, 100d.
  • the resonant capacitor unit 24d comprises two series-connected resonant capacitors 102d, 104d.
  • a first contact of the resonance capacitor 98d is conductively connected to the collector of the IGBT 70d and the collector of the IGBT 74d.
  • a second contact of the resonant capacitor 98d is conductively connected to a second contact of the heating inductor 10d and a second contact of the heating inductor 12d.
  • a first contact of the resonant capacitor 100d is conductively connected to the second contact of the resonant capacitor 98d.
  • a second contact of the resonance capacitor 100d is conductively connected to the emitter of the IGBT 72d and the emitter of the IGBT 76d.
  • a first contact of the resonance capacitor 102d is conductively connected to the collector of the IGBT 70d and the collector of the IGBT 74d.
  • a second contact of the resonant capacitor 102d is conductively connected to a second contact of the heating inductor 14d and a second contact of the heating inductor 16d.
  • a first contact of the resonant capacitor 104d is conductively connected to the second contact of the resonant capacitor 102d.
  • a second contact of the resonant capacitor 104d is conductively connected to the emitter of the IGBT 72d and the emitter of the IGBT 76d.
  • the induction heater also includes two first current sensor units 26d, 28d, each of which measures a total current supplied by the heating frequency units 18d, 20d in the respective lines 89d, 95d. Furthermore, the induction heating device comprises second current sensor units 30d, 32d, 34d, 36d, which detect at least one presence of the heating current in the lines 90d, 92d, 94d, 96d.
  • the second current sensor units 30d, 32d, 34d, 36d are each arranged in circuit configuration in the immediate vicinity of the heating inductors 10d, 12d, 14d, 16d.
  • any current sensor units that appear reasonable to the person skilled in the art come into question, in particular those shown in FIGS.
  • FIG. 7 shows a circuit diagram of an alternative induction heating device of an induction hob 54e.
  • the present induction heating apparatus is constructed substantially identical to the induction heating apparatus of the embodiment shown in FIG. It differs only in a position of first current sensor units 26e, 28e. In the present exemplary embodiment, these are arranged in terms of circuit technology between heating inductors 10e, 12e, 14e, 16e and resonance capacitor units 22e, 24e and, in terms of circuitry, immediately adjacent to the resonance capacitor units 22e, 24e.
  • the first current sensor unit 26e is arranged between a second terminal of the heating inductor 10e and a second terminal of the heating inductor 12e and a second terminal of a resonance capacitor 98e and a first terminal of a resonance capacitor 100e.
  • the first current sensor unit 28e is arranged between a second terminal of the heating inductor 14e and a second terminal of the heating inductor 16e and a second terminal of a resonance capacitor 102e and a first terminal of a resonance capacitor 104e.
  • This arrangement of the first current sensor units 26e, 28e is preferred when two heating inductors 10e, 12e, 14e, 16e are each operated by their own heating frequency unit 18e, 20e, but on a single common resonant capacitor unit 22e, 24e. In this case, the heating frequency units 18e, 20e are operated at the same frequency, wherein a setting of a heating power of the heating inductors 10e, 12e, 14e, 16e is performed via a relative phase shift.
  • FIG. 8 shows a diagram of an induction heating device of an induction hob 54f.
  • the present induction heater is a generalization of the induction heaters of Figs. 2, 6 and 7.
  • the induction heater is generally provided for connection to one or more outer conductors 48f and to a neutral conductor 52f.
  • the induction heater is described only for an outer conductor 48f. However, the corresponding parts are identical for the other outer conductors.
  • the induction heating Device has a rectifier unit 78f for each outer conductor 48f.
  • the induction heating device comprises one or more heating frequency units 18f, which in the case of a plurality of heating frequency units 18f are supplied with a rectified voltage in parallel by the rectifier unit 78f.
  • An allocation of the heating frequency unit 18f or the heating frequency units 18f to heating inductors 10f, 12f, 14f is possible via a switching unit 38f.
  • a switching unit 38f It should be noted that via phase-spanning lines 1 12f, 1 14f, 1 16f a connection to Schuinduktoren the other outer conductor is possible.
  • Via further switching unit 106f it is possible to associate one or more resonance capacitor units 22f of the induction heating apparatus with the heating inductors 10f, 12f, 14f.
  • phase-overlapping lines 1 18f, 120f, 122f are provided, which allow a connection to heating inductors of the remaining outer conductors.
  • the induction heating device further comprises a control unit 124f, which is provided via a decoupling unit 126f for controlling and / or regulating the heating-frequency units 18f.
  • the decoupling unit 126f provides for a galvanic decoupling.
  • first current sensor units two different sensor positions 128f, 130f per outer conductor 48f are possible, with only one sensor position 128f, 130f being designated for the sake of clarity.
  • the sensor positions 128f are arranged in terms of circuitry between the heating frequency units 18f and the switching units 38f.
  • the sensor positions 130f are circuitry between the switching units 106f and the resonance capacitor units 22f.
  • Two different sensor positions 132f, 134f are provided for the second current sensor units, with only one sensor position 132f, 134f being designated for the sake of clarity.
  • the sensor positions 132f are arranged in terms of circuitry between the switching units 38f and the heating inductors 10f, 12f, 14f.
  • the sensor positions 134f are arranged in terms of circuitry between the heating inductors 10f, 12f, 14f and the switching units 106f. reference numeral

Abstract

Die Erfindung geht aus von einer Induktionsheizvorrichtung mit zumindest zwei Heizinduktoren (10a-f, 12a-f, 14a-f, 16a-e), wenigstens einer Heizfrequenzeinheit (18a-f, 20a-e) zu einer Versorgung der Heizinduktoren (10a-f, 12a-f, 14a-f, 16a-e) mit einem Heizstrom, wenigstens einer Resonanzkondensatoreinheit (22a-f, 24a- e), zumindest einer ersten Stromsensoreinheit (26a-e, 28a-e) und wenigstens einer zweiten Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e), welche jeweils in wenigstens einem Resonanzstromkreis angeordnet und zu einer Messung wenigstens einer Heizstromkenngröße vorgesehen sind. Um eine gattungsgemäße Induktionsheizvorrichtung vorteilhaft zu optimieren, wird vorgeschlagen, dass die erste Stromsensoreinheit (26a-e, 28a-e) und die zweite Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e) von unterschiedlicher Art sind.

Description

Induktionsheizvorrichtung
Die Erfindung geht aus von einer Induktionsheizvorrichtung nach dem Oberbegriff des Anspruchs 1 .
Aus dem Stand der Technik ist ein Induktionskochfeld bekannt, welches eine Induktionsheizvorrichtung mit zwei Heizfrequenzeinheiten und vier Heizinduktoren umfasst. Zwischen den Heizfrequenzeinheiten und den Heizinduktoren ist eine Schalteinheit angeordnet, welche dazu vorgesehen ist, die Heizinduktoren den Heizfrequenzeinheiten zuzuordnen. Die Induktionsheizvorrichtung umfasst ferner vier identische Stromsensoreinheiten, welche mit den Heizinduktoren unmittelbar in Serie geschaltet sind.
Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Induktionsheizvorrichtung vorteilhaft zu optimieren. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.
Die Erfindung geht aus von einer Induktionsheizvorrichtung mit zumindest zwei Heizinduktoren, wenigstens einer Heizfrequenzeinheit zu einer Versorgung der Heizinduktoren mit einem Heizstrom, wenigstens einer Resonanzkondensatoreinheit, zumindest einer ersten Stromsensoreinheit und wenigstens einer zweiten Stromsensoreinheit, welche jeweils in wenigstens einem Resonanzstromkreis angeordnet und zu einer Messung wenigstens einer Heizstromkenngröße vorgesehen sind.
Es wird vorgeschlagen, dass die erste Stromsensoreinheit und die zweite Stromsensoreinheit von unterschiedlicher Art sind. Vorzugsweise sind die beiden Stromsensoreinheiten von einer in einem Netzteil integrierten Stromsensoreinheit verschieden ausgebildet. Unter„vorgesehen" soll insbesondere speziell pro- grammiert und/oder ausgelegt und/oder ausgestattet verstanden werden. Unter einem„Heizinduktor" soll insbesondere ein Heizelement mit zumindest einer Induktionsheizleitung verstanden werden, welches dazu vorgesehen ist, durch Induktionseffekte, insbesondere durch eine Induzierung von elektrischem Strom und/oder durch Ummagnetisierungseffekte, in einem, vorzugsweise ferromagne- tischen, insbesondere metallischen, Heizmittel, insbesondere in einem Gargeschirr, in einer Backofenwand und/oder in einem Heizkörper, welcher in einem Backofen angeordnet ist, eine Erwärmung des Heizmittels zu verursachen. Insbesondere ist das Induktionsheizelement dazu vorgesehen, in zumindest einem Betriebsmodus, in welchem das Induktionsheizelement an eine Versorgungselektronik, insbesondere der Heizfrequenzeinheit, angeschlossen ist, eine Leistung von zumindest 100 W, insbesondere von wenigstens 500 W, vorzugsweise von mindestens 1000 W und besonders vorteilhaft von zumindest 2000 W zu übertragen, insbesondere elektrische Energie in elektromagnetische Feldenergie zu wandeln, die in einem geeigneten Heizmittel letztendlich in Wärme gewandelt wird.
Unter einer„Heizfrequenzeinheit" soll in diesem Zusammenhang insbesondere eine elektrische Einheit verstanden werden, welche ein oszillierendes elektrisches Signal, vorzugsweise mit einer Frequenz von zumindest 1 kHz, insbesondere von wenigstens 5 kHz, vorzugsweise von mindestens 10 kHz, besonders vorteilhaft von zumindest 15 kHz und insbesondere von maximal 100 kHz für einen Heizinduktor bereitstellt. Insbesondere ist die Heizfrequenzeinheit dazu vorgesehen, eine vom Heizinduktor geforderte maximale elektrische Leistung von zumindest 1000 W, insbesondere von wenigstens 1500 W, vorzugsweise von mindestens 2000 W und besonders vorteilhaft von zumindest 2500 W bereitzustellen. Die Heizfrequenzeinheit umfasst insbesondere zumindest einen Wechselrichter, der vorzugsweise zumindest zwei, vorzugsweise in Reihe geschaltete, bidirektionale unipolare Schalter, die insbesondere von einem Transistor und einer parallel geschalteten Diode gebildet sind, und besonders vorteilhaft zumindest jeweils eine parallel zu den bidirektionalen unipolaren Schaltern geschaltete Dämpfungskapazität, die insbesondere von zumindest einem Kondensator gebil- det ist, aufweist. Vorzugsweise wird die Heizfrequenzeinheit durch eine Gleichrichtereinheit mit einem gleichgerichteten Wechselstrom versorgt.
Unter einer„Resonanzkondensatoreinheit" soll insbesondere eine Einheit verstanden werden, welche wenigstens einen Resonanzkondensator aufweist. Unter einem„Resonanzkondensator" soll in diesem Zusammenhang insbesondere ein Kondensator verstanden werden, welcher in wenigstens einem Betriebszustand mit einer Frequenz von zumindest 1 kHz, insbesondere von wenigstens 5 kHz, vorzugsweise von mindestens 10 kHz und besonders vorteilhaft von zumindest 15 kHz abwechselnd auf- und entladen wird, insbesondere in einem von der Heizfrequenzeinheit vorgegebenen Takt. Unter einem„Resonanzstromkreis" soll insbesondere ein Stromkreis und vorzugsweise ein Wechselstromkreis verstanden werden, welcher wenigstens einen Heizinduktor und vorzugsweise einen Resonanzkondensator der Resonanzkondensatoreinheit aufweist und in welchem in zumindest einem Betriebszustand hochfrequenter Wechselstrom mit einer Frequenz von zumindest 1 kHz, insbesondere von wenigstens 5 kHz, vorzugsweise von mindestens 10 kHz und besonders vorteilhaft von zumindest 15 kHz fließt. Vorzugsweise sind die Stromsensoreinheiten schaltungstechnisch betrachtet auf einer von der Gleichrichtereinheit abgewandten Seite der Heizfrequenzeinheit angeordnet.
Unter einer„Heizstromkenngröße" soll in diesem Zusammenhang insbesondere eine den Heizstrom charakterisierende Größe verstanden werden, insbesondere ein Spannungsabfall und vorzugsweise eine Induktionsspannung. Darunter, dass die Stromsensoreinheiten„zu einer Messung wenigstens einer Heizstromkenngröße vorgesehen sind", soll insbesondere auch verstanden werden, dass die Stromsensoreinheiten dazu vorgesehen sind, ein Vorhandensein und/oder ein Nichtvorhandensein des Heizstroms zu detektieren. Darunter, dass die Stromsensoreinheiten„von unterschiedlicher Art sind", soll insbesondere verstanden werden, dass die beiden Stromsensoreinheiten unterschiedlichen Typs sind und/oder eine unterschiedliche Genauigkeit aufweisen. Der Begriff„Genauigkeit" soll in diesem Zusammenhang insbesondere als ein Sammelbegriff für eine Prä- zision und/oder eine Richtigkeit verstanden werden. Unter einer„Präzision" soll insbesondere ein quantitatives Maß für eine Streuung von Messwerten mehrerer Messungen eines elektrischen Stroms um einen Mittelwert der Messwerte verstanden werden. Unter einer„Richtigkeit" soll in diesem Zusammenhang insbesondere ein quantitatives Maß für eine Abweichung eines Mittelwerts mehrerer Messwerte aus Messungen eines elektrischen Stroms vom wahren Wert des elektrischen Stroms verstanden werden.
Durch eine solche Ausgestaltung kann eine Induktionsheizvorrichtung vorteilhaft optimiert werden. Insbesondere kann eine vorteilhafte Anpassung von Stromsensoreinheiten an gegebene Anforderungen ermöglicht werden. Ferner kann eine Betriebssicherheit vorteilhaft gesteigert werden, da insbesondere eine kostengünstige Stromsensoreinheit zu einer Überwachung einer Funktion einer Schalteinheit vorgesehen sein kann. Unter einer„Schalteinheit" soll insbesondere eine Einheit verstanden werden, welche wenigstens ein Schaltelement mit vorzugsweise zumindest drei elektrischen Anschlüssen umfasst. Vorzugsweise ist das Schaltelement als ein Wechselschalter ausgebildet, welcher bei einem Schaltvorgang wenigstens einen ersten Stromkreis öffnet und einen zweiten Stromkreis schließt.
In einer bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die erste Stromsensoreinheit eine zumindest wesentlich höhere Genauigkeit als die zweite Stromsensoreinheit aufweist. Unter einer„zumindest wesentlich höheren Genauigkeit" soll insbesondere eine zumindest wesentlich höhere Präzision und/oder eine zumindest wesentlich höhere Richtigkeit verstanden werden. Unter einer„zumindest wesentlich höheren Präzision" soll insbesondere eine um wenigstens 20 %, insbesondere um zumindest 40 %, vorzugsweise um mindestens 60 % und besonders vorteilhaft um wenigstens 80 % geringere Streuung von Messwerten mehrerer Messungen eines elektrischen Stroms um einen Mittelwert der Messwerte verstanden werden. Unter einer„zumindest wesentlich höheren Richtigkeit" soll insbesondere eine um wenigstens 20 %, insbesondere um zumindest 40 %, vorzugsweise um mindestens 60 % und besonders vorteilhaft um wenigstens 80 % geringere Abweichung eines Mittelwerts mehrerer Messwerte aus Messungen eines elektrischen Stroms vom wahren Wert des elektrischen Stroms verstanden werden. Vorzugsweise ist lediglich die erste Stromsensoreinheit dazu vorgesehen und insbesondere dazu geeignet, eine präzise Messung eines zeitlichen Verlaufs des Heizstroms zu einer Abschätzung einer Heizleistung und/oder eines Effektivwerts des Heizstroms durchzuführen. Hierdurch können Kosten reduziert werden.
In einer besonders bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die erste Stromsensoreinheit in zumindest einem Betriebszustand dazu vorgesehen ist, einen von der Heizfrequenzeinheit gelieferten Gesamtstrom zu messen. Hierdurch kann eine vorteilhafte Kochfeldsteuerung verwirklicht werden. Insbesondere kann eine Überbeanspruchung und insbesondere ein Überhitzen der Heizfrequenzeinheit vermieden werden.
Vorteilhaft umfasst die Induktionsheizvorrichtung wenigstens eine Schalteinheit, welche in zumindest einem Betriebszustand dazu vorgesehen ist, der Heizfrequenzeinheit einen der Heizinduktoren zuzuordnen. Hierdurch kann eine Anzahl an Heizfrequenzeinheiten gegenüber einer Anzahl an Heizinduktoren vorteilhaft reduziert werden, wodurch insbesondere Kosten eingespart werden können. Ferner kann Bauraum eingespart werden und eine Kühleinheit zu einer Kühlung der Heizfrequenzeinheiten kann kleiner dimensioniert werden. Des Weiteren kann durch Verwendung eines Zeitmultiplexverfahrens, bei welchem bestimmte Heizinduktoren periodisch durch bestimmte Heizfrequenzeinheiten mit Energie versorgt werden, dennoch ein vorteilhaft hoher Bedienkomfort erreicht werden.
In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die erste Stromsensoreinheit schaltungstechnisch zwischen der Heizfrequenzeinheit und der ersten Schalteinheit angeordnet ist. Darunter, dass eine erste Einheit„schaltungstechnisch zwischen einer zweiten und einer dritten Einheit angeordnet ist", soll insbesondere verstanden werden, dass wenigstens ein Strompfad von der zweiten Einheit zur dritten Einheit existiert, welcher insbesondere von einer Mas- seleitung verschieden ist und in welchem die erste Einheit angeordnet ist. Hierdurch kann besonders vorteilhaft eine Messung eines durch die Heizfrequenzeinheit gelieferten Gesamtstroms ermöglicht werden.
Vorteilhaft ist die erste Stromsensoreinheit schaltungstechnisch zwischen einem der Heizinduktoren und der Resonanzkondensatoreinheit und schaltungstechnisch unmittelbar benachbart zur Resonanzkondensatoreinheit angeordnet. Darunter, dass eine erste Einheit„schaltungstechnisch unmittelbar benachbart" zu einer zweiten Einheit angeordnet ist, soll insbesondere verstanden werden, dass insbesondere zwischen der ersten Einheit und der zweiten Einheit schaltungstechnisch lediglich elektrische Leiter und Bauteile mit einem elektrischen Widerstand von höchstens 50 Ω, insbesondere von maximal 10 Ω, vorzugsweise von höchstens 5 Ω und besonders vorteilhaft von maximal 1 Ω angeordnet sind und dass insbesondere ein Strompfad von der ersten Einheit zur zweiten Einheit unverzweigt ist. Hierdurch können weitere vorteilhafte Steuerungsvarianten ermöglicht werden.
Ferner wird vorgeschlagen, dass die zweite Stromsensoreinheit zumindest dazu vorgesehen ist, ein Vorhandensein des Stroms durch einen der Heizinduktoren zu bestimmen. Vorzugsweise ist die zweite Stromsensoreinheit schaltungstechnisch unmittelbar benachbart zu einem der Heizinduktoren angeordnet. Vorzugsweise ist die zweite Stromsensoreinheit derart einfach ausgebildet, dass sie lediglich dazu geeignet ist, das Vorhandensein des Stroms zu erfassen. Hierdurch können Kosten besonders vorteilhaft reduziert werden.
In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Induktionsheizvorrichtung wenigstens drei Anschlussstellen umfasst, welche dazu vorgesehen sind, an wenigstens zwei Außenleiter und wenigstens einen Neutralleiter eines Stromversorgungsnetzes angeschlossen zu werden. Hierdurch kann eine Gesamtleistung der Induktionsheizvorrichtung vorteilhaft gesteigert werden. Vorteilhaft umfasst die zweite Stromsensoreinheit zumindest eine Leiterschleife, welche dazu vorgesehen ist, die Heizstromkenngröße induktiv zu messen. Unter einer„Leiterschleife" soll insbesondere eine Formgebung zumindest eines elektrischen Leiters verstanden werden, welche vorzugsweise zumindest eine Ecke und/oder wenigstens eine Biegung aufweist. Unter einem„elektrischen Leiter" soll insbesondere ein elektrisch leitfähiges Element mit einem spezifischen elektrischen Widerstand von höchstens 10"6 Qm, insbesondere von maximal
8x 10"7 Qm, vorzugsweise von höchstens 6x 10"7 Qm und besonders vorteilhaft von maximal 4x 10"7 Qm bei 20°C verstanden werden, welches insbesondere in einem abgewickelten Zustand betrachtet zumindest eine Längserstreckung aufweist, die wenigstens 20-mal, insbesondere zumindest 30-mal, vorzugsweise mindestens 40-mal und vorteilhaft wenigstens 50-mal größer ist als wenigstens eine zur Längserstreckung senkrechte Quererstreckung. Vorzugsweise ist die Leiterschleife an einer Platine angeordnet und besonders vorteilhaft auf beiden Oberseiten der Platine. Ferner ist die zweite Stromsensoreinheit vorzugsweise kernlos. Hierdurch kann eine besonders kostengünstige zweite Stromsensoreinheit bereitgestellt werden. Ferner kann vorteilhaft eine galvanische Trennung erreicht werden.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind sechs Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
Es zeigen:
Fig. 1 ein Induktionskochfeld mit einer Induktionsheizvorrichtung in einer Draufsicht,
Fig. 2 ein Schaltbild der Induktionsheizvorrichtung aus Fig. 1 mit einer ersten und einer zweiten Stromsensoreinheit, Fig. 3a einen Teil der zweiten Stromsensoreinheit aus Fig. 2 in einer schematischen Darstellung,
Fig. 3b den Teil der zweiten Stromsensoreinheit aus Fig. 3a in einem
montierten Zustand in einer schematischen Darstellung
Fig. 4 einen Teil einer alternativen zweiten Stromsensoreinheit in einem montierten Zustand in einer schematischen Darstellung,
Fig. 5a einen Teil einer weiteren zweiten Stromsensoreinheit in einer
schematischen Darstellung,
Fig. 5b den Teil der zweiten Stromsensoreinheit in einem montierten
Zustand in einer schematischen Darstellung,
Fig. 6 ein Schaltbild einer weiteren Induktionsheizvorrichtung mit einer ersten und einer zweiten Stromsensoreinheit, wobei die erste Stromsensoreinheit an einer ersten Position angeordnet ist,
Fig. 7 ein Schaltbild einer weiteren Induktionsheizvorrichtung mit einer ersten und einer zweiten Stromsensoreinheit, wobei die erste Stromsensoreinheit an einer zweiten Position angeordnet ist, und
Fig. 8 ein Schaubild einer verallgemeinerten Induktionsheizvorrichtung.
Figur 1 zeigt ein als Induktionskochfeld 54a ausgebildetes Gargerät in einer Draufsicht. Das Induktionskochfeld 54a umfasst eine Kochfeldplatte 56a. Die Kochfeldplatte 56a besteht aus einer Glaskeramik. In einer Einbaulage ist die Kochfeldplatte 56a horizontal angeordnet und zu einem Aufstellen von Gargeschirr vorgesehen (nicht dargestellt). Auf der Kochfeld platte 56a sind in bekannter Weise vier Heizzonen 58a, 60a, 62a, 64a gekennzeichnet. Das Induktionskochfeld 54a umfasst eine Induktionsheizvorrichtung zu einer Beheizung der Heizzonen 58a, 60a, 62a, 64a.
Figur 2 zeigt ein Schaltbild der Induktionsheizvorrichtung aus Figur 1.Die Induktionsheizvorrichtung weist unterhalb der Kochfeld platte 56a vier Heizinduktoren 10a, 12a, 14a, 16a auf, wobei jedem der Heizinduktoren 10a, 12a, 14a, 16a eine der Heizzonen 58a, 60a, 62a, 64a zugeordnet ist. Die Heizvorrichtung weist zwei Heizfrequenzeinheiten 18a, 20a auf, durch welche die Heizinduktoren 10a, 12a, 14a, 16a mit hochfrequentem Wechselstrom versorgt werden können. Die zwei Heizfrequenzeinheiten 18a, 20a umfassen jeweils einen Wechselrichter 66a, 68a. Der Wechselrichter 66a weist einen ersten Bipolartransistor mit isolierter Gate- Elektrode (hierfür wird im Folgenden die Abkürzung„IGBT" verwendet) 70a und einen zum ersten IGBT 70a in Serie geschalteten zweiten IGBT 72a auf. Ferner weist der Wechselrichter 68a einen ersten IGBT 74a und einen zum ersten IGBT 74a in Serie geschalteten zweiten IGBT 76a auf. Alternativ kann anstatt der IGBTs auch jede andere, dem Fachmann als sinnvoll erscheinende Schalteinheit eingesetzt werden, vorzugsweise jedoch ein bidirektionaler unipolarer Schalter. Ferner können Heizfrequenzeinheiten zusätzlich einen insbesondere parallel zu einem bidirektionalen unipolaren Schalter angeordneten Dämpfungskondensator aufweisen.
Die Induktionsheizvorrichtung ist dazu vorgesehen, über Anschlussstellen 42a, 44a, 46a an zwei Außenleiter 48a, 50a und einen Neutralleiter 52a eines länderspezifischen Stromversorgungsnetzes angeschlossen zu werden. Zwischen einem der Außenleiter 48a, 50a und dem Neutralleiter 52a liegt jeweils eine elektrische Spannung mit einer Frequenz von 50 Hz und einem Effektivwert von 230 V an. Die beschriebene Induktionsheizvorrichtung ist insbesondere zu einem Betrieb in Deutschland vorgesehen. Die zwischen dem Außenleiter 48a und dem Neutralleiter 52a abgegriffene Spannung wird in einem Betriebszustand durch eine Gleichrichtereinheit 78a gefiltert und gleichgerichtet und dann der Heizfrequenzeinheit 18a zugeführt. Die zwischen dem Außenleiter 50a und dem Neutralleiter 52a abgegriffene Spannung wird in einem Betriebszustand durch eine Gleichrichtereinheit 80a gefiltert und gleichgerichtet und dann der Heizfrequenzeinheit 20a zugeführt. Somit wird an einem Ausgang der Gleichrichtereinheit 78a eine gleichgerichtete Spannung abgegeben, welche zwischen einem Kollektor des IGBTs 70a und einem Emitter des IGBTs 72a anliegt. Ferner wird an einem Ausgang der Gleichrichtereinheit 80a eine gleichgerichtete Spannung abgege- ben, welche zwischen einem Kollektor des IGBTs 74a und einem Emitter des IGBTs 76a anliegt.
Des Weiteren weist die Induktionsheizvorrichtung eine Schalteinheit 38a auf. Die Schalteinheit 38a umfasst vier Schaltelemente 82a, 84a, 86a, 88a. Die Schaltelemente 82a, 84a, 86a, 88a sind baugleich. Bei den Schaltelementen 82a, 84a, 86a, 88a handelt es sich um SPDT Relais. Jedes der Schaltelemente 82a, 84a, 86a, 88a weist einen ersten, einen zweiten und einen dritten Kontakt auf. Der erste Kontakt ist durch eine entsprechende Ansteuerung wahlweise mit dem zweiten oder dem dritten Kontakt leitend verbindbar. Der erste Kontakt des Schaltelements 82a ist leitend über eine Leitung 89a mit einem Emitter des IGBTs 70a verbunden. Der zweite Kontakt des Schaltelements 82a ist leitend mit dem ersten Kontakt des Schaltelements 84a verbunden. Der dritte Kontakt des Schaltelements 82a ist leitend über eine Leitung 90a mit einem ersten Kontakt des Heizinduktors 14a verbunden. Der zweite Kontakt des Schaltelements 84a ist leitend über eine Leitung 92a mit einem ersten Kontakt des Heizinduktors 10a verbunden. Der dritte Kontakt des Schaltelements 84a ist leitend über eine Leitung 94a mit einem ersten Kontakt des Heizinduktors 12a verbunden. Außerdem ist der erste Kontakt des Schaltelements 86a leitend über eine Leitung 95a mit einem Emitter des IGBTs 74a verbunden. Der zweite Kontakt des Schaltelements 86a ist leitend über die Leitung 94a mit dem ersten Kontakt des Heizinduktors 12a verbunden. Der dritte Kontakt des Schaltelements 86a ist mit dem ersten Kontakt des Schaltelements 88a verbunden. Der zweite Kontakt des Schaltelements 88a ist leitend über die Leitung 90a mit dem ersten Kontakt des Heizinduktors 14a verbunden. Der dritte Kontakt des Schaltelements 84a ist leitend über eine Leitung 96a mit einem ersten Kontakt des Heizinduktors 16a verbunden.
Die Induktionsheizvorrichtung umfasst ferner zwei Resonanzkondensatoreinheiten 22a, 24a. Die Resonanzkondensatoreinheit 22a umfasst zwei in Serie geschaltete Resonanzkondensatoren 98a, 100a. Die Resonanzkondensatoreinheit 24a umfasst zwei in Serie geschaltete Resonanzkondensatoren 102a, 104a. Ein erster Kontakt des Resonanzkondensators 98a ist leitend mit dem Kollektor des IGBTs 70a verbunden. Ein zweiter Kontakt des Resonanzkondensators 98a ist leitend mit einem zweiten Kontakt des Heizinduktors 10a verbunden. Ein erster Kontakt des Resonanzkondensators 100a ist leitend mit dem zweiten Kontakt des Resonanzkondensators 98a verbunden. Ein zweiter Kontakt des Resonanzkondensators 100a ist leitend mit dem Emitter des IGBTs 72a verbunden. Ein erster Kontakt des Resonanzkondensators 102a ist leitend mit dem Kollektor des IGBTs 74a verbunden. Ein zweiter Kontakt des Resonanzkondensators 102a ist leitend mit einem zweiten Kontakt des Heizinduktors 16a verbunden. Ein erster Kontakt des Resonanzkondensators 104a ist leitend mit dem zweiten Kontakt des Resonanzkondensators 102a verbunden. Ein zweiter Kontakt des Resonanzkondensators 104a ist leitend mit dem Emitter des IGBTs 76a verbunden.
Des Weiteren weist die Induktionsheizvorrichtung eine weitere Schalteinheit 106a auf. Die Schalteinheit 106a umfasst zwei Schaltelemente 108a, 1 10a. Die Schaltelemente 108a, 1 10a sind identisch zu den Schaltelementen 82a, 84a, 86a, 88a ausgebildet. Der erste Kontakt des Schaltelements 108a ist leitend mit einem zweiten Kontakt des Heizinduktors 12a verbunden. Der zweite Kontakt des Schaltelements 108a ist leitend mit dem zweiten Kontakt des Heizinduktors 10a verbunden. Der dritte Kontakt des Schaltelements 108a ist leitend mit dem zweiten Kontakt des Heizinduktors 16a verbunden. Der erste Kontakt des Schaltelements 1 10a ist leitend mit einem zweiten Kontakt des Heizinduktors 14a verbunden. Der zweite Kontakt des Schaltelements 1 10a ist leitend mit dem zweiten Kontakt des Heizinduktors 10a verbunden. Der dritte Kontakt des Schaltelements 1 10a ist leitend mit dem zweiten Kontakt des Heizinduktors 16a verbunden.
Die Induktionsheizvorrichtung umfasst zwei erste Stromsensoreinheiten 26a, 28a, welche einen von den Heizfrequenzeinheiten 18a, 20a gelieferten Heizstrom messen, wobei eine nicht dargestellte Steuereinheit des Induktionskochfelds 54a diese Information in bekannter Weise zu einer Steuerung und/oder Regelung der Heizfrequenzeinheiten 18a, 20a nutzt. Die erste Stromsensoreinheit 26a misst den durch die Leitung 89a fließenden Heizstrom. Die erste Stromsensoreinheit 28a misst den durch die Leitung 95a fließenden Heizstrom. Somit messen die ersten Stromsensoreinheiten 26a, 28a in einem Betriebszustand jeweils einen von der jeweiligen Heizfrequenzeinheit 18a, 20a gelieferten gesamten Heizstrom. Die ersten Stromsensoreinheiten 26a, 28a sind jeweils in einem Resonanzstromkreis angeordnet. Die ersten Stromsensoreinheiten 26a, 28a messen den Heizstrom jeweils durch elektromagnetische Induktion in einer Leiterschleife, wodurch unmittelbar eine galvanische Trennung erreicht werden kann. Die ersten Stromsensoreinheiten 26a, 28a sind speziell zu einer Messung des hochfrequenten Heizstroms ausgelegt und weisen eine entsprechend hohe Genauigkeit im Frequenzbereich zwischen 20 kHz und 100 kHz auf.
Mittels der Schalteinheit 38a kann durch die Steuereinheit eine Zuordnung der Heizfrequenzeinheiten 18a, 20a zu den Heizinduktoren 10a, 12a, 14a, 16a getroffen werden. Ferner kann mittels der Schalteinheit 106a durch die Steuereinheit eine Zuordnung der Resonanzkondensatoreinheiten 22a, 24a zu den Heizinduktoren 10a, 12a, 14a, 16a getroffen werden. Somit kann trotz einer geringeren Anzahl an Heizfrequenzeinheiten 18a, 20a als an Heizinduktoren 10a, 12a, 14a, 16a ein vorteilhaft hoher Bedienkomfort erreicht werden. Insbesondere können aufgrund der geringeren Anzahl an Heizfrequenzeinheiten 18a, 20a Kosten eingespart werden.
Für eine Betriebssicherheit ist eine Überwachung einer Schaltfunktion der Schalteinheit 38a wesentlich. So sind insbesondere solche potentiell unsicheren Betriebszustände zu vermeiden, in welchen ein anderer Heizinduktor 10a, 12a, 14a, 16a als eigentlich von einem Bediener gewünscht beheizt wird, beispielsweise aufgrund einer Fehlfunktion der Schalteinheit 38a. Hierfür sind zweite Stromsensoreinheiten 30a, 32a, 34a, 36a vorgesehen, welche zumindest ein Vorhandensein des Heizstroms in den Leitungen 90a, 92a, 94a, 96a detektieren. Die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a sind jeweils schaltungstechnisch in unmittelbarer Nachbarschaft zu den Heizinduktoren 10a, 12a, 14a, 16a und damit in Resonanzstromkreisen angeordnet. Auch die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a arbeiten nach dem Prinzip der elektromagne- tischen Induktion, wodurch ebenfalls eine galvanische Trennung erreicht werden kann. Die ersten Stromsensoreinheiten 26a, 28a und die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a sind von unterschiedlicher Art. So weisen die ersten Stromsensoreinheiten 26a, 28a jeweils eine zumindest wesentlich höhere Genauigkeit auf als die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a. Die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a können derart ausgebildet sein, dass sie lediglich zu einer Bestimmung des Vorhandenseins des Heizstroms in der betreffenden Leitung 90a, 92a, 94a, 96a geeignet sind. Durch die Steuereinheit wird in einem Betriebszustand ermittelt, ob lediglich durch diejenigen Leitungen 90a, 92a, 94a, 96a Strom fließt, durch welche auch tatsächlich Strom fließen sollte. Tritt ein unerwarteter Stromfluss in einer der Leitungen 90a, 92a, 94a, 96a auf, ist dies ein Hinweis auf eine Fehlstellung der Schalteinheit 38a. Bei Auftreten einer solchen Fehlstellung veranlasst die Steuereinheit zumindest ein Abschalten der Heizfrequenzeinheiten 18a, 20a und gegebenenfalls eine Ausgabe einer Fehlermeldung und/oder einer Wartungsaufforderung.
Für die zweiten Stromsensoreinheiten 30a, 32a, 34a, 36a kommen beliebige, dem Fachmann als sinnvoll erscheinende Stromsensoreinheiten in Frage, insbesondere die in den Figuren 3a, 3b, 4, 5a und 5b gezeigten. Den hier gezeigten zweiten Stromsensoreinheiten 30a-c, 32a-c, 34a-c, 36a-c ist gemein, dass sie jeweils eine Leiterschleife 40a-c umfassen, welche dazu vorgesehen ist, den Heizstrom induktiv zu messen.
Figur 3a zeigt einen Teil der zweiten Stromsensoreinheit 30a in einer schematischen Darstellung. Entsprechende Teile der zweiten Stromsensoreinheiten 32a, 34a, 36a sind identisch aufgebaut. Die Leiterschleife 40a der Stromsensoreinheit 30a ist auf einer Platine 136a aufgebracht. Die Leiterschleife 40a verläuft teilweise auf einer Oberseite 138a und teilweise auf einer Unterseite 140a der Platine 136a. Teile der Leiterschleife 40a, welche auf der Unterseite 140a der Platine 136a verlaufen, sind in den Figuren 3a und 3b gestrichelt dargestellt. Über Durchführungen 142a, von denen in den Figuren 3a und 3b der Übersichtlichkeit halber jeweils nur eine bezeichnet ist, sind die Teile der Leiterschleife 40a durch die Platine 136a von der Oberseite 138a zur Unterseite 140a leitend verbunden. Die Leiterschleife 40a weist zumindest im Wesentlichen eine quaderförmige Außenkontur auf und bildet zusammen mit den Durchführungen 142a eine Spule, deren Spulenfläche senkrecht zur Platine 136a ausgerichtet ist.
Figur 3b zeigt eine schematische Darstellung der zweiten Stromsensoreinheit 30a in einem montierten Zustand. Die gegenüber einer Umgebung elektrisch isolierte Leitung 92a ist im montierten Zustand entlang der Oberseite 138a der Platine 136a und zumindest im Wesentlichen parallel zur Spulenfläche geführt. In einem Betriebszustand wird durch den hochfrequenten Heizstrom in der Leitung 92a eine zur zeitlichen Änderung des Heizstroms proportionale Spannung in der Leiterschleife 40a induziert. Über eine geeignete Messschaltung (nicht dargestellt) kann somit das Vorhandensein des Heizstroms in der Leitung 92a nachgewiesen werden. Abhängig von der Messschaltung kann sogar eine Frequenz des Heizstroms ermittelt werden, wodurch eine Zuordnung zu einer der Heizfrequenzeinheiten 18a, 20a ermöglicht werden kann, und zwar der Heizfrequenzeinheit 18a, 20a, welche mit der gleichen Frequenz betrieben wird.
In den Figuren 4, 5a, 5b, 6, 7 und 8 sind fünf weitere Ausführungsbeispiele der Erfindung gezeigt. Die nachfolgenden Beschreibungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleichbleibender Bauteile, Merkmale und Funktionen auf die Beschreibung der anderen Ausführungsbeispiele, insbesondere der Figuren 1 , 2, 3a und 3b, verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a in den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 , 2, 3a und 3b durch die Buchstaben b bis f in den Bezugszeichen der Ausführungsbeispiele der Figuren 4, 5a, 5b, 6, 7 und 8 ersetzt. Bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, kann grundsätzlich auch auf die Figuren und/oder die Beschreibung der anderen Ausführungsbeispiele, insbesondere der Figuren 1 ,2, 3a und 3b, verwiesen werden. Figur 4 zeigt einen Teil einer weiteren zweiten Stromsensoreinheit 30b in einer schematischen Darstellung. Die Leiterschleife 40b der Stromsensoreinheit 30b ist ebenfalls auf einer Platine 136b aufgebracht. Wie schon zuvor sind auch in Figur 4 Komponenten, welche entlang einer Unterseite 140b der Platine 136b angeordnet sind, gestrichelt dargestellt. Das vorliegende Ausführungsbeispiel unterscheidet sich vom vorherigen Ausführungsbeispiel lediglich dadurch, dass eine von einem Heizinduktor 10b kommende, gegenüber einer Umgebung elektrisch isolierte Rückleitung 144b zusätzlich antiparallel zu einer zum Heizinduktor 10b führenden Leitung 92b angeordnet wird, so dass ein Heizstrom antiparallel fließt. Dabei ist die Leitung 92b entlang einer Oberseite 138b der Platine 136b und die Rückleitung 144b entlang der Unterseite 140b geführt. Sowohl die Leitung 92b als auch die Rückleitung 144b sind zumindest im Wesentlichen parallel zu einer Spulenfläche einer von der Leiterschleife 40b und von Durchführungen 142b gebildeten Spule ausgerichtet. Durch einen solchen Aufbau kann eine doppelt so große Empfindlichkeit wie im vorhergehenden Ausführungsbeispiel erzielt werden.
Figur 5a zeigt einen Teil einer weiteren zweiten Stromsensoreinheit 30c in einer schematischen Darstellung. Die Leiterschleife 40c der Stromsensoreinheit 30c ist ebenfalls auf einer Platine 136c aufgebracht. Die Leiterschleife 40c verläuft teilweise auf einer Oberseite 138c und teilweise auf einer Unterseite 140c der Platine 136c. Teile der Leiterschleife 40c, welche auf der Unterseite 140c der Platine 136c verlaufen, sind in den Figuren 5a und 5b gestrichelt dargestellt. Über Durchführungen 142c, von denen in den Figuren 5a und 5b der Übersichtlichkeit halber jeweils nur eine bezeichnet ist, sind die Teile der Leiterschleife 40c durch die Platine 136c von der Oberseite 138c zur Unterseite 140c leitend verbunden. Die Leiterschleife 40c weist zumindest im Wesentlichen eine toroidförmige Außenkontur auf und bildet zusammen mit den Durchführungen 142a eine Rogowskispule. In einer Mitte der Rogowskispule ist in der Platine 136c eine Ausnehmung 146c vorgesehen. Die Ausnehmung 146c ist bei einer senkrechten Betrachtung der Platine 136c kreisförmig ausgebildet. Figur 5b zeigt eine schematische Darstellung der zweiten Stromsensoreinheit 30c in einem montierten Zustand. Eine gegenüber einer Umgebung elektrisch isolierte Leitung 92c, welche zu einer Stromversorgung eines Heizinduktors 10c vorgesehen ist, ist im montierten Zustand durch die Ausnehmung 146c geführt. In einem Betriebszustand wird durch den hochfrequenten Heizstrom in der Leitung 92c eine zur zeitlichen Änderung des Heizstroms proportionale Spannung in der Leiterschleife 40c induziert. Über eine geeignete Messschaltung (nicht dargestellt) kann somit das Vorhandensein des Heizstroms in der Leitung 92c nachgewiesen werden. Abhängig von der Messschaltung kann auch hier eine Frequenz des Heizstroms ermittelt werden, wodurch eine Zuordnung zu einer Heizfrequenzeinheit 18c, 20c ermöglicht werden kann, und zwar zu der Heizfrequenzeinheit 18c, 20c, welche mit der gleichen Frequenz betrieben wird.
Figur 6 zeigt ein Schaltbild einer weiteren Induktionsheizvorrichtung eines Induktionskochfelds 54d. Die Induktionsheizvorrichtung ist dazu vorgesehen, über Anschlussstellen 42d, 46d an lediglich einen Außenleiter 48d und einen Neutralleiter 52d eines länderspezifischen Stromversorgungsnetzes angeschlossen zu werden. Zwischen dem Außenleiter 48d und dem Neutralleiter 52d liegt eine elektrische Spannung mit einer Frequenz von 50 Hz und einem Effektivwert von 230 V an. Die beschriebene Induktionsheizvorrichtung ist insbesondere zu einem Betrieb in Deutschland vorgesehen. Für eine Induktionsheizvorrichtung, welche zu einem Betrieb in den USA vorgesehen ist, betragen die Frequenz 60 Hz und der Effektivwert 1 10 V. Die zwischen dem Außenleiter 48d und dem Neutralleiter 52d abgegriffene Spannung wird in einem Betriebszustand durch eine Gleichrichtereinheit 78d gefiltert und gleichgerichtet und dann parallel zwei Heizfrequenzeinheiten 18d, 20d zugeführt. Die Heizfrequenzeinheiten 18d, 20d umfassen jeweils einen Wechselrichter 66d, 68d mit jeweils zwei IGBTs 70d, 72d, 74d, 76d. Somit wird an einem Ausgang der Gleichrichtereinheit 78d eine gleichgerichtete Spannung abgegeben, welche zwischen einem Kollektor des IGBTs 70d und einem Emitter des IGBTs 72d anliegt. Ferner wird am Ausgang der Gleichrichtereinheit 78d eine gleichgerichtete Spannung abgegeben, welche zwischen einem Kollektor des IGBTs 74d und einem Emitter des IGBTs 76d anliegt. Des Weiteren weist die Induktionsheizvorrichtung eine Schalteinheit 38d auf. Die Schalteinheit 38da umfasst sechs Schaltelemente 82d, 84d, 86d, 88d, 108d, 1 1 Od. Die Schaltelemente 82d, 84d, 86d, 88d sind baugleich. Bei den Schaltelementen 82d, 84d, 86d, 88d handelt es sich um SPDT Relais. Jedes der Schaltelemente 82d, 84d, 86d, 88d, 108d, 1 1 Od weist einen ersten, einen zweiten und einen dritten Kontakt und eine Spule auf. Der erste Kontakt ist durch eine entsprechende Ansteuerung wahlweise mit dem zweiten oder dem dritten Kontakt leitend verbindbar. Der erste Kontakt des Schaltelements 82d ist leitend über eine Leitung 89d mit einem Emitter des IGBTs 70d verbunden. Ferner ist der zweite Kontakt des Schaltelements 82d mit dem ersten Kontakt des Schaltelements 84d verbunden. Der dritte Kontakt des Schaltelements 82d ist leitend mit dem ersten Kontakt des Schaltelements 86d verbunden. Der zweite Kontakt des Schaltelements 84d ist leitend über eine Leitung 92d mit einem ersten Kontakt eines Heizinduktors 10d verbunden. Der dritte Kontakt des Schaltelements 84d ist leitend über eine Leitung 94d mit einem ersten Kontakt eines Heizinduktors 12d verbunden. Der zweite Kontakt des Schaltelements 86d ist leitend über eine Leitung 90d mit einem ersten Kontakt eines Heizinduktors 14d verbunden. Der dritte Kontakt des Schaltelements 86d ist leitend über eine Leitung 96d mit einem ersten Kontakt eines Heizinduktors 16d verbunden. Außerdem ist der erste Kontakt des Schaltelements 88d leitend über eine Leitung 95d mit einem Emitter des IGBTs 74d verbunden. Ferner ist der zweite Kontakt des Schaltelements 88d mit dem ersten Kontakt des Schaltelements 1 10d verbunden. Der dritte Kontakt des Schaltelements 82d ist leitend mit dem ersten Kontakt des Schaltelements 108d verbunden. Der zweite Kontakt des Schaltelements 1 10d ist leitend über die Leitung 92d mit dem ersten Kontakt des Heizinduktors 10d verbunden. Der dritte Kontakt des Schaltelements 1 10d ist leitend über die Leitung 94d mit dem ersten Kontakt des Heizinduktors 12d verbunden. Der zweite Kontakt des Schaltelements 108d ist leitend über die Leitung 90d mit dem ersten Kontakt des Heizinduktors 14d verbunden. Der dritte Kontakt des Schaltelements 108d ist leitend über die Leitung 96d mit dem ersten Kontakt des Heizinduktors 16d verbunden. Die Induktionsheizvorrichtung umfasst ferner zwei Resonanzkondensatoreinheiten 22d, 24d. Die Resonanzkondensatoreinheit 22d umfasst zwei in Serie geschaltete Resonanzkondensatoren 98d, 100d. Die Resonanzkondensatoreinheit 24d umfasst zwei in Serie geschaltete Resonanzkondensatoren 102d, 104d. Ein erster Kontakt des Resonanzkondensators 98d ist leitend mit dem Kollektor des IGBTs 70d und dem Kollektor des IGBTs 74d verbunden. Ein zweiter Kontakt des Resonanzkondensators 98d ist leitend mit einem zweiten Kontakt des Heizinduktors 10d und einem zweiten Kontakt des Heizinduktors 12d verbunden. Ein erster Kontakt des Resonanzkondensators 100d ist leitend mit dem zweiten Kontakt des Resonanzkondensators 98d verbunden. Ein zweiter Kontakt des Resonanzkondensators 100d ist leitend mit dem Emitter des IGBTs 72d und dem Emitter des IGBTs 76d verbunden. Ein erster Kontakt des Resonanzkondensators 102d ist leitend mit dem Kollektor des IGBTs 70d und dem Kollektor des IGBTs 74d verbunden. Ein zweiter Kontakt des Resonanzkondensators 102d ist leitend mit einem zweiten Kontakt des Heizinduktors 14d und einem zweiten Kontakt des Heizinduktors 16d verbunden. Ein erster Kontakt des Resonanzkondensators 104d ist leitend mit dem zweiten Kontakt des Resonanzkondensators 102d verbunden. Ein zweiter Kontakt des Resonanzkondensators 104d ist leitend mit dem Emitter des IGBTs 72d und dem Emitter des IGBTs 76d verbunden.
Die Induktionsheizvorrichtung umfasst ebenfalls zwei erste Stromsensoreinheiten 26d, 28d, welche jeweils einen von den Heizfrequenzeinheiten 18d, 20d gelieferten Gesamtstromstrom in den jeweiligen Leitungen 89d, 95d messen. Ferner umfasst die Induktionsheizvorrichtung zweite Stromsensoreinheiten 30d, 32d, 34d, 36d, welche zumindest ein Vorhandensein des Heizstroms in den Leitungen 90d, 92d, 94d, 96d detektieren. Die zweiten Stromsensoreinheiten 30d, 32d, 34d, 36d sind jeweils schaltungstechnisch in unmittelbarer Nachbarschaft zu den Heizinduktoren 10d, 12d, 14d, 16d angeordnet. Für die zweiten Stromsensoreinheiten 30d, 32d, 34d, 36d kommen beliebige, dem Fachmann als sinnvoll erscheinende Stromsensoreinheiten in Frage, insbesondere die in den Figuren 3a, 3b, 4, 5a und 5b gezeigten. Figur 7 zeigt ein Schaltbild einer alternativen Induktionsheizvorrichtung eines Induktionskochfelds 54e. Die vorliegende Induktionsheizvorrichtung ist weitgehend identisch mit der Induktionsheizvorrichtung aus dem Ausführungsbeispiel gemäß Figur 6 aufgebaut. Es unterscheidet sich lediglich in einer Position von ersten Stromsensoreinheiten 26e, 28e. Diese sind im vorliegenden Ausführungsbeispiel schaltungstechnisch zwischen Heizinduktoren 10e, 12e, 14e, 16e und Resonanzkondensatoreinheiten 22e, 24e und schaltungstechnisch unmittelbar benachbart zu den Resonanzkondensatoreinheiten 22e, 24e angeordnet. Die erste Stromsensoreinheit 26e ist zwischen einem zweiten Anschluss des Heizinduktors 10e sowie einem zweiten Anschluss des Heizinduktors 12e und einem zweiten Anschluss eines Resonanzkondensators 98e sowie einem ersten Anschluss eines Resonanzkondensators 100e angeordnet. Die erste Stromsensoreinheit 28e ist zwischen einem zweiten Anschluss des Heizinduktors 14e sowie einem zweiten Anschluss des Heizinduktors 16e und einem zweiten Anschluss eines Resonanzkondensators 102e sowie einem ersten Anschluss eines Resonanzkondensators 104e angeordnet. Diese Anordnung der ersten Stromsensoreinheiten 26e, 28e ist bevorzugt, wenn zwei Heizinduktoren 10e, 12e, 14e, 16e jeweils durch eine eigene Heizfrequenzeinheit 18e, 20e, jedoch an einer einzigen gemeinsamen Resonanzkondensatoreinheit 22e, 24e betrieben werden. In diesem Fall werden die Heizfrequenzeinheiten 18e, 20e mit der gleichen Frequenz betrieben, wobei über eine relative Phasenverschiebung eine Einstellung einer Heizleistung der Heizinduktoren 10e, 12e, 14e, 16e vorgenommen wird.
Figur 8 zeigt ein Schaubild einer Induktionsheizvorrichtung eines Induktionskochfelds 54f. Die vorliegende Induktionsheizvorrichtung stellt eine Verallgemeinerung der Induktionsheizvorrichtungen aus den Figuren 2, 6 und 7 dar. Die Induktionsheizvorrichtung ist allgemein zu einem Anschluss an einen oder mehrere Außenleiter 48f und an einen Neutralleiter 52f vorgesehen. Im Folgenden ist die Induktionsheizvorrichtung lediglich für einen Außenleiter 48f beschrieben. Die entsprechenden Teile sind für die übrigen Außenleiter jedoch identisch aufgebaut. Ferner erfolgt in Figur 8 der Übersichtlichkeit halber lediglich für den Außenleiter 48f eine Kennzeichnung von Komponenten mit Bezugszeichen. Die Induktionsheiz- Vorrichtung weist für jeden Außenleiter 48f eine Gleichrichtereinheit 78f auf. Ferner umfasst die Induktionsheizvorrichtung für jeden Außenleiter 48f eine oder mehrere Heizfrequenzeinheiten 18f, welche im Falle mehrerer Heizfrequenzeinheiten 18f parallel von der Gleichrichtereinheit 78f mit einer gleichgerichteten Spannung versorgt werden. Über eine Schalteinheit 38f ist eine Zuordnung der Heizfrequenzeinheit 18f oder der Heizfrequenzeinheiten 18f zu Heizinduktoren 10f, 12f, 14f möglich. Hierbei ist zu beachten, dass über phasenübergreifende Leitungen 1 12f, 1 14f, 1 16f eine Verbindung zu Heizinduktoren der übrigen Außenleiter möglich ist. Über eine weitere Schalteinheit 106f ist eine Zuordnung einer oder mehrerer Resonanzkondensatoreinheiten 22f der Induktionsheizvorrichtung zu den Heizinduktoren 10f, 12f, 14f möglich. Auch hier sind phasenübergreifende Leitungen 1 18f, 120f, 122f vorgesehen, welche eine Verbindung zu Heizinduktoren der übrigen Außenleiter erlauben. Die Induktionsheizvorrichtung umfasst ferner eine Steuereinheit 124f, welche über eine Entkopplungseinheit 126f zu einer Steuerung und/oder Regelung der Heizfrequenzeinheiten 18f vorgesehen ist. Die Entkopplungseinheit 126f sorgt hierbei für eine galvanische Entkopplung.
Für erste Stromsensoreinheiten kommen zwei unterschiedliche Sensorpositionen 128f, 130f pro Außenleiter 48f in Frage, wobei der Übersichtlichkeit halber jeweils nur eine Sensorposition 128f, 130f bezeichnet ist. Die Sensorpositionen 128f sind schaltungstechnisch zwischen den Heizfrequenzeinheiten 18f und den Schalteinheiten 38f angeordnet. Die Sensorpositionen 130f sind schaltungstechnisch zwischen den Schalteinheiten 106f und den Resonanzkondensatoreinheiten 22f angeordnet. Für die zweiten Stromsensoreinheiten sind zwei verschiedene Sensorpositionen 132f, 134f vorgesehen, wobei der Übersichtlichkeit halber jeweils nur eine Sensorposition 132f, 134f bezeichnet ist. Die Sensorpositionen 132f sind schaltungstechnisch zwischen den Schalteinheiten 38f und den Heizinduktoren 10f, 12f, 14f angeordnet. Die Sensorpositionen 134f sind schaltungstechnisch zwischen den Heizinduktoren 10f , 12f, 14f und den Schalteinheiten 106f angeordnet. Bezugszeichen
10 Heizinduktor 64 Heizzone
12 Heizinduktor 66 Wechselrichter
14 Heizinduktor 68 Wechselrichter
16 Heizinduktor 70 IGBT
18 Heizfrequenzeinheit 72 IGBT
20 Heizfrequenzeinheit 74 IGBT
22 Resonanzkondensatoreinheit 76 IGBT
24 Resonanzkondensatoreinheit 78 Gleich richtereinheit
26 Erste Stromsensoreinheit 80 Gleich richtereinheit
28 Erste Stromsensoreinheit 82 Schaltelement
30 Zweite Stromsensoreinheit 84 Schaltelement
32 Zweite Stromsensoreinheit 86 Schaltelement
34 Zweite Stromsensoreinheit 88 Schaltelement
36 Zweite Stromsensoreinheit 89 Leitung
38 Schalteinheit 90 Leitung
40 Leiterschleife 92 Leitung
42 Anschlussstelle 94 Leitung
44 Anschlussstelle 95 Leitung
46 Anschlussstelle 96 Leitung
48 Außenleiter 98 Resonanzkondensator
50 Außenleiter 100 Resonanzkondensator
52 Neutralleiter 102 Resonanzkondensator
54 Induktionskochfeld 104 Resonanzkondensator
56 Kochfeld platte 106 Schalteinheit
58 Heizzone 108 Schaltelement
60 Heizzone 1 10 Schaltelement
62 Heizzone 1 12 Phasenübergreifende Leitung Phasenübergreifende Leitung
Phasenübergreifende Leitung
Phasenübergreifende Leitung
Phasenübergreifende Leitung
Phasenübergreifende Leitung
Steuereinheit
Entkopplungseinheit
Sensorposition
Sensorposition
Sensorposition
Sensorposition
Platine
Oberseite
Unterseite
Durchführung
Rückleitung
Ausnehmung

Claims

Patentansprüche
Induktionsheizvorrichtung mit zumindest zwei Heizinduktoren (10a-f, 12a-f, 14a-f, 16a-e), wenigstens einer Heizfrequenzeinheit (18a-f, 20a-e) zu einer Versorgung der Heizinduktoren (10a-f, 12a-f, 14a-f, 16a-e) mit einem Heizstrom, wenigstens einer Resonanzkondensatoreinheit (22a-f, 24a-e), zumindest einer ersten Stromsensoreinheit (26a-e, 28a-e) und wenigstens einer zweiten Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e), welche jeweils in wenigstens einem Resonanzstromkreis angeordnet und zu einer Messung wenigstens einer Heizstromkenngröße vorgesehen sind, dadurch gekennzeichnet, dass die erste Stromsensoreinheit (26a-e, 28a-e) und die zweite Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e) von unterschiedlicher Art sind.
Induktionsheizvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Stromsensoreinheit (26a-e, 28a-e) eine zumindest wesentlich höhere Genauigkeit als die zweite Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e) aufweist.
Induktionsheizvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Stromsensoreinheit (26a-e, 28a-e) in zumindest einem Betriebszustand dazu vorgesehen ist, einen von der Heizfrequenzeinheit (18a-e, 20a-e) gelieferten Gesamtstrom zu messen.
Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens eine Schalteinheit (38a-f), welche in zumindest einem Betriebszustand dazu vorgesehen ist, der Heizfrequenzeinheit (18a-f, 20a-e) einen der Heizinduktoren (10a-f, 12a-f, 14a-f, 16a-e) zuzuordnen.
5. Induktionsheizvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die erste Stromsensoreinheit (26a-e, 28a-e) schaltungstechnisch zwischen der Heizfrequenzeinheit (18a-e, 20a-e) und der Schalteinheit (38a-e) angeordnet ist.
6. Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Stromsensoreinheit (26e, 28e) schaltungstechnisch zwischen einem der Heizinduktoren (10e, 12e, 14e, 16e) und der Resonanzkondensatoreinheit (22e, 24e) und schaltungstechnisch unmittelbar benachbart zur Resonanzkondensatoreinheit (22e, 24e) angeordnet ist.
7. Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e) zumindest dazu vorgesehen ist, ein Vorhandensein des Stroms durch einen der Heizinduktoren (10a-e, 12a-e, 14a-e, 16a-e) zu bestimmen.
8. Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Stromsensoreinheit (30a-e, 32a-e, 34a-e, 36a-e) zumindest eine Leiterschleife (40a-e) umfasst, welche dazu vorgesehen ist, die Heizstromkenngröße induktiv zu messen.
9. Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch wenigstens drei Anschlussstellen (42a-c, 42f, 44a-c, 46a-c, 46f), welche dazu vorgesehen sind, an wenigstens zwei Außenleiter (48a-c, 48f, 50a-c) und wenigstens einen Neutralleiter (52a-c, 52f) eines Stromversorgungsnetzes angeschlossen zu werden.
10. Gargerät, insbesondere Induktionskochfeld (54a-f), mit einer Induktionsheizvorrichtung nach einem der vorhergehenden Ansprüche.
EP13721073.8A 2012-03-28 2013-03-15 Induktionsheizvorrichtung Active EP2832182B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230457 2012-03-28
PCT/IB2013/052084 WO2013144765A1 (de) 2012-03-28 2013-03-15 Induktionsheizvorrichtung

Publications (2)

Publication Number Publication Date
EP2832182A1 true EP2832182A1 (de) 2015-02-04
EP2832182B1 EP2832182B1 (de) 2018-11-21

Family

ID=48325801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13721073.8A Active EP2832182B1 (de) 2012-03-28 2013-03-15 Induktionsheizvorrichtung

Country Status (2)

Country Link
EP (1) EP2832182B1 (de)
WO (1) WO2013144765A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121775B3 (de) 2011-12-21 2013-01-31 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Steuersystem
DE102015112589A1 (de) 2015-07-31 2017-02-02 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Steuersystem für eine motorisch verstellbare Laderaumvorrichtung eines Kraftfahrzeugs
DE102016123646A1 (de) * 2016-12-07 2018-06-07 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Messelektrode für einen kapazitiven Näherungssensor eines Kraftfahrzeugs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100661226B1 (ko) * 2005-12-02 2006-12-22 엘지전자 주식회사 전기조리기의 부하 감지장치 및 방법
KR20090057495A (ko) * 2007-12-03 2009-06-08 삼성전자주식회사 유도가열조리기 및 그 제어방법
WO2011016214A1 (ja) * 2009-08-04 2011-02-10 パナソニック株式会社 電力変換装置及び誘導加熱装置
ES2388028B1 (es) * 2010-03-03 2013-08-23 Bsh Electrodomésticos España, S.A. Encimera de cocción con al menos una zona de cocción y procedimiento para accionar una encimera de cocción.
ES2385091B1 (es) * 2010-04-27 2013-05-28 Bsh Electrodomésticos España, S.A. Dispositivo de encimera de cocción.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013144765A1 *

Also Published As

Publication number Publication date
WO2013144765A1 (de) 2013-10-03
EP2832182B1 (de) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2013167686A2 (de) Vorrichtung zur induktiven erwärmung eines heizkörpers
EP2670211A2 (de) Kochfeldvorrichtung
EP2833697B1 (de) Kochfeldvorrichtung
EP2011370A1 (de) Gerät zur induktiven energieübertragung mit schwingkreis
EP3028535B2 (de) Kochfeldvorrichtung
EP2832182B1 (de) Induktionsheizvorrichtung
EP0951805A1 (de) Kochfeld mit einer nichtmetallischen kochplatte
DE112015007050T5 (de) Induktionswärme-Kochvorrichtung
DE10023179C2 (de) Vorrichtung und deren Verwendung Steuerung von Kochfeldern mit Glaskeramikkochflächen
WO2012063159A1 (de) Heizvorrichtung
DE102014224749B3 (de) Temperaturerfassung im Stecker mittels überlagerter Prüffrequenz
EP3085200A1 (de) Gargerätevorrichtung
EP2840867B1 (de) Kochfeldvorrichtung
EP2670213B1 (de) Induktionsheizvorrichtung
EP3028540A1 (de) Kochfeldvorrichtung
EP3030041B1 (de) Kochfeldvorrichtung und verfahren zum betrieb einer kochfeldvorrichtung
EP2744300A1 (de) Hausgeräteinduktionsheizvorrichtung
EP3066888B1 (de) Induktionskochfeldvorrichtung
DE102012201236A1 (de) Hausgerätekalibriervorrichtung
DE19827298C1 (de) Kochstelle mit einer Induktionskochzone
EP1460386B1 (de) Schaltungsanordnung für induktiv arbeitende Sensoren und Verfahren zum Betrieb derselben
EP3028538A1 (de) Kochfeldvorrichtung
DE10042775A1 (de) Topferkennung
EP3028537B1 (de) Kochfeldvorrichtung
DE102011081835A1 (de) Gargerätevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PEINADO ADIEGO, RAMON

Inventor name: CALVO MESTRE, CARLOS

Inventor name: HERNANDEZ BLASCO, PABLO JESUS

Inventor name: PALACIOS TOMAS, DANIEL

Inventor name: PUYAL PUENTE, DIEGO

Inventor name: ANTON FALCON, DANIEL

Inventor name: LLORENTE GIL, SERGIO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011663

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1069090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011663

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190315

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1069090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 11