EP2824684B1 - Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter - Google Patents
Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter Download PDFInfo
- Publication number
- EP2824684B1 EP2824684B1 EP13175739.5A EP13175739A EP2824684B1 EP 2824684 B1 EP2824684 B1 EP 2824684B1 EP 13175739 A EP13175739 A EP 13175739A EP 2824684 B1 EP2824684 B1 EP 2824684B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure vessel
- subsea
- pressure
- counteracting
- counteracting member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 230000002706 hydrostatic effect Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000003570 air Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/28—Power arrangements internal to the switch for operating the driving mechanism
- H01H33/30—Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/666—Operating arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H9/00—Details of switching devices, not covered by groups H01H1/00 - H01H7/00
- H01H9/02—Bases, casings, or covers
- H01H9/04—Dustproof, splashproof, drip-proof, waterproof, or flameproof casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/28—Power arrangements internal to the switch for operating the driving mechanism
- H01H33/30—Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
- H01H2033/306—Power arrangements internal to the switch for operating the driving mechanism using fluid actuator monitoring the pressure of the working fluid, e.g. for protection measures
Definitions
- the present disclosure generally relates to subsea installations and in particular to a subsea pressure vessel for use in a subsea unit arranged to be pressurised to the hydrostatic pressure on the sea floor, and to such a subsea unit.
- Oil and gas production subsea employs electric equipment like drilling motors, pumps, and compressors driven by frequency converters.
- Concept (1) has the advantage that standard electric/electronic components, known from onshore installations, can be used, while disadvantages include thick walls needed for the enclosure to withstand the pressure difference between inside and outside. Thick walls make the equipment heavy and costly.
- Concept (2) has the advantage that no thick walls are needed for the enclosure since the pressure difference between inside and outside the containment is much less than for concept (1). Disadvantages of concept (2) are that all the components must be free of gas inclusions and compressible voids; otherwise they implode during pressurization and are destroyed.
- circuit breakers are typically utilised.
- One type of circuit breaker is the vacuum interrupter which employs a fixed terminal with a fixed contact, and a movable terminal having a movable contact.
- the fixed contact and movable contact are arranged within an enclosure which is subject to very low pressure, thus essentially defining a vacuum.
- the movable contact and the fixed contact are in electrical connection when the device which the vacuum interrupter protects is in operation.
- the movable contact and the fixed contract are set in an open state in which they are electrically insulated from each other by means of vacuum.
- EP1942514 discloses switchgear for high pressure environments such as subsea or deep sea environments.
- a vacuum circuit breaker assembly having a housing in which a vacuum circuit breaker is accommodated.
- the housing is fluid tight and arranged to maintain a pressure inside the housing at a predetermined level which is independent of a pressure outside the housing.
- the vacuum circuit breaker assembly may be used in a switchgear assembly with an external housing.
- the external housing has an inner space sealed from an external environment, in which the inner space is filled with a substantially non-compressible material such that, in operation, the pressure in the inner space is substantially equal to the pressure of the external environment.
- the movable terminal would be brought from the open state to the closed state in case of a pressure increase in the housing in which the vacuum interrupter is accommodated, for example due to leakage.
- a general object of the present disclosure is to provide a subsea pressure vessel comprising a vacuum interrupter which when in an open state is subjected to a pressure increase can maintain the open state.
- a subsea pressure vessel comprising: a housing arranged to maintain a pressure within an interior of the subsea pressure vessel which differs from ambient pressure; a vacuum interrupter arranged within the housing, which vacuum interrupter has an enclosure for maintaining a vacuum within the vacuum interrupter, and which vacuum interrupter has a fixed terminal with a fixed contact and a movable terminal with a movable contact, wherein the movable terminal is operable between an open state in which the fixed contact and the movable contact are electrically separated and a closed state in which the fixed contact and the movable contact are electrically connected; and a movement counteracting arrangement comprising a first counteracting member arranged to move concurrently with the movable terminal between the open state and the closed state, and a second counteracting member arranged to apply a counteracting force to the first counteracting member when the movable terminal is in the open state and the interior of the subsea pressure vessel is subjected to
- the vacuum interrupter is arranged to protect equipment that is set in standby mode, i.e. the equipment is set off, and thus the movable terminal is set in the open state
- this open state may be maintained in case of a pressure increase in the subsea pressure vessel.
- the subsea pressure vessel ensures a fail-safe vacuum interrupter as long as the pressure increase in the subsea pressure vessel is below a critical pressure at which the vacuum interrupter implodes.
- the second counteracting member is arranged to move in a direction opposite to a direction defined from the open state to the closed state when the interior of the subsea pressure vessel is subjected to a pressure increase compared to the normal operating pressure.
- the second counteracting member is essentially motionless when subjected to normal operating pressure.
- the second counteracting member is arranged to apply a force to the first counteracting member greater than a force applied by the first counteracting member to the second counteracting member when the interior of the subsea pressure vessel is subjected to a pressure increase compared to the operating normal pressure.
- the second counteracting member comprises a first end portion arranged to interact with the first counteracting member to counteract movement of the movable terminal when the interior of the subsea pressure vessel is subjected to a pressure increase compared to a normal operating pressure.
- the second counteracting member comprises a second end portion which defines a surface perpendicular to an axis defined by the movable terminal, wherein the second end portion has a dimension that is greater than a cross-sectional dimension of the movable terminal.
- One embodiment comprises an extension shaft that is mechanically coupled to and electrically insulated from the movable terminal.
- the extension shaft is provided with the first counteracting member.
- the first counteracting member defines a shoulder arranged to abut the second counteracting member when the subsea pressure vessel is subjected to a pressure increase compared to a normal operating pressure.
- the first end portion of the second counteracting member is arranged between the first counteracting member and the vacuum interrupter.
- the movement counteracting arrangement comprises chamber, wherein the second end portion of the second counteracting member seals the chamber and is arranged to move in parallel with the axis defined by the movable terminal, in a direction from the closed state to the open state, into the chamber when the interior of the subsea pressure vessel is subjected to a pressure increase compared to a normal operating pressure.
- the chamber is pressurised to the normal operating pressure of the subsea pressure vessel when the interior of the subsea pressure vessel is subjected to normal operating pressure.
- the first end portion of the second counteracting member is arranged at a distance from the first counteracting member when the interior of the subsea pressure vessel is subjected to normal operating pressure.
- the first end portion of the second counteracting member is slidingly arranged around the extension shaft.
- a subsea unit comprising an external housing; a passive pressure compensator arranged to reduce a pressure difference between ambient subsea pressure and pressure inside the external housing; a dielectric liquid for counteracting deformation of the external housing; and a subsea pressure vessel according to the first aspect presented herein.
- Fig. 1 schematically illustrates an example of a subsea pressure vessel 1.
- the subsea pressure vessel 1 comprises a housing 3.
- the housing 3 is arranged to maintain a pressure within an interior of the subsea pressure vessel 1 which pressure differs from ambient pressure when the subsea pressure vessel 1 is installed subsea.
- An example of a suitable pressure within the subsea pressure vessel 1 is 1 bar for normal operating purposes.
- the subsea pressure vessel 1 may advantageously be made of material with high mechanical withstand strength, for example metal such as steel.
- the subsea pressure vessel 1 is typically filled with a dielectric fluid, for example air, helium, nitrogen or a mixture of gasses.
- the subsea pressure vessel 1 comprises a vacuum interrupter 5 arranged within the housing 3.
- the vacuum interrupter 5 has an enclosure 7 for maintaining a vacuum within the enclosure 7.
- the vacuum interrupter 5 comprises a fixed terminal 9 having a fixed contact 9a, and a movable terminal 11 having a movable contact 11a.
- the moveable terminal 11 and the movable contact 11a are however fixed relative to each other, and are thus arranged to move simultaneously.
- the fixed terminal 9 and the movable terminal 11 are aligned and extend longitudinally along a common axis A.
- the movable terminal 11 extends from the enclosure 7, and is operable to move with a rectilinear motion along the common axis A between an open state in which the fixed contact 9a and the movable contact 11a are electrically insulated from each other and a closed state in which the fixed contact 9a and the movable contact 11a are electrically connected.
- the movable terminal 11 When the movable terminal 11 is in the open state, the fixed contact 9a and the movable contact 11a are separated by vacuum. Thus the vacuum interrupter 5 does not conduct current in the open state.
- the vacuum interrupter 5 is arranged to conduct current when the movable terminal 11 is in the closed state.
- the movable terminal 11 is operable by means of an actuator 21.
- the subsea pressure vessel 1 further comprises a movement counteracting arrangement 14.
- the movement counteracting arrangement 14 comprises a first counteracting member 15 and a second counteracting member 17 arranged to interact with each other to counteract movement of the movable terminal 11 from the open state to the closed state when the interior of the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure in the subsea pressure vessel 1.
- the movement counteracting arrangement restricts movement of the movable terminal 11 towards the closed state.
- the open state may thereby be maintained even if a pressure increase has occurred, for example due to leakage in the housing 3 of the subsea pressure vessel 1.
- the movable terminal 11 is provided with an extension shaft 13.
- the extension shaft 13 is mechanically coupled to and electrically insulated from the movable terminal 11.
- the extension shaft 13 extends along the common axis A, and forms an axial extension of the movable terminal 11.
- the extension shaft 13 is provided with the first counteracting member 15.
- the first counteracting member 15 defines a shoulder of the extension shaft 13, which shoulder is arranged to abut the second counteracting member 17 when the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure.
- the first counteracting member 15 hence protrudes from the extension shaft 13 in a direction transverse to the common axis A.
- the first counteracting member 15 may be integral with the extension shaft 13, or it may be mounted to the extension shaft 13. In the latter case, the first counteracting member may for example be a flange.
- Fig. 2a depicts a close-up view of the movement counteracting arrangement 14 in Fig. 1 .
- the second counteracting member 17 has a first end portion 17a and a second end portion 17b.
- the first end portion 17a and the second end portion 17b are fixedly arranged relative to each other.
- the first end portion 17a is arranged to interact with the first counteracting member 15 to counteract movement of the movable terminal 11 when the interior of the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure.
- the first counteracting member 15 defines a surface 15a which faces the vacuum interrupter 5, and which surface 15a is arranged to abut the first end portion 17a of the second counteracting member 17 when the interior of the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure.
- the second counteracting member 17 comprises a second end portion 17b which defines a surface 17c which is perpendicular or essentially perpendicular to the common axis A.
- the second end portion 17b has a dimension that is greater than a cross-sectional dimension of the movable terminal 11 and/or the movable contact 11a, whichever of the latter two has the largest cross-sectional dimension.
- the first end portion 17a of the second counteracting member 17 is arranged between the first counteracting member 15 and the vacuum interrupter 5 such that movement of the first counteracting member 15, and thus the movable terminal 11, towards the vacuum interrupter 5 may be restricted when the interior of the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure.
- the first end portion 17a may be slidably arranged relative to the extension shaft 13.
- the first end portion 17a may for example be arranged to enclose or partially enclose the extension shaft in a slidable manner.
- the first end portion may thus be slidably arranged around the extension shaft.
- the second counteracting member 17 lies essentially still and motionless, and the first end portion 17a of the second counteracting member 17 is axially displaced relative to the first counteracting member 15.
- the first end portion 17a is thus arranged at a distance from the first counteracting member 15.
- the first counteracting member 15 and thus the movable terminal 11 may thereby move rectilinearly along the common axis A a distance corresponding to the axial distance between the first end portion 17a and the first counteracting member 15 in case the movable terminal 11 is to be set from the open state to the closed state by means of the actuator 21 when the interior of the subsea pressure vessel 1 is subjected to normal operating pressure.
- the second counteracting member may be generally L-shaped with the first end portion forming a leg of the L directed towards the extension shaft, perpendicular to the common axis A, and the second end portion forms the other leg of the L, which extends parallel with the common axis A in a direction away from the vacuum interrupter.
- other shapes of the second counteracting member are also envisaged as would be apparent to the skilled person reading this disclosure.
- the surface defined by the second end portion of the second counteracting member should be essentially perpendicular to the common axis, and the first end portion should be able to abut the first counteracting portion to prevent movement of the extension shaft from the open state to the closed state when the internal pressure in the subsea pressure vessel increases compared to the normal operating pressure.
- the movement counteracting arrangement 14 comprises a chamber 19 which has an opening that is sealed by the second end portion 17b of the second counteracting member 17.
- the chamber 19 is thus sealed off from the interior of the subsea pressure vessel 1.
- the chamber 19 is pressurised to the normal operating pressure of the subsea pressure vessel 1 when the interior of the subsea pressure vessel 1 is subjected to normal operating pressure.
- the chamber 19 may for example be filled with a gas, such as air.
- the second end portion 17b of the second counteracting member 17 is arranged to move in parallel with the common axis A in a direction from the closed state to the open state, into the chamber 19 when the interior of the subsea pressure vessel 1 is subjected to a pressure increase compared to a normal operating pressure.
- the second end portion 17b may thus be seen as a piston which is movable in the chamber 19.
- the chamber 19 has a first volume V1 defined by the walls of the chamber 19 and the second end portion 17b of the second counteracting member 17 which seals the chamber 19.
- Fig. 2a shows a situation in which the pressure inside the subsea pressure vessel 1 is increased compared to the normal operating pressure.
- the movable terminal 11 is initially in the open state.
- a pressure increase may for example occur due to leakage in the housing 3 of the subsea pressure vessel 1, which will result in ambient pressure fluid entering the subsea pressure vessel 1.
- Such fluid may for example be dielectric fluid of a subsea unit pressurised to the hydrostatic level of the sea floor, and in which the subsea pressure vessel 1 may be arranged.
- the subsea pressure vessel 1 has three enclosed spaces which may be subjected to different pressures.
- the interior of the subsea pressure vessel 5 has a first pressure P1.
- the interior of the chamber 19 has a second pressure P2, which under normal operating pressure in the subsea pressure vessel is equal to the first pressure P1.
- the interior of the vacuum interrupter 5 is subjected to a third pressure P3, a very low vacuum-creating pressure.
- the second counteracting member 17 is arranged to move in a direction opposite to the direction defined from the open state to the closed state.
- the second end portion 17b will be subjected to a second force F2 which initially is greater than the first force F1.
- the second end portion 17b will thus be moved further into the chamber 19, compressing the fluid therein, and thus reducing the volume in the chamber 19 to a second volume V2.
- the second end portion 17b will move into the chamber 19 corresponding to a distance at which the second volume V2 has been reduced by such an amount that the second pressure P2, i.e. the pressure in the chamber 19 equals the first pressure P1, as shown in Fig. 2b .
- the first end portion 17a and the second end portion 17b are fixedly arranged relative to each other, the first end portion 17a is moved in a direction away from the vacuum interrupter 5, to abut the first counteracting member 15 and thus restricting the movement of the movable terminal 11 from the open state to the closed state.
- the subsea pressure vessel 1 may beneficially be utilised as a circuit breaker in a subsea unit comprising electronic and or electrical devices and which is pressurised to the hydrostatic pressure level on the sea floor.
- Fig. 3 schematically depicts a side view, with the external housing on the side cut-away, of a subsea unit 23 for installation on the seabed.
- Subsea unit 23 has an external housing 25, and comprises a passive pressure compensator 27, a dielectric liquid 29 and an electric or electronic device 31.
- the external housing is made of a material which has high thermal conductivity, preferably metal such as steel e.g. stainless steel.
- the dielectric liquid 29 fills the entire interior space of the subsea unit 23 so as to prevent the occurrence of any air gaps between the internal surface of the external housing 25 and any internal component, such as electric or electronic device 31, contained in the subsea unit 23.
- the dielectric liquid 29 counteracts deformation of the external housing 25 when the subsea unit 23 is subjected to an ambient subsea pressure higher than a pressure that the external housing 253 can withstand without deformation.
- the dielectric liquid 29 may for example be oil or an ester, and prevents short circuit of any electronic or electric device contained in the subsea unit 23.
- the subsea unit 23 further comprises a subsea pressure vessel 1, as previously described.
- the subsea pressure vessel 1 is electrically connectable to the electric or electronic device 31.
- the passive pressure compensator 27 is arranged to transmit ambient subsea pressure to the inside of the external housing 25. Thereby a pressure difference between ambient subsea pressure and pressure inside the external housing 25 may be reduced.
- the passive pressure compensator 27 may for example be defined by a mechanically flexible portion of the external housing 25, or a membrane such as an impermeable membrane. The interior volume of the subsea unit 23 and thus the pressure inside the external housing 25 is hence dependent of the ambient subsea pressure.
- Examples of electronic devices are capacitors, for example capacitors based on metalized film technology or on oil-soaked film-foil technology, and power electronic devices such as insulated gate bipolar transistor (IGBT) modules, integrated gate-commutated thyristors (IGCT), diodes, and thyristors, while examples of electric devices are frequency converters and transformers, which in the former case include capacitors and power electronic devices such as IGBT modules.
- IGBT insulated gate bipolar transistor
- IGCT integrated gate-commutated thyristors
- diodes diodes
- thyristors examples of electric devices
- frequency converters and transformers which in the former case include capacitors and power electronic devices such as IGBT modules.
- subsea pressure vessel and subsea unit presented herein find applications within the oil and gas industry for example for subsea HVDC/HVAC power provision systems, i.e. power transmission and power distribution systems, as well as offshore power generation such as wind energy, tidal energy, wave energy, and ocean current energy.
- subsea HVDC/HVAC power provision systems i.e. power transmission and power distribution systems
- offshore power generation such as wind energy, tidal energy, wave energy, and ocean current energy.
Landscapes
- Gas-Insulated Switchgears (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Claims (15)
- Unterwasserdruckbehälter (1), umfassend:ein Gehäuse (3), das zum Beibehalten eines Drucks innerhalb des Unterwasserdruckbehälters (1) angeordnet ist, der sich von dem Umgebungsdruck unterscheidet,einen Vakuum-Schalter (5), der in dem Gehäuse (3) angeordnet ist, wobei der Vakuum-Schalter (5) eine Ummantelung (7) zum Beibehalten eines Vakuums innerhalb des Vakuum-Schalters (5) aufweist, wobei der Vakuum-Schalter (5) einen feststehenden Anschluss (9) mit einem feststehenden Kontakt (9a) und einen beweglichen Anschluss (11) mit einem beweglichen Kontakt (11a) aufweist, wobei der bewegliche Anschluss (11) zwischen einem offenen Zustand, in dem der feststehende Kontakt (9a) und der bewegliche Kontakt (11a) elektrisch getrennt sind, und einem geschlossenen Zustand, in dem der feststehende Kontakt (9a) und der bewegliche Kontakt (11a) elektrisch verbunden sind, betrieben werden kann, dadurch gekennzeichnet, dass dieser ferner umfasst:eine der Bewegung entgegenwirkende Anordnung (14), umfassend ein erstes Gegenwirkelement (15), das zum gemeinsamen Bewegen mit dem beweglichen Anschluss (11) zwischen dem offenen Zustand und dem geschlossenen Zustand angeordnet ist, und ein zweites Gegenwirkelement (17), das zum Anlegen einer Gegenwirkkraft an das erste Gegenwirkelement (15) angeordnet ist, wenn sich der bewegliche Anschluss (11) im offenen Zustand befindet und der Innenraum des Unterwasserdruckbehälters (1) einer Druckzunahme im Vergleich zu einem normalen Betriebsdruck im Unterwasserdruckbehälter (1) ausgesetzt ist, um der Bewegung des beweglichen Anschlusses (11) vom offenen Zustand zum geschlossenen Zustand entgegenzuwirken.
- Unterwasserdruckbehälter (1) nach Anspruch 1, wobei das zweite Gegenwirkelement (17) zum Bewegen in einer Richtung angeordnet ist, die entgegen einer Richtung verläuft, die von dem offenen Zustand zum geschlossenen Zustand definiert wird, wenn der Innenraum des Unterwasserdruckbehälters (1) einer Druckzunahme im Vergleich zum normalen Betriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach Anspruch 1 oder 2, wobei das zweite Gegenwirkelement (17) im Wesentlichen bewegungslos ist, wenn es dem normalen Betriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach einem der vorhergehenden Ansprüche, wobei das zweite Gegenwirkelement (17) zum Anlegen einer Kraft an das erste Gegenwirkelement (15) angeordnet ist, die größer als eine Kraft ist, die vom ersten Gegenwirkelement (15) an das zweite Gegenwirkelement (17) angelegt wird, wenn der Innenraum des Unterwasserdruckbehälters (1) einer Druckzunahme im Vergleich zum Betriebsnormaldruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach einem der vorhergehenden Ansprüche, wobei das zweite Gegenwirkelement (17) einen ersten Endabschnitt (17a) umfasst, der zum Zusammenwirken mit dem ersten Gegenwirkelement (15) angeordnet ist, um der Bewegung des beweglichen Anschlusses (11) entgegenzuwirken, wenn der Innenraum des Unterwasserdruckbehälters (1) einer Druckzunahme im Vergleich zum normalen Betriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach Anspruch 5, wobei das zweite Gegenwirkelement (17) einen zweiten Endabschnitt (17b) umfasst, der eine Oberfläche (17c) definiert, die senkrecht zu einer Achse (A) verläuft, die von dem beweglichen Anschluss (11) definiert wird, wobei der zweite Endabschnitt (17b) eine Abmessung aufweist, die größer als eine Querschnittsabmessung des beweglichen Anschlusses (11) ist.
- Unterwasserdruckbehälter (1) nach einem der vorhergehenden Ansprüche, umfassend einen Erweiterungsschaft (13), der mechanisch mit dem beweglichen Anschluss (11) gekoppelt ist und elektrisch davon isoliert ist.
- Unterwasserdruckbehälter (11) nach Anspruch 7, wobei der Erweiterungsschaft (13) mit dem ersten Gegenwirkelement (15) bereitgestellt ist.
- Unterwasserdruckbehälter (1) nach Anspruch 7, wobei das erste Gegenwirkelement (15) eine Schulter definiert, die zum Angrenzen an ein zweites Gegenwirkelement (17) angeordnet ist, wenn der Unterwasserdruckbehälter (1) einer Druckzunahme im Vergleich zum normalen Betriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach einem der Ansprüche 5 bis 9, wobei der erste Endabschnitt (17a) des zweiten Gegenwirkelements (17) zwischen dem ersten Gegenwirkelement (15) und dem Vakuum-Schalter (5) angeordnet ist.
- Unterwasserdruckbehälter (1) nach einem der Ansprüche 6 bis 10, wobei die der Bewegung entgegenwirkende Anordnung (14) eine Kammer (19) umfasst, wobei der zweite Endabschnitt (17b) des zweiten Gegenwirkelements (17) die Kammer (19) abdichtet und zum sich parallelen Bewegen mit der Achse (A) angeordnet ist, die von dem beweglichen Anschluss (11) in einer Richtung von dem geschlossenen Zustand zu dem offenen Zustand in die Kammer (19) definiert wird, wenn der Innenraum des Unterwasserdruckbehälters (11) einer Druckzunahme im Vergleich zu einem Normalbetriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach Anspruch 11, wobei die Kammer (19) zum Normalbetriebsdruck des Unterwasserdruckbehälters (1) druckbeaufschlagt wird, wenn der Innenraum des Unterwasserdruckbehälters einem Normalbetriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach einem der Ansprüche 6 bis 12, wobei der erste Endabschnitt (17a) des zweiten Gegenwirkelements (17) in einem Abstand von dem ersten Gegenwirkelement (15) angeordnet ist, wenn der Innenraum des Unterwasserdruckbehälters (1) einem Normalbetriebsdruck ausgesetzt ist.
- Unterwasserdruckbehälter (1) nach einem der Ansprüche 7 bis 13, wobei der erste Endabschnitt (17a) des zweiten Gegenwirkelements (17) verschiebbar um den Erweiterungsschaft (13) angeordnet ist.
- Unterwassereinheit (23), umfassend:ein externes Gehäuse (25),einen passiven Druckausgleichskörper (27), der zum Reduzieren eines Druckunterschieds zwischen Umgebungsunterwasserdruck und Druck in dem externen Gehäuse (25) angeordnet ist,eine dielektrische Flüssigkeit (29) zum Entgegenwirken der Verformung des externen Gehäuses (25) undeinen Unterwasserdruckbehälter (1) nach einem der Ansprüche 1 bis 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13175739.5A EP2824684B1 (de) | 2013-07-09 | 2013-07-09 | Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13175739.5A EP2824684B1 (de) | 2013-07-09 | 2013-07-09 | Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2824684A1 EP2824684A1 (de) | 2015-01-14 |
EP2824684B1 true EP2824684B1 (de) | 2016-02-24 |
Family
ID=48747454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13175739.5A Active EP2824684B1 (de) | 2013-07-09 | 2013-07-09 | Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2824684B1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022119447A1 (de) | 2022-08-03 | 2024-02-08 | Schneider Electric Industries Sas | Leistungsschalter |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE549271A (de) * | 1955-06-08 | |||
EP1942514A1 (de) | 2007-01-04 | 2008-07-09 | Eaton Electric B.V. | Schaltvorrichtung für Hochdruckumgebungen |
RU2506197C1 (ru) * | 2010-01-19 | 2014-02-10 | Сименс Акциенгезелльшафт | Подводная система компенсации давления |
-
2013
- 2013-07-09 EP EP13175739.5A patent/EP2824684B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP2824684A1 (de) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2519106C1 (ru) | Компенсатор давления для подводного устройства | |
WO2013041354A1 (en) | Subsea transformer enclosure | |
AU2015375779B2 (en) | Vacuum circuit breaker | |
EP3060745B1 (de) | Leistungsschaltungsvorrichtung | |
EP3152987B1 (de) | Druckkompensator und elektrische verbindungsvorrichtung | |
EP2782434B1 (de) | Unterwassereinheit mit einer Unterwassereinheit mit einer elektronischen oder elektrischen Vorrichtung | |
US9439316B2 (en) | Submersible power distribution system and methods of assembly thereof | |
WO2014071985A1 (en) | Subsea unit comprising a two-phase cooling system and a subsea power system comprising such a subsea unit | |
WO2015197140A1 (en) | Subsea switchgear | |
EP2824275B1 (de) | Unterwassereinheit mit Kühlung von elektronischen Vorrichtungen | |
EP2824684B1 (de) | Ausfallsicherer Unterwasserdruckbehälter umfassend einen Vakuum Schalter | |
EP2958411B1 (de) | Unterwasserwandlervorrichtung | |
EP2919571B1 (de) | Anordnung zur unterwasserkühlung von elektrischer ausrüstung | |
EP2679765B1 (de) | Unterwassereinheit mit einem Zweiphasen-Kühlsystem | |
EP3016123A1 (de) | Schaltervorrichtung für hochdruckumgebungen und system damit | |
US10109445B2 (en) | Pressure resistant housing for subsea applications | |
EP3024308A1 (de) | Druckkompensator und elektrische Verbindungsvorrichtung | |
SE1400276A1 (sv) | Tryckkompenserad undervattensenhet | |
EP2960915B1 (de) | Gehäuse elektrischer Komponenten | |
SE1400602A1 (sv) | Detachable pressure compensator for subsea applications and a subsea system comprising the same | |
KR20200026971A (ko) | 진공 챔버 내로의 가스 침투를 감소시키기 위한 그리스 채널 | |
JP2008277138A (ja) | ガス絶縁開閉装置の断路装置 | |
Solvik et al. | Integrated Control And Monitoring Of A High Power Subsea Electrical Distribution System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20130709 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013005123 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01H0009040000 Ipc: H01H0033300000 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01H 9/04 20060101ALI20150814BHEP Ipc: H01H 33/30 20060101AFI20150814BHEP Ipc: H01H 33/666 20060101ALI20150814BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150914 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 777110 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013005123 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 777110 Country of ref document: AT Kind code of ref document: T Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160624 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013005123 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013005123 Country of ref document: DE Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY LTD., ZUERICH, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160709 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170709 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: ABB SCHWEIZ AG, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ABB SCHWEIZ AG, CH Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20230721 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 12 |