EP2821692A1 - Module optique sécurisé pour véhicule automobile comprenant une source laser - Google Patents

Module optique sécurisé pour véhicule automobile comprenant une source laser Download PDF

Info

Publication number
EP2821692A1
EP2821692A1 EP14173410.3A EP14173410A EP2821692A1 EP 2821692 A1 EP2821692 A1 EP 2821692A1 EP 14173410 A EP14173410 A EP 14173410A EP 2821692 A1 EP2821692 A1 EP 2821692A1
Authority
EP
European Patent Office
Prior art keywords
module
detector
light
conversion device
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14173410.3A
Other languages
German (de)
English (en)
Other versions
EP2821692B1 (fr
Inventor
Loïc Boinet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP2821692A1 publication Critical patent/EP2821692A1/fr
Application granted granted Critical
Publication of EP2821692B1 publication Critical patent/EP2821692B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/10Protection of lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/67Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors
    • F21S41/675Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on reflectors by moving reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage

Definitions

  • the present invention relates to projectors for a motor vehicle, more particularly, secure projectors comprising a laser source.
  • Motor vehicles having lighting projectors comprising an optical module comprising a laser source, a scanning system and a device for converting the laser radiation into white light are known.
  • the laser source emits radiation
  • this radiation is received by the scanning system which directs it to the conversion device.
  • the conversion device receives monochromatic and coherent laser radiation and re-emits white light radiation used to form the illumination beam at the front of the vehicle.
  • the scanning system and / or the conversion device may be damaged, or the laser source may be misaligned. These failures can also occur without the vehicle being shocked. It must then be avoided that the module can emit out of the module a potentially dangerous laser radiation if it touches a person.
  • the object of the invention is to remedy these drawbacks by providing a secure optical module.
  • the detector is adapted to receive a residual light emanating from the source and coming from the conversion device.
  • this module it is thus possible to measure a parameter or a series of parameters of the light reflected or transmitted by the conversion device and from the light source.
  • This light being reflected or transmitted by the shaping system before reaching the conversion device, any malfunction of the source, the shaping system and / or the conversion device modifies the residual light received by the converter. detector.
  • the anomaly can come from a failure of the detector, a misalignment of the laser source, a malfunction of the shaping system and / or degradation of the conversion device.
  • This module in cooperation with a control unit, thus makes it possible to detect a large number of different anomalies. Thus, if the residual radiation received by the detector is not in accordance with the expected radiation, a malfunction of one of the elements of the optical module is detected very quickly.
  • the module may further comprise one or more of the following features, taken alone or in combination.
  • the module comprises a control unit able to compare at least one parameter of the laser radiation emitted by the source with at least one parameter of the residual light received by the detector.
  • control unit is included in the module.
  • the module comprises a receiving box of the conversion device, the detector being positioned facing an opening of the housing.
  • the detector is positioned opposite the shaping system.
  • the detector comprises a photodiode.
  • this type of detector is simple and reliably detect the residual light reflected by the conversion device and turn it into an electrical signal that can be easily processed by the control unit.
  • the module comprises a filter disposed between the conversion device and the detector.
  • the module comprises a sensor for measuring the temperature.
  • this sensor it is possible to take into account the temperature of the module and to compare more precisely the residual light with that expected during normal operation of the module.
  • the residual light does not pass through the optical system.
  • the residual light passes through the optical system.
  • the residual light is reflected by the optical system, for example by glassy reflection, before reaching the detector.
  • the shaping system and the optical system may be located on the same side of the conversion device.
  • the conversion device is therefore used in reflection.
  • the shaping system and the optical system are located on either side of the conversion device.
  • the conversion device is then used in transmission.
  • the invention also relates to a headlamp for a motor vehicle comprising at least one module as defined above.
  • Another object according to the invention is a motor vehicle comprising at least one module according to the present invention.
  • control unit calculates the intensity of the light that the detector should receive and compares it with the actual intensity measured by the detector.
  • the detector is a photodiode
  • the control unit can also control that the ratio of the intensity of the light emitted by the light source and the intensity of the residual light actually measured by the detector is between two predefined threshold values over time.
  • control unit calculates the intensity of the light that the detector should receive as a function of the position of the laser radiation on the conversion system. Two sets of parameters that can be graphically presented in the form of two curves are thus compared, that calculated from the source emission data and that obtained from the residual radiation received by the detector.
  • FIG. 1 a projector 10 for a motor vehicle.
  • This projector comprises three modules 12, 14, 16.
  • the first module 12 comprises a laser light source 18, a laser radiation shaping system 20, a white light radiation converting device 22 and an optical system 24.
  • in form 20 comprises a scanning system 26 comprising a mounted micro-mirror mobile around two orthogonal axes.
  • the module 12 may also comprise conventional means 19 for focusing the source 18, these means 19 being interposed between the source 18 and the scanning system 26.
  • the laser light source 18, the focusing means 19 of the source and the scanning system 26 may be part of a micro-opto-electro-mechanical system 21.
  • MOEMS micro-opto-electro-mechanical system
  • MOEMS is a optical system comprising, in the present case, at least one laser light source and a scanning system.
  • MOEMS are compact, reliable, easy-to-use devices that provide high accuracy and flexibility in redirecting radiation to the conversion device.
  • the laser light source 18 is in this case a laser diode capable of emitting laser radiation L whose wavelength is between 400 and 500 nanometers (nm), preferably between 450 and 460 nm.
  • the conversion device 22 comprises a support 28 reflecting the laser radiation on which is deposited a continuous layer 30 of phosphorescent material.
  • the scanning system 26 and the optical system 24 are located on the same side of the conversion device 22, i.e. the conversion device 22 is used in reflection.
  • the support 28 is chosen from materials that are thermally good conductors. It is therefore possible to limit the degradation of the layer 30 of phosphorescent material by limiting the temperature rise of the conversion device 22 and the layer 30.
  • the laser light source 18 emits radiation L
  • this radiation is received by the scanning system 26 which directs it to the conversion device 22.
  • the conversion device 22 receives monochromatic and coherent L laser radiation and re-emits white light B radiation, i.e. comprising a plurality of wavelengths between about 400 and 800 nm. This emission of light occurs according to a lambertian emission diagram, that is to say with a uniform luminance in all directions of emission.
  • the conversion device 22 being located in the vicinity of the focal plane of the system 24, such as a lens, the white light B thus obtained is emitted in particular towards the optical system 24 and forms, on the opposite side of the lens, at infinity, an image of the points of the layer 30 of phosphorescent material which emit white light B in response to laser radiation L received. Since the scanning of the points of the layer 30 is carried out at a high speed, the white light B emitted by the conversion device 22 makes it possible to form a light beam F, in this case a portion of the light beam produced by the projector 10 which comprises the module 12.
  • This residual laser light R is in particular received by a detector 34 comprising a photodiode.
  • This residual light R is therefore of the same wavelength as the light source 18.
  • the laser light source 18 is a blue light source, the residual light will also be blue.
  • the detector 34 may therefore be chosen with a low amplitude range of detected wavelengths, for example the laser radiation may typically be 445 nm and the photodiode has a detection range of between 435 and 455 nm.
  • the module 12 further comprises a control unit 32 which makes it possible in particular to control the power of the laser light source 18, the movements of the scanning system 26 and to compare a parameter of the laser radiation L emitted by the source 18 with a parameter residual laser light R received by the detector 34.
  • the module 12 also comprises a sensor 42 for measuring the temperature. It makes it possible to measure the temperature in the module 12 and to supply this information to the control unit 32.
  • the detector 34 is located opposite the scanning system 26, that is to say that the detector 34 and the scanning system 26 are arranged on either side of a line orthogonal to the plane of the conversion device 22.
  • the shape and intensity of the portion of the beam formed by the module 12 depend in particular on the intensity of the laser light source 18 and the displacements of the scanning system 26.
  • a module 12 which comprises a single laser light source 18, a single scanning system 26, a single white light radiation conversion device 22 and a single optical system 24.
  • the module 12 may include, for example, two laser light sources 18 each emitting radiation to the same scanning system 26.
  • the two sources 18 may emit radiation to separate respective scanning systems 26.
  • the scanning systems 26 may emit the laser radiation L to the same conversion device 22 or different devices 22.
  • the optical device 24 can receive the white light B from one or more conversion devices 22.
  • the module 12 can also comprise more than two sources 18.
  • the module 12 further comprises a housing 36 receiving the light source 18, the scanning system 26 in the form of a MOEMS 21 and the conversion device 28.
  • detector 34 is positioned outside the housing 36 opposite an opening 38 of the housing 36.
  • the opening 38 is itself positioned facing the MOEMS 21, that is to say that the detector 34 and the scanning system 26 are arranged on either side of a straight line orthogonal to the plane of the conversion device 22.
  • Module 12 of the figure 4 is similar to that of the figure 3 .
  • a filter 40 has been interposed between the scanning system 26 and the detector 34.
  • the module 12 comprises a static shaping system 20.
  • the shaping system 20 and the optical system 24 are not located on the same side of the conversion device 22, that is to say say that the conversion device 22 is used in transmission.
  • the residual laser light R coming from the conversion device 22 is directed towards the optical system 24 and at least part of this residual light R is then reflected, for example by vitreous reflection, towards the detector 34 provided with a filter 40.
  • the residual light R does not pass through the optical system 24 while in the fourth embodiment, the residual light R is reflected by the optical system 24.
  • control unit 32 compares at least one parameter of the laser radiation L emitted by the source 18 with at least one parameter of the residual light R received by the detector 34.
  • the parameters of the laser radiation L may for example be a series of parameters calculated from the emission data of the source 18, this series of parameters being able to be represented in the form of a curve.
  • this curve is corrected by the control unit 32 taking into account the temperature measured by the sensor 42.
  • a curve 44 representing the evolution of the intensity of the electric current in amps supplying the laser source as a function of time in milliseconds is illustrated as well as a curve 46 representing the evolution of the intensity of the calculated electric current which should come from the detector 34, in this case a photodiode.
  • the intensity of the electric current supplied to the laser source is proportional to the light intensity of the laser radiation emitted and the photodiode reliably detects the residual light reflected by the conversion device and transforms it into an electrical signal which can be easily processed by the control unit 32.
  • the control unit 32 therefore compares the intensities of the electric current respectively calculated and measured by the detector 34 as a function of time. When the difference between these two values exceeds a predetermined threshold, an anomaly is noted.
  • a curve 48 is illustrated representing the ratio between the intensity of the electric current supplying the laser source and the intensity of the measured electric current coming from the detector 34 over time. This curve 48 can change over time between a low limit 50 and a high limit 52. When the curve 48 is not between the low and high limits, an anomaly is found.
  • the optical module 12 may be used in the projector 10 to notably form a passing beam, a driving beam, a fog beam, an anti-glare beam or a bad weather beam, called AWL according to the English acronym for "Adverse Weather Light".
  • the projector 10 may comprise a first module according to the invention and second and third modules not comprising a laser light source.
  • the projector 10 may also comprise two modules comprising each at least one laser light source 18, at least one scanning system 20 and at least one white light radiation converting device 22 and a third module having none.
  • the projector 10 may also comprise two modules. If necessary, the module or modules without a laser source may have a conventional light source, such as an LED.
  • the modules of the first and second embodiments may comprise a filter 40
  • the modules of the third and fourth embodiments may not comprise a filter 40
  • the modules of the second, third and fourth modes of embodiment may comprise a sensor 42 and that the module of the first embodiment may not comprise a sensor 42.
  • control unit 32 may not be of a single block and that, in the sense of the invention, this element comprises different parts making it possible, in particular, to carry out the control functions of the light source 18, calculating the parameter of the light to be received by the detector 34, comparing this parameter with the parameter of the residual light R received by the detector 34 and controlling the actions to be performed upon detection of an anomaly.
  • these different parts can however be located at different locations in the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

L'invention concerne un module optique pour véhicule automobile qui comprend une source de lumière (18) apte à émettre un rayonnement laser (L) et un système de mise en forme (20) apte à recevoir le rayonnement laser (L) et à le diriger vers au moins un dispositif de conversion (22) du rayonnement en lumière blanche (B). Selon l'invention, le module optique comprend également un détecteur (34) apte à recevoir une lumière résiduelle (R) émanant de la source (18) et venant du dispositif de conversion (22). L'invention concerne également un projecteur et un véhicule automobile comprenant un tel module ainsi qu'un procédé de commande de ce module.

Description

  • La présente invention concerne les projecteurs pour véhicule automobile, plus particulièrement, les projecteurs sécurisés comprenant une source laser.
  • On connaît des véhicules automobiles dotés de projecteurs d'éclairage comprenant un module optique comportant une source laser, un système de balayage et un dispositif de conversion du rayonnement laser en lumière blanche. Lorsque la source laser émet un rayonnement, ce rayonnement est reçu par le système de balayage qui le dirige vers le dispositif de conversion. Le dispositif de conversion reçoit le rayonnement laser monochromatique et cohérent et réémet un rayonnement de lumière blanche utilisé pour former le faisceau d'éclairage à l'avant du véhicule.
  • Toutefois, lorsque le véhicule subit un choc, le système de balayage et/ou le dispositif de conversion peuvent être endommagés, ou la source laser peut être désalignée. Ces défaillances peuvent également survenir sans que le véhicule ne subisse de choc. Il faut alors éviter que le module puisse émettre hors du module un rayonnement laser potentiellement dangereux s'il touche une personne.
  • On connait du document US 2011 084609 un dispositif d'éclairage pour projecteur automobile à laser, comportant un capteur de la lumière réfléchie par une partie réfléchissante située à la surface du dispositif de conversion en lumière blanche. Le capteur détecte une anomalie dans le dispositif de conversion basée sur le faisceau réfléchi pour piloter le système de commande de la source laser. Le capteur ne détecte que la lumière laser réfléchie par un miroir, et pas de lumière laser diffuse ou résiduelle.
  • On connait également du document US 2011 063115 un dispositif d'éclairage pour projecteur automobile à laser, comportant un capteur recevant la lumière engendrée par le dispositif de conversion pour détecter des anomalies dans cette lumière. Il s'agit dans ce document de la lumière émise directement par le phosphore, et pas de lumière laser diffuse ou résiduelle.
  • L'invention a pour but de remédier à ces inconvénients en fournissant un module optique sécurisé.
  • À cet effet, l'invention a pour objet un module optique pour véhicule automobile comprenant :
    • au moins une source de lumière apte à émettre un rayonnement laser,
    • au moins un système de mise en forme apte à recevoir le rayonnement laser et à le diriger vers au moins un dispositif de conversion du rayonnement en lumière blanche, le dispositif de conversion étant apte à réémettre la lumière blanche vers au moins un système optique, et
    • un détecteur.
  • Selon la présente invention, le détecteur est apte à recevoir une lumière résiduelle émanant de la source et venant du dispositif de conversion.
  • Grâce à ce module, il est ainsi possible de mesurer un paramètre ou une série de paramètres de la lumière réfléchie ou transmise par le dispositif de conversion et provenant de la source de lumière. Cette lumière étant réfléchie ou transmise par le système de mise en forme avant d'atteindre le dispositif de conversion, toute anomalie de fonctionnement de la source, du système de mise en forme et/ou du dispositif de conversion modifie la lumière résiduelle reçue par le détecteur. Ainsi, l'anomalie peut provenir d'une panne du détecteur, d'un mauvais alignement de la source laser, d'un mauvais fonctionnement du système de mise en forme et/ou d'une dégradation du dispositif de conversion. Ce module, en coopération avec une unité de contrôle, permet donc de détecter un grand nombre d'anomalies différentes. Ainsi, si le rayonnement résiduel reçu par le détecteur n'est pas conforme au rayonnement attendu, on détecte très rapidement une anomalie de fonctionnement d'un des éléments du module optique.
  • Le module peut en outre comporter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison.
  • On peut prévoir que le module comprenne une unité de contrôle apte à comparer au moins un paramètre du rayonnement laser émis par la source à au moins un paramètre de la lumière résiduelle reçue par le détecteur.
  • Ainsi, l'unité de contrôle est comprise dans le module.
  • Avantageusement, le module comprend un boîtier de réception du dispositif de conversion, le détecteur étant positionné en regard d'une ouverture du boîtier.
  • L'agencement des différents éléments d'un module optique existant ne doit pas être modifié. On réalise une ouverture dans le boîtier du module et on y dispose le détecteur.
  • De façon avantageuse, le détecteur est positionné en regard du système de mise en forme.
  • Encore plus avantageusement, le détecteur comprend une photodiode.
  • En effet, ce type de détecteur est simple et permet de détecter de manière fiable la lumière résiduelle réfléchie par le dispositif de conversion et de la transformer en signal électrique pouvant être facilement traité par l'unité de contrôle.
  • De préférence, le module comprend un filtre disposé entre le dispositif de conversion et le détecteur.
  • Grâce à ce filtre, on peut réduire la lumière parasite pouvant entrer dans le module et provenant d'un véhicule venant en sens inverse et/ou de la lumière ambiante, par exemple. On peut également envisager d'utiliser un détecteur moins cher.
  • On peut également prévoir que le module comprend un capteur de mesure de la température.
  • Grâce à ce capteur, il est possible de tenir compte de la température du module et de comparer de façon plus précise la lumière résiduelle à celle qui est attendue en fonctionnement normal du module.
  • On peut envisager que la lumière résiduelle ne passe pas par le système optique.
  • On comprend donc que la lumière résiduelle vient du dispositif de conversion, sans passer par le système optique avant d'atteindre le détecteur.
  • On peut aussi envisager que la lumière résiduelle passe par le système optique.
  • Ainsi, la lumière résiduelle est réfléchie par le système optique, par exemple par réflexion vitreuse, avant d'atteindre le détecteur.
  • Le système de mise en forme et le système optique peuvent être situés d'un même côté du dispositif de conversion.
  • Le dispositif de conversion est donc utilisé en réflexion.
  • Selon une autre variante, le système de mise en forme et le système optique sont situés de part et d'autre du dispositif de conversion.
  • Le dispositif de conversion est alors utilisé en transmission.
  • L'invention a également pour objet un projecteur pour véhicule automobile comprenant au moins un module tel que défini précédemment.
  • Un autre objet selon l'invention est un véhicule automobile comprenant au moins un module selon la présente invention.
  • L'invention concerne également un procédé de commande d'un module optique pour véhicule automobile comprenant les étapes suivantes :
    • une source de lumière émet un rayonnement laser vers un système de mise en forme,
    • le système de mise en forme dirige le rayonnement laser vers un dispositif de conversion du rayonnement en lumière blanche,
    • le dispositif de conversion réémet la lumière blanche vers au moins un système optique, et
    • un détecteur détecte une lumière résiduelle réfléchie émanant de la source et venant du dispositif de conversion.
  • Avantageusement, le procédé comporte en outre les étapes suivantes :
    • une unité de contrôle calcule au moins un paramètre de la lumière à recevoir par le détecteur à partir du rayonnement laser émis par la source, et
    • l'unité de contrôle compare le paramètre calculé avec au moins un paramètre de la lumière résiduelle détectée par le détecteur.
  • Par exemple, l'unité de contrôle calcule l'intensité de la lumière que devrait recevoir le détecteur et la compare avec l'intensité réellement mesurée par le détecteur.
  • Lorsque le détecteur est une photodiode, on peut également comparer l'intensité de courant électrique alimentant la source de lumière et l'intensité de courant électrique sortant de la photodiode.
  • L'unité de contrôle peut aussi contrôler que le rapport de l'intensité de la lumière émise par la source de lumière et l'intensité de la lumière résiduelle réellement mesurée par le détecteur est compris entre deux valeurs seuil prédéfinies au cours du temps.
  • On peut également envisager que l'unité de contrôle calcule l'intensité de la lumière que devrait recevoir le détecteur en fonction de la position du rayonnement laser sur le système de conversion. On compare ainsi deux séries de paramètres pouvant être présentées graphiquement sous forme de deux courbes, celle calculée à partir des données d'émission de la source et celle obtenue à partir du rayonnement résiduel reçu par le détecteur.
  • De préférence, en présence d'une anomalie d'un type prédéterminé, l'unité de contrôle commande au moins l'une des actions suivantes :
    • l'émission d'un signal sonore et/ou visuel à l'attention d'un conducteur du véhicule,
    • l'arrêt de l'émission du rayonnement laser, et
    • la diminution de la puissance du rayonnement laser émis de sorte que le rayonnement pouvant sortir du module optique soit un rayonnement de classe 2 ou inférieure.
  • Ainsi, dès qu'une anomalie est détectée, il est possible d'en avertir le conducteur en émettant un signal sonore et/ou un signal visuel à son attention. Il est également possible, selon le type d'anomalie, soit d'arrêter l'émission du rayonnement laser, soit de diminuer sa puissance de sorte que le rayonnement laser pouvant sortir du module optique soit un rayonnement laser de classe 2 ou inférieure. Dans ce dernier cas, on a un fonctionnement dégradé du module mais ce dernier émet toujours un faisceau permettant au conducteur d'avoir un minimum de lumière sur la route.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif de la portée de l'invention et faite en se référant aux figures, dans lesquelles :
    • la figure 1 est une vue en perspective d'un projecteur selon l'invention,
    • les figures 2 à 4 sont des vues schématiques d'un module selon un premier, un deuxième et un troisième modes de réalisation de l'invention,
    • les figures 5 et 6 sont des vues d'un quatrième mode de réalisation de l'invention, respectivement en perspective et en coupe,
    • la figure 7 une représentation graphique en fonction du temps de l'intensité du courant électrique alimentant la source laser et de l'intensité du courant électrique qui devrait provenir du détecteur, et
    • la figure 8 est une représentation graphique en fonction du temps du rapport entre l'intensité du courant électrique alimentant la source laser et l'intensité du courant électrique mesurée provenant du détecteur.
  • On a représenté sur la figure 1 un projecteur 10 pour véhicule automobile. Ce projecteur comprend trois modules 12, 14, 16.
  • Dans cet exemple représenté sur la figure 2, le premier module 12 comprend une source de lumière laser 18, un système de mise en forme 20 du rayonnement laser, un dispositif 22 de conversion du rayonnement en lumière blanche et un système optique 24. Dans ce mode de réalisation, le système de mise en forme 20 comprend un système de balayage 26 comportant un micro-miroir monté mobile autour de deux axes orthogonaux. Le module 12 peut également comporter des moyens classiques 19 de focalisation de la source 18, ces moyens 19 étant interposés entre la source 18 et le système de balayage 26. La source de lumière laser 18, les moyens de focalisation 19 de la source et le système de balayage 26 peuvent faire partie d'un système micro-opto-électro-mécanique 21. Le système micro-opto-électro-mécanique, appelé MOEMS conformément au sigle anglais pour « Micro-Opto-Electro-Mechanical Systems », est un système optique comprenant, dans le cas présent, au moins une source de lumière laser et un système de balayage. Les MOEMS sont des dispositifs compacts, fiables, simples à utiliser et qui permettent une grande précision et une grande flexibilité de redirection du rayonnement vers le dispositif de conversion.
  • La source de lumière laser 18 est dans le cas présent une diode laser apte à émettre un rayonnement laser L dont la longueur d'onde est comprise entre 400 et 500 nanomètres (nm), de préférence entre 450 et 460 nm.
  • Le dispositif de conversion 22 comprend un support 28 réfléchissant le rayonnement laser sur lequel est déposée une couche continue 30 de matériau phosphorescent.
  • On notera que le système de balayage 26 et le système optique 24 sont situés d'un même côté du dispositif de conversion 22, c'est-à-dire que le dispositif de conversion 22 est utilisé en réflexion.
  • Avantageusement, le support 28 est choisi parmi des matériaux qui sont thermiquement bons conducteurs. Il est donc possible de limiter la dégradation de la couche 30 de matériau phosphorescent en limitant l'élévation de température du dispositif de conversion 22 et de la couche 30.
  • Lorsque la source de lumière laser 18 émet un rayonnement L, ce rayonnement est reçu par le système de balayage 26 qui le dirige vers le dispositif de conversion 22.
  • Le dispositif de conversion 22 reçoit le rayonnement laser monochromatique et cohérent L et réémet un rayonnement de lumière blanche B, c'est-à-dire comprenant une pluralité de longueurs d'ondes comprise entre environ 400 et 800 nm. Cette émission de lumière se produit selon un diagramme d'émission lambertienne, c'est-à-dire avec une luminance uniforme dans toutes les directions d'émission.
  • Le dispositif de conversion 22 étant situé au voisinage du plan focal du système optique 24, tel qu'une lentille, la lumière blanche B ainsi obtenue est émise notamment vers le système optique 24 et forme, du côté opposé de la lentille, à l'infini, une image des points de la couche 30 de matériau phosphorescent qui émettent de la lumière blanche B en réponse au rayonnement laser L reçu. Le balayage des points de la couche 30 étant réalisé à grande vitesse, la lumière blanche B émise par le dispositif de conversion 22 permet de former un faisceau lumineux F, dans le cas présent, une partie du faisceau lumineux produit par le projecteur 10 qui comprend le module 12.
  • Une partie du rayonnement laser L reçu par le dispositif de conversion 22, c'est-à-dire par la couche 30 de matériau phosphorescent, est réfléchie sans être convertie et forme une lumière laser résiduelle R qui n'est pas dirigée vers le système optique 24. Cette lumière laser résiduelle R est notamment reçue par un détecteur 34 comprenant une photodiode. Cette lumière résiduelle R est donc de la même longueur d'onde que la source de lumière 18. Ainsi, si la source de lumière laser 18 est une source de lumière bleue, la lumière résiduelle sera également bleue. Le détecteur 34 peut donc être choisi avec une plage de longueur d'ondes détectée de faible amplitude, par exemple le rayonnement laser peut être typiquement de 445 nm et la photodiode a une plage de détection prévue entre 435 et 455 nm.
  • Le module 12 comprend en outre une unité de contrôle 32 qui permet de contrôler notamment la puissance de la source de lumière laser 18, les mouvements du système de balayage 26 et de comparer un paramètre du rayonnement laser L émis par la source 18 à un paramètre de la lumière laser résiduelle R reçue par le détecteur 34.
  • Le module 12 comprend également un capteur 42 de mesure de la température. Il permet de mesure la température dans le module 12 et de fournir cette information à l'unité de contrôle 32.
  • Dans les modes de réalisation des figures 2 à 4, le détecteur 34 est situé en regard du système de balayage 26, c'est-à-dire que le détecteur 34 et le système de balayage 26 sont disposés de part et d'autre d'une droite orthogonale au plan du dispositif de conversion 22.
  • La forme et l'intensité de la partie du faisceau formée par le module 12 dépendent notamment de l'intensité de la source de lumière laser 18 et des déplacements du système de balayage 26.
  • Sur la figure 2, on a représenté un module 12 qui comprend une unique source de lumière laser 18, un unique système de balayage 26, un unique dispositif de conversion 22 du rayonnement en lumière blanche et un unique système optique 24. Cependant, on comprend que le module 12 peut comporter, par exemple, deux sources de lumière laser 18 émettant chacune un rayonnement vers un même système de balayage 26. En variante, les deux sources 18 peuvent émettre des rayonnements vers des systèmes de balayage 26 respectifs distincts. Les systèmes de balayage 26 peuvent émettre le rayonnement laser L vers le même dispositif de conversion 22 ou des dispositifs 22 différents. Le dispositif optique 24 peut recevoir la lumière blanche B d'un ou de plusieurs dispositifs de conversion 22. Le module 12 peut également comporter plus de deux sources 18.
  • Dans ce qui suit, les éléments communs aux différents modes de réalisation sont identifiés par les mêmes références numériques.
  • Sur la figure 3, on a représenté un deuxième mode de réalisation du module 12. Le module 12 comprend en outre un boîtier 36 recevant la source de lumière 18, le système de balayage 26 sous la forme d'un MOEMS 21 et le dispositif de conversion 28. Le détecteur 34 est positionné, à l'extérieur du boîtier 36 en regard d'une ouverture 38 du boîtier 36. L'ouverture 38 est elle-même positionnée en regard du MOEMS 21, c'est-à-dire que le détecteur 34 et le système de balayage 26 sont disposés de part et d'autre d'une droite orthogonale au plan du dispositif de conversion 22.
  • Le module 12 de la figure 4 est similaire à celui de la figure 3. On a interposé un filtre 40 entre le système de balayage 26 et le détecteur 34.
  • Sur les figures 5 et 6, le module 12 comporte un système de mise en forme statique 20. On notera que le système de mise en forme 20 et le système optique 24 ne sont pas situés d'un même côté du dispositif de conversion 22, c'est-à-dire que le dispositif de conversion 22 est utilisé en transmission. Contrairement aux modes de réalisation précédents, la lumière laser résiduelle R venant du dispositif de conversion 22 est dirigée vers le système optique 24 et au moins une partie de cette lumière résiduelle R est ensuite réfléchie, par exemple par réflexion vitreuse, vers le détecteur 34 muni d'un filtre 40.
  • Le procédé de commande du module 12 comprend les étapes suivantes :
    • la source de lumière 18 émet un rayonnement laser L vers le système de mise en forme 20,
    • le système de mise en forme 20 dirige le rayonnement laser L vers le dispositif de conversion 22 du rayonnement L en lumière blanche B,
    • le dispositif de conversion 22 réémet la lumière blanche B notamment vers le système optique 24,
    • le détecteur 34 détecte de la lumière résiduelle R émanant de la source et venant du dispositif de conversion 22.
  • Dans les premier, deuxième et troisième modes de réalisation, la lumière résiduelle R ne passe pas par le système optique 24 alors que dans le quatrième mode de réalisation, la lumière résiduelle R est réfléchie par le système optique 24.
  • Le procédé peut également comprendre les étapes suivantes :
    • l'unité de contrôle 32 calcule au moins un paramètre de la lumière à recevoir par le détecteur 34 à partir du rayonnement laser L émis par la source 18, et
    • l'unité de contrôle 32 compare le paramètre calculé avec au moins un paramètre de la lumière résiduelle R détectée par le détecteur 34.
  • On comprend donc que l'unité de contrôle 32 compare au moins un paramètre du rayonnement laser L émis par la source 18 à au moins un paramètre de la lumière résiduelle R reçue par le détecteur 34.
  • Les paramètres du rayonnement laser L peuvent par exemple être une série de paramètres calculés à partir des données d'émission de la source 18, cette série de paramètres pouvant être représentée sous forme d'une courbe. Avantageusement, cette courbe est corrigée par l'unité de contrôle 32 en tenant compte de la température mesurée par le capteur 42.
  • Sur la figure 7, on a illustré une courbe 44 représentant l'évolution de l'intensité du courant électrique en ampère alimentant la source laser en fonction du temps en millisecondes ainsi qu'une courbe 46 représentant l'évolution de l'intensité du courant électrique calculée qui devrait provenir du détecteur 34, dans le cas présent, une photodiode.
  • L'intensité du courant électrique alimentant la source laser est proportionnelle à l'intensité lumineuse du rayonnement laser émis et la photodiode permet détecter de manière fiable la lumière résiduelle réfléchie par le dispositif de conversion et de la transformer en signal électrique pouvant être facilement traité par l'unité de contrôle 32.
  • L'unité de contrôle 32 compare donc les intensités du courant électrique respectivement calculée et mesurée par le détecteur 34 en fonction du temps. Lorsque la différence entre ces deux valeurs franchit un seuil prédéterminé, une anomalie est constatée.
  • Sur la figure 8, on a illustré une courbe 48 représentant le rapport entre l'intensité du courant électrique alimentant la source laser et l'intensité du courant électrique mesurée provenant du détecteur 34 au cours du temps. Cette courbe 48 peut évoluer au cours du temps entre une limite basse 50 et une limite haute 52. Lorsque la courbe 48 n'est pas comprise entre les limites basse et haute, une anomalie est constatée.
  • Les valeurs illustrées aux figures 7 et 8 sont données uniquement à titre indicatif et non limitatif.
  • Ensuite, lorsque le paramètre de la lumière résiduelle R reçue par le détecteur 34 n'est pas conforme à ce qui a été calculé à partir des données d'émission de la source 18, une anomalie est constatée.
  • L'unité de contrôle 32 commande alors l'émission d'un signal sonore et/ou visuel à l'attention du conducteur du véhicule automobile et/ou réalise une des actions suivantes :
    • l'arrêt de l'émission du rayonnement laser L, ou
    • la diminution de la puissance du rayonnement laser L émis de sorte que le rayonnement laser pouvant sortir du module optique soit un rayonnement laser de classe 2 ou inférieure.
  • On comprend que ce procédé de commande est similaire pour les différents modes de réalisation du module 12.
  • Le module optique 12 peut être utilisé dans le projecteur 10 afin de notamment former un faisceau de croisement, un faisceau de route, un faisceau antibrouillard, un faisceau de route anti-éblouissement ou un faisceau de mauvais temps, appelé AWL conformément au sigle anglais pour « Adverse Weather Light ».
  • L'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier.
  • Ainsi, le projecteur 10 peut comprendre un premier module selon l'invention et des deuxième et troisième modules ne comprenant pas de source de lumière laser. Le projecteur 10 peut également comprendre deux modules comprenant chacun au moins une source de lumière laser 18, au moins un système de balayage 20 et au moins un dispositif de conversion du rayonnement en lumière blanche 22 et un troisième module n'en comportant pas. Le projecteur 10 peut également comprendre deux modules. Le cas échéant, le ou les modules sans source laser peuvent avoir une source d'éclairage classique, telle qu'une LED. En outre, on comprend que les modules des premier et deuxième modes de réalisation peuvent comprendre un filtre 40, que les modules des troisième et quatrièmes modes de réalisation peuvent ne pas comprendre de filtre 40, que les modules des deuxième, troisième et quatrième modes de réalisation peuvent comprendre un capteur 42 et que le module du premier mode de réalisation peut ne pas comprendre de capteur 42.
  • On comprend également que l'unité de contrôle 32 peut ne pas être d'un seul bloc et que, au sens de l'invention, cet élément comprend différentes parties permettant de réaliser notamment les fonctions de contrôle de la source de lumière 18, de calcul du paramètre de la lumière à recevoir par le détecteur 34, de comparaison de ce paramètre avec le paramètre de la lumière résiduelle R reçue par le détecteur 34 et de commande des actions à réaliser lors de la détection d'une anomalie. Ces différentes parties peuvent cependant être localisées à des emplacements différents dans le véhicule.

Claims (14)

  1. Module optique (12, 14, 16) pour véhicule automobile, comprenant :
    - au moins une source de lumière (18) apte à émettre un rayonnement laser (L),
    - au moins un système de mise en forme (20) apte à recevoir le rayonnement laser (L) et à le diriger vers au moins un dispositif de conversion (22) du rayonnement en lumière blanche (B), le dispositif de conversion (22) étant apte à réémettre la lumière blanche (B) vers au moins un système optique (24), et
    - un détecteur (34),
    caractérisé en ce que le détecteur (34) est apte à recevoir une lumière résiduelle (R) émanant de la source (18) et venant du dispositif de conversion (22).
  2. Module (12, 14, 16) selon la revendication précédente, comprenant une unité de contrôle (32) apte à comparer au moins un paramètre du rayonnement laser (L) émis par la source (18) à au moins un paramètre de la lumière résiduelle (R) reçue par le détecteur (34).
  3. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, comprenant un boîtier (36) de réception du dispositif de conversion (22), le détecteur (34) étant positionné en regard d'une ouverture (38) du boîtier (36).
  4. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, dans lequel, le détecteur (34) est positionné en regard du système de mise en forme (20).
  5. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, dans lequel le détecteur (34) comprend une photodiode.
  6. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, comprenant un filtre (40) disposé entre le dispositif de conversion (22) et le détecteur (34).
  7. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, comprenant un capteur (42) de mesure de la température.
  8. Module (12, 14, 16) selon au moins l'une quelconque des revendications précédentes, dans lequel la lumière résiduelle (R) ne passe pas par le système optique (24).
  9. Module (12,14, 16) selon au moins l'une quelconque des revendications 1 à 7, dans lequel la lumière résiduelle (R) passe par le système optique (24).
  10. Projecteur (10) pour véhicule automobile, caractérisé en ce qu'il comprend au moins un module optique (12, 14, 16) selon au moins l'une quelconque des revendications précédentes.
  11. Véhicule automobile, caractérisé en ce qu'il comprend au moins un module optique (12, 14, 16) selon au moins l'une quelconque des revendications 1 à 6.
  12. Procédé de commande d'un module optique (12, 14, 16) pour véhicule automobile, caractérisé en ce qu'il comprend les étapes suivantes :
    - une source de lumière (18) émet un rayonnement laser (L) vers un système de mise en forme (20),
    - le système de mise en forme (20) dirige le rayonnement laser (L) vers un dispositif de conversion (22) du rayonnement en lumière blanche (B),
    - le dispositif de conversion (22) réémet la lumière blanche (B) vers au moins un système optique (24), et
    - un détecteur (34) détecte une lumière résiduelle (R) émanant de la source (18) et venant du dispositif de conversion (22).
  13. Procédé selon la revendication 10, comportant en outre les étapes suivantes :
    - une unité de contrôle (32) calcule au moins un paramètre de la lumière à recevoir par le détecteur (34) à partir du rayonnement laser (L) émis par la source (18), et
    - l'unité de contrôle (32) compare le paramètre calculé avec au moins un paramètre de la lumière résiduelle (R) détectée par le détecteur (34).
  14. Procédé selon la revendication précédente, dans lequel, en présence d'une anomalie d'un type prédéterminé, l'unité de contrôle (32) commande au moins l'une des actions suivantes :
    - l'émission d'un signal sonore et/ou visuel à l'attention d'un conducteur du véhicule,
    - l'arrêt de l'émission du rayonnement laser (L), et
    - la diminution de la puissance du rayonnement laser (L) émis de sorte que le rayonnement pouvant sortir du module optique soit un rayonnement de classe 2 ou inférieure.
EP14173410.3A 2013-06-28 2014-06-23 Module optique sécurisé pour véhicule automobile comprenant une source laser Active EP2821692B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1356272A FR3007820B1 (fr) 2013-06-28 2013-06-28 Module optique securise pour vehicule automobile comprenant une source laser

Publications (2)

Publication Number Publication Date
EP2821692A1 true EP2821692A1 (fr) 2015-01-07
EP2821692B1 EP2821692B1 (fr) 2020-09-23

Family

ID=49237377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14173410.3A Active EP2821692B1 (fr) 2013-06-28 2014-06-23 Module optique sécurisé pour véhicule automobile comprenant une source laser

Country Status (2)

Country Link
EP (1) EP2821692B1 (fr)
FR (1) FR3007820B1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528671A (ja) * 2013-07-04 2016-09-15 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH 車両用前照灯
EP3073181A1 (fr) * 2015-03-24 2016-09-28 Valeo Vision Module d'éclairage laser à dispositif de sécurité
FR3034058A1 (fr) * 2015-03-24 2016-09-30 Valeo Vision Module optique constitutif d'un dispositif d'eclairage et/ou de signalisation pour un vehicule automobile.
DE102016123907A1 (de) 2015-12-11 2017-06-14 Varroc Lighting Systems S.R.O. Eine Beleuchtungsvorrichtung, insbesondere eine Signallampe, für Kraftfahrzeuge
DE102016200590A1 (de) * 2016-01-19 2017-07-20 Robert Bosch Gmbh Beleuchtungsvorrichtung und Verfahren zum Überwachen einer Beleuchtungsvorrichtung
CN107250841A (zh) * 2015-02-19 2017-10-13 皇家飞利浦有限公司 红外激光光照设备
DE102018101259A1 (de) 2017-01-24 2018-07-26 Varroc Lighting Systems S.R.O. Leuchtvorrichtung, insbesondere ein Projektorsystem eines Scheinwerfers für Kraftfahrzeuge
DE102017103087A1 (de) 2017-02-15 2018-08-16 Osram Gmbh Bestrahlungsvorrichtung mit Pumpstrahlungseinheit und Konversionselement
WO2018150942A1 (fr) * 2017-02-15 2018-08-23 パナソニックIpマネジメント株式会社 Dispositif source de lumière et dispositif de projection de lumière
WO2018162222A1 (fr) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Dispositif d'éclairage conçu pour un véhicule automobile
DE102017210517A1 (de) * 2017-06-22 2018-12-27 Osram Gmbh Beleuchtungseinheit zur Emission von Beleuchtungslicht
US11079086B2 (en) 2019-12-12 2021-08-03 Varroc Lighting Systems, s.r.o. Vehicle lighting device with a laser radiation source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063115A1 (en) 2009-09-15 2011-03-17 Sharp Kabushiki Kaisha Light emitting device, illumination device, and photo sensor
US20110084609A1 (en) 2009-10-14 2011-04-14 Sharp Kabushiki Kaisha Illumination device, automotive lighting equipment, and vehicle
WO2013088673A1 (fr) * 2011-12-15 2013-06-20 株式会社小糸製作所 Phare de véhicule
WO2013134807A1 (fr) * 2012-03-12 2013-09-19 Zizala Lichtsysteme Gmbh Diode laser servant de source de lumière standard

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116520A1 (en) * 2008-07-07 2011-05-19 Koninklijke Philips Electronics N.V. Eye-safe laser-based lighting
JP5261543B2 (ja) * 2011-06-30 2013-08-14 シャープ株式会社 レーザ光利用装置および車両用前照灯

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063115A1 (en) 2009-09-15 2011-03-17 Sharp Kabushiki Kaisha Light emitting device, illumination device, and photo sensor
US20110084609A1 (en) 2009-10-14 2011-04-14 Sharp Kabushiki Kaisha Illumination device, automotive lighting equipment, and vehicle
WO2013088673A1 (fr) * 2011-12-15 2013-06-20 株式会社小糸製作所 Phare de véhicule
WO2013134807A1 (fr) * 2012-03-12 2013-09-19 Zizala Lichtsysteme Gmbh Diode laser servant de source de lumière standard

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528671A (ja) * 2013-07-04 2016-09-15 チザラ リヒトシステーメ ゲーエムベーハーZizala Lichtsysteme GmbH 車両用前照灯
US9625113B2 (en) 2013-07-04 2017-04-18 Zkw Group Gmbh Vehicle headlight
EP3017240B1 (fr) * 2013-07-04 2020-02-19 ZKW Group GmbH Projecteur de véhicule
CN107250841A (zh) * 2015-02-19 2017-10-13 皇家飞利浦有限公司 红外激光光照设备
EP3073181A1 (fr) * 2015-03-24 2016-09-28 Valeo Vision Module d'éclairage laser à dispositif de sécurité
FR3034170A1 (fr) * 2015-03-24 2016-09-30 Valeo Vision Module d'eclairage laser a dispositif de securite
FR3034058A1 (fr) * 2015-03-24 2016-09-30 Valeo Vision Module optique constitutif d'un dispositif d'eclairage et/ou de signalisation pour un vehicule automobile.
DE102016123907A1 (de) 2015-12-11 2017-06-14 Varroc Lighting Systems S.R.O. Eine Beleuchtungsvorrichtung, insbesondere eine Signallampe, für Kraftfahrzeuge
US10451243B2 (en) 2015-12-11 2019-10-22 Varroc Lighting Systems, s.r.o. Light device, especially a signal lamp for motor vehicles
DE102016200590A1 (de) * 2016-01-19 2017-07-20 Robert Bosch Gmbh Beleuchtungsvorrichtung und Verfahren zum Überwachen einer Beleuchtungsvorrichtung
DE102018101259B4 (de) 2017-01-24 2024-05-02 PO LIGHTING CZECH s.r.o. Leuchtvorrichtung, insbesondere ein Projektorsystem eines Scheinwerfers für Kraftfahrzeuge
DE102018101259A1 (de) 2017-01-24 2018-07-26 Varroc Lighting Systems S.R.O. Leuchtvorrichtung, insbesondere ein Projektorsystem eines Scheinwerfers für Kraftfahrzeuge
US10480740B2 (en) 2017-01-24 2019-11-19 Varroc Lighting Systems, s.r.o. Light device, especially a projector system of a headlight for motor vehicles
WO2018150942A1 (fr) * 2017-02-15 2018-08-23 パナソニックIpマネジメント株式会社 Dispositif source de lumière et dispositif de projection de lumière
JPWO2018150942A1 (ja) * 2017-02-15 2019-12-12 パナソニックIpマネジメント株式会社 光源装置および投光装置
DE102017103087A1 (de) 2017-02-15 2018-08-16 Osram Gmbh Bestrahlungsvorrichtung mit Pumpstrahlungseinheit und Konversionselement
WO2018162222A1 (fr) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Dispositif d'éclairage conçu pour un véhicule automobile
US10989384B2 (en) 2017-03-09 2021-04-27 Bayerische Motoren Werke Aktiengesellschaft Lighting device for a motor vehicle
DE102017210517A1 (de) * 2017-06-22 2018-12-27 Osram Gmbh Beleuchtungseinheit zur Emission von Beleuchtungslicht
US11079086B2 (en) 2019-12-12 2021-08-03 Varroc Lighting Systems, s.r.o. Vehicle lighting device with a laser radiation source

Also Published As

Publication number Publication date
EP2821692B1 (fr) 2020-09-23
FR3007820B1 (fr) 2017-09-08
FR3007820A1 (fr) 2015-01-02

Similar Documents

Publication Publication Date Title
EP2821692B1 (fr) Module optique sécurisé pour véhicule automobile comprenant une source laser
EP1679469B1 (fr) Dispositif de signalisation lumineux
FR2970095A1 (fr) Dispositif de detection d'une direction angulaire dans laquelle se trouve un objet
EP3276253A1 (fr) Module d'éclairage de projecteur de véhicule automobile à faisceau d'ouverture variable
WO2015033036A1 (fr) Equipements de véhicule automobile intégrant un dispositif de mesure de distance d'objets
EP0833122B1 (fr) Autodirecteur d'un corps volant
EP3242079B1 (fr) Module lumineux comportant un élément laser
FR3055981B1 (fr) Controle de faisceau lumineux pixelise
EP3241709B1 (fr) Module lumineux comportant un élément laser
EP2038638B1 (fr) Dispositif d'évaluation de l'état de mouillage d'une surface, procédé d'évaluation et dispositif d'indication associé
EP3073181B1 (fr) Module d'éclairage laser à dispositif de sécurité
FR3041335A1 (fr) Composant micromecanique et systeme de laser a micro-miroir et procede de surveillance du systeme
WO2020120128A1 (fr) Capteur de temps de vol et système de surveillance comportant un tel capteur
FR3071070B1 (fr) Systeme de vision tete haute avec detection de surchauffe solaire.
FR2953602A1 (fr) Systeme de detection d'obstacle pour vehicule
EP1734382A1 (fr) Dispositif de détermination de la position d'un objet mobile par rapport à un point fixe
EP3173685A1 (fr) Dispositif de gestion de la couleur d'un eclairage pour vehicule automobile
FR3133658A3 (fr) Dispositif lumineux homogène pour un véhicule automobile
FR3124253A1 (fr) Procédé de détection d'un objet sur une surface de route, procédé de conduite autonome et dispositif d'éclairage automobile
EP4194267A1 (fr) Module d'éclairage pour véhicule automobile équipé d'une fonction de télémétrie
FR3019267A1 (fr) Systeme d'eclairage a longue portee pour vehicule automobile
EP4251473A1 (fr) Procédé de contrôle d'un système d'éclairage mettant en oeuvre une fonction d'éclairage non éblouissant
FR3127347A1 (fr) Dispositif de transmission d’informations par laser jusqu’à une cellule de détection dans un environnement lumineux parasite apte à saturer ladite cellule
WO2020053190A1 (fr) Système lumineux pour véhicule
FR3079614A1 (fr) Procede et dispositif de mesure des conditions de visibilite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150325

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014070415

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 45/70 20180101ALI20200330BHEP

Ipc: F21S 45/10 20180101ALI20200330BHEP

Ipc: F21S 41/16 20180101AFI20200330BHEP

INTG Intention to grant announced

Effective date: 20200417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014070415

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1316740

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014070415

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210623

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 10

Ref country code: DE

Payment date: 20230613

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923