EP2819954A1 - Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees - Google Patents

Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees

Info

Publication number
EP2819954A1
EP2819954A1 EP13706557.9A EP13706557A EP2819954A1 EP 2819954 A1 EP2819954 A1 EP 2819954A1 EP 13706557 A EP13706557 A EP 13706557A EP 2819954 A1 EP2819954 A1 EP 2819954A1
Authority
EP
European Patent Office
Prior art keywords
laponite
hybrid
hybrid material
purification
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13706557.9A
Other languages
German (de)
English (en)
Inventor
Maksym LOGINOV
Mykola LEBOVKA
Eugène VOROBIEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Technologie de Compiegne UTC
Original Assignee
Universite de Technologie de Compiegne UTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Technologie de Compiegne UTC filed Critical Universite de Technologie de Compiegne UTC
Publication of EP2819954A1 publication Critical patent/EP2819954A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3416Regenerating or reactivating of sorbents or filter aids comprising free carbon, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the present invention relates to a method for purifying water using a hybrid material based on carbon nanotubes and clay nanoparticles, preferably laponite.
  • liquid purification methods comprising various contaminants (ions, molecules, nanoparticles, viruses and bacteria) are based on the filtration of contaminated liquids through ultraviolet or nanofiltration membranes.
  • ultrafiltration and nanofiltration are very slow processes. This is why the application of these methods for the purification of liquids is very limited.
  • Chemical or physical treatment for example, the use of ozone, UV disinfection
  • these methods are not effective for the removal of many toxic compounds, such as organic or inorganic chemical compounds for example.
  • a good sorbent must meet the following criteria: possess a high external surface area, have a high affinity for contaminants, and separation of the sorbent used from the purified liquid must be simple.
  • activated carbon has a low affinity for certain contaminants (toxic ions of copper, iron, etc.);
  • activated clays and ion exchange resins have a low specific surface area, etc.
  • Synthetic materials are also used for the purification of liquid, and in particular the materials consisting of carbon nanotubes, which have a relatively high specific surface area and good adsorption properties.
  • the adsorption and the purification capacity of the carbon nanotubes can be substantially improved by modifying the carbon nanotubes, in particular by modifying their surface by coating with other materials. Generally, it is a treatment with metal oxide precursors, as disclosed for example in Gong et al, Journal of Hazardous Materials, 2009, 164, 1517-1522. Composite materials of carbon nanotubes and alumina have also been described (see Amais et al, Separation and Purification Technology, 2007, 58, 122-128). Mention may also be made of the NanoMesh® material (see EP 1 852 176), consisting of carbon nanotubes covalently bonded to a polymeric or ceramic type support material.
  • Zhao et al (Applied Clay Science, 2011, 53, 1-7) synthesized hybrid composite materials consisting of carbon nanotubes (CNTs) covalently bound to exfoliated vermiculite, a natural mineral clay having a specific surface area. 2.2 m 2 / g, thanks to a process comprising a step of treating the exfoliated vermiculite with the aid of iron and molybdenum salts, and then a nanotube growth step on the functionalized vermiculite particles.
  • CNTs carbon nanotubes
  • Such treatments cause the formation of different hybrid nanoparticles whose properties are determined by the chemical properties of the coating layer, while the size of the particles is determined by the particle size of the carbon nanotubes used.
  • Said hybrid materials can be used as sorbents for the treatment of water contaminated with toxic ions or by viruses.
  • Synthesis of these materials involves high temperature processing steps and / or multi-step chemical syntheses, and / or acidic treatments under highly corrosive conditions (eg, heating of carbon nanotubes in nitric acid).
  • the Applicant has discovered a new method of purifying contaminated liquids, based on the use of a new type of hybrid material composed of synthetic clay, preferably of laponite type, and carbon nanotubes (NTCMs). ).
  • hybrid material or “composite material” means a material composed of two or more constituents at the nanometer scale and having a different structure of the structure of its constituents taken separately.
  • the constituents of said material are not covalently bonded.
  • said material is obtained by simple sonication of an aqueous suspension of said two or more constituents.
  • the term "multi-walled carbon nanotube (NTCM)” is intended to mean a carbon nanotube consisting of several sheets of graphene, typically wound around each other.
  • the term "clay” means a mineral material based on silicate. Clays include kaolin (eg kaolinite, dickite, halloysite, nacrite), smectites (eg montmorillonite, nontronite and saponite), illites, chlorites, perlite and vermiculite.
  • the clay according to the invention advantageously has a specific surface greater than or equal to 20 m 2 / g, even more advantageously greater than or equal to 200 m 2 / g.
  • said clay is a synthetic mineral clay, especially laponite.
  • Lapponite is a synthetic smectite clay, specifically a synthetic magnesium phyllosilicate.
  • laponite does not substantially contain aluminate, unlike vermiculite.
  • Lapponite is especially available under the tradename Laponite RD® (distributed by Rockwood Additives Ltd), of the formula Nao.7 [(Si 8 Mg 5, 5 Lio 4) 0 2 o (OH) 4] (see Zebrowski et al. Surf A213, 2003, 189).
  • Laponite has in particular an almost unlimited swelling capacity in a solvent, especially in water.
  • the clay can dissociate into individualized nanoscale particles, with a thickness of about 1 nm and with an almost unlimited basal spacing (interfole distance) (greater than 4 nm) (see Martin et al, Osmotic Compression and Expansion). of highly ordered clay dispersions, 2006, Langmuir 22 (9), pp. 4065-4075).
  • the laponite suspended in water, the laponite is in the form of individualized nanoscale particles, unlike in particular vermiculite which forms aggregates.
  • the ions exchanged in the laponite are of the monovalent type (for example lithium, sodium and potassium), whereas in vermiculite they are of the bivalent type (for example magnesium and calcium).
  • the average particle size of a clay is defined as the average size of the individual particles as measured by the atomic force microscopy method (Balnois, E., Durand-Vidal, S., Levitz, P. Probing the morphology of laponite clay colloids by atomic force microscopy, 2003, Langmuir 19 (17), pp. 6633-6637).
  • the term "specific surface area” is used to mean a characteristic of the particles (aggregates) expressed as the ratio of the total surface area of the particles (aggregates) per unit mass of the particles (aggregates).
  • the surface specific is preferably measured according to the Brunauer-Emmett-Teller or BET method (see J. Am Chem Soc, 1938, 60, 309) when the contaminant is gaseous, or by the method of adsorption of methylene blue (see for example, Loginov et al, Journal of Colloid and Interface Science, 365 (2012) 127-136, or Yukselen and Kaya, Engineering Geology, 2008, 102, 38-45), when the contaminant is liquid or solid.
  • the term "sorbent" any material demonstrating adsorption or absorption capabilities.
  • purification and “purification” are used interchangeably to define the action of eliminating the impurities contained in a product, and in particular, in the context of the invention, the impurities of the product. 'water.
  • An object of the invention therefore relates to the use of a hybrid material consisting of multi-walled carbon nanotubes (NTCM) and synthetic mineral clay with nanoparticles in the form of lamellae and having a specific surface greater than or equal to 20 m 2 / g for the purification of contaminated water.
  • NTCM multi-walled carbon nanotubes
  • synthetic mineral clay with nanoparticles in the form of lamellae and having a specific surface greater than or equal to 20 m 2 / g for the purification of contaminated water.
  • Another object of the invention relates to a water purification process.
  • the present invention thus relates to the use of a hybrid material consisting of multi-walled carbon nanotubes and synthetic mineral clay with nanoparticles in the form of lamellae and having a specific surface greater than or equal to 20 m 2 / g, preferably laponite , for the purification of contaminated water.
  • Contaminated water may be, for example, wastewater, industrial water, partially treated water, accidentally contaminated water.
  • Contaminated waters comprise contaminants advantageously chosen from the group of biological compounds, for example viruses, yeasts and bacteria, in particular S. cerevisiae yeast, organic or inorganic compounds, for example dyes such as methylene blue, surfactants heavy metal salts such as, for example, iron salts, and mixtures thereof. Petroleum derivatives can also be mentioned as an organic contaminant.
  • biological compounds for example viruses, yeasts and bacteria, in particular S. cerevisiae yeast
  • organic or inorganic compounds for example dyes such as methylene blue
  • surfactants heavy metal salts such as, for example, iron salts, and mixtures thereof.
  • Petroleum derivatives can also be mentioned as an organic contaminant.
  • the contaminants are dyes.
  • the contaminant is a product of interest.
  • a "product of interest” is an organic or inorganic biological or chemical compound of interest, that is to say that it is advantageous to recover it separately for reuse.
  • organic compounds in particular precious metal ions (gold, silver, etc.), steroids, ferments, etc.
  • the present invention also relates to the use of a hybrid material composed of multi-walled carbon nanotubes and synthetic lamellar nanoparticle mineral clay having a specific surface area greater than or equal to 20 m 2 / g, preferably laponite, for the extraction and / or separation of products of interest from a solution, for example a dilute solution.
  • the compound of interest is preferably a compound soluble in the aqueous solution, or the compound is in colloidal form and is in the form of an aqueous suspension.
  • the present invention also relates to a water purification process comprising the successive steps of:
  • Water purification may also indicate that contaminants are adsorbed, deactivated and / or degraded.
  • Contaminated water comprises contaminants preferably selected from the group consisting of biological compounds, for example viruses and bacteria, organic or inorganic compounds, for example dyes, surfactants, heavy-metal salts, petroleum derivatives and their mixtures.
  • the contaminant is a dye.
  • the hybrid material used in step a) is preferably added in the form of a suspension or a powder.
  • the method implemented is then preferably a batch type process.
  • the separation of step b) takes place by filtration and / or centrifugation and / or decantation and / or magnetic separation and / or flotation.
  • a filtration technique magnetic separation or flotation.
  • a batch type process it is possible to use centrifugation or decantation.
  • the separation of step b) takes place by filtration with a membrane whose average pore size is between 0.1 ⁇ and 2.5 ⁇ , preferably between 0.1 and 0.5 ⁇ , still more preferably approximately equal to 0.2 ⁇ .
  • the hybrid material is used in admixture with particles selected from the group consisting of sand, diatomites, zeolites, activated charcoal, activated natural clays, silica, additives to facilitate separation of the hybrid particles from the purified water, and mixtures thereof.
  • additive intended to facilitate separation means an additive which ensures the complete separation of the hybrid particles and the contaminants of purified liquid and / or the increase in the separation rate.
  • occulants and coagulants may be mentioned, in particular of the polymer type.
  • the hybrid material is immobilized on a solid support, advantageously a porous solid support, even more advantageously on a support allowing a facilitated implementation of the separation of the step, preferably by filtration.
  • the porous solid support advantageously has an average pore size of between 0.1 ⁇ and 2.5. ⁇ , preferably between 0.1 and 0.5 ⁇ , more preferably approximately equal to 0.2 ⁇ . This embodiment is particularly suitable for a continuous process.
  • Regeneration step d) preferably comprises a physical and / or chemical treatment of the hybrid material containing the contaminants.
  • a chemical treatment of the hybrid material can be carried out by contact with a solution of acid, sodium hydroxide, complexing agents, oxidants, enzymes, non-organic solvents or other products which allow the desorption and or the dissolution of the impurities which are on the surface of the hybrid material used.
  • Those skilled in the art will choose the most appropriate regenerative chemical treatment depending on the type of contaminant aborted or adsorbed on the hybrid material.
  • the uses and processes according to the invention involve a hybrid material consisting of multi-walled carbon nanotubes and synthetic mineral clay with nanoparticles in the form of lamellae and having a specific surface greater than or equal to 20 m 2 / g.
  • the synthetic lamellar nanoparticle mineral clay having a specific surface area greater than or equal to 20 m 2 / g is preferably a clay consisting essentially of magnesium silicate, or preferably synthetic magnesium phyllosilicate, such as laponite .
  • vermiculite is excluded from the scope of the invention because it does not provide non-covalent hybrid material with satisfactory sorbent properties.
  • the synthetic lamellar nanoparticle mineral clay having a specific surface greater than or equal to 20 m 2 / g has an average particle size of between 1 and 100 nm, more advantageously between 1 and 50 nm, and even more advantageously between 1 and 30 nm.
  • the hybrid material consisting of multi-walled carbon nanotubes and synthetic mineral clay with nanoparticles in the form of lamellae and having a specific surface greater than or equal to 20 m 2 / g is for example obtained by means of a simple method to implement and presenting a very cost-effective cost (see M. Loginov, N. Lebovka, E. Vorobiev.) Laponite assisted dispersion of carbon nanotubes water. Journal of Colloid and Interface Science, 365 (2012) 127-136).
  • the hybrid material has high surface activity and high surface area.
  • said clay is a synthetic magnesium phyllosilicate, insoluble in water and having in particular a high swelling capacity, such as laponite.
  • the hybrid material of the use or the process according to the invention is obtained by simple sonication of an aqueous suspension of multi-walled carbon nanotubes and laponite, preferably at room temperature and at neutral pH, according to the method of Loginov et al. (Journal of Colloid and Interface Science, 365 (2012) 127-136, incorporated herein by reference in its entirety).
  • Said laponite-NTCM hybrid material when used in suspension in water, does not substantially form aggregates or packets, even after storage of the suspension at a temperature between 0 ° C and room temperature.
  • Said laponite-NTCM hybrid material results from the segregation and stabilization of individualized nanotubes by the laponite particles.
  • laponite only - synthetic clay having a large specific surface area, in particular greater than 200 m 2 / g - is not suitable for the purification of liquid, because the particles which constitute it are very small: the thickness and the Laponite particle diameters are approximately equal to 1 nm and 30 nm, and an aqueous dispersion of laponite has a mean particle size of between about 1 and 100 nm. Therefore, laponite particles alone, which do not precipitate, are difficult to filter and contaminate the solution to be purified.
  • the multi-walled carbon nanotubes alone are generally easy to separate from an aqueous solution by filtration, centrifugation or decantation because of their high length (about 1 ⁇ ), they do not have a capacity of sufficient absorption for satisfactory purification of contaminated water.
  • the use of the hybrid material according to the invention has unpredictable advantages over these two materials considered separately, namely better adsorption properties, and a size allowing easy separation of the aqueous solution to be purified.
  • Fig. 1 Schematic representation of the process for purifying a contaminated fluid according to the invention
  • embodiment 1 mixing the contaminated liquid (a) with an aliquot of hybrid material Laponite-NTCM (b); then, filtering or centrifuging the suspension thus obtained (c), leading to the formation of a purified filtrate or supernatant (d).
  • Fig. 2 Schematic representation of the method for purifying a contaminated fluid according to the invention
  • Embodiment 2 deposition of the hybrid particles on a porous support (a); leading to the formation of a layer of immobilized hybrid particles (b); Filtration of the contaminated liquid through the layer of laponite-NTCM hybrid material deposited on the porous support (c).
  • Fig. 3 Representation of the formation of a stable suspension of Laponite-NTCM hybrid material by sonication and the structure of the hybrid particles thus obtained.
  • Fig. 5 Photographs of: (a) Model solution at 5 ⁇ 10 6 g / ml in methylene blue (BM), (b) hybrid suspension of Laponite-NTCM, (c) 5 10 6 g / ml solution in blue of methylene (BM) mixed with an aliquot of Laponite-NTC hybrid solution, (d) solution obtained after filtration of the suspension (c) (filtrate).
  • Fig. 6 Relative (relative) absorbance of purified solution of methylene blue (d) obtained by the method according to FIG. 5, as a function of the volume of ⁇ aliquot (b) of hybrid suspension of Laponite-NTCM used (abscissa).
  • the initial volume and concentration of the methylene blue (BM) solution are 100 ml and 5 ⁇ 10 6 g / ml, respectively.
  • the hybrid suspension contains 0.01% by mass of NTCM and a concentration (ratio of mass of laponite to mass of NTCM present in the suspension) of laponite of 0.5
  • Fig. 7 Quantity of methylene blue (BM) removed using hybrid Laponite-NTCM suspension expressed in g of BM / g of NTCM (ordinate) based the initial concentration of methylene blue (BM) (expressed in g of BM / g of NTCM, abscissa).
  • Fig. 8 Maximum absorption (expressed in g of BM per g of NTCM) of a solution purified using a hybrid suspension of Laponite-NTCM (solution initially contaminated with methylene blue at 10 -6 M blue blue). methylene), as a function of the concentration (ratio of laponite mass to the mass of NTCM present in the suspension) of laponite X in the hybrid solution
  • step b) is a centrifugation step
  • step b) is a filtration step.
  • Fig. 9 Relative Absorbance (ratio of filtrate aborbance to absorbance of the contaminated solution before treatment) of the filtrate (purified solution d) obtained according to FIG. 1 or 2) as a function of the contact time (in minutes) of the BM solution with Laponite-NTCM hybrid material suspension.
  • Fig. 11 Turbidity of the filtrate as a function of the surface concentration of the hybrid particles on a porous support.
  • the initial volume of suspension of unpurified yeast is equal to 100 ml
  • the turbidity of the unfiltered initial suspension is equal to 0.9 ⁇ 0.1
  • the filtration pressure ⁇ 2 bar
  • the filter surface S 2.5 3 m 2
  • the concentration of laponite in the hybrid material ratio of laponite mass to mass of NTCM present in the suspension
  • X 0.5.
  • the initial volume of Fe (II) solution is equal to 200 ml
  • the non-solution concentration purified is 5 ⁇ 10 6 g Fe / ml
  • the amount of hybrid suspension of laponite-NTCM used corresponds to 0.01 g NTCM.
  • Fig. 13 Degree of purification calculated for different sorbents.
  • the initial volume of Fe (II) solution was 200 ml, the concentration of unpurified solution was 5 ⁇ 10 -6 g Fe / ml, the amount of sorbent used was 0.01 g NTC.
  • the hybrid material consisting of carbon nanotubes (NTCMs) and synthetic mineral clay with lamellar nanoparticles and having a specific surface greater than or equal to 20 m 2 / g, here laponite, is obtained according to the method described in the article M. Loginov, N. Lebovka, E. Vorobiev. Laponite assisted dispersion of carbon nanotubes in water. Journal of Colloid and Interface Science, 365 (2012) 127-136. The properties of the hybrid material thus obtained are described in this same article. The synthesis and structure of said laponite-NTCM hybrid material are described in FIG. 3.
  • X represents the ratio between the mass of laponite and the mass of NTCM present in the suspension of hybrid material.
  • the absorption of a material is defined as its capacity to absorb a contaminant, expressed in g of contaminant aborbed with 1 gram of NTCM used in a suspension of hybrid material. If necessary, this value depends on the value X defined above.
  • BM solution is a solution containing 5.10 6 g / ml of methylene blue (BM).
  • the BM model solution was mixed with a 30 mL aliquot of hybrid material suspension at 0.01% by weight, the suspension thus obtained being stirred for a time varying from 30 sec to 3 hours. Then, the hybrid particles were separated either by filtration or by centrifugation, and the filtrate (or supernatant) thus obtained was analyzed.
  • Figure 7 shows the adsorption value of BM as a function of the amount of BM added to the hybrid suspension.
  • the maximum adsorption (purifying capacity) of the NTC-laponite hybrid material increases with the increase in the concentration of Laponite X.
  • the value of the maximum adsorption of the impurities does not depend on the method of purification and separation of hybrid particles of the purified solution (Fig. 8).
  • Laponite particles can not serve as an effective sorbent. Tests have shown that, in the absence of nanotubes, the filtration of the Laponite suspension does not cause the retention of Laponite particles. In fact, in the absence of NTCM, the Laponite particles pass freely through the filtrate and contaminate it, while the Laponite-NTCM hybrid particles can be completely retained by the support filter with a pore size of about 0. , 2 ⁇ .
  • FIG. 9 shows the dependence of the relative absorbance (staining) of purified BM solution as a function of the contact time of the initial BM solution with the hybrid suspension (when the contact time is passed, the hybrid particles were separated from the purified solution by filtration). It can be seen that the coloring of the filtrate decreases to practically 0 even after 30 seconds of contact with the hybrid suspension. This involves a very rapid purification of BM solution.
  • hybrid particles are non-porous and their surface is easily accessible for contaminants.
  • FIG. 10 shows the filtration curves obtained during the filtration of the purified MB solutions of hybrid particles used. It can be seen that the filtration time required for the purification increases with the increase of X.
  • the yieldability of the hybrid material slurry decreases with increasing laponite concentration. However, it remains rather high compared to the filtrability of the pure laponite suspension.
  • the addition of NTCMs to the laponite increases the purity of the purifying material obtained.
  • a suspension of hybrid particles of Laponite-NTCM was used for the purification of liquids containing biological contaminants.
  • a stable model suspension obtained by decantation of a 1% aqueous suspension of S. cerevisiae ultrasonically stabilized was used.
  • the model suspension obtained is highly turbid because of the presence of fine biological contaminants (yeast cells and cellular debris).
  • This suspension was subjected to the purification process according to the invention, as described in FIG. 2.
  • the hybrid suspension of Laponite-NTCM was immobilized on a porous support having a nominal pore size equal to 2.5 ⁇ .
  • the surface concentration of the hybrid particles was varied from 0 to 1.6 g NTCM / m 2 .
  • Concentration (The ratio of laponite mass to the mass of NTCM present in the suspension of hybrid material) X of Laponite is equal to 0.5.
  • Turbidity is expressed as the relative absorbance of the filtrate (ratio of filtrate aborbance to absorbance of the contaminated solution before treatment) measured at 720 nm using 10 mm quartz optical cells.
  • Figure 11 shows the turbidity of the filtrate as a function of the surface concentration of the hybrid particles used for the purification of stable suspension of yeast.
  • the filtrate In the absence of hybrid particles, the filtrate remains cloudy and contaminated with yeast cells and cell debris. However, when the surface concentration of the hybrid particles increases, the filtration causes a complete retention of the contaminants by the hybrid particles (at a concentration of the hybrid particles greater than or equal to 0.8 g NTCM / m 2 , the turbidity of filtrate is almost equal to 0 ).
  • the method according to the invention thus makes it possible to effectively purify the liquids contaminated by biological contaminants, in particular colloidal contaminants.
  • the process according to the invention also makes it possible for the purification of liquids contaminated with heavy metals.
  • the process according to the invention allows efficient purification of liquids contaminated with heavy metals.
  • the purification method according to the invention has been compared with purification processes using traditional sorbents of the prior art (activated charcoal, zeolite and untreated multi-walled carbon nanotubes).
  • Figure 13 shows the purification degree values calculated for different sorbents.
  • Fig. 13 demonstrates that the process according to the invention allows a complete purification of the contaminated solution (the degree of purification equal to 100%), while the processes using other sorbents (activated carbon, zeolite and carbon nanotubes non-multi-layered treated) only allow partial purification of the solution (the degree of purification is less than 40%).
  • the method according to the invention makes it possible to obtain a strong improvement that is not predictable compared to the methods of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

La présente invention concerne un procédé d'épuration d'eau à l'aide d'un matériau hybride à base de nanotubes de carbone et de nanoparticules d'argile, de préférence la laponite.

Description

UTILISATION DE NANOTUBES DE CARBONE ET D'ARGILE MINERALE SYNTHETIQUE POUR LA PURIFICATION D'EAUX CONTAMINEES
La présente invention concerne un procédé d'épuration d'eau à l'aide d'un matériau hybride à base de nanotubes de carbone et de nanoparticules d'argile, de préférence la laponite.
Certaines méthodes de purification des liquides comprenant divers contaminants (ions, molécules, nanoparticules, virus et bactéries) sont basées sur la fïltration de liquides contaminés à travers des membranes d'ultra- ou de nano fïltration. Toutefois, l'ultrafiltration et la nanofîltration sont des processus très lents. C'est pourquoi l'application de ces méthodes pour la purification des liquides est très limitée.
Le traitement chimique ou physique (par exemple, l'utilisation de l'ozone, la désinfection par rayonnement UV) peut également être utilisé pour la purification des liquides. Cependant, ces méthodes ne sont pas efficaces pour l'élimination de nombreux composés toxiques, tels que les composés chimiques organiques ou inorganiques par exemple.
Il est généralement reconnu que les méthodes les plus efficaces, les plus rapides et les plus simples pour la purification de liquides sont basées sur l'utilisation des matériaux adsorbants, qui retiennent sélectivement les contaminants par contact avec le liquide contaminé, suivi d'une étape de séparation du solide et du liquide purifié par fïltration, décantation ou centrifugation par exemple.
L'efficacité de ces méthodes de purification est alors déterminée par les propriétés physiques et chimiques du sorbant utilisé pour la purification. Un bon sorbant doit satisfaire aux critères suivants : posséder une haute surface spécifique externe, avoir une haute affinité pour des contaminants, et la séparation du sorbant utilisé du liquide purifié doit être simple.
Cependant, la plupart des sorbants traditionnellement utilisés pour la purification de liquides, par exemple, les argiles naturelles et activées (voir notamment US 2007/0031512), les zéolites, le charbon actif, les résines échangeuses d'ions, le sable, présentent des applications relativement limitées pour différentes raisons : - les argiles et les zéolites sont poreuses, leur surface est donc difficilement accessible pour les grandes espèces de contaminants et la purification des liquides est limitée par la diffusion des contaminants dans les pores ;
- le charbon actif a une faible affinité pour certains contaminants (ions toxiques de cuivre, fer, ...) ;
- les argiles activées et les résines échangeuses d'ions ont une faible surface spécifique, etc.
Des matériaux synthétiques sont également utilisés pour la purification de liquide, et notamment les matériaux constitués par les nanotubes de carbone, qui possèdent une surface spécifique relativement élevée et de bonnes propriétés d'adsorption.
L'adsorption et la capacité de purification des nanotubes de carbone peuvent être sensiblement améliorées par modification des nanotubes de carbone, notamment par modification de leur surface par enrobage à l'aide d'autres matériaux. Généralement, il s'agit d'un traitement par des précurseurs d'oxydes métalliques, tel que divulgué par exemple dans Gong et al, Journal of Hazardous Materials, 2009, 164, 1517-1522. Des matériaux composites de nanotubes de carbone et d'alumine ont également été décrit (voir Amais et al, Séparation and Purification Technology, 2007, 58, 122-128). On peut également citer le matériau NanoMesh® (voir EP 1 852 176), constitué de nanotubes de carbones liés de manière covalente à un matériau de support de type polymérique ou céramique. En outre, Zhao et al (Applied Clay Science, 2011, 53, 1-7) ont synthétisé des matériaux composites hybrides constitué de nanotubes de carbone (NTC) liés de manière covalente à de la vermiculite exfoliée, argile minérale naturelle possédant une surface spécifique de 2.2 m2/g, grâce à un procédé comprenant une étape de traitement de la vermiculite exfoliée à l'aide de sels de fer et de molybdène, puis une étape de croissance des nanotubes sur les particules de vermiculite fonctionnalisées.
De tels traitements provoquent la formation de différentes nanoparticules hybrides dont les propriétés sont déterminées par les propriétés chimiques de la couche de revêtement, tandis que la taille des particules est déterminée par la taille des particules des nanotubes de carbone utilisés.
Lesdits matériaux hybrides peuvent être utilisés comme sorbants pour le traitement d'une eau contaminée par des ions toxiques ou par des virus. Toutefois, la synthèse de ces matériaux implique des étapes de traitement à haute température et/ou de synthèses chimiques en plusieurs étapes, et/ou de traitement acides dans des conditions très corrosives (par exemple, chauffage des nanotubes de carbones dans l'acide nitrique).
Ainsi, l'efficacité totale des méthodes de purification basées sur l'utilisation desdits sorbants hybrides à base de nanotubes de carbone semble faible, en raison des coûts assez élevés des matériaux et de la difficulté de mise en œuvre des procédés de synthèse de ces nanotubes de carbone modifiés de manière covalente.
Il existe donc un besoin pour de nouvelles méthodes de purification basées sur l'utilisation de sorbants synthétiques qui doivent avoir, par rapport aux sorbants utilisés traditionnellement :
- une surface spécifique élevée,
- une grande affinité avec divers contaminants,
- une bonne porosité,
- un prix de revient faible.
De manière surprenante, le demandeur a découvert une nouvelle méthode de purification de liquides contaminés, basée sur l'utilisation d'un nouveau type de matériau hybride composé d'argile synthétique, de préférence de type laponite, et de nanotubes de carbone multifeuillets (NTCM).
Au sens de la présente invention, on entend par « matériau hybride » ou « matériau composite » un matériau composé de deux ou plusieurs constituants à l'échelle nano métrique et ayant une structure différente de la structure de ses constituants pris séparément. Les constituants dudit matériau ne sont pas liés de manière covalente. De préférence, ledit matériau est obtenu par simple sonication d'une suspension aqueuse desdits deux ou plusieurs constituants.
Au sens de la présente invention, on entend par « nanotube de carbone multifeuillets (NTCM) » un nanotube de carbone constitué de plusieurs feuillets de graphène, typiquement enroulés les uns autour des autres. Au sens de la présente invention, on entend par « argile » un matériau minéral à base de silicate. Les argiles incluent notamment les kaolins (par exemple la kaolinite, dickite, halloysite, nacrite), les smectites (par exemple la montmorillonite, la nontrnonite et la saponite), les illites, les chlorites, la perlite et la vermiculite. L'argile selon l'invention possède avantageusement une surface spécifique supérieure ou égale à 20 m2/g, de manière encore plus avantageuse supérieure ou égale à 200 m2/g.
De préférence, ladite argile est une argile minérale synthétique, notamment la laponite. La laponite est une argile synthétique de type smectite, plus précisément un phyllosilicate synthétique de magnésium. Typiquement, la laponite ne contient sensiblement pas d'aluminate, contrairement à la vermiculite. La laponite est notamment disponible sous la marque Laponite RD® (distribuée par Rockwood Additives Ltd), de formule Nao.7[(Si8Mg5.5Lio.4)02o(OH)4] (voir Zebrowski et al Colloids Surf. A213, 2003, 189).
La laponite présente en particulier une capacité de gonflement quasi illimité dans un solvant, notamment dans l'eau. Ceci signifie que l'argile peut se dissocier en particules nanométriques individualisées, avec une épaisseur d'environ 1 nm et avec un espacement basai (une distance interfolaire) quasi illimité (supérieur à 4 nm) (voir Martin et al, Osmotic compression and expansion of highly ordered clay dispersions, 2006,Langmuir 22 (9) , pp. 4065-4075). En outre, en suspension dans l'eau, la laponite est sous forme de particules nanométriques individualisées, contrairement notamment à la vermiculite qui forme des agrégats. En outre, les ions échangés dans la laponite sont de type monovalent (par exemple lithium, sodium et potassium), tandis que dans la vermiculite ils sont de type bivalents (par exemple magnésium et calcium).
Dans le contexte de la présente invention, la granulométrie moyenne d'une argile est définie comme la taille moyenne des particules individuelles mesurée par la méthode du microscopie à force atomique (Balnois, E., Durand- Vidal, S., Levitz, P., Probing the morphology of laponite clay colloids by atomic force microscopy, 2003, Langmuir 19 (17) , pp. 6633-6637).
Au sens de la présente invention, on entend par « surface spécifique » une caractéristique des particules (agrégats) exprimée comme le rapport de la surface totale des particules (agrégats) par unité de masse des particules (agrégats). La surface spécifique est mesurée de préférence selon la méthode Brunauer-Emmett-Teller ou BET (voir J. Am. Chem. Soc, 1938, 60, 309) lorsque le contaminant est gazeux, ou par la méthode d'adsorption du bleu de méthylène (voir par exemple Loginov et al, Journal of Colloid and Interface Science, 365 (2012) 127-136, ou Yukselen et Kaya, Engineering Geology, 2008, 102, 38-45), lorsque le contaminant est liquide ou solide.
Au sens de la présente invention, on entend par « sorbant » tout matériau démontrant des capacités d'adsorption ou d'absorption.
En outre, dans la présente invention, on emploie indifféremment les termes « épuration » et « purification » pour définir l'action d'éliminer les impuretés contenues dans un produit, et notamment, dans le contexte de l'invention, les impuretés de l'eau.
Un objet de l'invention concerne donc l'utilisation d'un matériau hybride constitué de nanotubes de carbones multifeuillets (NTCM) et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g pour l'épuration d'eaux contaminées.
Un autre objet de l'invention concerne un procédé d'épuration d'eau.
La présente invention concerne ainsi l'utilisation d'un matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, de préférence la laponite, pour l'épuration d'eaux contaminées.
Les eaux contaminées peuvent être par exemple des eaux usées, des eaux industrielles, des eaux partiellement retraitées, des eaux contaminées accidentellement.
Les eaux contaminées comprennent des contaminants avantageusement choisis parmi le groupe des composés biologiques, par exemple virus, levures et bactéries, notamment la levure S. Cerevisiae, des composés organiques ou inorganiques, par exemple des colorants tels que le bleu de méthylène, des agents tensioactifs, des sels de métaux lourds tels que par exemple des sels de fer, et leurs mélanges. On peut également citer les dérivés du pétrole comme contaminant organique.
Dans un mode de réalisation particulier, les contaminants sont des colorants. Dans un autre mode de réalisation particulier de l'invention, le contaminant est un produit d'intérêt.
Au sens de la présente invention, un « produit d'intérêt » est un composé biologique ou chimique organique ou inorganique présentant un intérêt, c'est-à-dire qu'il est intéressant de le récupérer séparément pour le réutiliser. Par exemple, on peut citer les composés organiques, notamment les ions de métaux précieux (or, argent, etc), les stéroïdes, les ferments...
Ainsi, la présente invention concerne également l'utilisation d'un matériau hybride composé de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, de préférence la laponite, pour l'extraction et/ou la séparation de produits d'intérêts à partir d'une solution, par exemple une solution diluée.
Le composé d'intérêt est de préférence un composé soluble dans la solution aqueuse, ou le composé est sous forme colloïdale et se présente sous forme d'une suspension aqueuse.
La présente invention concerne également un procédé d'épuration d'eau comprenant les étapes successives de :
a) Mise en contact de l'eau contaminée à purifier avec une quantité suffisante de matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, de préférence la laponite, pendant une durée comprise entre 30 secondes et 3 h, de préférence entre 1 minute et 3 h, de manière encore préférée entre 1 et 30 minutes ou entre 30 secondes et 30 minutes, durée nécessaire à la purification de ladite eau contaminée, optionnellement sous agitation ;
b) Séparation du matériau hybride et de l'eau purifiée ;
c) Récupération de l'eau purifiée ;
d) Optionnellement régénération du matériau hybride.
L'épuration d'eau peut également indiquer que les contaminants sont adsorbés, désactivés et/ou dégradés. L'eau contaminée comprend des contaminants de préférence choisis parmi le groupe constitué des composés biologiques, par exemple virus et bactéries, des composés organiques ou inorganiques, par exemple des colorants, des agents tensioactifs, des sels de métaux lourds, des dérivés du pétrole et leurs mélanges.
Dans un mode de réalisation, le contaminant est un colorant.
Dans un mode de réalisation particulier, le matériau hybride utilisé à l'étape a) est de préférence ajouté sous forme d'une suspension ou d'une poudre. Le procédé mis en œuvre est alors de préférence un procédé de type batch.
Avantageusement, la séparation de l'étape b) a lieu par filtration et/ou centrifugation et/ou décantation et/ou séparation magnétique et/ou flottation. Pour un procédé de purification de type continu, on préférera utiliser une technique de filtration, la séparation magnétique ou la flottation. Pour un procédé de type batch, on pourra utiliser la centrifugation ou la décantation.
Dans un mode de réalisation de l'invention, la séparation de l'étape b) a lieu par filtration avec une membrane dont la taille moyenne des pores est comprise entre 0,1 μιη et 2,5 μιη, de préférence entre 0,1 et 0,5 μιη, encore plus préférentiellement environ égale à 0,2 μιη.
Dans un mode de réalisation particulier, le matériau hybride est utilisé en mélange avec des particules choisies parmi le groupe constitué du sable, des diatomites, des zéolites, du charbon actif, des argiles naturelles activées, de la silice, des additifs visant à faciliter la séparation des particules hybrides de l'eau purifiée, et leurs mélanges.
Par « additif visant à faciliter la séparation » on entend au sens de la présente invention un additif assurant la séparation complète des particules hybrides et les contaminants de liquide épuré et/ou l'augmentation du taux de séparation. On peut citer notamment les f occulants et les coagulants, notamment de type polymériques.
Dans un mode de réalisation particulier de l'invention, le matériau hybride est immobilisé sur un support solide, avantageusement un support solide poreux, encore plus avantageusement sur un support permettant une mise en œuvre facilitée de la séparation de l'étape, de préférence par filtration. Ainsi, le support solide poreux présente avantageusement une taille moyenne des pores est comprise entre 0,1 μιη et 2,5 μηι, de préférence entre 0,1 et 0,5 μηι, encore plus préférentiellement environ égale à 0,2 μηι. Ce mode de réalisation est particulièrement adapté à un procédé continu.
L'étape d) de régénération comprend de préférence un traitement physique et/ou chimique du matériau hybride contenant les contaminants. En particulier, un traitement chimique du matériau hybride peut être effectué par contact avec une solution d'acide, de soude, de complexants, d'oxydants, d'enzymes, de solvants non-organiques ou d'autres produits qui permettent la désorption et/ou la dissolution des impuretés qui se trouvent en surface de la matière hybride utilisée. L'homme du métier choisira le traitement chimique de régénération le plus approprié en fonction du type de contaminant aborbé ou adsorbé sur le matéraiu hybride.
Les utilisation et procédés selon l'invention font intervenir un matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g.
L'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g est de préférence une argile essentiellement constituée de silicate de magnésium, ou de préférence de phyllo silicate synthétique de magnésium, telle la laponite. En particulier, la vermiculite est exclue du champ de l'invention, car elle ne permet d'obtenir de matériau hybride non covalent possédant des propriétés de sorbant satisfaisantes.
Par « essentiellement constitué », on entend au sens de la présente invention que le matériau comprend au moins 95 % en poids de l'élément en question.
Avantageusement, l'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g présente une granulométrie moyenne comprise entre 1 et 100 nm, encore plus avantageusement comprise entre 1 et 50 nm, encore plus avantageusement comprise entre 1 et 30 nm.
Le matériau hybride constitué de nanotubes de carbone multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g est par exemple obtenu grâce à une méthode simple à mettre en œuvre et présentant un coût de revient très avantageux (voir M. Loginov, N. Lebovka, E. Vorobiev. Laponite assisted dispersion of carbon nanotubes in water. Journal of Colloid and Interface Science, 365 (2012) 127-136). Ledit matériau hybride présente une activité de surface élevée et une haute surface spécifique.
Dans un mode de réalisation particulièrement préféré, ladite argile est un phyllosilicate synthétique de magnésium, non soluble dans l'eau et présentant en particulier une grande capacité de gonflement, tel que la laponite. Le matériau hybride de l'utilisation ou du procédé selon l'invention est obtenu par simple sonication d'une suspension aqueuse de nanotubes de carbones multifeuillets et de laponite, de préférence à température ambiante et à pH neutre, selon le procédé de Loginov et al (Journal of Colloid and Interface Science, 365 (2012) 127-136, incorporé ici par référence dans son intégralité). Ledit matériau hybride laponite-NTCM, lorsqu'il est utilisé en suspension dans l'eau, ne forme sensiblement pas d'agrégats ou paquets, même après stockage de la suspension à une température comprise entre 0°C et la température ambiante. Ledit matériau hybride laponite-NTCM résulte de la sépration et de la stabilisation des nanotubes individualisés par les particules de laponite.
En comparaison, la laponite seule - argile synthétique possédant une grande surface spécifique, notamment supérieure à 200 m2/g - n'est pas appropriée pour la purification de liquide, car les particules qui la constituent sont très petites : l'épaisseur et le diamètre des particules de laponite sont environ égaux à 1 nm et 30 nm, et une dispersion aqueuse de laponite présente une granulométrie moyenne comprise entre 1 et 100 nm environ. Par conséquent, les particules de laponite seules, qui ne précipitent pas, sont difficiles à filtrer et contaminent la solution à purifier.
Par ailleurs, bien que les nanotubes de carbone multifeuillets seuls soient en général faciles à séparer d'une solution aqueuse par fïltration, centrifugation ou décantation en raison de leur longueur élevée (environ 1 μιη), ceux-ci ne présentent pas une capacité d'absorption suffisantes pour une purification d'eau contaminée satisfaisante.
Ainsi, l'utilisation du matériau hybride selon l'invention présente des avantages non prévisibles par rapport à ces deux matériaux considérés séparément, à savoir de meilleures propriétés d'adsorption, et une taille permettant une séparation facile de la solution aqueuse à purifier. Figures
Fig. 1 : Représentation schématique du procédé de purification d'un fluide contaminé selon l'invention, mode de réalisation 1 : mélange du liquide contaminé (a) avec un aliquot de matériau hybride Laponite-NTCM (b); puis, filtration ou centrifugation de la suspension ainsi obtenue (c), conduisant à la formation d'un filtrat ou surnageant purifié (d).
Fig. 2 : Représentation schématique du procédé de purification d'un fluide contaminé selon l'invention, mode de réalisation 2 : Déposition des particules hybrides sur un support poreux (a); menant à la formation d'une couche de particules hybrides immobilisées (b); Filtration du liquide contaminé à travers la couche de matériau hybride laponite-NTCM déposée sur le support poreux (c).
Fig. 3 : Représentation de la formation d'une suspension stable de matériau hybride de Laponite-NTCM par sonication et de la structure des particules hybrides ainsi obtenue.
Fig. 4 : Photograhies d'une suspension aqueuse initiale instable de NTCM comprenant 0.01% massique de NTCM (a) et de la suspension de NTCM stabilisée par Laponite à une concentration en laponite X = 0,5 obtenue après sonication (X est le rapport entre la masse de laponite et la masse de NTCM présents dans la suspension) (b).
Fig. 5 : Photographies de : (a) Solution modèle à 5 · 10 6 g/ml en bleu de méthylène (BM), (b) suspension hybride de Laponite-NTCM, (c) solution à 5 10 6 g/ml en bleu de méthylène (BM) mélangée avec un aliquote de solution hybride Laponite- NTC, (d) solution obtenu après filtration de la suspension (c) (filtrat).
Fig. 6 : Absorbance (ordonnée) relative de solution purifiée de bleu de méthylène (d) obtenue par le procédé selon la figure 5, en fonction du volume de Γ aliquot (b) de suspension hybride de Laponite-NTCM utilisée (abscisse). Le volume initial et la concentration de la solution de bleu de méthylène (BM) sont de 100 ml et 5 · 10 6 g/ml, respectivement. La suspension hybride contient 0.01% massique de NTCM et une concentration (rapport entre la masse de laponite et la masse de NTCM présents dans la suspension) de laponite de 0,5
Fig. 7 : Quantité de bleu de méthylène (BM) retiré à l'aide de suspension hybride de Laponite-NTCM exprimé en g de BM / g de NTCM (ordonnée) en fonction de la concentration de bleu de méthylène (BM) initiale (exprimée en g de BM /g de NTCM, abscisse). La concentration de Laponite (rapport entre la masse de laponite et la masse de NTCM présents dans la suspension) dans la solution hybride est de X = 0,5.
Fig. 8 : Absorption maximale (exprimée en g de BM par g de NTCM) d'une solution purifiée à l'aide d'une suspension hybride de Laponite-NTCM (solution initialement contaminée par le bleu de méthylène à 10"6 M de bleu de méthylène), en fonction de la concentration (rapport entre la masse de laponite et la masse de NTCM présents dans la suspension) de laponite X dans la solution hybride. Les points représentés par des carrés correspondent à la mise en œuvre du procédé selon l'invention dans lequel l'étape b) est une étape de centrifugation, tandis que les points représentés par des losanges correspondent à la mise en œuvre du procédé selon l'invention dans lequel l'étape b) est une étape de fïltration.
Fig. 9 : Absorbance relative (rapport entre l'aborbance du filtrat et l'absorbance de la solution contaminée avant traitement) du filtrat (solution purifiée d) obtenue selon la figure 1 ou 2) en fonction du temps de contact (en minutes) de la solution de BM avec la suspension de matériau hybride laponite-NTCM.
Fig. 10 : Dépendance du volume de filtrat en fonction du temps de fïltration pour les suspensions hybrides à différentes concentrations de Laponite X = 0-0,5 et à concentration constante de nanotubes Cn = 0,01% massiques. (Volume initial de suspension est égal à 100 ml, la pression de fïltration est Δρ = 1 bar, la surface du filtre est S = 2.5-10~3 m2).
Fig. 11 : Turbidité du filtrat en fonction de la concentration surfacique des particules hybrides sur un support poreux. Le volume initial de suspension de levure non purifiée est égal à 100 ml, la turbidité de la suspension initale non filtrée est égal à 0,9 ± 0,1, la pression de fïltration Δρ = 2 bar, la surface du filtre S = 2.5 10 3 m2, la concentration de laponite dans le matériau hybride (rapport entre la masse de laponite et la masse de NTCM présents dans la suspension) X = 0,5.
Fig. 12 : Quantité de Fe(II) retirée à l'aide de suspension hybride de laponite- NTCM en fonction de la concentration de Fe(II) ajoutée (exemple pour un rapport entre la masse de laponite et la masse de NTCM présents dans la suspension X = 0,5). Le volume initial de solution de Fe(II) est égal à 200 ml, la concentration de solution non purifiée est égale à 5 · 10 6 g Fe/ml, la quantité de suspension hybride de laponite-NTCM utilisée correspond à 0,01 g NTCM.
Fig. 13 : Degré de purification calculé pour des sorbants différents. Le volume initial de solution de Fe(II) a été égal à 200 ml, la concentration de solution non-purifiée a été égal à 5 · 10"6 g Fe/ml, la quantité de sorbant utilisée était égal à 0,01 g NTC.
Exemples
Les exemples qui suivent sont donnés à titre illustratif uniquement, et ne constituent en aucun cas une limitation de l'invention.
Dans les exemples qui suivent, le matériau hybride constitué de nanotubes de carbone multifeuillets (NTCM) et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, ici la laponite, est obtenu selon le procédé décrit dans l'article M. Loginov, N. Lebovka, E. Vorobiev. Laponite assisted dispersion of carbon nanotubes in water. Journal of Colloid and Interface Science, 365 (2012) 127-136. Les propriétés du matériau hybride ainsi obtenu sont décrites dans ce même article. La synthèse et la structure dudit matériau hybride laponite-NTCM sont décrits dans la Fig. 3.
Dans ce qui suit, on désignera plus simplement ledit matériau par l'expression « matériau hybride laponite-NTCM», « particules hybrides » ou « suspension hybride laponite-NTCM».
Dans ce qui suit, X représente le rapport entre la masse de laponite et la masse de NTCM présents dans la suspension de matériau hybride.
En outre, on définit comme l'absorption d'un matériau sa capacité à absorber un contaminant, exprimée en g de contaminant aborbé par 1 gramme de NTCM utilisé dans une suspension de matériau hybride. Le cas échéant, cette valeur dépend de la valeur X définie ci-dessus. Exemple 1 : Purification d'une eau contaminée par un composé chimique organique (colorant)
La solution à purifier, ci-après dénommée « solution modèle de bleu de méthylène (BM) », est une solution à 5.10 6 g/ml de bleu de méthylène (BM).
Purification à l'aide d'une suspension du matériau hybride selon l'invention Le schéma d'un essai de purification est présenté Fig. 1. Les résultats obtenus sont représentés dans la Fig. 5.
La solution modèle de BM a été mélangée avec un aliquot de 30 mL de suspension de matériau hybride à 0.01% en poids, la suspension ainsi obtenue étant agitée pendant une durée variant de 30 sec à 3 heures. Puis, les particules hybrides ont été séparées soit par filtration, soit par centrifugation, et le filtrat (ou surnageant) ainsi obtenu a été analysé.
Purification à l'aide d'un matériau hybride selon l'invention immobilisé sur un support poreux solide
Parallèlement, une autre méthode de purification a été testée, représentée schématiquement sur la Fig.2. 100 mL de suspension hybride a été ajouté, et on a laissé le matériau hybride laponite/NTCM se déposer sur un support poreux (membrane de filtration). Notamment, une membrane de filtration présentant une taille de pores de 0,2 μιη retient totalement les particules hybrides de Laponite-NTCM à n'importe quelle concentration de Laponite, ladite concentration étant notée X.
Ainsi, un dépôt durable (ayant l'aspect d'un mince « gâteau » noir) se forme sur le support poreux (Fig. 2b).
Puis, la solution modèle de BM est filtré à travers la couche des particules hybrides déposée et un filtrat pur a été obtenu (Fig. 2c).
Résultats
Dans les deux cas, la pureté du filtrat final (surnageant) dépend de la quantité des particules hybrides utilisées pour la purification. La Figure 6 représente l'absorbance relative de filtrat en fonction du volume de suspension hybride avec la concentration des nanotubes 0,01% massiques et X = 0,5 utilisée pour la purification de 100 ml de la solution modèle de BM.
La Figure 7 présente la valeur d'adsorption de BM en fonction de la quantité de BM ajouté à la suspension hybride.
Il a été observé que le maximum d'adsorption de BM (ou une autre impureté) sur la surface des particules hybrides est déterminé par le ratio NTC/Laponite dans les hybrides. La Figure 8 présente le maximum d'adsorption de BM en fonction de la concentration de Laponite dans les hybrides.
Ainsi, le maximum d'adsorption (la capacité purifiante) du matériau hybride NTC-laponite augmente avec l'augmentation de la concentration de Laponite X. La valeur du maximum d'adsorption des impuretés ne dépend pas de la méthode de purification et séparation des particules hybrides de la solution purifiée (Fig. 8).
Il a également été observé qu'à la concentration de Laponite X > 0,2 le maximum d'adsorption des impuretés est directement proportionnel à X (Fig. 8). Ainsi, il peut être conclu que pour X > 0,2 seules les particules de Laponite déterminent la surface et les propriétés purifiantes de la suspension hybride, tandis que les nanotubes ne sont que des «porteurs» pour les particules actives de Laponite. Par conséquent, la capacité de purification des particules hybrides peut être considérablement augmentée en augmentant la concentration de Laponite dans la suspension hybride.
Toutefois, en l'absence de NTCM les particules de Laponite ne peuvent pas servir de sorbant efficace. Des essais ont montré que, en l'absence de nanotubes, la fïltration de la suspension de Laponite ne provoque pas la rétention des particules de Laponite. En effet, en l'absence de NTCM les particules de Laponite passent librement dans le filtrat et le contaminent, tandis que les particules hybrides de Laponite-NTCM peuvent être complètement retenues par le filtre de support avec une taille myenne des pores d'environ 0,2 μιη.
En outre, l'adsorption et l'élimination des contaminants à l'aide des particules hybrides de Laponite-NTCM est relativement rapide. La Figure 9 présente la dépendance de l'absorbance relative (coloration) de solution purifiée de BM en fonction du temps de contact de la solution initiale de BM avec la suspension hybride (quand le temps de contact est passé, les particules hybrides ont été séparées de la solution purifiée par fïltration). On voit que la coloration du filtrat diminue pratiquement à 0, même après 30 secondes de contact avec la suspension hybride. Cela implique une purification très rapide de solution de BM.
Il semble donc que les particules hybrides sont non poreuses et leur surface est facilement accessible pour les contaminants.
La séparation des particules hybrides utilisées de la solution purifiée est aussi relativement rapide. La Figure 10 présente les courbes de fïltration obtenues lors de la fïltration des solutions purifiées de BM de particules hybrides utilisées. On voit que le temps de fïltration nécessaire à la purification augmente avec l'augmentation de X. La valeur estimée de la résistance spécifique de fïltration du gâteau des particules hybrides (mesure de fïltrabilité) augmente de 2-1012 m/kg (à X = 0) à environ 1014 m/kg (à X = 0,5), alors que la valeur estimée de la résistance spécifique de fïltration pour la laponite pure est beaucoup plus élevée (environ 1015 m/kg). Ainsi, la fïltrabilité de la suspension de matériau hybride diminue avec l'augmentation de la concentration de laponite. Cependant, elle reste assez élevée par rapport à la fïltrabilité de la suspension de laponite pure. L'ajout des NTCM à la laponite augmente la fïltrabilité du matériau purifiant obtenu.
Exemple 2 : Purification d'une eau contaminée par des composés biologiques
Une suspension des particules hybrides de Laponite-NTCM a été utilisée pour la purification des liquides contenant des contaminants biologiques.
Une suspension modèle stable obtenue par décantation d'une suspension aqueuse à 1 % de S. cerevisiae stabilisée par ultrasons a été utilisée.
La suspension modèle obtenue est fortement turbide à cause de la présence de contaminants biologiques fins (cellules de levure et débris cellulaires). Cette suspension a été soumise au procédé de purification selon l'invention, comme décrit Fig. 2.
La suspension hybride de Laponite-NTCM a été immobilisée sur un support poreux présentant une taille nominale des pores égale à 2,5 μιη. La concentration de surface des particules hybrides a été variée de 0 à 1,6 g NTCM/m2. La concentration (rapport entre la masse de laponite et la masse de NTCM présents dans la suspension de matériau hybride) X de Laponite est égale à 0,5.
La suspension stable de levure a été filtrée à travers la couche obtenue, et la turbidité du filtrat a été mesurée. La turbidité est exprimée comme l'absorbance relative du filtrat (rapport entre l'aborbance du filtrat et l'absorbance de la solution contaminée avant traitement) mesurée à 720 nm en utilisant des cellules optiques en quartz de 10 mm.
La Figure 11 présente la turbidité du filtrat en fonction de la concentration surfacique des particules hybrides utilisée pour la purification de suspension stable de levure.
En l'absence de particules hybrides, le filtrat reste trouble et contaminé par des cellules de levure et par des débris cellulaires. Cependant, lorsque la concentration surfacique des particules hybrides augmente, la filtration provoque une rétention complète des contaminants par les particules hybrides (à une concentration des particules hybrides supérieure ou égale à 0.8 g NTCM/m2, la turbidité de filtrat est quasiment égale à 0).
Le procédé selon l'invention permet donc de purifier de manière efficace les liquides contaminés par des contaminants biologiques, notamment colloïdaux.
Exemple 3 : Purification d'une eau contaminée par un composé chimique inorganique (ion d'un métal lourd)
Le procédé selon l'invention permet aussi pour la purification de liquides contaminés par des métaux lourds.
Une solution modèle de FeS04 présentant une concentration en Fe(II) égale à 5.10~6 g/ml a été utilisée. Cette solution a été soumise au procédé selon l'invention selon la méthode présentée dans la Fig. 1.
Les quantités différentes de suspension hybride de Laponite-NTCM (X = 0,5) ont été utilisées pour la purification. La concentration de Fe(II) dans la solution initiale et dans les solutions purifiées a été déterminée par une méthode colorimétrique utilisant la 1,10-phénanthroline, telle que décrite dans Belcher, R. "Application of chelate Compounds in Analytical Chemistry" Pure and Applied Chemistry, 1973, volume 34, pages 13-27. . La Figure 12 présente la valeur d'adsorption de Fe(II) en fonction de la quantité de Fe(II) ajouté. On voit que les particules hybrides de Laponite-NTCM absorbent efficacement le Fe(II).
Ainsi, le procédé selon l'invention permet une purification efficace de liquides contaminés par des métaux lourds.
Exemple 4 : Exemples comparatifs
Le procédé de purification selon l'invention a été comparé avec des procédés de purification utilisant des sorbants traditionnels de l'art antérieur (charbon activé, zéolite et nanotubes de carbone multifeuillets non-traités).
Pour une telle comparaison, les mêmes conditions expérimentales que décrit précédemment dans l'exemple 3 ont été utilisées.
Ainsi, 0,01 g de sorbant a été mélangé avec 200 ml de solution présentant une concentration en Fe(II) égale à 5.10 6 g/ml. Les sorbants ont ensuite été séparés des solutions à purifier par fïltration, et la teneur en fer des solutions purifiées a été mesurée. Le degré de purification a été calculé comme le ratio de la quantité de Fe (II) enlevée par sorbant à la quantité initiale de Fe(II) dans la solution.
La Figure 13 présente les valeurs du degré de purification calculées pour différents sorbants.
La Fig. 13 démontre bien que le procédé selon l'invention permet une purification complète de la solution contaminée (le degré de purification égal à 100 %), tandis que les procédés utilisant d'autres sorbants (charbon actif, zéolite et nanotubes de carbone multifeuillets non-traités) permettent uniquement une purification partielle de la solution (le degré de purification est inférieur à 40 %).
Ainsi, le procédé selon l'invention permet d'obtenir une forte amélioration non prédictible par rapport aux procédés de l'art antérieur.

Claims

REVENDICATIONS
1. Utilisation d'un matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, pour la purification d'eaux contaminées.
2. Utilisation selon la revendication 1, caractérisée en ce que l'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g est une argile essentiellement constituée de silicate de magnésium.
3. Utilisation selon la revendication 1 ou 2, caractérisée en ce que l'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g est la laponite.
4. Utilisation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que l'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g présente une granulométrie moyenne comprise entre 1 et 100 nm.
5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les eaux contaminées comprennent des contaminants choisis parmi le groupe des composés biologiques, des composés organiques ou inorganiques, et leurs mélanges.
6. Utilisation d'un matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, de préférence une argile essentiellement constituée de silicate de magnésium telle la laponite, pour l'extraction et/ou la séparation de produits d'intérêts à partir d'une solution.
7. Procédé d'épuration d'eau comprenant les étapes successives de : a) Mise en contact de l'eau contaminée à purifier avec une quantité suffisante de matériau hybride constitué de nanotubes de carbones multifeuillets et d'argile minérale synthétique à nanoparticules en forme de lamelles et possédant une surface spécifique supérieure ou égale à 20 m2/g, de préférence une argile essentiellement constituée de silicate de magnésium, pendant une durée comprise entre 1 minute et 3 h, de préférence entre 1 et 30 minutes, durée nécessaire à la purification de ladite eau contaminée, optionnellement sous agitation ; b) Séparation du matériau hybride et de l'eau purifiée ; c) Récupération de l'eau purifiée ; d) Optionnellement régénération du matériau hybride.
8. Procédé selon la revendication 7, caractérisé en ce que l'argile minérale est la laponite.
9. Procédé selon la revendication 7 ou 8, caractérisé en ce que les eaux contaminées comprennent des contaminants choisis parmi le groupe des composés biologiques, des composés organiques ou inorganiques, et leurs mélanges.
10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que la séparation de l'étape b) a lieu par filtration et/ou centrifugation et/ou décantation et/ou séparation magnétique et/ou flottation.
11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la séparation de l'étape b) a lieu par filtration avec une membrane dont la taille moyenne des pores est comprise entre 0,1 μιη et 2,5 μιη, de préférence entre 0,1 et 0,5 μιη, encore plus préférentiellement environ égale à 0,2 μιη.
12. Procédé selon l'une quelconque des revendications 7 à 11, caractérisé en ce que le matériau hybride utilisé à l'étape a) est ajouté sous forme d'une suspension ou d'une poudre.
13. Procédé selon l'une quelconque des revendications 7 à 12, caractérisé en ce que le matériau hybride est utilisé en mélange avec des particules choisies parmi le groupe constitué du sable, des diatomites, des zéolites, du charbon actif, des argiles naturelles activées, de la silice, des additifs visant à faciliter la séparation des particules hybrides de l'eau purifiée, et leurs mélanges.
14. Procédé selon l'une quelconque des revendications 7 à 11 et 13, caractérisé en ce que le matériau hybride est immobilisé sur un support solide, avantageusement un support solide poreux, encore plus avantageusement sur un support permettant une mise en œuvre facilitée de la séparation de l'étape b), de préférence par fïltration.
EP13706557.9A 2012-02-29 2013-02-28 Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees Withdrawn EP2819954A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251874A FR2987357B1 (fr) 2012-02-29 2012-02-29 Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees
PCT/EP2013/054069 WO2013127938A1 (fr) 2012-02-29 2013-02-28 Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees

Publications (1)

Publication Number Publication Date
EP2819954A1 true EP2819954A1 (fr) 2015-01-07

Family

ID=47754545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13706557.9A Withdrawn EP2819954A1 (fr) 2012-02-29 2013-02-28 Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees

Country Status (4)

Country Link
US (1) US20150041394A1 (fr)
EP (1) EP2819954A1 (fr)
FR (1) FR2987357B1 (fr)
WO (1) WO2013127938A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107128942B (zh) * 2017-05-22 2019-04-09 东华大学 一种碳纳米管/凹凸棒土纳米纤维复合膜及其制备和应用
CN110451518B (zh) * 2019-09-09 2022-09-30 中国矿业大学 一种利用锂皂石合成sapo-34分子筛的方法
CN112169727B (zh) * 2020-10-21 2022-08-05 哈尔滨理工大学 用于高级催化氧化的埃洛石基微纳反应器的制备方法
CZ309291B6 (cs) 2021-01-12 2022-07-27 ART CARBON s.r.o. Způsob výroby adsorpčního/filtračního nanomateriálu pro velkoobjemové čištění tekutin a kompozitní adsorpční/filtrační nanomateriál
CN115465913B (zh) * 2022-11-01 2023-03-24 中国科学院生态环境研究中心 一种强化水中微污染物去除的活性炭多级投加方法
CN116426254A (zh) * 2023-04-18 2023-07-14 西南石油大学 一种水基钻井液用纳米封堵剂制备方法及水基钻井液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852176B1 (fr) * 2003-03-07 2010-07-21 Seldon Technologies, LLC Purification de fluides avec des nanomatériaux
US20070031512A1 (en) * 2005-08-03 2007-02-08 Amcol International Corporation Virus-interacting layered phyllosilicates and methods of inactivating viruses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013127938A1 *

Also Published As

Publication number Publication date
FR2987357B1 (fr) 2014-11-28
US20150041394A1 (en) 2015-02-12
FR2987357A1 (fr) 2013-08-30
WO2013127938A1 (fr) 2013-09-06
WO2013127938A4 (fr) 2013-10-31

Similar Documents

Publication Publication Date Title
EP2819954A1 (fr) Utilisation de nanotubes de carbone et d'argile minerale synthetique pour la purification d'eaux contaminees
Fang et al. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal
Vatanpour et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification
Subramaniam et al. Hydrophilic hollow fiber PVDF ultrafiltration membrane incorporated with titanate nanotubes for decolourization of aerobically-treated palm oil mill effluent
Lu et al. Adsorption of natural organic matter by carbon nanotubes
Al Amer et al. Fabrication and antifouling behaviour of a carbon nanotube membrane
Tomaszewska et al. Removal of organic matter from water by PAC/UF system
Cheng et al. Improving ultrafiltration membrane performance with pre-deposited carbon nanotubes/nanofibers layers for drinking water treatment
Tiwari et al. Hybrid materials in the removal of diclofenac sodium from aqueous solutions: Batch and column studies
Amari et al. Multifunctional crosslinked chitosan/nitrogen-doped graphene quantum dot for wastewater treatment
KR20140085450A (ko) 박테리아 및 중금속의 동시 제거를 위한 나노복합물 고분자-탄소 기반 나노재료 필터
Kusworo et al. Removal of organic pollutants from rubber wastewater using hydrophilic nanocomposite rGO-ZnO/PES hybrid membranes
CN110559995B (zh) 一种采用三维石墨烯吸附水中聚苯乙烯微塑料的方法
Kusworo et al. Performance of the crosslinked PVA coated PES-TiO2 nano hybrid membrane for the treatment of pretreated natural rubber wastewater involving sequential adsorption–ozonation processes
CN104817192B (zh) 混合型生物化学净水剂及其在污水处理中的应用
Guo et al. The combination effect of preozonation and CNTs layer modification on low-pressure membrane fouling control in treating NOM and EfOM
Dutta et al. Insights to the transport of heavy metals from an industrial effluent through functionalized bentonite incorporated mixed matrix membrane: Process modeling and analysis of the interplay of various parameters
Kumar et al. Hydrophilic nano-aluminum oxide containing polyphenylsulfone hollow fiber membranes for the extraction of arsenic (As-V) from drinking water
Song et al. Improving ultrafiltration of algae-laden water with chitosan quaternary ammonium salt enhanced by sodium percarbonate
Guo et al. The Hybrid process of preozonation and CNTs modification on hollow fiber membrane for fouling control
Nasir et al. The GO-Fe3O4/Psf membrane prepared by phase Inversion for filtration: Dyes and NaCl in water
Ma et al. Anion exchange resin/quartz sand bi-layer composite dynamic membranes in ultrafiltration for algae-laden water treatment
Ghozatloo et al. Graphene/CNT hybrid effect on Absorption of Mn2+ by Activated Carbon
Zhao et al. Precoating membranes with submicron super-fine powdered activated carbon after coagulation prevents transmembrane pressure rise: straining and high adsorption capacity effects
Campinas et al. Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180901