EP2808377B1 - Installation and process facility for gasifying lumpy fuels - Google Patents

Installation and process facility for gasifying lumpy fuels Download PDF

Info

Publication number
EP2808377B1
EP2808377B1 EP14450028.7A EP14450028A EP2808377B1 EP 2808377 B1 EP2808377 B1 EP 2808377B1 EP 14450028 A EP14450028 A EP 14450028A EP 2808377 B1 EP2808377 B1 EP 2808377B1
Authority
EP
European Patent Office
Prior art keywords
gas
combustion chamber
pyrolysis reactor
pyrolysis
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14450028.7A
Other languages
German (de)
French (fr)
Other versions
EP2808377A1 (en
Inventor
Helmut Ludwig Timmerer
Peter Haselbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleanstgas GmbH
Original Assignee
Cleanstgas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cleanstgas GmbH filed Critical Cleanstgas GmbH
Publication of EP2808377A1 publication Critical patent/EP2808377A1/en
Application granted granted Critical
Publication of EP2808377B1 publication Critical patent/EP2808377B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/007Screw type gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1876Heat exchange between at least two process streams with one stream being combustion gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/32Devices for distributing fuel evenly over the bed or for stirring up the fuel bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices

Definitions

  • the invention relates to a system for gasifying lumpy fuels according to the preamble of claim 1.
  • a pyrolysis reactor wherein the pyrolysis products are fed to a gasifier.
  • the product gas of the carburetor is treated and fed to a two-stroke engine.
  • the exhaust gases of the two-stroke engine are used to heat a first, cooler stage of the pyrolysis reactor. Further, part of the product gas of the gasifier is used to directly heat a second, hotter stage of the pyrolysis reactor.
  • the object of the invention is to provide a system for gasifying lumpy fuels of the type mentioned, with which a high efficiency can be achieved.
  • the invention relates to a method for gasifying particulate fuels according to claim 11.
  • the object of the invention is further to provide a method for gasifying particulate fuels of the type mentioned, with which a high efficiency can be achieved.
  • the Fig. 1 to 3 show different embodiments of a plant 1 for gasification of particulate fuels with a pyrolysis reactor 2 and a gas engine 6.
  • the particulate fuels may in particular be biogenic fuels, in particular wood or halmgutieri substances.
  • the pyrolysis reactor 2 is used for pyrolysis of the lumpy fuel.
  • the pyrolysis reactor 2 may be particularly preferably designed as a double-shell pyrolysis reactor 21, which has a pyrolysis chamber 24 and an outer chamber 28.
  • the pyrolysis chamber 24 may in particular be tubular and have at one end a fuel supply 22, which is provided for equipping the pyrolysis chamber 24 with the lumpy fuel. Furthermore, it can be provided that in the pyrolysis 24, a screw conveyor for further transport of the lumpy fuel is arranged.
  • the outer chamber 28 is preferably arranged at least partially around the pyrolysis chamber 24. The outer chamber 28 serves to heat the pyrolysis chamber 24, in particular by receiving a hot gas. Here, the heating of the lumpy fuel in the pyrolysis 24 can be done indirectly.
  • an exhaust gas outlet 65 of the gas engine 6 is connected to an input 71 of an afterburner combustion chamber 7.
  • the afterburning combustion chamber 7 comprises a burner, particularly preferably a gas burner, the heat being supplied into the afterburning combustion chamber 7 through the burner.
  • the burner may be designed in the afterburner combustion chamber 7 as a gas burner, liquid burner or solid fuel burner.
  • An exhaust gas outlet 75 of the afterburner combustion chamber 7 is connected to at least one heating gas inlet 23 of the pyrolysis reactor 2.
  • the heat of the exhaust gas of the post-combustion combustion chamber 7 is used for the pyrolysis in the pyrolysis reactor 2.
  • the pyrolysis process can be improved by the increased temperature of the heating gas from the afterburning combustion chamber 7 compared to the temperature of the exhaust gas from the gas engine 6. Furthermore, thereby the throughput of the lumpy fuel through the pyrolysis reactor 2 can be increased.
  • a method for gasifying particulate fuels is provided, wherein the particulate fuels in the pyrolysis reactor 2 subjected to pyrolysis and then gasified to a product gas, wherein the product gas formed by the gasification gas is supplied to the gas engine 6, wherein exhaust gases of the gas engine 6 in the Afterburning combustion chamber 7 are guided and heated there by means of a burner, and wherein exhaust gases of the post-combustion chamber 7 are fed into the pyrolysis reactor 2.
  • the product gas may be a combustible gas, the essential combustible constituents of which are carbon monoxide and hydrogen.
  • the carbon monoxide content in the product gas may be in particular between 15% and 40%.
  • the gas engine 6 may be in particular for the production of electric power and useful heat.
  • the gas engine 6 can in particular have an air inlet 62, via which air or another oxygen-containing gas in the gas engine 6 can burn together with the product gas.
  • air inlet 62 via which air or another oxygen-containing gas in the gas engine 6 can burn together with the product gas.
  • each oxygen-containing gas is referred to as air in sequence.
  • the exhaust gases of the gas engine 6 are heated in the afterburner combustion chamber 7 to a temperature greater than 800 ° C.
  • the heating gas for the pyrolysis reactor 2 have an initial temperature which is greater than 800 ° C, in particular between 800 ° C and 950 ° C.
  • the exhaust gases of the gas engine 6 usually have a temperature of about 600 ° C.
  • the exhaust gases of the gas engine 6 are heated by the afterburner combustion chamber 7 by at least 200 ° C.
  • a pyrolysis gas, a pyrolysis coke and a pyrolysis oil is preferably produced from the lumpy fuel.
  • Pyrolysis here refers to the thermal decomposition of chemical compounds under oxygen deficiency.
  • the pyrolysis reactor 2 may in particular be free of an air supply. The ratio of these pyrolysis products usually depends on the nature of the lumpy fuel and the process parameters of the pyrolysis.
  • a pyrolysis gas outlet 25 of the pyrolysis reactor 2 is connected to an inlet 31 of an oxidation chamber 3 and a coke outlet 26 of the pyrolysis reactor 2 is connected to an inlet 41 of a reduction furnace 4.
  • a stepped gasification of the solid fuels is provided, whereby a separate optimization of the individual process steps can take place.
  • the pyrolysis gas from the pyrolysis reactor 2 is partially oxidized in an oxidation chamber 3, and that the product gas is obtained from a pyrolysis coke of the pyrolysis reactor 2 in the reduction furnace 4.
  • the oxidation chamber 3 may have an air inlet 32 and a steam inlet 33 through which air and water vapor can enter the oxidation chamber 3 and react there with the pyrolysis gas.
  • the oxidation chamber 3 may have a temperature of about 1050 ° C. Due to the partial oxidation of the pyrolysis gas in the oxidation chamber 3, an oxidation product of the partial oxidation can be obtained.
  • the oxidation chamber 3 has an oxidation product output 35, and that the oxidation product output 35 of the oxidation chamber 3 is connected to the inlet 41 of the reduction furnace 4. In this case, the oxidation product of the oxidation chamber 3 can be further processed in the reduction furnace 4.
  • the reduction furnace 4 may have an air inlet 42 and a steam inlet 43 through which air and water vapor can enter the reduction furnace 4 and react with the pyrolysis coke.
  • the product gas is recovered from the pyrolysis coke and the oxidation products.
  • an ash also falls, which can be eliminated from the reduction furnace 4 via an ash outlet 46.
  • the reduction furnace 4 has a reduction zone and an afterburner zone arranged below the reduction zone (viewed in the operating position), and that a gas collection space is arranged between the reduction zone and the post-combustion zone.
  • the reduction of the pyrolysis coke is carried out in the reduction zone, the pyrolysis coke here being present as a bed.
  • the post-combustion zone serves to post-combust the ash from the reduction zone and to reduce the carbon content in the ash to further increase the cold gas efficiency.
  • the gas collection chamber 4 serves to receive and pass on the product gas obtained in the reduction zone and in the post-combustion zone, whereby the reduction zone and the post-combustion zone can be separated in terms of process, since the product gas of the reduction zone is no longer guided through the post-combustion zone and vice versa.
  • the reduction zone and the post-combustion zone can be optimized independently of each other for the respective task.
  • the temperature, the residence time and the degree of turbulence of the gas stream can be adapted to the procedural requirements of reduction and post-combustion.
  • the reduction zone is surrounded at least in regions by an annular gas deflection chamber, and that the gas deflection chamber connects the gas collection chamber 4 with a gas outlet opening.
  • the product gas leaving the reduction zone is deflected, in particular upwards, whereby solid particles can settle out of the product gas stream.
  • the post-combustion zone can comprise a plurality of stacked ashtrays with a circulating and stripping device.
  • the ash can be placed on a large area for afterburning, whereby a constant circulation can take place, wherein the surface of the ashes available for the afterburning is always renewed.
  • the ash can be post-combusted in stages, wherein, for example, the oxygen content of the gas fed in the post-combustion zone can be adapted to the degree of burning of the ash.
  • a bottom of the reduction zone is formed by a reduction grid and that the reduction grid is operatively connected to a central displacement device.
  • the displacement device can be fastened in particular to the reduction grid.
  • the reduction grid in this case preferably forms an impenetrable for the reduction material bearing surface.
  • the displacer device is particularly preferably designed such that the solid reducing material is kept away from the center of the bottom of the reduction zone, since this region forms a dead zone for the transport of solids and for the gas-solid reactions, ie a reduction dead zone.
  • the displacement device has a first section widening from the reduction grid and a second section mounted on the first section, and that the second section is designed as a displacement cone.
  • a cross-section of the reduction zone is first narrowed by the second section in the direction in which the particulate material to be reduced passes through into the reduction zone, and then subsequently expanded again. In this way, a loose bed can be formed in the region of the reduction zone adjoining the first section.
  • the displacer device has stirring arms.
  • the stirring arms are arranged in a region of the largest diameter of the displacer device.
  • the area of the largest diameter of the displacer device may be the transition from the first section to the second section. In this case, the probability of the formation of a blocking or bridge formation can be effectively counteracted, since this is greatest in the area of the cross-sectional narrowing.
  • the displacer device has gas passage openings in the region adjacent to the reduction grid.
  • the reduction dead zone can be further reduced since the withdrawal of the product gas can take place via the displacer device arranged in the middle.
  • a product gas outlet 45 of the reduction furnace 4 is connected to an inlet 61 of the gas engine 6.
  • the product gas generated with the reduction furnace 4 is at least partially supplied to the gas engine 6 and utilized by this. This recovery can be in the sense of a combined heat and power in the provision of electricity and useful heat by the combustion of the product gas.
  • FIGS Fig. 1 to 3 can be provided in particular that between the product gas outlet 45 of the reduction furnace 4 and the input 61 of the gas engine 6, a gas treatment device 5 may be interposed.
  • the gas processing device 5 can be ensured that the operation of the gas engine 6 disturbing components of the product gas generated by the reduction furnace 4 are removed.
  • the product gas can be purified from the reduction furnace 4 and cooled.
  • the gas treatment device 5 has a cyclone 51, which cyclone 51 is a coarse dedusting of the product gas performs.
  • the gas treatment device 5 has a waste heat boiler 52, wherein the waste heat boiler 52 from the waste heat of the product gas useful heat and / or steam wins.
  • the product gas can be cooled down to approximately 100 ° C.
  • the gas conditioning device 5 has a dedusting device 53, wherein the dedusting device 53 may in particular comprise a fabric filter, with which a fine dedusting of the product gas is carried out.
  • the gas conditioning device 5 has a gas conditioning device 54.
  • the gas conditioning device 54 in this case water can be injected, wherein the product gas is dried by condensing and further cooled.
  • the product gas can be largely freed from ammonia and other pollutants in particular.
  • a bypass line 91 is guided to the input 71 of the afterburner combustion chamber 7.
  • the bypass line 91 may in this case open directly into the burner of the afterburning combustion chamber 7, wherein the bypass line 91 may be formed as a fuel gas supply for the burner of the afterburning combustion chamber 7.
  • the burner of the afterburning combustion chamber 7 can be operated with the product gas generated by the reduction furnace 4, which can be largely dispensed with further energy sources in addition to the pyrolysis reactor 2 supplied solid fuels.
  • the bypass line 91 is branched off after the gas treatment device 5, whereby the purified product gas is also supplied to the afterburner combustion chamber 7, where it is burned in the burner.
  • the product gas can be used as fuel gas for the burner of the afterburning combustion chamber 7.
  • the afterburning combustion chamber 7 optionally a Maintain process condition, which ensures the combustion of incompletely burned portions of the exhaust gas of the gas engine 6.
  • the afterburning combustion chamber 7 may have an air inlet 72 through which combustion air can pass into the afterburning combustion chamber 7.
  • the air inlet 72 can open directly in the burner of the afterburning combustion chamber 7.
  • the product gas or a foreign gas is burned in the afterburning combustion chamber 7.
  • the foreign gas may be another combustible gas which has a higher calorific value than the product gas.
  • the fuel gas may in particular contain natural gas or liquefied gas.
  • the afterburner combustion chamber 7 may have an additional foreign gas input, wherein optionally can be switched between a feed of the product gas, the foreign gas or a mixture of the two.
  • the foreign gas can be used in particular in a starting phase of the method, wherein in a regulating operation mainly product gas is used for the combustion in the afterburning combustion chamber 7.
  • the burner of the afterburning combustion chamber 7 is open to the afterburning combustion chamber 7.
  • the hot exhaust gases of the burner can mix with the exhaust gases from the gas engine 6 and leave them together through the exhaust gas outlet of the afterburner combustion chamber 7.
  • At least one heating gas outlet 27 of the pyrolysis reactor 2 may be connected to a first inlet 81 of a heat exchanger 8. With the heat exchanger 8, at least part of the waste heat remaining after the pyrolysis reactor 2 in the heating gas can be used.
  • the exhaust gas outlet 75 of the afterburner combustion chamber 7 can be connected directly to the first input 81 of the heat exchanger 8 via an exhaust gas bypass line 92.
  • the exhaust gas bypass line 92 Through the exhaust gas bypass line 92, the pyrolysis reactor the second supplied amount of heat to be controlled, with excess heat is passed over the exhaust gas bypass line 92 to the pyrolysis reactor 2. In this case, a particularly simple control can be ensured with a short reaction time of the amount of heat provided.
  • an exhaust gas purification device 69 can be interposed between the exhaust gas outlet 65 of the gas engine 6 and the inlet 71 of the afterburner combustion chamber 7.
  • the exhaust gas purification device 69 may be designed in particular for minimizing nitrogen oxides.
  • the pyrolysis reactor 2 is designed as a double-shell pyrolysis reactor 21 with an outer chamber 28.
  • the at least one heating gas inlet 23 of the pyrolysis reactor 2 may be connected to the outer chamber 28 of the double-shell pyrolysis reactor 21.
  • a particularly high degree of efficiency can be achieved if the outer chamber 28, seen in the longitudinal direction of the double-shell pyrolysis reactor 21, has at least two heating chambers 29 arranged one behind the other and acted upon in parallel.
  • Such a pyrolysis reactor is in Fig. 2 and Fig. 3 shown.
  • the flow of the heating gas can be shared and for different zones of the pyrolysis 24 different temperatures can be achieved.
  • the heat transfer in the pyrolysis reactor can be increased while reducing the Schugasstromdruck confusees.

Description

Die Erfindung betrifft eine Anlage zum Vergasen von stückigen Brennstoffen gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a system for gasifying lumpy fuels according to the preamble of claim 1.

Bei bekannten Anlagen zum Vergasen von stückigen Brennstoffen mit einem Pyrolysereaktor und einem Gasmotor können auf einfache Weise Nutzwärme und Nutzenergie im Sinne einer Kraft-Wärme-Kopplung bereitgestellt werden.In known systems for gasifying particulate fuels with a pyrolysis reactor and a gas engine useful heat and useful energy in the sense of a cogeneration can be provided in a simple manner.

Aus der WO 2011/110138 A1 ist ein Pyrolysereaktor bekannt, wobei die Pyrolyseprodukte einem Vergaser zugeführt werden. Das Produktgas des Vergasers wird aufbereitet und einem Zweitaktmotor zugeführt. Die Abgase des Zweitaktmotor werden zum Erhitzen einer ersten, kühleren Stufe des Pyrolysereaktors verwendet. Weiters wird ein Teil des Produktgases des Vergasers zum direkten Erwärmen einer zweiten, heißeren Stufe des Pyrolysereaktors verwendet.From the WO 2011/110138 A1 a pyrolysis reactor is known, wherein the pyrolysis products are fed to a gasifier. The product gas of the carburetor is treated and fed to a two-stroke engine. The exhaust gases of the two-stroke engine are used to heat a first, cooler stage of the pyrolysis reactor. Further, part of the product gas of the gasifier is used to directly heat a second, hotter stage of the pyrolysis reactor.

Aus der DE 43 42 165 C1 ist eine Anlage zum Verwerten von Brennstoffen bekannt, wobei die Brennstoffe getrocknet, geschwelt, vergast und anschließend als Gas einer Gasturbine zugeführt werden.From the DE 43 42 165 C1 is known a plant for the utilization of fuels, wherein the fuels are dried, smoldered, gasified and then supplied as gas to a gas turbine.

Aus der WO 2000/71934 A1 ist ein Verfahren zur thermischen Entsorgung von Müll in fossil gefeuerten Kraftwerksanlagen bekannt.From the WO 2000/71934 A1 is a method for the thermal disposal of waste in fossil-fired power plants known.

Aufgabe der Erfindung ist es eine Anlage zum Vergasen von stückigen Brennstoffen der eingangs genannten Art anzugeben, mit welcher ein hoher Wirkungsgrad erreichbar ist.The object of the invention is to provide a system for gasifying lumpy fuels of the type mentioned, with which a high efficiency can be achieved.

Erfindungsgemäß wird dies durch die Merkmale des Patentanspruches 1 erreicht.This is achieved by the features of claim 1 according to the invention.

Dadurch ergibt sich der Vorteil, dass ein hoher Wirkungsgrad erreicht werden kann, da durch die externe Wärmezufuhr mit hoher Temperatur während der Pyrolyse diese effizient erfolgen kann und eine Teilverbrennung des Brennstoffes minimiert werden kann. Vergasungsanlagen weisen weiters oftmals einen hohen Kohlenmonoxidanteil im Produktgas auf. Durch die Spülverluste des Gasmotors kann es zu einer erhöhten Kohlenmonoxidkonzentration im Abgas des Gasmotors kommen. Durch die Nachverbrennungsbrennkammer kann eine weitgehend vollständige Verbrennung des Abgasschadstoffes Kohlenmonoxids sichergestellt werden.This results in the advantage that a high degree of efficiency can be achieved because the external heat input at high temperature during the pyrolysis can be done efficiently and a partial combustion of the fuel can be minimized. Gasification plants also often have a high carbon monoxide content in the product gas. The flushing losses of the gas engine can lead to an increased carbon monoxide concentration in the exhaust gas of the gas engine. By the afterburning combustion chamber, a largely complete combustion of the exhaust gas pollutant carbon monoxide can be ensured become.

Weiters betrifft die Erfindung ein Verfahren zum Vergasen von stückigen Brennstoffen gemäß dem Patentanspruch 11.Furthermore, the invention relates to a method for gasifying particulate fuels according to claim 11.

Aufgabe der Erfindung ist es weiters ein Verfahren zum Vergasen von stückigen Brennstoffen der eingangs genannten Art anzugeben, mit welcher ein hoher Wirkungsgrad erreichbar ist.The object of the invention is further to provide a method for gasifying particulate fuels of the type mentioned, with which a high efficiency can be achieved.

Erfindungsgemäß wird dies durch die Merkmale des Patentanspruches 11 erreicht.This is achieved by the features of claim 11 according to the invention.

Dadurch ergeben sich die vorstehend genannten Vorteile.This results in the advantages mentioned above.

Die Unteransprüche betreffen weitere vorteilhafte Ausgestaltungen der Erfindung.The subclaims relate to further advantageous embodiments of the invention.

Ausdrücklich wird hiermit auf den Wortlaut der Patentansprüche Bezug genommen, wodurch die Ansprüche an dieser Stelle durch Bezugnahme in die Beschreibung eingefügt sind und als wörtlich wiedergegeben gelten.It is hereby expressly referred to the wording of the claims, whereby the claims at this point by reference into the description are inserted and considered to be reproduced verbatim.

Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen lediglich bevorzugte Ausführungsformen beispielhaft dargestellt sind, näher beschrieben. Dabei zeigen:

  • Fig. 1 bis 3 zeigen schematische Darstellungen dreier bevorzugter Ausführungsformen einer Anlage zum Vergasen von stückigen Brennstoffen.
The invention will be described in more detail with reference to the accompanying drawings, in which only preferred embodiments are shown by way of example. Showing:
  • Fig. 1 to 3 show schematic representations of three preferred embodiments of a plant for gasifying lumpy fuels.

Die Fig. 1 bis 3 zeigen unterschiedliche Ausführungsformen einer Anlage 1 zum Vergasen von stückigen Brennstoffen mit einem Pyrolysereaktor 2 und einem Gasmotor 6. Die stückigen Brennstoffe können insbesondere biogene Brennstoffe, insbesondere Holz oder halmgutartige Stoffe, sein. Der Pyrolysereaktor 2 dient zur Pyrolyse des stückigen Brennstoffes.The Fig. 1 to 3 show different embodiments of a plant 1 for gasification of particulate fuels with a pyrolysis reactor 2 and a gas engine 6. The particulate fuels may in particular be biogenic fuels, in particular wood or halmgutartige substances. The pyrolysis reactor 2 is used for pyrolysis of the lumpy fuel.

In den schematischen Darstellungen in den Fig. 1 bis 3 wird der Fluss des stückigen Brennstoffes sowie dessen Erzeugnisse mittels durchgezogenen Pfeilen dargestellt. Ein strichlinierter Pfeil stellt in den meisten Fällen eine Luftzufuhr dar. Eine Abfuhr von Nutzwärme wird mit einem einfach durchgestrichenen Pfeil dargestellt. Eine Abfuhr oder Zufuhr von Dampf wird mit einem hakenförmig durchgestrichenen Pfeil dargestellt. Ein doppelt durchgestrichener Pfeil stellt eine Abgabe von elektrischer Energie dar.In the schematic representations in the Fig. 1 to 3 the flow of chunky fuel and its products is represented by solid arrows. A dashed arrow represents an air supply in most cases. A discharge of useful heat is represented by a single-line arrow. A discharge or supply of steam is represented by a hook-shaped arrow. A double-crossed arrow represents a release of electrical energy.

Der Pyrolysereaktor 2 kann besonders bevorzugt als Doppelmantel-Pyrolysereaktor 21 ausgebildet sein, welcher eine Pyrolysekammer 24 und eine Außenkammer 28 aufweist. Die Pyrolysekammer 24 kann insbesondere rohrförmig sein und an einem Ende eine Brennstoffzufuhr 22 aufweisen, welche zur Bestückung der Pyrolysekammer 24 mit dem stückigen Brennstoff vorgesehen ist. Weiters kann vorgesehen sein, dass in der Pyrolysekammer 24 eine Förderschnecke zum Weitertransport des stückigen Brenngutes angeordnet ist. Die Außenkammer 28 ist vorzugsweise zumindest teilweise um die Pyrolysekammer 24 angeordnet. Die Außenkammer 28 dient zur Heizung der Pyrolysekammer 24, insbesondere durch die Aufnahme eines Heizgases. Hierbei kann die Erhitzung des stückigen Brenngutes in der Pyrolysekammer 24 indirekt erfolgen.The pyrolysis reactor 2 may be particularly preferably designed as a double-shell pyrolysis reactor 21, which has a pyrolysis chamber 24 and an outer chamber 28. The pyrolysis chamber 24 may in particular be tubular and have at one end a fuel supply 22, which is provided for equipping the pyrolysis chamber 24 with the lumpy fuel. Furthermore, it can be provided that in the pyrolysis 24, a screw conveyor for further transport of the lumpy fuel is arranged. The outer chamber 28 is preferably arranged at least partially around the pyrolysis chamber 24. The outer chamber 28 serves to heat the pyrolysis chamber 24, in particular by receiving a hot gas. Here, the heating of the lumpy fuel in the pyrolysis 24 can be done indirectly.

Vorgesehen ist, dass ein Abgas-Ausgang 65 des Gasmotors 6 mit einem Eingang 71 einer Nachverbrennungsbrennkammer 7 verbunden ist. In der Nachverbrennungsbrennkammer 7 wird die Temperatur des Abgases des Gasmotors 6 erhöht. Dabei werden auch unvollständig verbrannte Anteile des Abgases vollständig verbrannt. Die Nachverbrennungsbrennkammer 7 umfasst einen Brenner, besonders bevorzugt einen Gasbrenner, wobei durch den Brenner die Wärmezufuhr in die Nachverbrennungsbrennkammer 7 erfolgt. Der Brenner kann je nach Art des verwendeten Brennstoffes in der Nachverbrennungsbrennkammer 7 als Gasbrenner, Flüssigkeitsbrenner oder Feststoffbrenner ausgebildet sein. Ein Abgas-Ausgang 75 der Nachverbrennungsbrennkammer 7 ist mit wenigstens einem Heizgas-Eingang 23 des Pyrolysereaktors 2 verbunden. Dabei wird die Wärme des Abgases der Nachverbrennungsbrennkammer 7 für die Pyrolyse in dem Pyrolysereaktor 2 verwendet. Hierbei kann durch die erhöhte Temperatur des Heizgases aus der Nachverbrennungsbrennkammer 7 im Vergleich zu der Temperatur des Abgases aus dem Gasmotor 6 der Pyrolyseprozess verbessert werden. Weiters kann dadurch der Durchsatz des stückigen Brenngutes durch den Pyrolysereaktor 2 erhöht werden. Weiters ist ein Verfahren zum Vergasen von stückigen Brennstoffen vorgesehen, wobei die stückigen Brennstoffe in dem Pyrolysereaktor 2 einer Pyrolyse unterzogen und anschließend zu einem Produktgas vergast wird, wobei das von dem Vergasen gebildete Produktgas dem Gasmotor 6 zugeführt wird, wobei Abgase des Gasmotors 6 in die Nachverbrennungsbrennkammer 7 geführt und dort mittels eines Brenners erhitzt werden, und wobei Abgase der Nachverbrennungsbrennkammer 7 in den Pyrolysereaktor 2 geführt werden. Das Produktgas kann hierbei ein brennbares Gas sein, dessen wesentlichen brennbaren Bestandteile Kohlenmonoxid und Wasserstoff sind. Der Kohlenmonoxidanteil im Produktgas kann hierbei insbesondere zwischen 15% und 40% betragen.It is provided that an exhaust gas outlet 65 of the gas engine 6 is connected to an input 71 of an afterburner combustion chamber 7. In the afterburning combustion chamber 7, the temperature of the exhaust gas of the gas engine 6 is increased. Incomplete burned portions of the exhaust gas are completely burned. The afterburning combustion chamber 7 comprises a burner, particularly preferably a gas burner, the heat being supplied into the afterburning combustion chamber 7 through the burner. Depending on the type of fuel used, the burner may be designed in the afterburner combustion chamber 7 as a gas burner, liquid burner or solid fuel burner. An exhaust gas outlet 75 of the afterburner combustion chamber 7 is connected to at least one heating gas inlet 23 of the pyrolysis reactor 2. In this case, the heat of the exhaust gas of the post-combustion combustion chamber 7 is used for the pyrolysis in the pyrolysis reactor 2. In this case, the pyrolysis process can be improved by the increased temperature of the heating gas from the afterburning combustion chamber 7 compared to the temperature of the exhaust gas from the gas engine 6. Furthermore, thereby the throughput of the lumpy fuel through the pyrolysis reactor 2 can be increased. Furthermore, a method for gasifying particulate fuels is provided, wherein the particulate fuels in the pyrolysis reactor 2 subjected to pyrolysis and then gasified to a product gas, wherein the product gas formed by the gasification gas is supplied to the gas engine 6, wherein exhaust gases of the gas engine 6 in the Afterburning combustion chamber 7 are guided and heated there by means of a burner, and wherein exhaust gases of the post-combustion chamber 7 are fed into the pyrolysis reactor 2. The product gas may be a combustible gas, the essential combustible constituents of which are carbon monoxide and hydrogen. The carbon monoxide content in the product gas may be in particular between 15% and 40%.

Der Gasmotor 6 kann insbesondere zur Erzeugung von elektrischem Strom und Nutzwärme sein. Hierbei kann der Gasmotor 6 insbesondere einen Lufteingang 62 aufweisen, über welchen Luft oder ein anderes sauerstoffhaltiges Gas in dem Gasmotor 6 zusammen mit dem Produktgas verbrennen kann. Zum Zwecke der Knappheit wird jedes sauerstoffhältige Gas in Folge als Luft bezeichnet.The gas engine 6 may be in particular for the production of electric power and useful heat. In this case, the gas engine 6 can in particular have an air inlet 62, via which air or another oxygen-containing gas in the gas engine 6 can burn together with the product gas. For the sake of brevity, each oxygen-containing gas is referred to as air in sequence.

Hierbei kann insbesondere vorgesehen sein, dass die Abgase des Gasmotors 6 in der Nachverbrennungsbrennkammer 7 auf eine Temperatur größer als 800°C erhitzt werden. Hierbei kann das Heizgas für den Pyrolysereaktor 2 eine Anfangstemperatur aufweisen, welche größer als 800°C ist, insbesondere zwischen 800°C und 950°C ist. Hierbei haben die Abgase des Gasmotors 6 üblicherweise eine Temperatur von ungefähr 600°C. Weiters kann vorgesehen sein, dass die Abgase des Gasmotors 6 durch die Nachverbrennungsbrennkammer 7 um mindestens 200°C erhitzt werden.In this case, it can be provided in particular that the exhaust gases of the gas engine 6 are heated in the afterburner combustion chamber 7 to a temperature greater than 800 ° C. Here, the heating gas for the pyrolysis reactor 2 have an initial temperature which is greater than 800 ° C, in particular between 800 ° C and 950 ° C. Here, the exhaust gases of the gas engine 6 usually have a temperature of about 600 ° C. Furthermore, it can be provided that the exhaust gases of the gas engine 6 are heated by the afterburner combustion chamber 7 by at least 200 ° C.

Bei der Pyrolyse des stückigen Brennstoffes wird vorzugsweise aus dem stückigen Brennstoff ein Pyrolysegas, ein Pyrolysekoks und ein Pyrolyseöl erzeugt. Die Pyrolyse bezeichnet hierbei die thermische Spaltung chemischer Verbindungen unter Sauerstoffmangel. Der Pyrolysereaktor 2 kann insbesondere frei von einer Luftzufuhr sein. Das Verhältnis dieser Pyrolyseerzeugnisse hängt hierbei in der Regel von der Beschaffenheit des stückigen Brennstoffes und den Prozessparametern der Pyrolyse ab.In the pyrolysis of the lumpy fuel, a pyrolysis gas, a pyrolysis coke and a pyrolysis oil is preferably produced from the lumpy fuel. Pyrolysis here refers to the thermal decomposition of chemical compounds under oxygen deficiency. The pyrolysis reactor 2 may in particular be free of an air supply. The ratio of these pyrolysis products usually depends on the nature of the lumpy fuel and the process parameters of the pyrolysis.

Insbesondere kann vorgesehen sein, dass ein Pyrolysegas-Ausgang 25 des Pyrolysereaktors 2 mit einem Eingang 31 einer Oxidationskammer 3 verbunden ist und ein Koks-Ausgang 26 des Pyrolysereaktors 2 ist mit einem Eingang 41 eines Reduktionsofens 4 verbunden. Dabei wird eine gestufte Vergasung der festen Brennstoffe bereitgestellt, wobei eine getrennte Optimierung der einzelnen Verfahrensschritte erfolgen kann.In particular, it may be provided that a pyrolysis gas outlet 25 of the pyrolysis reactor 2 is connected to an inlet 31 of an oxidation chamber 3 and a coke outlet 26 of the pyrolysis reactor 2 is connected to an inlet 41 of a reduction furnace 4. In this case, a stepped gasification of the solid fuels is provided, whereby a separate optimization of the individual process steps can take place.

Hierbei kann vorgesehen sein, dass das Pyrolysegas aus dem Pyrolysereaktor 2 in einer Oxidationskammer 3 partiell oxidiert wird, und dass aus einem Pyrolysekoks des Pyrolysereaktors 2 in dem Reduktionsofen 4 das Produktgas gewonnen wird.In this case, it can be provided that the pyrolysis gas from the pyrolysis reactor 2 is partially oxidized in an oxidation chamber 3, and that the product gas is obtained from a pyrolysis coke of the pyrolysis reactor 2 in the reduction furnace 4.

Die Oxidationskammer 3 kann einen Lufteingang 32 und einen Dampfeingang 33 aufweisen, durch welche Luft und Wasserdampf in die Oxidationskammer 3 gelangen und dort mit dem Pyrolysegas reagieren können. Die Oxidationskammer 3 kann insbesondere eine Temperatur von,ungefähr 1050°C aufweisen. Durch die partielle Oxidation des Pyrolysegas in der Oxidationskammer 3 kann ein Oxidationserzeugnis der partiellen Oxidation gewonnen werden.The oxidation chamber 3 may have an air inlet 32 and a steam inlet 33 through which air and water vapor can enter the oxidation chamber 3 and react there with the pyrolysis gas. In particular, the oxidation chamber 3 may have a temperature of about 1050 ° C. Due to the partial oxidation of the pyrolysis gas in the oxidation chamber 3, an oxidation product of the partial oxidation can be obtained.

Weiters kann vorgesehen sein, dass die Oxidationskammer 3 einen Oxidationserzeugnis-Ausgang 35 aufweist, und dass der Oxidationserzeugnis-Ausgang 35 der Oxidationskammer 3 mit dem Eingang 41 des Reduktionsofens 4 verbunden ist. Hierbei kann das Oxidationserzeugnis der Oxidationskammer 3 in dem Reduktionsofen 4 weiterverarbeitet werden.Furthermore, it can be provided that the oxidation chamber 3 has an oxidation product output 35, and that the oxidation product output 35 of the oxidation chamber 3 is connected to the inlet 41 of the reduction furnace 4. In this case, the oxidation product of the oxidation chamber 3 can be further processed in the reduction furnace 4.

Der Reduktionsofen 4 kann einen Lufteingang 42 und einen Dampfeingang 43 aufweisen, durch welche Luft und Wasserdampf in den Reduktionsofen 4 gelangen und mit dem Pyrolysekoks reagieren können. Bei der Reduktion in dem Reduktionsofen 4 wird aus dem Pyrolysekoks und dem Oxidationserzeugnisse das Produktgas gewonnen. Bei der Reduktion fällt weiters eine Asche an, welche über einen Asche-Ausgang 46 aus dem Reduktionsofen 4 ausgeschieden werden kann.The reduction furnace 4 may have an air inlet 42 and a steam inlet 43 through which air and water vapor can enter the reduction furnace 4 and react with the pyrolysis coke. In the reduction in the reduction furnace 4, the product gas is recovered from the pyrolysis coke and the oxidation products. During the reduction, an ash also falls, which can be eliminated from the reduction furnace 4 via an ash outlet 46.

Besonders bevorzugt kann vorgesehen sein, dass der Reduktionsofen 4 einer Reduktionszone und eine - in Betriebslage gesehen - unterhalb der Reduktionszone angeordnete Nachverbrennungszone aufweist, und dass zwischen der Reduktionszone und der Nachverbrennungszone ein Gassammelraum angeordnet ist. Die Reduktion des Pyrolysekoks wird in der Reduktionszone durchgeführt, wobei das Pyrolysekoks hierbei als Schüttung vorliegt. Die Nachverbrennungszone dient zur Nachverbrennung der Asche aus der Reduktionszone und zur Reduktion des Kohlenstoffanteils in der Asche, um die Kaltgaseffizienz weiter zu erhöhen. Der Gassammelraum 4 dient zur Aufnahme und Weiterleitung des in der Reduktionszone und in der Nachverbrennungszone anfallenden Produktgases, wodurch die Reduktionszone und die Nachverbrennungszone prozesstechnisch getrennt werden können, da das Produktgas der Reduktionszone nicht mehr durch die Nachverbrennungszone geführt wird und umgekehrt. Durch diese prozesstechnische Trennung können die Reduktionszone und die Nachverbrennungszone unabhängig voneinander für die jeweilige Aufgabe optimiert werden. Hierbei können beispielsweise die Temperatur, die Verweilzeit und der Grad der Turbulenz des Gasstromes an die verfahrenstechnischen Erfordernisse der Reduktion und der Nachverbrennung angepasst werden.Particularly preferably, it may be provided that the reduction furnace 4 has a reduction zone and an afterburner zone arranged below the reduction zone (viewed in the operating position), and that a gas collection space is arranged between the reduction zone and the post-combustion zone. The reduction of the pyrolysis coke is carried out in the reduction zone, the pyrolysis coke here being present as a bed. The post-combustion zone serves to post-combust the ash from the reduction zone and to reduce the carbon content in the ash to further increase the cold gas efficiency. The gas collection chamber 4 serves to receive and pass on the product gas obtained in the reduction zone and in the post-combustion zone, whereby the reduction zone and the post-combustion zone can be separated in terms of process, since the product gas of the reduction zone is no longer guided through the post-combustion zone and vice versa. By means of this process-technological separation, the reduction zone and the post-combustion zone can be optimized independently of each other for the respective task. In this case, for example, the temperature, the residence time and the degree of turbulence of the gas stream can be adapted to the procedural requirements of reduction and post-combustion.

Bevorzugt kann vorgesehen sein, dass die Reduktionszone zumindest bereichsweise von einer ringförmigen Gasumlenkkammer umgeben ist, und dass die Gasumlenkkammer den Gassammelraum 4 mit einer Gasaustrittsöffnung verbindet.It can preferably be provided that the reduction zone is surrounded at least in regions by an annular gas deflection chamber, and that the gas deflection chamber connects the gas collection chamber 4 with a gas outlet opening.

In der Gasumlenkkammer wird das aus der Reduktionszone austretende Produktgas, insbesondere nach oben hin, umgelenkt, wodurch feste Teilchen sich aus dem Produktgasstrom absetzen können.In the gas deflection chamber, the product gas leaving the reduction zone is deflected, in particular upwards, whereby solid particles can settle out of the product gas stream.

Besonders bevorzugt kann vorgesehen sein, dass Nachverbrennungszone mehrere übereinander angeordnete Ascherost-Teller mit einer Umwälz- und Abstreifeinrichtung umfasst. Hierdurch kann die Asche auf einer großen Fläche zur Nachverbrennung aufgelegt werden, wobei eine ständige Umwälzung erfolgen kann, wobei die zur Nachverbrennung zur Verfügung stehende Oberfläche der Asche stets erneuert wird. Weiters kann hierbei die Asche stufenweise nachverbrannt werden, wobei beispielsweise der Sauerstoffgehalt des zugeführten Gases in der Nachverbrennungszone dem Abbrandgrad der Asche angepasst werden kann.Particularly preferably, provision can be made for the post-combustion zone to comprise a plurality of stacked ashtrays with a circulating and stripping device. As a result, the ash can be placed on a large area for afterburning, whereby a constant circulation can take place, wherein the surface of the ashes available for the afterburning is always renewed. Furthermore, in this case the ash can be post-combusted in stages, wherein, for example, the oxygen content of the gas fed in the post-combustion zone can be adapted to the degree of burning of the ash.

Besonders bevorzugt kann vorgesehen sein, dass ein Boden der Reduktionszone von einem Reduktionsrost gebildet ist und dass der Reduktionsrost mit einer zentralen Verdrängervorrichtung wirkverbunden ist. Hierbei kann die Verdrängervorrichtung insbesondere am Reduktionsrost befestigt sein. Der Reduktionsrost bildet hierbei vorzugsweise einen für das Reduktionsgut undurchdringbare Auflagefläche. Die Verdrängervorrichtung ist besonders bevorzugt derart ausgebildet, dass das feste Reduktionsgut von der Mitte des Bodens der Reduktionszone ferngehalten wird, da dieser Bereich eine Totzone für den Feststofftransport und für die Gas-Feststoff-Reaktionen, also eine Reduktionstotzone, bildet.Particularly preferably, it can be provided that a bottom of the reduction zone is formed by a reduction grid and that the reduction grid is operatively connected to a central displacement device. In this case, the displacement device can be fastened in particular to the reduction grid. The reduction grid in this case preferably forms an impenetrable for the reduction material bearing surface. The displacer device is particularly preferably designed such that the solid reducing material is kept away from the center of the bottom of the reduction zone, since this region forms a dead zone for the transport of solids and for the gas-solid reactions, ie a reduction dead zone.

Besonders bevorzugt kann vorgesehen sein, dass die Verdrängervorrichtung einen sich von dem Reduktionsrost ausgehend verbreiternden ersten Abschnitt und einen auf den ersten Abschnitt aufgesetzten zweiten Abschnitt aufweist, und dass der zweite Abschnitt als Verdrängerkegel ausgebildet ist. Hierbei wird durch den zweiten Abschnitt in der Richtung, in welcher das stückige Reduktionsgut in die Reduktionszone durchwandert, ein Querschnitt der Reduktionszone zunächst verengt, um sich dann anschließend wieder zu erweitern. Hierdurch kann eine lockere Schüttung im an den ersten Abschnitt angrenzenden Bereich der Reduktionszone ausgebildet werden.Particularly preferably, it can be provided that the displacement device has a first section widening from the reduction grid and a second section mounted on the first section, and that the second section is designed as a displacement cone. In this case, a cross-section of the reduction zone is first narrowed by the second section in the direction in which the particulate material to be reduced passes through into the reduction zone, and then subsequently expanded again. In this way, a loose bed can be formed in the region of the reduction zone adjoining the first section.

Weiters kann vorgesehen sein, dass die Verdrängervorrichtung Rührarme aufweist.Furthermore, it can be provided that the displacer device has stirring arms.

Durch die Rührarme kann eine stetige Bewegung sowie eine mechanische Zerkleinerung des Reduktionsgutes erreicht werden.By the stirring arms, a steady movement and a mechanical crushing of the reduction material can be achieved.

Besonders bevorzugt kann vorgesehen sein, dass die Rührarme in einem Bereich des größten Durchmessers der Verdrängervorrichtung angeordnet sind. Der Bereich des größten Durchmessers der Verdrängervorrichtung kann insbesondere der Übergang von dem ersten Abschnitt zu dem zweiten Abschnitt sein. Hierbei kann die Wahrscheinlichkeit der Bildung einer Verblockung oder einer Brückenbildung effektiv entgegengewirkt werden, da diese im Bereich der Querschnittseinengung am größten ist.Particularly preferably, it can be provided that the stirring arms are arranged in a region of the largest diameter of the displacer device. In particular, the area of the largest diameter of the displacer device may be the transition from the first section to the second section. In this case, the probability of the formation of a blocking or bridge formation can be effectively counteracted, since this is greatest in the area of the cross-sectional narrowing.

Weiters kann vorzugsweise vorgesehen sein, dass die Verdrängervorrichtung im Bereich angrenzend an den Reduktionsrost Gasdurchtrittsöffnungen aufweist. Hierdurch kann die Reduktionstotzone weiter reduziert werden, da der Abzug des Produktgases über die in der Mitte angeordnete Verdrängervorrichtung erfolgen kann.Furthermore, it can preferably be provided that the displacer device has gas passage openings in the region adjacent to the reduction grid. As a result, the reduction dead zone can be further reduced since the withdrawal of the product gas can take place via the displacer device arranged in the middle.

Besonders bevorzugt ist vorgesehen, dass ein Produktgas-Ausgang 45 des Reduktionsofens 4 mit einem Eingang 61 des Gasmotors 6 verbunden ist. Das mit dem Reduktionsofen 4 erzeugte Produktgas wird zumindest teilweise dem Gasmotor 6 zugeführt und von diesem verwertet. Diese Verwertung kann im Sinne einer Kraft-Wärme-Kopplung in der Bereitstellung von Strom und Nutzwärme durch die Verbrennung des Produktgases liegen.Particularly preferably, it is provided that a product gas outlet 45 of the reduction furnace 4 is connected to an inlet 61 of the gas engine 6. The product gas generated with the reduction furnace 4 is at least partially supplied to the gas engine 6 and utilized by this. This recovery can be in the sense of a combined heat and power in the provision of electricity and useful heat by the combustion of the product gas.

Wie in den bevorzugten Ausführungsformen in den Fig. 1 bis 3 gezeigt kann insbesondere vorgesehen sein, dass zwischen dem Produktgas-Ausgang 45 des Reduktionsofens 4 und dem Eingang 61 des Gasmotors 6 eine Gasaufbereitungseinrichtung 5 zwischengeschaltet sein kann. Durch die Gasaufbereitungseinrichtung 5 kann sichergestellt werden, dass den Betrieb des Gasmotors 6 störende Bestandteile des von dem Reduktionsofen 4 erzeugten Produktgases entfernt werden. Hierbei kann das Produktgas aus dem Reduktionsofen 4 gereinigt und abgekühlt werden.As in the preferred embodiments in FIGS Fig. 1 to 3 can be provided in particular that between the product gas outlet 45 of the reduction furnace 4 and the input 61 of the gas engine 6, a gas treatment device 5 may be interposed. By the gas processing device 5 can be ensured that the operation of the gas engine 6 disturbing components of the product gas generated by the reduction furnace 4 are removed. Here, the product gas can be purified from the reduction furnace 4 and cooled.

Bevorzugt kann vorgesehen sein, dass die Gasaufbereitungseinrichtung 5 einen Zyklon 51 aufweist, welcher Zyklon 51 eine Grobentstaubung des Produktgases durchführt.It can preferably be provided that the gas treatment device 5 has a cyclone 51, which cyclone 51 is a coarse dedusting of the product gas performs.

Weiters kann vorgesehen sein, dass die Gasaufbereitungseinrichtung 5 einen Abhitzekessel 52 aufweist, wobei der Abhitzekessel 52 aus der Abwärme des Produktgases Nutzwärme und/oder Dampf gewinnt. Das Produktgas kann hierbei auf ungefähr 100°C herabgekühlt werden.Furthermore, it can be provided that the gas treatment device 5 has a waste heat boiler 52, wherein the waste heat boiler 52 from the waste heat of the product gas useful heat and / or steam wins. The product gas can be cooled down to approximately 100 ° C.

Weiters kann vorgesehen sein, dass die Gasaufbereitungseinrichtung 5 eine Entstaubungsvorrichtung 53 aufweist, wobei die Entstaubungsvorrichtung 53 insbesondere einen Gewebefilter aufweisen kann, mit welchem eine Feinentstaubung des Produktgases durchgeführt wird.Furthermore, it may be provided that the gas conditioning device 5 has a dedusting device 53, wherein the dedusting device 53 may in particular comprise a fabric filter, with which a fine dedusting of the product gas is carried out.

Bevorzugt kann vorgesehen sein, dass die Gasaufbereitungseinrichtung 5 eine Gaskonditionierungseinrichtung 54 aufweist. In der Gaskonditionierungseinrichtung 54 kann hierbei Wasser eingespritzt werden, wobei das Produktgas mittels Kondensieren getrocknet und weiters abgekühlt wird. Hierbei kann das Produktgas insbesondere von Ammoniak und anderen Schadstoffen weitgehend befreit werden. Besonders bevorzugt kann vorgesehen sein, dass zwischen dem Produktgas-Ausgang 45 des Reduktionsofens 4 und dem Eingang 61 des Gasmotors 6 eine Bypassleitung 91 zu dem Eingang 71 der Nachverbrennungsbrennkammer 7 geführt ist. Die Bypassleitung 91 kann hierbei direkt in dem Brenner der Nachverbrennungsbrennkammer 7 münden, wobei die Bypassleitung 91 als Brenngasversorgung für den Brenner der Nachverbrennungsbrennkammer 7 ausgebildet sein kann. Der Brenner der Nachverbrennungsbrennkammer 7 kann mit dem von dem Reduktionsofen 4 erzeugten Produktgas betrieben werden, wodurch auf weitere Energiequellen neben den dem Pyrolysereaktor 2 zugeführten festen Brennstoffen weitgehend verzichtet werden kann. Vorzugsweise wird die Bypassleitung 91 nach der Gasaufbereitungseinrichtung 5 abgezweigt, wobei auch der Nachverbrennungsbrennkammer 7 das gereinigte Produktgas zugeführt wird, und dort in dem Brenner verbrannt wird.It can preferably be provided that the gas conditioning device 5 has a gas conditioning device 54. In the gas conditioning device 54 in this case water can be injected, wherein the product gas is dried by condensing and further cooled. In this case, the product gas can be largely freed from ammonia and other pollutants in particular. Particularly preferably, it can be provided that between the product gas outlet 45 of the reduction furnace 4 and the inlet 61 of the gas engine 6, a bypass line 91 is guided to the input 71 of the afterburner combustion chamber 7. The bypass line 91 may in this case open directly into the burner of the afterburning combustion chamber 7, wherein the bypass line 91 may be formed as a fuel gas supply for the burner of the afterburning combustion chamber 7. The burner of the afterburning combustion chamber 7 can be operated with the product gas generated by the reduction furnace 4, which can be largely dispensed with further energy sources in addition to the pyrolysis reactor 2 supplied solid fuels. Preferably, the bypass line 91 is branched off after the gas treatment device 5, whereby the purified product gas is also supplied to the afterburner combustion chamber 7, where it is burned in the burner.

Hierbei kann insbesondere das Produktgas als Brenngas für den Brenner der Nachverbrennungsbrennkammer 7 verwendet werden.In this case, in particular, the product gas can be used as fuel gas for the burner of the afterburning combustion chamber 7.

Dabei kann in der Nachverbrennungsbrennkammer 7 gegebenenfalls ein Verfahrenszustand aufrecht erhalten werden, der die Verbrennung von unvollständig verbrannten Anteilen des Abgases des Gasmotors 6 sicherstellt.In this case, in the afterburning combustion chamber 7 optionally a Maintain process condition, which ensures the combustion of incompletely burned portions of the exhaust gas of the gas engine 6.

Die Nachverbrennungsbrennkammer 7 kann einen Lufteingang 72 aufweisen, durch welchen Verbrennungsluft in die Nachverbrennungsbrennkammer 7 gelangen kann. Der Lufteingang 72 kann insbesondere direkt im Brenner der Nachverbrennungsbrennkammer 7 münden.The afterburning combustion chamber 7 may have an air inlet 72 through which combustion air can pass into the afterburning combustion chamber 7. In particular, the air inlet 72 can open directly in the burner of the afterburning combustion chamber 7.

Weiters kann vorgesehen sein, dass in der Nachverbrennungsbrennkammer 7 wahlweise das Produktgas oder ein Fremdgas verbrannt wird. Hierbei kann insbesondere im Brenner eine direkte Verbrennung von Luft mit Produktgas oder Fremdgas erfolgen. Das Fremdgas kann ein weiteres brennbares Gas sein, welches einen höheren Brennwert aufweist als das Produktgas. Das Brenngas kann insbesondere Erdgas oder Flüssiggas enthalten. Hierbei kann die Nachverbrennungsbrennkammer 7 einen zusätzlichen Fremdgas-Eingang aufweisen, wobei wahlweise zwischen einer Beschickung mit dem Produktgas, dem Fremdgas oder einer Mischung der beiden umgeschaltet werden kann. Das Fremdgas kann hierbei insbesondere in einer Startphase des Verfahrens eingesetzt werden, wobei in einem Regelbetrieb hauptsächlich Produktgas für die Verbrennung in der Nachverbrennungsbrennkammer 7 verwendet wird.Furthermore, it can be provided that optionally the product gas or a foreign gas is burned in the afterburning combustion chamber 7. In this case, in particular in the burner, a direct combustion of air with product gas or foreign gas can take place. The foreign gas may be another combustible gas which has a higher calorific value than the product gas. The fuel gas may in particular contain natural gas or liquefied gas. Here, the afterburner combustion chamber 7 may have an additional foreign gas input, wherein optionally can be switched between a feed of the product gas, the foreign gas or a mixture of the two. In this case, the foreign gas can be used in particular in a starting phase of the method, wherein in a regulating operation mainly product gas is used for the combustion in the afterburning combustion chamber 7.

Insbesondere kann vorgesehen sein, dass der Brenner der Nachverbrennungsbrennkammer 7 zu der Nachverbrennungsbrennkammer 7 hin offen ist. Hierbei können sich die heißen Abgase des Brenners mit den Abgasen von dem Gasmotor 6 vermischen und gemeinsam durch den Abgas-Ausgang der Nachverbrennungsbrennkammer 7 diese verlassen.In particular, it may be provided that the burner of the afterburning combustion chamber 7 is open to the afterburning combustion chamber 7. Here, the hot exhaust gases of the burner can mix with the exhaust gases from the gas engine 6 and leave them together through the exhaust gas outlet of the afterburner combustion chamber 7.

Wenigstens ein Heizgas-Ausgang 27 des Pyrolysereaktors 2 kann mit einem ersten Eingang 81 eines Wärmetauschers 8 verbunden sein. Mit dem Wärmetauscher 8 kann zumindest ein Teil der nach dem Pyrolysereaktor 2 in dem Heizgas verbliebenden Abwärme genutzt werden.At least one heating gas outlet 27 of the pyrolysis reactor 2 may be connected to a first inlet 81 of a heat exchanger 8. With the heat exchanger 8, at least part of the waste heat remaining after the pyrolysis reactor 2 in the heating gas can be used.

Der Abgas-Ausgang 75 der Nachverbrennungsbrennkammer 7 kann über eine Abgas-Bypassleitung 92 direkt mit dem ersten Eingang 81 des Wärmetauschers 8 verbunden sein. Durch die Abgas-Bypassleitung 92 kann die dem Pyrolysereaktor 2 zugeführte Wärmemenge geregelt werden, wobei überschüssige Wärme über die Abgas-Bypassleitung 92 an dem Pyrolysereaktor 2 vorbeigeleitet wird. Dabei kann eine besonders einfache Regelung mit einer kurzen Reaktionszeit der bereitgestellten Wärmemenge sichergestellt werden.The exhaust gas outlet 75 of the afterburner combustion chamber 7 can be connected directly to the first input 81 of the heat exchanger 8 via an exhaust gas bypass line 92. Through the exhaust gas bypass line 92, the pyrolysis reactor the second supplied amount of heat to be controlled, with excess heat is passed over the exhaust gas bypass line 92 to the pyrolysis reactor 2. In this case, a particularly simple control can be ensured with a short reaction time of the amount of heat provided.

Wie in der bevorzugten Ausführungsform in Fig. 3 dargestellt, kann insbesondere zwischen dem Abgas-Ausgang 65 des Gasmotors 6 und dem Eingang 71 der Nachverbrennungsbrennkammer 7 eine Abgasreinigungseinrichtung 69 zwischengeschaltet sein. Die Abgasreinigungseinrichtung 69 kann insbesondere zur Minimierung von Stickoxiden ausgebildet sein.As in the preferred embodiment in Fig. 3 in particular, between the exhaust gas outlet 65 of the gas engine 6 and the inlet 71 of the afterburner combustion chamber 7, an exhaust gas purification device 69 can be interposed. The exhaust gas purification device 69 may be designed in particular for minimizing nitrogen oxides.

Hierbei kann vorgesehen sein, däss vor der Nachverbrennungsbrennkammer 7 aus dem Abgas des Gasmotors 6 in der Abgasreinigungsanlage 69 Stickoxide entfernt werden.In this case, provision can be made for nitrogen oxides to be removed from the exhaust gas of the gas engine 6 in the exhaust gas purification system 69 before the afterburner combustion chamber 7.

Als günstig hat sich herausgestellt, wenn der Pyrolysereaktor 2 als Doppelmantel-Pyrolysereaktor 21 mit einer Außenkammer 28 ausgebildet ist. Dabei kann der wenigstens eine Heizgas-Eingang 23 des Pyrolysereaktors 2 mit der Außenkammer 28 des Doppelmantel-Pyrolysereaktors 21 verbunden sein.As low has been found when the pyrolysis reactor 2 is designed as a double-shell pyrolysis reactor 21 with an outer chamber 28. In this case, the at least one heating gas inlet 23 of the pyrolysis reactor 2 may be connected to the outer chamber 28 of the double-shell pyrolysis reactor 21.

Ein besonderes hoher Wirkungsgrad kann erreicht werden, wenn die Außenkammer 28 - in Längsrichtung des Doppelmantel-Pyrolysereaktors 21 gesehen - zumindest zwei hintereinander angeordnete und parallel beaufschlagte Heizkammern 29 aufweist. Ein derartiger Pyrolysereaktor ist in Fig. 2 und Fig. 3 dargestellt.A particularly high degree of efficiency can be achieved if the outer chamber 28, seen in the longitudinal direction of the double-shell pyrolysis reactor 21, has at least two heating chambers 29 arranged one behind the other and acted upon in parallel. Such a pyrolysis reactor is in Fig. 2 and Fig. 3 shown.

Durch die geteilt ausgeführte Außenkammer 28 kann der Fluss des Heizgases geteilt werden und für verschiedene Zonen der Pyrolysekammer 24 unterschiedliche Temperaturen erreicht werden. Hierbei kann weiters der Wärmeübertrag im Pyrolysereaktor bei gleichzeitiger Verringerung des Heizgasstromdruckverlustes erhöht werden.Due to the split-executed outer chamber 28, the flow of the heating gas can be shared and for different zones of the pyrolysis 24 different temperatures can be achieved. In this case, further, the heat transfer in the pyrolysis reactor can be increased while reducing the Heizgasstromdruckverlustes.

Claims (15)

  1. An installation (1) for gasifying lumpy fuels with a pyrolysis reactor (2) and a gas motor (6), wherein an exhaust gas outlet (65) of the gas motor (6) is connected to an input (71) of an afterburning combustion chamber (7), wherein an exhaust gas outlet (75) of the afterburning combustion chamber (7) is connected to at least one heating gas inlet (23) of the pyrolysis reactor (2), characterized in that the afterburning combustion chamber (7) comprises a burner, and heat supply to the afterburning combustion chamber (7) occurs by the burner.
  2. An installation according to claim 1, characterized in that a pyrolysis gas outlet (25) of the pyrolysis reactor (2) is connected to an inlet (31) of an oxidation chamber (3), and a coke outlet (26) of the pyrolysis reactor (2) is connected to an inlet (41) of a reduction furnace (4).
  3. An installation according to claim 2, characterized in that a product gas outlet (45) of the reduction furnace (4) is connected to an inlet (61) of the gas motor (6).
  4. An installation according to claim 3, characterized in that a gas treatment device (5) is interposed between the product gas outlet (45) of the reduction furnace (4) and the inlet (61) of the gas motor (6).
  5. An installation according to claim 3 or 4, characterized in that a bypass line (91) is guided to the inlet (71) of the afterburning combustion chamber (7) between the product gas outlet (45) of the reduction furnace (4) and the input (61) of the gas motor (6).
  6. An installation according to one of the claims 1 to 5, characterized in that at least one heating gas outlet (27) of the pyrolysis reactor (2) is connected to a first inlet (81) of a heat exchanger (8).
  7. An installation according to claim 6, characterized in that the exhaust gas outlet (75) of the afterburning combustion chamber (7) is directly connected via an exhaust gas bypass line (92) to the first inlet (81) of the heat exchanger (8).
  8. An installation according to one of the claims 1 to 7, characterized in that an exhaust gas purifying device (69) is interposed between the exhaust gas outlet (65) of the gas motor (6) and the inlet (71) of the afterburning combustion chamber (7).
  9. An installation according to one of the claims 1 to 8, characterized in that the pyrolysis reactor (2) is formed as a double-jacket pyrolysis reactor (21) with an outer chamber (28), and the at least one heating gas inlet (23) of the pyrolysis reactor (2) is connected to the outer chamber (28) of the double-jacket pyrolysis reactor (21).
  10. An installation according to claim 9, characterized in that the outer chamber (28), as seen in the longitudinal direction of the double-jacket pyrolysis reactor (21), comprises at least two heating chambers (29) which are arranged one after the other and are supplied in parallel.
  11. A method for gasifying lumpy fuels, wherein the lumpy fuels are subjected to pyrolysis in a pyrolysis reactor (2) and are subsequently gasified into a product gas, wherein the product gas formed by gasification is supplied to a gas motor (6), wherein exhaust gases of the gas motor (6) are guided to an afterburning combustion chamber (7) and are heated there by means of a burner, and wherein exhaust gases of the afterburning combustion chamber (7) are guided into the pyrolysis reactor (2).
  12. A method according to claim 11, characterized in that the exhaust gases of the gas motor (6) are heated in the afterburning combustion chamber (7) to a temperature greater than 800°C.
  13. A method according to claim 11 or 12, characterized in that a pyrolysis gas from the pyrolysis reactor (2) is partially oxidised in an oxidation chamber (3), and that the product gas is extracted from pyrolysis coke of the pyrolysis reactor (2) in a reduction furnace (4).
  14. A method according to one of the claims 11 to 13, characterized in that the product gas or a foreign gas is selectively combusted in the afterburning combustion chamber (7).
  15. A method according to one of the claims 11 to 14, characterized in that before the afterburning combustion chamber (7) nitric oxides are removed from the exhaust gas of the gas motor (6) in an exhaust gas purifying installation (69).
EP14450028.7A 2013-05-31 2014-05-27 Installation and process facility for gasifying lumpy fuels Active EP2808377B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA445/2013A AT514400B1 (en) 2013-05-31 2013-05-31 Plant for gasifying lumpy fuels

Publications (2)

Publication Number Publication Date
EP2808377A1 EP2808377A1 (en) 2014-12-03
EP2808377B1 true EP2808377B1 (en) 2016-11-16

Family

ID=50976571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14450028.7A Active EP2808377B1 (en) 2013-05-31 2014-05-27 Installation and process facility for gasifying lumpy fuels

Country Status (2)

Country Link
EP (1) EP2808377B1 (en)
AT (1) AT514400B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143525A (en) * 2019-06-28 2020-12-29 国家能源投资集团有限责任公司 Method for producing hydrogen by converting municipal solid waste
EP3901236A1 (en) 2020-04-22 2021-10-27 Danmarks Tekniske Universitet A method and system for producing gas from biomass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000025321A1 (en) 2020-10-26 2022-04-26 Ers Eng S R L ORGANIC MATERIAL GASIFICATION PROCESS AND PLANT TO IMPLEMENT SUCH A PROCESS
CN112391524B (en) * 2020-11-12 2021-08-10 广东天源环境科技有限公司 High-arsenic metal mineral powder arsenic removal equipment with high-efficiency arsenic-containing gas treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342165C1 (en) * 1993-12-10 1995-05-11 Umwelt & Energietech Process for the utilisation of biomass energy
DE10027200A1 (en) * 1999-05-25 2001-11-29 Ver Energiewerke Ag Process for the thermal disposal of high-calorific fractions from sorted waste and / or residues in fossil-fired power plants, especially lignite-fired power plants with wet flue gas desulfurization
DE10149649A1 (en) * 2001-10-09 2003-04-24 Bu Bioenergie & Umwelttechnik Production of current from carbon-containing material, especially biomass, comprises allothermally gasifying material in reactor producing fluidized layer, cooling gas produced, and removing pollutants from gas
EP2470481A1 (en) * 2009-08-30 2012-07-04 Technion Research & Development Foundation Ltd. Method and system for treating sewage sludge
UA106269C2 (en) * 2010-03-11 2014-08-11 Шнайдер Тимо Device for producing synthesis gas and for operating an internal combustion engine therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143525A (en) * 2019-06-28 2020-12-29 国家能源投资集团有限责任公司 Method for producing hydrogen by converting municipal solid waste
EP3901236A1 (en) 2020-04-22 2021-10-27 Danmarks Tekniske Universitet A method and system for producing gas from biomass
WO2021213595A1 (en) 2020-04-22 2021-10-28 Danmarks Tekniske Universitet A method and system for producing gas from biomass

Also Published As

Publication number Publication date
EP2808377A1 (en) 2014-12-03
AT514400B1 (en) 2015-05-15
AT514400A1 (en) 2014-12-15

Similar Documents

Publication Publication Date Title
DE19945771C1 (en) Process for gasifying organic materials comprises cracking the materials by contacting with a hot heat carrier medium which is removed from a solid carbonaceous residue after leaving the pyrolysis reactor and conveyed to a heating zone
DE60120957T2 (en) METHOD AND SYSTEM FOR DECOMPOSING WATER-CONTAINING FUELS OR OTHER CARBON CONTAINING MATERIALS
EP2406190B1 (en) Method and system for reclamation of biomass and block heating plant
EP2808377B1 (en) Installation and process facility for gasifying lumpy fuels
WO2001002513A1 (en) Method and device for pyrolyzing and gasifying organic substances or substance mixtures
CH615215A5 (en)
WO2005113732A1 (en) Device and method for generating a tar-free lean gas by gasifying biomass
EP2136138A2 (en) Brewery installation with filtration device and for thermally using wet filtration particles
EP1950272A1 (en) Method and device for thermal conversion of pellets or wood chippings
WO2011020767A1 (en) Method and device for utilizing biomass
EP1377649B1 (en) Installation and method for producing energy using pyrolysis
DE112007003339B4 (en) Process and apparatus for the gasification of gasification fuel
EP0482306B1 (en) Method and device for the combustion of wood chips generating fumes low in noxious substances under continuously controllable firing power
EP2325287A1 (en) Emission-free power plant for the production of mechanical and electrical energy
WO2003033623A1 (en) Method for the production of current from material containing carbon
EP3214155B1 (en) Process for the production of synthesis gas for running an internal combustion engine.
EP2148135B1 (en) Method and device for thermal processing of waste material
DE102011011807A1 (en) Method for performing integrated biomass overpressure fixed bed gasification of steam turbine in power plant, involves carrying out regenerative heating of low temperature deaerator, and filtering dust from hot generator gases
DE102006061583A1 (en) Pressurized combustion chamber integrated into gas turbine plant for power generation, combines gasification, main and secondary firing, coke combustion and waste heat recovery
DE102006049781A1 (en) Gasification of organic materials by air, comprises gasifying the organic materials to a raw product gas in a first gasification reactor, separating the coke from the product gas by a cyclone and feeding the coke to a further reactor
WO2018055003A1 (en) Process for producing biocoal and plant therefor
EP3491293B1 (en) Staged firing
EP2639289A1 (en) Device for creating a flammable gas mixture
DE102006039332A1 (en) Device for thermal utilization of a fuel for thermal material transformation and energy production, comprises a combustion chamber, which has an eddy current combustion chamber for the production of flue gases, and a flue gas reactor
AT502146B1 (en) METHOD FOR THE CATALYTIC CONVERSION OF HOUSE MILL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150603

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20150603

Extension state: BA

Payment date: 20150603

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014001981

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10J0003000000

Ipc: C10K0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/32 20060101ALI20160610BHEP

Ipc: C10K 3/00 20060101AFI20160610BHEP

Ipc: C10J 3/00 20060101ALI20160610BHEP

Ipc: C10J 3/34 20060101ALI20160610BHEP

Ipc: C10J 3/74 20060101ALI20160610BHEP

Ipc: C10K 1/00 20060101ALI20160610BHEP

Ipc: C10J 3/66 20060101ALI20160610BHEP

INTG Intention to grant announced

Effective date: 20160630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 845923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001981

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001981

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170216

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170316

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABP PATENT NETWORK AG, CH

Ref country code: CH

Ref legal event code: PFA

Owner name: EBNER CORPORATE SERVICE GROUP GMBH, AT

Free format text: FORMER OWNER: CLEANSTGAS GMBH, AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014001981

Country of ref document: DE

Representative=s name: ABP BURGER RECHTSANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001981

Country of ref document: DE

Owner name: EBNER CORPORATE SERVICE GROUP GMBH, AT

Free format text: FORMER OWNER: CLEANSTGAS GMBH, ST. MARGARETHEN/RAAB, AT

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 845923

Country of ref document: AT

Kind code of ref document: T

Owner name: EBNER CORPORATE SERVICE GROUP GMBH, AT

Effective date: 20210929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230508

Year of fee payment: 10

Ref country code: CH

Payment date: 20230602

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230404

Year of fee payment: 10