EP2807664B1 - Kombinationstransformator für ein stromsystem - Google Patents

Kombinationstransformator für ein stromsystem Download PDF

Info

Publication number
EP2807664B1
EP2807664B1 EP12813352.7A EP12813352A EP2807664B1 EP 2807664 B1 EP2807664 B1 EP 2807664B1 EP 12813352 A EP12813352 A EP 12813352A EP 2807664 B1 EP2807664 B1 EP 2807664B1
Authority
EP
European Patent Office
Prior art keywords
module
signal
transformer
electrically connected
combined transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12813352.7A
Other languages
English (en)
French (fr)
Other versions
EP2807664A1 (de
Inventor
Fang Min LIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011205714404U external-priority patent/CN202373447U/zh
Priority claimed from CN201110459041.3A external-priority patent/CN103187162B/zh
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2807664A1 publication Critical patent/EP2807664A1/de
Application granted granted Critical
Publication of EP2807664B1 publication Critical patent/EP2807664B1/de
Priority to HRP20160996TT priority Critical patent/HRP20160996T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/34Combined voltage and current transformers

Definitions

  • the present invention relates to a combined transformer for a power system, and in particular to an independent electronic combined transformer.
  • the combined transformer is an apparatus that has a current and voltage measurement function while being capable of carrying out electric isolation on the primary high voltage and the secondary low voltage.
  • the electromagnetic transformer technology with an iron core based on the Faraday electromagnetic induction principle is usually adopted for the measurement of both current and voltage.
  • the voltage transformer therein is electromagnetic
  • the inductive element formed by the iron core and the primary winding may cause ferromagnetic resonance with capacitance elements (e.g., breakers , capacitors, etc.) on the power grid under certain operating conditions, thus affecting the stable operation of the power grid.
  • the output interface of the conventional transformer is suitable for electromechanical relays, and the output power of a single coil is relatively large sometimes, so that the cross-sectional area of the magnetic core used in the transformers is increased, the loss is large, and the size of the transformer is increased.
  • the current measurement part is located on the high voltage side at the upper part of the transformer, the primary current passes through the center of the current transformer via a primary conducting rod, wherein a hollow coil is generally used as the transformer for protection level, and a low power coil is used as the transformer for measurement level, while the secondary output from the current transformer is converted to a digital optical signal to be sent to the low voltage side via an optical fiber.
  • the voltage measurement part is generally located in an insulator, and an electrode-type capacitive divider is usually adopted.
  • Such a combined transformer has poor stability, the current measurement error is influenced directly by the power voltage on the high voltage side and the working state of each electronic device, and, as the voltage measurement is based on the principle of the capacitive divider and the output error needs to be calibrated after on-site installation, it is unable to achieve plug and play.
  • the designed service life of the transformer in the power system is generally required to reach up to 30 years, while the electronic device in the high voltage side active electronic combined transformer generally has a service life of just 4 to 5 years and can hardly be maintained normally but can be replaced or repaired only after being powered off; however, abnormal power-off will have a major impact on the stable operation of the power grid.
  • the high voltage side active electronic combined transformer has poor resistance to electromagnetic interference, the over-voltage formed due to the operation of the isolating switch or the like on the power grid may make the high voltage side power supply or electronic modules crash or directly break down.
  • a hollow coil is adopted for the current protection function of the current transformer, and it is necessary to utilize quadratic integration to achieve the linear relation between the secondary output voltage and the primary current, but regardless of the type of the integrator, the time constant of the integrator will cause a certain amount of distortion to the output wave-form; in particular, in the case of the time constant of the integrator not being large enough, when the short-circuit current passes through the Rogowski coil primarily, the trailing of the output of the Rogowski coil is very serious, and will even cause abnormal protection actions, affecting the safe operation of the power grid.
  • the current measurement part is located on the high voltage side at the upper part of the transformer, and full optical fiber type or magneto-optical glass type sensitive rings based on Faraday magneto-optical effects are adopted.
  • Such a combined transformer has the disadvantage that the transformer has relatively high costs, and quite high requirements on materials (particularly on polarization-maintaining optical fiber of the current transformer and the piezoelectric crystal of the voltage transformer), several times, even more than 10 times, higher than that of the conventional transformer.
  • the optical fiber sensitive ring in the current measurement part and the crystal in the voltage measurement part are sensitive to both the magnetic field formed by the primary current and the electric field formed by the primary voltage, but also are sensing elements with respect to voltage, temperature or the like, and vibration, temperature change or the like during the operation of the transformer may have a direct impact on the error.
  • the processing loop of the secondary signal is complex, there is white noise in the output signal, and the combined transformer will also output a secondary signal due to the interference of the white noise when there is no primary current, therefore the requirements of billing cannot be met. If a technology combining the capacitive divider with the Pockels effects is used for voltage measurement, the measurement error of the voltage part also has to be calibrated on site, and it is unable to achieve plug and play.
  • the object of the present invention is to provide a combined transformer, by which the error calibration after installation of the existing combined transformer is avoided, with reasonable costs, high reliability, long service life and plug and play capability.
  • Such a combined transformer for a power system comprises: a shell, a base and an insulator connecting the shell and the base.
  • a current transformer is arranged in the shell, wherein the current transformer can detect the current in a primary conductor in the power system, and the current transformer sends a first signal reflecting the value of the current in the primary conductor to the base.
  • a voltage transformer is arranged in the insulator, wherein the voltage transformer comprises: an output branch circuit comprising a first input end and a second input end, wherein the output branch circuit sends a second signal reflecting the value of the voltage in the primary conductor to the base; a resistive division circuit, one end of which is electrically connected to the primary conductor, the other end thereof being electrically connected to the first input end; a capacitive division circuit formed by a plurality of layers of capacitive screens serially connected, one end of which is electrically connected to the primary conductor, the other end thereof being electrically connected to the second input end, and the first input end being electrically connected to a secondary division potential point of the capacitive division circuit; and a secondary division resistor, one end of which is electrically connected to the first input end, the other end thereof being electrically connected to the second input end.
  • the frequency domain range in which the combined transformer can measure the value of the voltage in the primary conductor accurately is broadened, and the error of the voltage transformer need not be calibrated after on-site installation, i.e. the combined transformer can plug and play.
  • the combined transformer can be used for measurement of not only AC voltage but also DC voltage.
  • the extension direction of the electrodes of each layer of capacitive screen in the plurality of layers of capacitive screens is the same as the extension direction of the insulator, so that capacitive screens with a large enough electrode area may be set, and the processing and assembling of the plurality of layers of capacitive screens can be simplified, according to actual demands.
  • the combined transformer comprises a high voltage flange and a grounding flange, wherein the insulator is connected to the shell through the high voltage flange, and the insulator is connected to the base through the grounding flange.
  • the combined transformer comprises a fairlead, a current double shielded twisted-pair cable transmitting the first signal to the base and a voltage double shielded twisted-pair cable transmitting the second signal to the base, wherein the current double shielded twisted-pair cable and the voltage double shielded twisted-pair cable are passed through the fairlead.
  • the fairlead can protect the double shielded twisted-pair cables passed therethrough.
  • the capacitive screens are wound onto the fairlead or assembled onto the fairlead after being pre-molded, the electrodes of the capacitive screens are one of aluminum foil, copper foil, thin-film semiconductor or paper semiconductor, while the insulating layer between the electrodes is one of sulfur hexafluoride gas composite thin-film, insulation oil composite cable paper, epoxy resin composite crepe paper or silicone oil composite polytetrafluoroethylene tape.
  • the second input end of the output branch circuit is electrically connected to ground potential.
  • the resistive division circuit comprises a plurality of thick-film resistors, wherein the thick-film resistors are connected in parallel to both ends of the capacitive screen after being connected to each other in series, one end of the thick-film resistors connected in series is electrically connected to the primary conductor, and the other end thereof is electrically connected to the first input end of the output branch circuit.
  • the resistive division circuit comprises a resistance band, wherein the resistance band is formed by continuously attaching resistive slurry to the interior surface of the insulator by laser printing or spray coating, one end of the resistance band is electrically connected to the high voltage flange, and the other end thereof is electrically connected to the first input end of the output branch circuit.
  • the current transformer is a low power electronic current transformer comprising a magnetic core, a secondary winding wound onto the magnetic core and a shunt resistor connected to the tail end of the secondary winding.
  • an insulating medium filling the space between the current transformer and the shell, and the insulating medium is one of sulfur hexafluoride gas, insulation oil composite cable paper, epoxy resin composite crepe paper or silicone oil composite polytetrafluoroethylene tape.
  • the base is provided therein with an outlet box, wherein the outlet box comprises: an input module, a secondary first signal being obtained after the first signal is processed by the input module in terms of voltage division, and a secondary second signal being obtained after the second signal is processed by the input module in terms of voltage division; a sampling module electrically isolated from the input module, the sampling module sampling the secondary first signal and the secondary second signal and converting these into a first digital signal reflecting the first signal and a second digital signal reflecting the second signal respectively; a conversion module, the conversion module receiving the first digital signal and the second digital signal outputted by the sampling module, and integrating the two digital quantities into a message based on communication agreements or communication protocols; an output module, the output module receiving the message outputted by the conversion module and outputting the message to the outside via a network interface of an optical fiber or a cable; a power supply module, the power supply module providing electric energy required for working to the input module, the sampling module, the conversion module and the output module.
  • the input module, the sampling module and the conversion module are all located within the base on the low voltage side, which helps to improve the resistance to electromagnetic interference and the reliability of the combined transformer; furthermore, the maintenance is convenient, and modules can be maintained or replaced without power being shut off once.
  • the base is provided therein with an outlet box, wherein the outlet box comprises: an input module, a secondary first signal being obtained after the first signal is processed by the input module in terms of voltage division, and a secondary second signal being obtained after the second signal is processed by the input module in terms of voltage division; a sampling module electrically isolated from the input module, the sampling module sampling the secondary first signal and the secondary second signal and converting these into a first digital signal reflecting the first signal and a second digital signal reflecting the second signal respectively; an output module, the output module receiving the first digital signal and the second digital signal outputted by the sampling module, and outputting the first digital signal and the second digital signal to the outside via a network interface of an optical fiber or a cable; a power supply module, the power supply module providing electric energy required for working to the input module, the sampling module and the output module.
  • both the input module and the sampling module are located within the base on the low voltage side, which helps to improve the resistance to electromagnetic interference and the reliability of the combined
  • the outlet box also comprises: a synchronization module, the synchronization module receiving a synchronization signal from outside of the combined transformer and controlling the sampling module to synchronize according to the synchronization signal.
  • the ground potential, the base 20, the grounding flange 33 and the second input end 384 may be electrically connected to the ground, and they have the same potential.
  • the shell 10, the primary conductor 40 and the high voltage flange 31 have the same potential.
  • Fig. 1 is a structure diagram showing a schematic implementation of a combined transformer for a power system.
  • the combined transformer in the present invention comprises a shell (10), a base (20) and an insulator (30).
  • the shell 10 and the base 20 are connected via the insulator 30.
  • the insulator 30 comprises a ceramic bush.
  • the end of the insulator 30 connected to the shell 10 is provided with a high voltage flange 31, while the end thereof connected to the base 20 is provided with a grounding flange 33, wherein connecting bolts (not shown) connect the insulator 30 to the shell 10 and the base 20 via the high voltage flange 31 and the grounding flange 33, respectively.
  • the insulator 30 may also be connected to the shell 10 and the base 20 by means of pouring or bonding.
  • a current transformer 12 is arranged in the shell 10.
  • the current transformer 12 can detect the current in a primary conductor 40 in the power system.
  • the primary conductor 40 is connected to the power supply line in the power system, and the potential of the primary conductor and the current passing therethrough are the same as the power supply line.
  • the current transformer 12 sends a first signal reflecting the value of the current in the primary conductor 40 to the base 20.
  • the current transformer is a low power electronic current transformer disclosed in Chinese Patent ZL 200510024292.3 , comprising a magnetic core, a secondary winding and a shunt resistor.
  • the leads of the secondary winding are evenly wound onto the magnetic core, the tail end of the secondary winding is connected to the shunt resistor, and the first signal induced in the secondary winding and reflecting the value of the current in the primary conductor is sent to the base, transmitted by the double shielded twisted-pair cable.
  • the specific structure of the current transformer may be found in the specification of that invention patent and will not be described again here.
  • Other types of current transformers may also be used, for example, current transformers based on magneto-optical effects.
  • the current transformer may have the following structures, with corresponding ways for measurement: i) it consists of two independent coils, each of the coils has at least one independent output, one of the coils is used for measuring the value of the current in the power system, and the other coil is used for triggering a protection action when there is overload current in the power system; ii) only one output is designed in the same low power coil, and this output value can meet the requirements of measurement and also precision requirements of protection for different currents in the primary conductor, for example, when the current in the primary conductor is less than or equal to 200% of the rated primary conductor current, the coil output meets the error requirements of the measurement level, while when the primary current is between 200% of the rated primary conductor current and the system short-circuit current, the secondary output meets the error requirements of the protection level; and iii) two paths of outputs are designed in the same low power coil, wherein one path meets the error requirements of the measurement level, and the other path meets the error requirements of the protection level.
  • the insulating medium 11 filling the space between the current transformer 12 and the shell 10, and the insulating medium 11 may be one of sulfur hexafluoride gas, insulation oil composite cable paper, epoxy resin composite crepe paper or silicone oil composite polytetrafluoroethylene tape.
  • the insulator 30 is provided therein with a voltage transformer 32.
  • Fig. 2 is a circuit structure diagram illustrating a schematic implementation of a voltage transformer 32 of the combined transformer as shown in Fig. 1 .
  • the voltage transformer 32 comprises a resistive division circuit 34, a capacitive division circuit 36, an output branch circuit 38 and a secondary division resistor 37, wherein the capacitive division circuit 36 is realized by a plurality of layers of capacitive screens connected in series.
  • the output branch circuit 38 comprises a first input end 382 and a second input end 384.
  • the output branch circuit 38 can send a second signal reflecting the value of the voltage in the primary conductor 40 to the base 20.
  • the resistive division circuit 34 is connected in parallel to the capacitive division circuit 36, i.e.
  • one end of the resistive division circuit 34 is electrically connected to the primary conductor 40 to have the same potential as the primary conductor 40, and the other end of the resistive division circuit 34 is electrically connected to the first input end 382.
  • One end of the capacitive division circuit 36 is electrically connected to the primary conductor 40 and the other end thereof is electrically connected to the second input end 384, and the first input end 382 is electrically connected to the secondary division potential point 361 of the capacitive division circuit 36.
  • One end of the secondary division resistor 37 is electrically connected to the first input end 382 and the other end thereof is electrically connected to the second input end 384. In the schematic implementation as shown in the figure, the second input end 384 is grounded.
  • the frequency domain range in which the combined transformer can measure the value of the voltage in the primary conductor accurately is broadened, and in particular the loss of the high frequency voltage signals is avoided.
  • the electrode area of each layer of capacitor in the plurality of layers of capacitive screens is increased greatly, and the thickness of the insulating layer between electrodes may be very small, so that the capacitance of the capacitive screens is greatly increased.
  • the capacitive screens have low susceptibility to interference by external stray capacitance due to small parasitic capacitance, and therefore it is unnecessary to calibrate the error of the voltage transformer after on-site installation, i.e. the combined transformer can plug and play.
  • the combined transformer can be used for measurement of not only AC voltage but also DC voltage.
  • Fig. 3 is a partial structure diagram showing a schematic implementation of a capacitive screen in the combined transformer for a power system.
  • the extension direction of the electrodes 362 of each layer of capacitive screen in the plurality of layers of capacitive screens is the same as the extension direction of the insulator 30.
  • capacitive screens with a large enough electrode area may be set, thereby avoiding too small a thickness of the insulating layer between electrodes.
  • the extension direction of electrodes 362 may also form a certain included angle with the extension direction of the insulator 30.
  • the insulator 30 is also provided with a fairlead 35, a current double shielded twisted-pair cable 352 transmitting the first signal to the base 20 and a voltage double shielded twisted-pair cable 354 transmitting the second signal to the base 20 are passed through the fairlead 35; the use of double shielded twisted-pair cables can reduce interference to the transmitted signals from external electromagnetic fields, but other transmission methods with a shielding function may also be used, and the fairlead 35 can protect the double shielded twisted-pair cables passed therethrough.
  • the capacitive screens are wound onto the fairlead 35 or assembled onto the fairlead after being pre-molded, and the common electrodes between each layer of capacitors are connected in series.
  • the electrodes of the capacitive screens may be flexible thin film with conductivity, such as aluminum foil, copper foil, thin-film semiconductor or paper semiconductor.
  • the insulating layer between the electrodes may be flexible insulating thin film, such as sulfur hexafluoride composite thin-film, insulation oil composite cable paper, epoxy resin composite crepe paper or silicone oil composite polytetrafluoroethylene tape.
  • the outermost layer of electrodes of the capacitive screens is electrically connected to the primary conductor 40, and the last layer of electrodes of the capacitive screens is electrically connected to the ground potential.
  • the second input end 384 of the output branch circuit 38 is electrically connected to the last layer of electrodes of the capacitive screens, the first input end 382 thereof is electrically connected to the tap of the electrode in the capacitive division circuit 36 corresponding to the secondary division potential point 361, i.e. the potential difference between the secondary division potential point 361 and the ground potential is sampled as the voltage output signal so as to output the second signal reflecting the value of the voltage in the primary conductor, wherein the secondary division potential point is a potential point, the potential of which corresponds to the division ratio specified by the primary conductor potential according to standards.
  • the resistance value of the output branch circuit 38 connected to the resistive division circuit 34 may be adjusted according to actual demands, to obtain a suitable potential.
  • the resistive division circuit 34 comprises a plurality of thick-film resistors, and after these thick-film resistors are connected in series, one end is connected to the outermost layer of electrodes of the capacitive screens and the other end is connected to the secondary division potential point 361 of the capacitive screens, so that the resistive division circuit 34 is connected to the capacitive division circuit 36 in parallel, wherein one end of the thick-film resistors is electrically connected to the primary conductor 40 and the other end thereof is electrically connected to the first input end 382 of the output branch circuit 38.
  • a curved resistance band can be formed by continuously attaching resistive slurry to the interior surface of the insulator by laser printing or spray coating.
  • One end of the resistance band is electrically connected to the high voltage flange, and the other end thereof is electrically connected to the first input end 382 of the output branch circuit 38 and insulated from the grounding flange 33.
  • Using the insulator 30 as a part of the voltage transformer not only ensures long service life, reliability and stability of the insulating system and insulating materials of the combined transformer, but also saves materials of the voltage transformer, so that the design costs are reduced.
  • Fig. 4 is a structure diagram illustrating a schematic implementation of a base 20 of the combined transformer for a power system. As shown, the base 20 (not shown) is provided therein with an outlet box 22 comprising: an input module 24, a sampling module 26, a conversion module 25, an output module 28, a synchronization module 27 and a power supply module 29.
  • the input module 24 can receive a first signal reflecting the value of the current in the primary conductor 40 and a second signal reflecting the value of the voltage in the primary conductor, which are inputted by the voltage double shielded twisted-pair cable 354 and the current double shielded twisted-pair cable 352 of the output branch circuit 38, respectively, and process the first signal and the second signal in terms of voltage division to further reduce their potentials, with a secondary first signal and a secondary second signal respectively obtained after voltage division.
  • the sampling module 26 samples the secondary first signal and the secondary second signal by means of isolating and coupling, for example, inputs the secondary first signal and the secondary second signal by means of magnetoelectric coupling or photoelectric coupling.
  • the electric isolation between the sampling module 26 and the input module 24 is used for ensuring the maintenance safety of the outlet box 22 and preventing high voltage from influencing the devices within the outlet box 22.
  • the sampling module 26 also converts the secondary first signal and the secondary second signal in the analog form into a first digital signal and a second digital signal in a digital form.
  • the conversion module 25 receives the first digital signal and the second digital signal, carries out standardized processing in the form of re-sampling and format conversion on the first digital signal and the second digital signal in accordance with an industrial standard of power systems, for example, IEC61850-9-1/2 or IEC60044-1(FT3) to obtain formatted signals meeting communication agreements/protocols, and integrates two digital quantities (the first digital signal and the second digital signal) into a message based on communication agreements or communication protocols.
  • the conversion module 25 may or may not be used according to the specific condition of a power system.
  • the output module 28 can receive formatted signals or directly receive digital signals; furthermore, the output module 28 converts formatted signals or digital signals into signals suitable for Ethernet or point-to-point transmission and outputs same to the outside via a network interface of an optical fiber or a cable.
  • the outlet box 22 also comprises a synchronization module 27. It can receive a synchronization signal from outside of the combined transformer according to IEC61588 and control the sampling module 26 to synchronize according to the synchronization signal, to coordinate the measurement actions of each of the combined transformers and test terminals in the power system. After losing the external synchronization signal, the outlet box 22 switches automatically, so that the input module 24, the sampling module 26, the conversion module 25 and the output module 28 within the outlet box 22 continue working, to ensure the sampling is continuous and uninterrupted.
  • the power supply module 29 can provide electric energy required for working to the input module 24, the sampling module 26, the conversion module 25, the output module 28 and the synchronization module 27.
  • the power supply module 29 may convert externally-provided DC ⁇ 110V or AC 220V into low voltage DC that may be used by the sampling module 26, the input module 24 and the conversion module 25 to work. They may also be powered by batteries.
  • the shell 10 on the high voltage side is of a passive structure, no energy-obtaining, sampling conversion module is arranged within the shell 10, the input module 24, the sampling module 26 and the conversion module 25 are all located within the base 20 on the low voltage side, which helps to improve the resistance to electromagnetic interference and the reliability of the combined transformer; furthermore, the maintenance is convenient, and modules can be maintained or replaced without shutting power off once.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Claims (13)

  1. Kombinierter Transformator für ein Stromsystem, der ein Gehäuse (10), einen Sockel (20) und einen Isolator (30), der das Gehäuse (10) und den Sockel (20) verbindet, aufweist, wobei
    ein Stromtransformator (12) in dem Gehäuse (10) angeordnet ist, wobei der Stromtransformator (12) den Strom in einem Primärleiter (40) in dem Stromsystem erfassen kann und wobei der Stromtransformator (12) ein erstes Signal, das den Wert des Stroms in dem Primärleiter (40) wiedergibt, an den Sockel (20) sendet;
    ein Spannungstransformator (32) in dem Isolator (30) angeordnet ist, wobei der Spannungstransformator (32) umfasst:
    einen Ausgangsstromzweig (38), der ein erstes Eingangsende (382) und ein zweites Eingangsende (384) aufweist, wobei der Ausgangsstromzweig (38) ein zweites Signal, das den Wert der Spannung im Primärleiter (40) wiedergibt, an den Sockel (20) sendet;
    eine Widerstandsteilerschaltung (34), deren eines Ende elektrisch an den Primärleiter (40) angeschlossen ist, deren anderes Ende elektrisch an das erste Eingangsende (382) angeschlossen ist;
    eine kapazitive Teilerschaltung (36), die durch eine Mehrzahl von Schichten aus seriell geschalteten kapazitiven Abschirmungen gebildet ist, deren eines Ende elektrisch an den Primärleiter (40) angeschlossen ist, deren anderes Ende elektrisch an das zweite Eingangsende (384) angeschlossen ist und das erste Eingangsende (382) elektrisch an einen sekundären Teilungspotentialpunkt (361) der kapazitiven Teilerschaltung (36) angeschlossen ist; und
    einen sekundären Teilungswiderstand (37), dessen eines Ende elektrisch an das erste Eingangsende (382) angeschlossen ist, dessen anderes Ende elektrisch an das zweite Eingangsende (384) angeschlossen ist,
    dadurch gekennzeichnet, dass
    die kapazitive Teilerschaltung (36) durch mehrere Elektrodenschichten von seriell geschalteten kapazitiven Abschirmungen gebildet wird, wobei die äußerste Elektrodenschicht elektrisch an den Primärleiter (40) angeschlossen ist, wobei das zweite Eingangsende (384) des Ausgangsstromzweigs (38) elektrisch an die letzte Elektrodenschicht angeschlossen ist, wobei das erste Eingangsende (382) des Ausgangsstromzweigs (38) elektrisch an eine Verzweigung einer Elektrodenschicht angeschlossen ist, welche dem sekundären Teilungspotentialpunkt (361) entspricht.
  2. Kombinierter Transformator nach Anspruch 1, wobei die Erstreckungsrichtung der Elektrodenschichten (362) der kapazitiven Abschirmungen die gleiche wie die Erstreckungsrichtung des Isolators (30) ist.
  3. Kombinierter Transformator nach Anspruch 1 oder 2, wobei der kombinierte Transformator einen Hochspannungsflansch (31) und einen Erdungsflansch (33) aufweist, wobei der Isolator (30) durch den Hochspannungsflansch (31) mit dem Gehäuse (10) verbunden ist und der Isolator (30) durch den Erdungsflansch (33) mit dem Sockel (20) verbunden ist.
  4. Kombinierter Transformator nach einem der Ansprüche 1 bis 3, wobei der kombinierte Transformator eine Durchführung (35), ein doppelt abgeschirmtes, paarweise verseiltes Stromkabel (352) zur Übertragung des ersten Signals an den Sockel (20) und ein doppelt abgeschirmtes, paarweise verseiltes Spannungskabel (354) zur Übertragung des zweiten Signals an den Sockel (20) aufweist, wobei das doppelt abgeschirmte, paarweise verseilte Stromkabel (352) und das doppelt abgeschirmte, paarweise verseilte Spannungskabel (354) durch die Durchführung (35) hindurchgeführt werden.
  5. Kombinierter Transformator nach Anspruch 4, wobei die kapazitiven Abschirmungen auf die Durchführung (35) aufgewickelt oder nachdem sie vorgeformt wurden, auf der Durchführung (35) aneinandergefügt werden, wobei die Elektrodenschichten (362) der kapazitiven Abschirmungen aus einem von Aluminiumfolie, Kupferfolie, Dünnschicht-Halbleiter oder Papier-Halbleiter sind, während die Isolierschicht zwischen den Elektrodenschichten (362) eine aus einer Schwefelhexafluoridgas-Dünnschicht-Zusammensetzung, Isolieröl-Kabelpapier-Zusammensetzung, Epoxidharz-Krepppapier-Zusammensetzung oder Silikonöl-Polytetrafluorethylenband-Zusammensetzung ist.
  6. Kombinierter Transformator nach einem der Ansprüche 1 bis 5, wobei das zweite Eingangsende (384) des Ausgangsstromzweigs (38) elektrisch an das Erdpotential angeschlossen ist.
  7. Kombinierter Transformator nach einem der Ansprüche 1 bis 6, wobei die Widerstandsteilerschaltung (34) mehrere Dickschichtwiderstände aufweist, wobei die Dickschichtwiderstände, nachdem sie miteinander in Reihe geschaltet wurden, parallel an beide Enden der kapazitiven Teilerschaltung (36) angeschlossen werden, wobei ein Ende der in Reihe geschalteten Dickschichtwiderstände elektrisch an den Primärleiter (40) angeschlossen ist und das andere Ende davon elektrisch an das erste Eingangsende (382) des Ausgangsstromzweigs (38) angeschlossen ist.
  8. Kombinierter Transformator nach einem der Ansprüche 1 bis 7, wobei die Widerstandsteilerschaltung (34) ein Wiederstandsband aufweist, wobei das Widerstandsband durch das kontinuierliche Auftragen einer resistiven Aufschlämmung auf die Innenfläche des Isolators (30) durch Laserdruck oder Sprühbeschichten gebildet ist, wobei ein Ende des Widerstandsbandes elektrisch an den Hochspannungsflansch (31) angeschlossen ist und das andere Ende davon elektrisch an das erste Eingangsende (382) des Ausgangsstromzweigs (38) angeschlossen ist.
  9. Kombinierter Transformator nach einem der Ansprüche 1 bis 8, wobei der Stromtransformator (12) ein leistungsarmer elektronischer Stromtransformator ist, der einen Magnetkern, eine Sekundärwicklung, die auf den Magnetkern gewickelt ist, und einen Nebenschlusswiderstand aufweist, der an das Endstück der Sekundärwicklung angeschlossen ist.
  10. Kombinierter Transformator nach einem der Ansprüche 1 bis 9, wobei ein isolierendes Medium (11) vorliegt, das den Raum zwischen dem Stromtransformator (12) und dem Gehäuse (10) ausfüllt, wobei das isolierende Medium (11) eines aus Schwefelhexafluoridgas, Isolieröl-Kabelpapier-Zusammensetzung, Epoxidharz-Krepppapier-Zusammensetzung oder Silikonöl-Polytetrafluorethylenband-Zusammensetzung ist.
  11. Kombinierter Transformator nach einem der Ansprüche 1 bis 10, wobei der Sockel (20) mit einem Abgangsfeld (22) darin versehen ist, wobei das Abgangsfeld (22) umfasst:
    ein Eingangsmodul (24), wobei ein sekundäres erstes Signal erhalten wird, nachdem das erste Signal von dem Eingangsmodul (24) in Bezug auf Spannungsteilung verarbeitet ist, und ein sekundäres zweites Signal erhalten wird, nachdem das zweite Signal durch das Eingangsmodul (24) in Bezug auf Spannungsteilung verarbeitet ist;
    ein Abtastmodul (26), das von dem Eingangsmodul (24) elektrisch isoliert ist, wobei das Abtastmodul (26) in der Lage ist, das sekundäre erste Signal und das sekundäre zweite Signal abzutasten und diese entsprechend in ein erstes digitales Signal, welches das erste Signal wiedergibt, und ein zweites digitales Signal, welches das zweite Signal wiedergibt, umzuwandeln;
    ein Konvertierungsmodul (25), wobei das Konvertierungsmodul (25) das erste digitale Signal und das zweite digitale Signal empfängt, die von dem Abtastmodul (26) ausgegeben wurden, und die zwei digitalen Größen in eine Nachricht basierend auf Kommunikationsvereinbarungen oder Kommunikationsprotokollen integriert;
    ein Ausgabemodul (28), wobei das Ausgabemodul (28) die von dem Konvertierungsmodul (25) ausgegebene Nachricht empfängt und die Nachricht nach draußen über eine Netzwerkschnittstelle einer optischen Faser oder eines Kabels ausgibt; und
    ein Stromversorgungsmodul (29), wobei das Stromversorgungsmodul (29) das Eingangsmodul (24), das Abtastmodul (26), das Konvertierungsmodul (25) und das Ausgabemodul (28) mit einer für das Arbeiten erforderlichen elektrischen Energie versorgt.
  12. Kombinierter Transformator nach einem der Ansprüche 1 bis 10, wobei der Sockel (20) mit einem Abgangsfeld (22) darin versehen ist, wobei das Abgangsfeld (22) umfasst:
    ein Eingangsmodul (24), wobei ein sekundäres erstes Signal erhalten wird, nachdem das erste Signal von dem Eingangsmodul (24) in Bezug auf Spannungsteilung verarbeitet ist, und ein sekundäres zweites Signal erhalten wird, nachdem das zweite Signal durch das Eingangsmodul (24) in Bezug auf Spannungsteilung verarbeitet ist;
    ein Abtastmodul (26), das von dem Eingangsmodul (24) elektrisch isoliert ist, wobei das Abtastmodul (26) in der Lage ist, das sekundäre erste Signal und das sekundäre zweite Signal abzutasten und diese entsprechend in ein erstes digitales Signal, welches das erste Signal wiedergibt, und ein zweites digitales Signal, welches das zweite Signal wiedergibt, umzuwandeln;
    ein Ausgabemodul (28), wobei das Ausgabemodul (28) das erste digitale Signal und das zweite digitale Signal empfängt, die von dem Abtastmodul (26) ausgegeben wurden, und das erste digitale Signal und das zweite digitale Signal nach draußen über eine Netzwerkschnittstelle einer optischen Faser oder eines Kabels ausgibt; und
    ein Stromversorgungsmodul (29), wobei das Stromversorgungsmodul (29) das Eingangsmodul (24), das Abtastmodul (26) und das Ausgabemodul (28) mit einer für das Arbeiten erforderlichen elektrischen Energie versorgt.
  13. Kombinierter Transformator nach Anspruch 11 oder 12, wobei das Abgangsfeld (22) ebenfalls umfasst:
    ein Synchronisationsmodul (27), wobei das Synchronisationsmodul (27) ein Synchronisationssignal von außerhalb des kombinierten Transformators empfängt und das Abtastmodul (26) steuert, um es gemäß dem Synchronisationssignal zu synchronisieren.
EP12813352.7A 2011-12-31 2012-12-21 Kombinationstransformator für ein stromsystem Active EP2807664B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20160996TT HRP20160996T1 (hr) 2011-12-31 2016-08-09 Kombinirani transformator za strujni energetski sustav

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2011205714404U CN202373447U (zh) 2011-12-31 2011-12-31 用于电力系统的组合互感器
CN201110459041.3A CN103187162B (zh) 2011-12-31 2011-12-31 用于电力系统的组合互感器
PCT/EP2012/076566 WO2013098226A1 (en) 2011-12-31 2012-12-21 Combined transformer for power system

Publications (2)

Publication Number Publication Date
EP2807664A1 EP2807664A1 (de) 2014-12-03
EP2807664B1 true EP2807664B1 (de) 2016-05-11

Family

ID=47553012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12813352.7A Active EP2807664B1 (de) 2011-12-31 2012-12-21 Kombinationstransformator für ein stromsystem

Country Status (4)

Country Link
EP (1) EP2807664B1 (de)
ES (1) ES2586827T3 (de)
HR (1) HRP20160996T1 (de)
WO (1) WO2013098226A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105022015B (zh) * 2014-04-17 2019-03-26 中国能源建设集团有限公司湖南电力电瓷电器厂 特高压电流互感器tpy误差试验装置
CN110289190A (zh) * 2015-10-23 2019-09-27 北京瑞恒新源投资有限公司 带真空灭弧室的多功能电容型套管
CN107731488B (zh) * 2017-11-10 2024-02-23 江苏思源赫兹互感器有限公司 一种便于调节误差的多节电压互感器
WO2019160437A1 (ru) * 2018-02-16 2019-08-22 Общество с ограниченной ответственностью "Научно-Производственный центр "Профотек" Трансформатор тока и напряжения комбинированный
CN114609573A (zh) * 2022-03-25 2022-06-10 山东泰开检测有限公司 一种充气式铠装组合互感器检定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508582A1 (de) * 1995-03-13 1996-09-26 Duromer Kunststoffverarbeitung Spannungswandler
DE59802264D1 (de) * 1997-09-23 2002-01-10 Trench Switzerland Ag Basel Kombinierter kleinsignal-strom- und spannungswandler
DE19832707C2 (de) * 1998-07-14 2001-05-10 Siemens Ag Kombinierter Strom- und Spannungswandler für Freiluftschaltanlagen
DE19841164A1 (de) * 1998-09-09 2000-03-16 Abb Research Ltd Spannungsteileranordnung
ATE390636T1 (de) * 2004-08-06 2008-04-15 Passoni & Villa Fabbrica Isola Elektronischer messwandler zu kombinierten strom- und spannungsmessungen.
EP2136216B1 (de) * 2008-06-19 2012-01-11 ABB Technology AG Kombiniertes elektrisches Messgerät

Also Published As

Publication number Publication date
ES2586827T3 (es) 2016-10-19
EP2807664A1 (de) 2014-12-03
WO2013098226A1 (en) 2013-07-04
HRP20160996T1 (hr) 2016-10-21

Similar Documents

Publication Publication Date Title
RU2385464C2 (ru) Способ и устройство для измерения электрического напряжения на устройстве выключения электропитания
US9018938B2 (en) Integrated device suspended at high voltage potential for power energy metering and protection of distribution network
US7064267B2 (en) Gas insulating apparatus and method for locating fault point thereof
CA2925370C (en) A high voltage divider
US7027280B2 (en) Gas insulating apparatus and method for locating fault point thereof
EP2807664B1 (de) Kombinationstransformator für ein stromsystem
EP2402769A1 (de) Kombinierte Detektionsvorrichtung von elektrischen Grössen
CN103187162B (zh) 用于电力系统的组合互感器
Schmid et al. Application of non conventional voltage and currents sensors in high voltage transmission and distribution systems
CN110646663A (zh) 一种真空断路器用一二次深度融合组合传感器
CN109521265A (zh) 一种电压电流组合数字式电子互感器
JPH10185961A (ja) 光変流器
CN201820628U (zh) 一种电子式电流电压互感器
EP1624311A1 (de) Kombinierter Strom- und Spannungsmesswandler vom Kondensatordurchführungs Typ
Saitoh et al. Electronic instrument transformers for integrated substation systems
CN201663050U (zh) 电子式组合互感器
CN201498356U (zh) 一种电子式组合电力互感器
CN201716359U (zh) 非接触电子式电压采样装置
CN108550493B (zh) 一种开关一体化中压电子式电压互感器
CN110441575B (zh) 一种共箱型气体绝缘金属封闭开关设备gis电子式电压互感器
CN210403493U (zh) 一种带零序电压输出功能的组合电压互感器
CN202373447U (zh) 用于电力系统的组合互感器
CN202307496U (zh) 电子式高压电流互感器
CN202189673U (zh) 一种电磁、电子混合式电流互感器
JP2004357376A (ja) 開閉装置用計測装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 799231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012018394

Country of ref document: DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20160996

Country of ref document: HR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2586827

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161019

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20160996

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 799231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012018394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: PNAN

Ref document number: P20160996

Country of ref document: HR

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160996

Country of ref document: HR

Payment date: 20181210

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160996

Country of ref document: HR

Payment date: 20191205

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012018394

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160996

Country of ref document: HR

Payment date: 20201216

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160996

Country of ref document: HR

Payment date: 20211220

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20160996

Country of ref document: HR

Payment date: 20221214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221207

Year of fee payment: 11

Ref country code: FR

Payment date: 20221214

Year of fee payment: 11

Ref country code: DE

Payment date: 20220617

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: PPPP

Ref document number: P20160996

Country of ref document: HR

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20221214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230228

Year of fee payment: 11

Ref country code: CH

Payment date: 20230303

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221227

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240403

REG Reference to a national code

Ref country code: HR

Ref legal event code: PPPP

Ref document number: P20160996

Country of ref document: HR

Owner name: HSP HOCHSPANNUNGSGERAETE GMBH, DE