EP2807546B1 - Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis - Google Patents

Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis Download PDF

Info

Publication number
EP2807546B1
EP2807546B1 EP13700754.8A EP13700754A EP2807546B1 EP 2807546 B1 EP2807546 B1 EP 2807546B1 EP 13700754 A EP13700754 A EP 13700754A EP 2807546 B1 EP2807546 B1 EP 2807546B1
Authority
EP
European Patent Office
Prior art keywords
dsp
frequencies
output
transmitter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13700754.8A
Other languages
English (en)
French (fr)
Other versions
EP2807546A1 (de
Inventor
Lars KARWECK
Andreas Spitz
Yves BOULENGER
Richard Wagner
Klaus Winter
Thomas Zieringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP2807546A1 publication Critical patent/EP2807546A1/de
Application granted granted Critical
Publication of EP2807546B1 publication Critical patent/EP2807546B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/05Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/1255Synchronisation of the sampling frequency or phase to the input frequency or phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an electronic circuit, in particular an integrated circuit, in particular an application-specific integrated circuit and in particular a transmitter with such an application-specific integrated circuit.
  • Application-specific integrated circuits are known per se and are used, for example, in transmitters in industrial process measurement technology, for example to operate a sensor with an analog electrical converter and to digitize and process its analog primary signals and to provide output signals to higher-level units.
  • the Publication DE 2939787 A1 discloses a method and an apparatus for storing at least one time-dependent electrical variable.
  • Patent US 4,638,451 A discloses a microprocessor system with programmable interfaces, in particular for speech signal processing.
  • a signal output frequency and the signal input frequency are variable.
  • Modern transmitters are supposed to work in a variety of areas of application with the most varied requirements in terms of measurement accuracy or dynamics.
  • the performance of the transmitter components should ideally be scalable and flexible in terms of energy consumption.
  • ASIC 1 shown comprises n analog signal inputs 11 at which, for example, the voltages and / or currents of a bridge circuit of a (piezo) resistive pressure sensor, a measuring circuit of a capacitive pressure sensor, a temperature sensor, and / or another measuring transducer are present.
  • the analog signals S i (in Fig. 1 denoted by signal 1 to signal x ) are sampled and digitized by analog-digital converters 12 with sampling frequencies f Si and the digitized signals SD i are input registers (Rin 1 ... x ) 14 of a digital signal with output frequencies f SD-out-i Signal processor 13 provided.
  • the analog-digital converters can in particular be sigma-delta converters.
  • n signals SD i provided in the input registers are processed by the signal processor 13 into m prepared signals SP j and made available in the output registers (Rout 1 ... x ) of the digital signal processor (DSP).
  • DSP digital signal processor
  • This processing can include, for example, the determination of a pressure measurement value, which is calculated on the basis of two signals SD 1 , SD 2 each representing a capacity measurement value and a signal SD 3 representing a temperature measurement value by means of a compensation model, the coefficients of which are provided by a memory (not shown here) and at least provides an output register 15 as output signal SP j .
  • processing may include filtering the incoming signals, for example.
  • the digital signal processor has an output frequency f DSP which is, for example, 1 kHz or a few 100 Hz.
  • f DSP calculates its complete program in 1.25 ms, which includes up to about 400 commands.
  • the clock frequency is then about 300 kHz per command.
  • a computing cycle takes about 160 ms.
  • the clock frequency per command is then just over 2 kHz.
  • the signals with output frequencies f SP-out-j are output or read from the output registers.
  • An output register 15 can be read out, for example, by a digital-to-analog converter with a high frequency in order to be able to provide a dense sequence of measured values at an analog output.
  • the output register can also be made with a frequency lower than that of a DSP cycle.
  • Another output register can relate, for example, to a drag pointer value, which is called up at a considerably lower frequency.
  • one or more of the frequencies f SD-out-i , F DSP , f SP-out-j is now variable, and preferably independently of one another.
  • f SD-out-1,2 can be the output rates of the digitized capacitance measurement values mentioned above, while in a thermally inert system the f SD-out-3 is rather low for the slowly changing temperature measurement values. Accordingly, the output frequency from the output registers of the DSP 13 can vary as required.
  • Fig. 3 now shows an example of the control of the clock frequency of the digital signal processor as a function of the time derivative dSP i / dt of an output signal SP i of the digital signal processor. If the time derivative dSP i / dt exceeds a threshold value, the clock frequency is increased by a constant value. So that the clock frequency does not constantly jump back and forth between two frequencies when the time derivative is just about the threshold value is one Hysteresis is provided, according to which the clock frequency is only reduced when the derivative clearly falls below the threshold value.
  • This control of the clock frequency of the digital signal processor can, depending on the embodiment of the invention, be carried out by the ASIC itself or possibly by a higher-level unit.
  • Fig. 4a shows the simple case of a transmitter which has an ASIC 2, which is connected to a controller 3, the controller 3 performing additional functions when evaluating the signals SP j of the DSP of the ASIC 2.
  • the controller 3 can, for example, determine the time derivative dSP j / dt of a signal SP j and then output a setpoint for one or more of the variable frequencies to the ASIC 2 as a response signal.
  • the response signal can have an index value, according to which the ASIC has to take the setpoint value from a memory, or a specific frequency value can be transmitted.
  • Fig. 4b shows a more detailed representation of a transmitter with an ASIC 4 and a controller 5.
  • the ASIC uses its digital signal processor in a first program part to determine a static pressure, the signal p_stat of which is transmitted to the controller 5.
  • the controller has, for example, stored a profile of a tank in a table (LUT) and can now use the pressure signal p_stat to calculate the filling volume in m 3 or the mass in t.
  • the corresponding fill level signal is transmitted to the ASIC as a response signal, for example, to be processed via a second program part of the ASIC and to be provided at the analog output of the ASIC.
  • the ASIC also includes a non-volatile memory (NVM) in which setpoints for the variable frequencies are stored as a function of the fill level.
  • NVM non-volatile memory
  • the ASIC can now use the response signal from Controller, which represents, for example, the fill level, carry out the necessary frequency adjustments in order, for example, to be able to provide signals at a higher rate in the event of imminent limit value violations or shortfalls. For example, for pump protection or overfill protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Description

  • Die vorliegende Erfindung betrifft eine elektronische Schaltung, insbesondere einen integrierten Schaltkreis, insbesondere einen anwendungsspezifischen integrierten Schaltkreis und insbesondere einen Messumformer mit einem solchen anwendungsspezifischen integrierten Schaltkreis.
  • Anwendungsspezifische integrierte Schaltkreise sind an sich bekannt und werden beispielsweise in Messumformern der industriellen Prozessmesstechnik eingesetzt, um beispielsweise einen Sensor mit einem analogen elektrischen Wandler zu betreiben und dessen analoge Primärsignale zu digitalisieren und aufzubereiten sowie Ausgangssignale zu übergeordneten Einheiten bereitzustellen.
  • Die Offenlegungsschrift DE 2939787 A1 offenbart ein Verfahren und eine Vorrichtung zur Speicherung mindestens einer zeitabhängigen elektrischen Variablen.
  • Das Patent US 4,638,451 A offenbart ein Mikroprozessorsystem mit programmierbaren Schnittstellen, insbesondere zur Sprachsignalverarbeitung. Hierbei sind eine Signalausgabefrequenz und die Signaleingangsfrequenz veränderlich.
  • Moderne Messumformer sollen in einer Vielzahl von Einsatzgebieten mit unterschiedlichsten Anforderungen an Messgenauigkeit oder Dynamik funktionieren. Zudem sollen die Komponenten der Messumformer in ihrer Leistungsfähigkeit im Idealfall skalierbar und hinsichtlich des Energieverbrauchs flexibel sein.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, eine elektronische Schaltung, insbesondere einen Messumformer bereitzustellen, die bzw. der diesen Anforderungen weitgehend genügt.
  • Die Aufgabe wird gelöst durch den Messumformer gemäß Anspruch 1. Weiterbildungen des Messumformers sind in den abhängigen Ansprüchen 2 bis 8 definiert.
  • Die Erfindung wird nun anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:
  • Fig. 1:
    eine schematische Darstellung eines ersten Ausführungsbeispiels eines erfindungsgemäßen, anwendungsspezifischen integrierten Schaltkreises (ASICs);
    Fig. 2a:
    den zeitlichen Verlauf von Signalen eines ASICs mit festen Frequenzen bzw. Frequenzverhältnissen nach dem Stand der Technik;
    Fig. 2b:
    den zeitlichen Verlauf von Signalen eines erfindungsgemäßen ASICs mit variablen Frequenzen bzw. Frequenzverhältnissen;
    Fig. 3:
    ein Beispiel für die Steuerung der Taktfrequenz fDSP des digitalen Signalprozessors anhand der zeitlichen Ableitung eines Ausgangssignals SPi;
    Fig. 4a:
    eine erste schematische Darstellung eines erfindungsgemäßen Messumformers; und
    Fig. 4b:
    eine zweite, detailliertere schematische Darstellung eines erfindungsgemäßen Messumformers.
  • Der in Fig. 1 dargestellte anwendungsspezifische integrierte Schaltkreis (ASIC) 1 umfasst n analoge Signaleingänge 11 an denen beispielsweise die Spannungen und/oder Ströme einer Brückenschaltung eines (piezo-) resistiven Drucksensors, einer Messschaltungen eines kapazitiven Drucksensors, eines Temperatursensors, und/oder eines anderen Messwandlers anstehen.
  • Die analogen Signale Si (in Fig. 1 mit Signal1 bis Signalx bezeichnet) werden von Analog-Digital-Wandlern 12 mit Abtastfrequenzen fSi abgetastet und digitalisiert und die digitalisierten Signale SDi werden mit Ausgabefrequenzen fSD-out-i Eingangsregistern (Rin1...x) 14 eines digitalen Signalprozessors 13 bereitgestellt. Die Analog-Digital-Wandler können insbesondere Sigma-Delta-Wandler sein.
  • Die in den Eingangsregistern bereitgestellten n Signale SDi werden vom Signalprozessor 13 zu m aufbereiteten Signalen SPj verarbeitet und in den Ausgangsregistern (Rout1...x) des digitalen Signalprozessors (DSP) bereitstellt.
  • Diese Verarbeitung kann beispielsweise die Ermittlung eines Druckmesswerts umfassen, welcher anhand zweier je einen Kapazitätsmesswert repräsentierenden Signale SD1 ,SD2 und eines einen Temperaturmesswert repräsentierenden Signals SD3 mittels eines Kompensationsmodells, dessen Koeffizienten von einem hier nicht gezeigten Speicher bereitgestellt werden, berechnet und in mindestens einem Ausgangsregister 15 als Ausgangssignal SPj bereitstellt.
  • Andere Formen der Verarbeitung können beispielsweise eine Filterung der eingehenden Signale umfassen.
  • Der digitale Signalprozessor weist eine Ausgabefrequenz fDSP auf, die beispielsweise 1 kHz oder einige 100 Hz beträgt. Der DSP rechnet beispielsweise in 1,25ms sein komplettes Programm durch, dies umfasst bis zu etwa 400 Befehle. Die Taktfrequenz beträgt dann etwa 300kHz pro Befehl. Bei der langsamsten Taktrate dauert ein Rechenzyklus etwa 160 ms. Die Taktfrequenz pro Befehl beträgt dann nur etwas mehr als 2 kHz.
  • Aus den Ausgangsregistern werden die Signale mit Ausgangsfrequenzen fSP-out-j ausgegeben bzw. ausgelesen.
  • Ein Ausgangsregister 15 kann beispielweise von einem Digital-AnalogWandler mit einer hohen Frequenz ausgelesen werden, um eine dichte Folge von Messwerten an einem Analogausgang bereitstellen zu können.
  • Das Ausgangsregister kann auch mit einer niedrigeren Frequenz als der eines DSP-Zyklus erfolgen.
  • Ein anderes Ausgangsregister kann beispielsweise einen Schleppzeigerwert betreffen, welcher mit erheblich geringerer Frequenz abgerufen wird.
  • Erfindungsgemäß ist bzw. sind nun eine oder mehrere der Frequenzen fSD-out-i, FDSP, fSP-out-j veränderlich, und zwar vorzugsweise unabhängig voneinander.
  • Diese Situation ist in Abgrenzung zum Stand der Technik und Fig. 2a und 2b dargestellt, wobei gemäß Fig. 2a alle genannten Frequenzen im Wesentlichen gleich laufen. Dies führt zu einem vergleichsweise starren System, bei dem Frequenzanpassungen, beispielsweise zur Reduktion der Leistungsaufnahme sich auf alle Leistungsmerkmale des ASICs auswirken. Dagegen sind bei einem erfindungsgemäßen ASIC die Frequenzen an den Bedarf der spezifischen Messsituation angepasst. So können fSD-out-1,2 beispielsweise die Ausgaberaten der oben erwähnten digitalisierten Kapazitätsmesswerte sein, während in einem thermisch trägen System die fSD-out-3 für die sich langsam ändernden Temperaturmesswerte eher gering ist. Entsprechend kann die Ausgabefrequenz aus den Ausgangsregistern des DSP 13 bedarfsabhängig variieren.
  • Fig. 3 zeigt nun ein Beispiel für die Steuerung der Taktfrequenz des digitalen Signalprozessors in Abhängigkeit der zeitlichen Ableitung dSPi/dt eines Ausgangssignals SPi des digitalen Signalprozessors. Wenn die zeitliche Ableitung dSPi/dt einen Schwellwert übersteigt, wird die Taktfrequenz um einen konstanten Wert erhöht. Damit die Taktfrequenz jedoch nicht ständig zwischen zwei Frequenzen hin und her springt, wenn die zeitliche Ableitung sich gerade um den Schwellwert bewegt, ist eine Hysterese vorgesehen, wonach die Taktfrequenz erst dann abgesenkt wird, wenn die Ableitung den Schwellwert deutlich unterschreitet. Diese Steuerung der Taktfrequenz des digitalen Signalprozessors kann, je nach Ausgestaltung der Erfindung, vom ASIC selbst oder ggf. von einer übergeordneten Einheit durchgeführt werden.
  • Zur Erläuterung der Beeinflussung der Frequenzen mittels einer übergeordneten Einheit wird nun auf die Figuren 4a und 4b verwiesen.
  • Fig. 4a zeigt den einfachen Fall eines Messumformers der einen ASIC 2 aufweist, der an einen Controller 3 angeschlossen ist, wobei der Controller 3 zusätzliche Funktionen bei der Auswertung der Signale SPj des DSP des ASIC 2 durchführt. Hier kann er beispielsweise die zeitliche Ableitung dSPj/dt eines Signals SPj ermitteln und daraufhin einen Sollwert für eine oder mehrere der veränderlichen Frequenzen an den ASIC 2 als Antwortsignal ausgeben. Das Antwortsignal kann einen Indexwert aufweisen, wonach der ASIC den Sollwert einem Speicher zu entnehmen hat, oder es kann ein konkreter Frequenzwert übertragen werden.
  • Fig. 4b zeigt eine detailliertere Darstellung eines Messumformers mit einem ASIC 4 und einem Controller 5. Der ASIC ermittelt mittels seines digitalen Signalprozessors in einem ersten Programmteil einen statischen Druck, dessen Signal p_stat an den Controller 5 übertragen wird. Der Controller hat in einer Tabelle (LUT) beispielsweise ein Profil eines Tanks hinterlegt und kann nun anhand des Drucksignals p_stat das Füllvolumen in m3 bzw. die Masse in t ausrechnen. Das entsprechende Füllstandsignal wird an den ASIC als Antwortsignal übertragen, um beispielsweise über einen zweiten Programmteil des ASIC verarbeitet,und am Analogausgang des ASIC bereitgestellt zu werden.
  • Der ASIC umfasst weiterhin einen nicht flüchtigen Speicher (NVM) in dem Sollwerte für die veränderlichen Frequenzen als Funktion des Füllstands hinterlegt sind. Der ASIC kann also nun anhand des Antwortsignals vom Controller, welches z.B. den Füllstand repräsentiert die erforderlichen Frequenzanpassungen durchführen, um beispielsweise bei drohenden Grenzwertüber- oder unterschreitungen mit höherer Rate Signale bereitstellen zu können. Beispielsweise zum Pumpenschutz oder zur Überfüllsicherung.

Claims (8)

  1. Messumformer, umfassend:
    einen Controller, und
    einen anwendungsspezifischen integrierten Schaltkreis (ASIC)(1),
    aufweisend:
    n Analogeingänge (11) mit Analog-Digital-Wandlern (ADCi)(12), wobei n > 1, mindestens einen digitalen Prozessor, insbesondere digitalen Signalprozessor (DSP) (13) welcher Eingangsregister (14) und Ausgangsregister (15) aufweist,
    wobei die Analog-Digital-Wandler (ADC) Eingangssignale Si, welche von aktuellen Werten von Messgrößen abhängen, abtasten und digitalisieren und die digitalisierten Signale SDi den Eingangsregistern des digitalen Signalprozessors bereitstellen,
    wobei der digitale Signalprozessor (DSP) die digitalisierten Signale SDi zu m aufbereiteten Ausgangssignalen SPj verarbeitet und in den Ausgangsregistern des digitalen Signalprozessors (DSP) bereitstellt, wobei der digitale Signalprozessor eine Taktfrequenz FDSP aufweist,
    wobei m >= 1, und j= 1, ..., m,
    wobei ferner die Signale SPj von den Ausgangsregistern mit Ausgangsfrequenzen fSP-out-j ausgegeben bzw. ausgelesen werden können,
    wobei
    der oder die Analog-Digital-Wandler die Eingangssignale Si, welche von aktuellen Werten von Messgrößen abhängen, (ADC) mit Abtastfrequenzen fSi abtasten, und die digitalisierten Signale SDi mit Ausgabefrequenzen fSD-out-i bereitstellen, und mehrere der Frequenzen fSD-out-i, FDSP, fSP-out-j unabhängig voneinander veränderlich sind, und
    der Controller mindestens eins der Ausgangssignale SPj des digitalen Signalprozessors (DSP) empfängt, und in Abhängigkeit des empfangenen Ausgangssignal SPj ein Antwortsignal Sr an den integrierten Schaltkreis ausgibt, wobei mindestens eine der genannten Frequenzen fSD-out-i, FDSP, fSP-out-j des integrierten Schaltkreises in Abhängigkeit des Antwortsignals Sr veränderlich ist.
  2. Messumformer nach Anspruch 1,
    wobei die eine oder mehrere der Frequenzen fSD-out-i, FDSP, fSP-out-j zumindest von mindestens einem der digitalisierten Messsignale SDi oder einer davon abhängigen Größe abhängt bzw. abhängen.
  3. Messumformer nach Anspruch 2, wobei die eine oder mehrere der Frequenzen fSD-out-i, FDSP, fSP-out-j von der zeitlichen Ableitung und/oder einer anderen vom zeitlichen Verlauf des mindestens einen digitalisierten Messsignals SDi abhängigen Funktion abhängt bzw. abhängen.
  4. Messumformer nach Anspruch 2, wobei die eine oder mehrere der Frequenzen fSD-out-i, FDSP, fSP-out-j von der Standardabweichung des mindestens einen digitalisierten Messsignals SDi oder einer davon abhängigen Größe abhängt bzw. abhängen.
  5. Messumformer nach Anspruch 1, wobei das Antwortsignal Sr ein Steuersignal ist, mit welchem ein Sollwert für mindestens eine der veränderlichen Frequenzen fSD-out-i, FDSP, fSP-out-j des integrierten Schaltkreises vorgegeben wird.
  6. Messumformer nach Anspruch 1, wobei das Antwortsignal Sr einen aufbereiteten Messwert umfasst, anhand dessen der integrierte Schaltkreis einen Sollwert der veränderlichen Frequenz fSD-out-i, FDSP, fSP-out-j ermittelt.
  7. Messumformer nach Anspruch 1, wobei das Antwortsignal Sr die zeitliche Ableitung eines Messwerts oder dessen Standardabweichung umfasst.
  8. Messumformer nach einem der Ansprüche 1 bis 7, wobei der Controller Zusatzfunktionen aufweist, welche beispielsweise die anwendungsspezifische Berechnung einer Füllmenge in einem Tank anhand eines einen hydrostatischen Druck repräsentierenden Signals SPj mittels eines Tankprofils oder die Bestimmung einer Durchflussgeschwindigkeit durch Radizieren eines Differenzdrucksignals umfassen.
EP13700754.8A 2012-01-23 2013-01-21 Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis Active EP2807546B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012001098 2012-01-23
PCT/EP2013/051046 WO2013110570A1 (de) 2012-01-23 2013-01-21 Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis

Publications (2)

Publication Number Publication Date
EP2807546A1 EP2807546A1 (de) 2014-12-03
EP2807546B1 true EP2807546B1 (de) 2020-04-29

Family

ID=47594766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13700754.8A Active EP2807546B1 (de) 2012-01-23 2013-01-21 Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis

Country Status (4)

Country Link
US (1) US9898193B2 (de)
EP (1) EP2807546B1 (de)
CN (1) CN104169863B (de)
WO (1) WO2013110570A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2039432B (en) * 1978-10-02 1983-01-26 Lloyd Instr Electronic memory unit
US4638451A (en) * 1983-05-03 1987-01-20 Texas Instruments Incorporated Microprocessor system with programmable interface
US5457456A (en) * 1993-12-16 1995-10-10 At&T Ipm Corp. Data converter with programmable decimation or interpolation factor
US6985831B2 (en) * 2000-01-13 2006-01-10 Zed.I Solutions (Canada), Inc. System for acquiring data from facilities and method CIP
JP3808294B2 (ja) * 2000-08-07 2006-08-09 セイコーインスツル株式会社 携帯型圧力測定装置
CN101483730B (zh) 2004-04-30 2012-09-12 泰景系统公司 集成电路装置及系统
CN1808285B (zh) 2006-01-26 2010-07-28 上海微电子装备有限公司 一种用于光刻机同轴对准的基于pga的高精度模数转换装置及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104169863B (zh) 2018-01-26
WO2013110570A1 (de) 2013-08-01
EP2807546A1 (de) 2014-12-03
CN104169863A (zh) 2014-11-26
US20140358454A1 (en) 2014-12-04
US9898193B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
EP2246984B1 (de) Diagnoseschaltung zur Überwachung einer Analog-Digital-Wandlungsschaltung
DE102016002069B4 (de) Kodierersignalprozessor mit automatischer Einstellfunktion
EP2988181B1 (de) Regeleinrichtung mit lernfähiger Fehlerkompensation
EP2696175A1 (de) Verfahren zum Erfassen der Durchflussmenge einer Kreiselpumpe
EP3087439A1 (de) Messumformer mit überwachungsfunktion
DE102007061282A1 (de) Verfahren zur sicheren Erfassung mehrerer analoger Eingangssignale, analoge Eingabeschaltung sowie Messsensor und Messumformer mit einer derartigen analogen Eingabeschaltung
EP2197117B1 (de) Schaltungseinheit zum Erzeugen einer Ausgangsspannung in Abhängigkeit von einem digitalen Datenwert und Verfahren zum Kalibrieren der Schaltungseinheit
WO2019206768A1 (de) Ansteckbares funkmodul der automatisierungstechnik
EP2807546B1 (de) Anwendungsspezifischer integrierter schaltkreis und einen messumformer mit einem solchen schaltkreis
EP2318893A1 (de) Verfahren zum bereitstellen eines pilotwarn-signals für einen piloten eines flugzeuges, computerprogrammprodukt und warnvorrichtung
DE102014102163B4 (de) Übertragungstechnik für analog erfasste Messwerte
DE102005039450B4 (de) Verfahren und Netzwerk zur synchronen Bearbeitung und Bereitstellung von Daten
DE102014117905A1 (de) Verfahren zum Überschreiben eines nicht-flüchtigen Speichers eines Feldgerätes
DE10203555A1 (de) Feldgerät
EP3019828B1 (de) Messumformer zum umformen eines analogen elektrischen eingangssignals in ein analoges elektrisches ausgangssignal
EP0986801B1 (de) Steuerungs- und/oder überwachungsgerät
WO2022218644A1 (de) Verfahren zum überprüfen eines signalpfades einer elektronischen sensorschaltung für ein feldgerät der automatisierungstechnik
DE3314261C2 (de) Analog-digital-wandler-anordnung und -verfahren
EP2843489B1 (de) Regelanordnung mit kopplungsoptimierter Ermittlung einer resultierenden Geschwindigkeit
DE4327324B4 (de) Verfahren zur Bestimmung eines Prozeßereignisses
EP3637059A1 (de) Sicherheitsschaltung und verfahren zum testen einer sicherheitsschaltung in einer automatisierungsanlage
EP2138812B1 (de) Verfahren zur Signalverarbeitung in einer Kraftmessvorrichtung und Kraftmessvorrichtung
DE102012109010A1 (de) Messgerät der Prozessautomatisierungstechnik
DE102014216137A1 (de) Verfahren zum Betreiben eines Sensors
EP2472376A1 (de) Elektrisches Gerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZIERINGER, THOMAS

Inventor name: WINTER, KLAUS

Inventor name: BOULENGER, YVES

Inventor name: SPITZ, ANDREAS

Inventor name: KARWECK, LARS

Inventor name: WAGNER, RICHARD

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS+HAUSER SE+CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01F 23/14 20060101ALI20191128BHEP

Ipc: G01F 1/34 20060101ALI20191128BHEP

Ipc: G06F 3/05 20060101AFI20191128BHEP

Ipc: G06F 1/32 20190101ALI20191128BHEP

Ipc: G06F 1/324 20190101ALI20191128BHEP

Ipc: H03M 1/00 20060101ALI20191128BHEP

Ipc: H03M 1/12 20060101ALI20191128BHEP

INTG Intention to grant announced

Effective date: 20191218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1264330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014640

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014640

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1264330

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 12