EP2806827A2 - Improved intraocular lens and corresponding manufacturing method - Google Patents

Improved intraocular lens and corresponding manufacturing method

Info

Publication number
EP2806827A2
EP2806827A2 EP13704186.9A EP13704186A EP2806827A2 EP 2806827 A2 EP2806827 A2 EP 2806827A2 EP 13704186 A EP13704186 A EP 13704186A EP 2806827 A2 EP2806827 A2 EP 2806827A2
Authority
EP
European Patent Office
Prior art keywords
radius
distance
curvature
intraocular lens
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13704186.9A
Other languages
German (de)
French (fr)
Inventor
Frédéric Hehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2806827A2 publication Critical patent/EP2806827A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1648Multipart lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses

Definitions

  • the invention relates to the field of ophthalmology, and more particularly intraocular lenses.
  • the invention improves the situation.
  • the invention proposes an intraocular lens, characterized in that it has an optical axis and a central zone and a peripheral zone substantially symmetrical with respect to said optical axis and extending substantially perpendicular thereto, said zone central region extending to a first distance, and the peripheral zone extending from the first distance to the end of the intraocular lens, in which the central zone has a nominal optical power, and the peripheral zone has a a radius of curvature that varies continuously and monotonically as a function of the distance to the optical axis, so that a target asphericity value is obtained at a second distance from the optical axis, the first distance and the second distance being calculated from a photopic pupil diameter and a mesopic pupil diameter of a patient, respectively.
  • the invention also relates to a method for calculating a radius of curvature profile for an intraocular lens which comprises the following steps: receiving biometric parameters of a patient comprising at least a first radius of curvature, a photopic pupil diameter, and a mesopic pupil diameter,
  • calculating a radius of curvature profile in a direction substantially perpendicular to a desired optical axis for the intraocular lens wherein the radius of curvature is equal to the first radius of curvature in a central zone extending between the optical axis and a first distance calculated from at least the photopic pupil diameter, and wherein, in a peripheral zone extending from the first distance to the end of the intraocular lens, the radius of curvature varies continuously and monotonically as a function of from the distance to the optical axis, so that the radius of curvature is equal to the second radius of curvature at the distance of emmetropy with respect to the optical axis.
  • FIG. 1 represents an optical diagram of an eye
  • FIG. 2 represents three keratometric profiles of an eye
  • FIG. 3 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is dilated to the maximum,
  • FIG. 4 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is moderately dilated,
  • FIG. 5 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is dilated to a minimum
  • FIG. 6 represents a profile of radius of curvature of the lens of FIGS. 3 to 5
  • FIG. 7 represents a profile of curvature radius profile of an alternative embodiment of an intraocular lens according to the invention.
  • FIG. 8 represents a profile of the radius of curvature of an alternative embodiment of an intraocular lens according to the invention.
  • FIG. 9 represents an exemplary flow diagram of a method for manufacturing an intraocular lens according to the invention.
  • FIG. 10 shows a diagram of a device for calculating an intraocular lens profile according to the invention, which can be implemented in the method of Figure 9.
  • Figure 1 shows an optical diagram for modeling the vision in an eye.
  • An eye 2 comprises a cornea 4, a pupil 6, a lens 8 and a retina 10.
  • the cornea 4 and the lens 8 act as lenses that concentrate the light rays, the pupil 6 acts as a diaphragm, and the retina as the photoreceptor.
  • the cornea 4 is prolate, and has a spacing with the retina 10 such that all images are formed in a focused manner on the latter (zero spherical aberrations). This is not usually the case.
  • a prolate or slightly hyper-prolate profile is preferred because it allows a better near vision.
  • An oblate profile is penalizing for distant vision, especially at night.
  • the lens 8 complements the cornea 4, and undergoes deformations to allow accommodation for near vision and far vision.
  • the cornea 4 and the crystalline lens 8 can be seen as a focusing assembly 12 whose profile is generally prolate, spherical or oblate.
  • Myopia and hyperopia are two ophthalmological conditions that result in a distorted vision.
  • myopia the eye is too long, and the retina 10 is disposed after the focal plane of the focusing assembly.
  • the rays corresponding to the distant images are not focused correctly and the distance vision is not clear.
  • hyperopia the opposite is true: the eye is too short. However, in this case, accommodation of the crystalline lens may partially compensate for this defect.
  • Another ophthalmological condition is presbyopia.
  • lens 8 may experience progressive opacification, which is also known as cataract.
  • cataract the human eye gradually loses its ability to accommodate (contract) to deform the lens, which is necessary for near vision development (loss of vision). 'accommodation).
  • Cataract is a condition that has been known since antiquity and is very well treated today by means of a surgical procedure in which lens 8 is replaced by an intraocular lens or implant.
  • various types of implants have been developed, in particular to correct myopia or hyperopia. Nevertheless, these implants result in a significant loss of quality with regard to near vision. The situation is even worse when the focus assembly has an oblate profile.
  • This type of lens includes a plurality of "steps", each step acting like a prism that separates the light by means of two foci: one for far vision, and the other for near vision. . Since the lens must be in one piece, the prisms are interconnected by a portion of continuity, and this dichotomy induces annoying light halos, a loss of contrast, and / or a significant deficit in the intermediate vision.
  • a corneal profile can be calculated to treat problems related to near vision without affecting vision from a distance.
  • this treatment will produce a corneal profile worked mainly on the periphery, with a slightly prolate eye.
  • the resulting asphericity is used advantageously to improve near vision, while distant vision is not affected because it is mainly exercised in the center of the eye.
  • This process is called "advanced isovision", and allows each eye to have excellent vision, both refractively and near-aspherically, which is opposes to monovision.
  • the far vision is corrected refractive manner by modifying the coefficient C4, or Z (2.0) called 1 belonging defocus on the 2nd order polynomial, and
  • the intermediate and near vision will be corrected aspherical way, thanks to the negative asphericity of the cornea inducing negative spherical aberration coefficient C12 or Z (4.0) called 2nd defocus belonging to the 4th order polynomial.
  • FIG. 3 represents an axial schematic view of an eye in which an intraocular lens 12 according to the invention has been implanted.
  • the profile of the intraocular lens 12 depends on the corneal profile of the eye 2, as well as the general characteristics of his eye, such as its length, etc. As will also appear, the profile of the intraocular lens 12 depends on a parameter called "useful optical area”.
  • the intraocular lens 12 comes into practically contact with the pupil 6, as the natural lens 8 which is usually located in the posterior chamber, at a short distance from the pupil 6 of about 100 ⁇ . Due to its positioning against the pupil 6, only a restricted portion called useful optical zone will be traversed by light rays.
  • the useful optical zone of the intraocular lens 12 depends directly on the state of dilation of the pupil 6. Indeed, the more it is dilated, the larger the useful optical area.
  • the pupil 6 has been shown in its state of maximum dilatation, or scotopic pupil. In this configuration, the pupil diameter is noted Ps.
  • the pupil 6 has been shown in its average dilation state, or mesopic pupil. In this configuration, the diameter of the pupil is noted Pm.
  • the pupil 6 has been shown in its state of minimal expansion, or photopic pupil. In this configuration, the pupil diameter is denoted Pp.
  • Each of these states can be approximated to a view condition. Indeed, when it is dark, the light is minimal, and the pupil 6 will be dilated between Pm and Ps. Conversely, in daylight, the light is maximum, and the pupil 6 will be dilated. between Pm and Pp.
  • the intraocular lens 12 has a profile. Optimized to work between Pm and Pp.
  • biometrics is performed to determine a parameter of the intraocular lens called power. This parameter is used in particular to choose an implant adapted to the structure of the patient's eye, and allows for example to correct its vision from afar.
  • the power of the implant is based on its anterior and posterior radii of curvature, its thickness, and its refractive index n.
  • the index n is specific to the material which composes the implant, and is determined with respect to a saline solution of refractive index 1.336, at 35 ° C, for a wavelength of 546.1 nm which corresponds to the average wavelength of the spectrum perceived by the human eye.
  • This power is estimated on an optical zone of 3 mm in diameter.
  • the radius of curvature at the center of the intraocular lens 12 corresponding to this nominal power will be noted Rc in the following.
  • the power can be calculated for example by means of a SRK-type formula, which calculates it from an implant-dependent constant A, the length L of the eye, and the central keratometric index of the cornea. of the patient.
  • the target asphericity is therefore fixed, and can take a necessary and sufficient value such as -1.0. And as we saw above, this target value of asphericity must be obtained for the mesopic pupil.
  • the Applicant has therefore created intraocular lenses whose profile of radius of curvature is such that, in a central zone, the power of the intraocular lens is the nominal power derived from the biometry and which corresponds to the radius of curvature Rc, and in a peripheral zone, at a distance corresponding to the mesopic pupil, the radius of curvature is such that the asphericity is -1.0.
  • the distance at which the asphericity obtained must be equal to -1.0 will be called the emmetropia distance and denoted by De.
  • the distance De is an important parameter for the intraocular lens, since it indirectly defines its profile of radius of curvature.
  • the distance De depends on the mesopic pupil Pm.
  • the distance De can be calculated from a function having as its argument the mesopic pupil Pm, as well as the photopic pupil Pp and / or the scotopic pupil Ps. In the examples described with FIGS. 6 to 8, the distance De is equal to Pm 2.
  • the distances, whether Ps, Pm, Pp or De, or other distance are given in mm, along the x axis, which is perpendicular to the axis optical y.
  • FIG. 6 represents a first profile of preferred radius of curvature for an intraocular lens according to the invention.
  • the radius of curvature of the intraocular lens 12 varies according to four zones denoted respectively ZI, Z2, Z3 and Z4.
  • the zone ZI comprises the part the intraocular lens along the x axis which is in the range [-Pp / 2; Pp / 2].
  • the zone ZI corresponds to the zone of the intraocular lens which is useful for distant vision.
  • the radius of curvature of the intraocular lens is equal to the radius of curvature Rc.
  • the zone Z2 comprises the portion of the intraocular lens which is included along the x axis in the ranges [-From; -Pp / 2] and [Pp / 2; De], i.e., [-Pm / 2; -Pp / 2] and [Pp / 2; Pm / 2].
  • the zone Z2 corresponds to the zone of the intraocular lens 12 which is between the photopic pupil Pp and the mesopic pupil Pm, that is to say the zone which is useful for reading or near vision in general.
  • the aim is that the asphericity Q is equal to -1.0 at the distance De.
  • the intraocular lens has a radius of curvature Rp that we can calculate from formula [10] of Annex A.
  • the radius of curvature of the intraocular lens is therefore equal to Rc for x equal -Pp / 2 and to Pp / 2, and to Rp for x equal to -Pm / 2 and Pm / 2.
  • the Applicant has discovered that it is advantageous for the radius of curvature of the intraocular lens in zone Z2 to evolve according to formula [20] of Appendix A. In fact, this profile makes it possible to obtain the desired asphericity in a progressive way.
  • the zone Z3 comprises the portion of the intraocular lens which is included along the x axis in the ranges [- (2De-Pp / 2); -From] and [De; (2De-Pp / 2)], i.e., [- (Pm-Pp / 2); -Pm / 2] and [Pm / 2; (Pp-Pm / 2)].
  • zone Z3 corresponds to the zone of the intraocular lens which is between the photopic pupil Pm and the scotopic pupil Ps, that is to say the area of the pupil which is used for night vision.
  • zone Z4 comprises, in the example described here, the portion of the intraocular lens which is included along the x axis in the ranges [-6.5; - (2De-Pp / 2)] and [(2De-Pp / 2); 6.5], i.e., [-6.5; - (Pm-Pp / 2)] and [(Pm-Pp / 2); 6.5].
  • zone Z4 corresponds to the portion of the intraocular lens that is not exposed to light.
  • the Applicant has discovered that it is advantageous for the radius of curvature of the intraocular lens to be 2Rp-Rc in zone Z4, ie the radius of curvature of the intraocular lens at the end of zone Z3.
  • FIG. 7 represents another embodiment of the intraocular lens according to the invention.
  • the Applicant has considered that the progression in the zone Z3 should be decreased, so that the asphericity does not decrease too much.
  • the zones ZI to Z4 and the values Rc and Rp have not been represented because they are identical to those of FIG.
  • the radius of curvature of the intraocular lens in the zone Z3 changes according to the formula [30] of Annex A, where the coefficient a is a real within the range] 0; 1 [, and chosen in this range, for example according to a ratio C of the formula [40] of Appendix A.
  • the radius of curvature of the intraocular lens in zone Z4 is identical to the radius of curvature of the intraocular lens at the end of the zone Z3, that is to say that it is greater than in the case of FIG. 6. In practice this value is equal to (l + a ) Rp-Rc.
  • FIG. 8 represents yet another embodiment of the intraocular lens according to the invention.
  • the Applicant has simplified the radius of curvature profile of the intraocular lens, so that:
  • the radius of curvature in zones ZI and Z4 is identical to that of the lens of FIG. 6,
  • zone Z3 and zone Z4 may be fused, and have a radius of curvature equal to Rp, for the same purpose as that pursued with the embodiment of FIG. 7.
  • zones Z1 to Z4 and the values Rc and Rp have also not been shown in this figure.
  • the ZI area may be expanded or decreased in width, and the Z3 area may also be expanded or deleted until it merges with the Z2 area or the Z4 area.
  • Zone Z4 can also be delimited not by the value x equal to 2De - Pp / 2, but by the value x equal Ps. In this case, the formulas of Annex A will be adapted. Finally, functions other than the cos () function can be used. It is particularly apparent from these embodiments that the radius of curvature can be described by a continuous mathematical function whose values are between Rc and Rp at least.
  • FIG. 9 represents a schematic flow diagram of a method of manufacturing an intraocular lens according to one of the preceding embodiments.
  • This method begins with an operation 900 in which parameters concerning the patient are received. These parameters are the desired radius of curvature Rc at the center of the intraocular lens or the corresponding nominal power, as well as at least the distances Pp and Pm of the patient. Alternatively, the distance Ps can also be received. Then, in an operation 910, the emmetropia distance De is calculated, either by defining it equal to Pm / 2, or by a function of the distances Pm, as well as Pp and / or Ps. The operation 910 also comprises the calculation a radius of curvature Rp which makes it possible to obtain an asphericity value of -1.0 at the distance -De / 2 and De / 2.
  • the radius of curvature profile of the intraocular lens is calculated in an operation 920, according to one of the profiles described with FIGS. 6 to 8, and by definition of the different zones ZI to Z4. Finally, in an operation 930, the intraocular lens is manufactured according to the profile calculated in step 920.
  • the method of FIG. 9 comprises a method for calculating the radius of curvature profile of an intraocular lens and a manufacturing step based on this profile.
  • FIG. 10 represents a simplified diagram of a device for calculating the radius of curvature profile of an intraocular lens according to the invention.
  • the device 20 comprises a memory 24, a processing unit 26, an interface 28 and a scheduler 30.
  • the memory 24 is in the example described here a conventional storage medium, which can be a hard disk tray or flash memory (SSD), flash memory or ROM, a physical storage medium as a compact disc (CD ), a DVD disc, a Blu-Ray disc, or any other type of physical storage medium.
  • the storage unit 24 can also be deported, on a network storage medium (SAN), or on the Internet, or generally in the "cloud”.
  • the processing unit 26 is a software item executed by a computer that contains them. However, it could be performed in a distributed manner on several computers, or be in the form of a printed circuit (ASIC, FPGA or other), or a dedicated microprocessor (NoC or SoC) to one or more cores.
  • the interface 28 allows a practitioner to enter the biometric parameters relating to a patient for whom the radius of curvature profile calculation is desired, and to adjust some of these parameters if necessary.
  • the interface 28 may be electronic, that is to say be a link between the device 20 and another device allowing the practitioner to interact with the device 20.
  • the interface 28 can also integrate such a device, and understand for example a display and / or speakers, to allow communication with the practitioner.
  • the scheduler 30 selectively controls the processing unit 26 and the interface 28, and accesses the memory 24 to implement the processes of the method of FIG. 9. It follows from the foregoing that the Applicant has discovered a lens intraocular whose profile radius of curvature can treat both myopia / hyperopia, astigmatism_and presbyopia. This is obtained by the definition of a continuous and monotonous radius of curvature profile (strictly or in the broad sense) which associates two values of radius of curvature (Rc and Rp) one of which (that corresponding to Rc) corresponds to a nominal optical power determined in a conventional manner.
  • the radius of curvature profile comprises a central zone (ZI) in which the optical power is nominal, and a peripheral zone (Z2, Z3, Z4) in which the optical power varies, so that a target value of asphericity (-1.0) is obtained at a selected distance (De) from the optical axis.
  • the zone Z2 can be seen as an emmetropia zone, the zone Z3 as an intermediate zone, and the zone Z4 as an end zone, the zones Z3 and Z4 defining between them an external zone.
  • the profile thus defined does not require a solution of continuity or step, and therefore does not induce halos or loss of contrast.
  • spherical aberrations produced are like a property added to the refractive characteristic, given by the central power of the implant, and they are created by the peripheral lowering of the radius of curvature of the implant. This is especially achieved through the use of optical effects not used in known intraocular lenses. Indeed, until the discovery of the Applicant, it was considered that only Zernicke polynomials of order 2 were exploitable.
  • the lens of the invention has been described in order to obtain an asphericity equal to -1.0 at the second distance.
  • the device may have the following characteristics: the peripheral zone (Z2, Z3, Z4) comprises an emmetropia zone (Z2) extending between the first distance (Pp / 2) and the second distance ( De), in which the radius of curvature varies continuously and strictly monotonically in the emmetropia zone (Z2),
  • the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20]) in the emmetropia zone (Z2).
  • the radius of curvature varies linearly as a function of the distance to the optical axis in the emmetropia zone (Z2),
  • the peripheral zone (Z2, Z3, Z4) comprises an external zone (Z3, Z4), extending beyond the second distance (De), in which the radius of curvature varies continuously and monotonously,
  • the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the external zone (Z3, Z4),
  • the radius of curvature varies linearly as a function of the distance to the optical axis in the outer zone (Z3, Z4).
  • the radius of curvature is substantially constant in the outer zone (Z3, Z4)
  • the outer zone (Z3, Z4) comprises an intermediate zone (Z3) extending between the second distance (De / 2) and a third distance (2De-Pp / 2), and an end zone (Z4) s' extending between the third distance (De-Pp / 2) and the end of the lens, the third distance (2De-Pp / 2) being calculated from a mesopic pupil diameter (Pm) and a diameter of photopic pupil (Pp) of a patient,
  • the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the intermediate zone (Z3),
  • the radius of curvature varies linearly as a function of the distance to the optical axis in the intermediate zone (Z3), and
  • the radius of curvature is substantially constant in the end zone (Z4).
  • intraocular lenses are composed of a central part called “optical” of the implant used to correct the vision on a diameter of 6 to 6.5 mm, connected to a number of “haptics” used for centering and stability of the intraocular lens in the crystalline sac.
  • Intraocular lenses can be monobloc, or with attached handles also called three-piece implant.
  • the invention described above focuses on the "optical” part of the lens, and is therefore not restricted to a specific type of haptic.
  • the invention relates to a spherical, or spherocylindrical, intraocular lens for correcting associated astigmatism. It can be made in various types of hydrophilic, hydrophobic, liquid, etc. materials.
  • the variation of the asphericity Q could be obtained not by variation of the radius of curvature, but by variation of the index n of the material between its center and its periphery.
  • other target Q values other than -1.00 such as -1, 05 or -1, 10, or others may also be obtained.
  • the invention also relates to a method of manufacturing an intraocular lens, in which a profile of radius of curvature is determined according to the method of calculating the radius of curvature profile described above, and in which an intraocular lens is manufactured according to this method. profile of radius of curvature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Prostheses (AREA)

Abstract

The invention relates to an intraocular lens having an optical axis, and a central area and a peripheral area which are substantially symmetrical relative to said optical axis and extend substantially perpendicular thereto, said central area extending up to a first distance, and the peripheral area extending from the first distance until the end of the intraocular lens, wherein the central area has nominal optical power, and the peripheral area has a radius of curvature that varies in a continuous, monotonic manner in accordance with the distance to the optical axis, such that a target asphericity value is obtained at a second distance from the optical axis, the first distance and the second distance being calculated from a photopic pupil diameter and a mesopic pupil diameter of a patient, respectively.

Description

Lentille intraoculaire améliorée et procédé de fabrication correspondant  Improved intraocular lens and method of manufacture thereof
L'invention concerne le domaine de l'ophtalmologie, et plus particulièrement les lentilles intraoculaires. The invention relates to the field of ophthalmology, and more particularly intraocular lenses.
Le domaine des lentilles intraoculaires a connu de nombreuses découvertes et progressions ces dix dernières années. En effet, le traitement de la cataracte est devenu une opération classique et maîtrisée. Pour autant, ce domaine reste un domaine à la pointe de la recherche, et dans lequel la maturité des méthodes reste relative. Cela se traduit notamment par le fait qu'il n'existe pas à ce jour de lentille intraoculaire qui permette de corriger à la fois la myopie (ou l'hypermétropie) et la presbytie de manière satisfaisante. En effet, les seuls implants qui visent à résoudre ce problème sont des lentilles multifocales, qui sont sources de halos qui peuvent être très gênants. The field of intraocular lenses has seen many discoveries and progress over the past ten years. Indeed, the treatment of cataract has become a classic and controlled operation. However, this field remains a field at the forefront of research, and in which the maturity of the methods remains relative. This is reflected in particular by the fact that there is currently no intraocular lens that can correct both myopia (or hyperopia) and presbyopia satisfactorily. Indeed, the only implants that aim to solve this problem are multifocal lenses, which are sources of halos that can be very troublesome.
L'invention vient améliorer la situation. The invention improves the situation.
A cet effet, l'invention propose une lentille intraoculaire, caractérisée en ce qu'elle présente un axe optique et une zone centrale et une zone périphérique sensiblement symétriques par rapport audit axe optique et s'étendant sensiblement perpendiculairement à celui-ci, ladite zone centrale s'étendant jusqu'à une première distance, et la zone périphérique s'étendant de la première distance jusqu'à l'extrémité de la lentille intraoculaire, dans laquelle la zone centrale présente une puissance optique nominale, et la zone périphérique présente un rayon de courbure variant de manière continue et monotone en fonction de l'éloignement à l'axe optique, de telle sorte qu'une valeur d'asphéricité cible est obtenue à une seconde distance par rapport à l'axe optique, la première distance et la deuxième distance étant calculées à partir respectivement d'un diamètre de pupille photopique et d'un diamètre de pupille mésopique d'un patient. For this purpose, the invention proposes an intraocular lens, characterized in that it has an optical axis and a central zone and a peripheral zone substantially symmetrical with respect to said optical axis and extending substantially perpendicular thereto, said zone central region extending to a first distance, and the peripheral zone extending from the first distance to the end of the intraocular lens, in which the central zone has a nominal optical power, and the peripheral zone has a a radius of curvature that varies continuously and monotonically as a function of the distance to the optical axis, so that a target asphericity value is obtained at a second distance from the optical axis, the first distance and the second distance being calculated from a photopic pupil diameter and a mesopic pupil diameter of a patient, respectively.
L'invention concerne également un procédé de calcul d'un profil de rayon de courbure pour une lentille intraoculaire qui comprend les étapes suivantes : recevoir des paramètres de biométrie d'un patient comprenant au moins un premier rayon de courbure, un diamètre de pupille photopique, et un diamètre de pupille mésopique, The invention also relates to a method for calculating a radius of curvature profile for an intraocular lens which comprises the following steps: receiving biometric parameters of a patient comprising at least a first radius of curvature, a photopic pupil diameter, and a mesopic pupil diameter,
déterminer une distance d'emmétropie à partir au moins du diamètre de pupille mésopique, et un deuxième rayon de courbure à partir du premier rayon de courbure et d'une valeur d'asphéricité cible,  determining an emmetropia distance from at least the mesopic pupil diameter, and a second radius of curvature from the first radius of curvature and a target asphericity value,
calculer un profil de rayon de courbure dans une direction sensiblement perpendiculaire à un axe optique souhaité pour la lentille intraoculaire, dans lequel le rayon de courbure est égal au premier rayon de courbure dans une zone centrale s 'étendant entre l'axe optique et une première distance calculée à partir au moins du diamètre de pupille photopique, et dans lequel, dans une zone périphérique s'étendant de la première distance jusqu'à l'extrémité de la lentille intraoculaire, le rayon de courbure varie de manière continue et monotone en fonction de l'éloignement à l'axe optique, de telle sorte que le rayon de courbure est égal au deuxième rayon de courbure à la distance d'emmétropie par rapport à l'axe optique.  calculating a radius of curvature profile in a direction substantially perpendicular to a desired optical axis for the intraocular lens, wherein the radius of curvature is equal to the first radius of curvature in a central zone extending between the optical axis and a first distance calculated from at least the photopic pupil diameter, and wherein, in a peripheral zone extending from the first distance to the end of the intraocular lens, the radius of curvature varies continuously and monotonically as a function of from the distance to the optical axis, so that the radius of curvature is equal to the second radius of curvature at the distance of emmetropy with respect to the optical axis.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, tirée d'exemples donnés à titre illustratif et non limitatif, tirés des dessins sur lesquels : Other features and advantages of the invention will appear better on reading the following description, taken from examples given for illustrative and non-limiting purposes, taken from the drawings in which:
- la figure 1 représente un schéma optique d'un œil,  FIG. 1 represents an optical diagram of an eye,
- la figure 2 représente trois profils kératométriques d'un œil,  FIG. 2 represents three keratometric profiles of an eye,
- la figure 3 représente une vue schématique d'un œil dans lequel une lentille intraoculaire selon l'invention est implantée, et dans lequel la pupille est dilatée au maximum,  FIG. 3 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is dilated to the maximum,
- la figure 4 représente une vue schématique d'un œil dans lequel une lentille intraoculaire selon l'invention est implantée, et dans lequel la pupille est moyennement dilatée,  FIG. 4 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is moderately dilated,
- la figure 5 représente une vue schématique d'un œil dans lequel une lentille intraoculaire selon l'invention est implantée, et dans lequel la pupille est dilatée au minimum, - la figure 6 représente un schéma de profil de rayon de courbure de la lentille des figures 3 à 5, FIG. 5 represents a schematic view of an eye in which an intraocular lens according to the invention is implanted, and in which the pupil is dilated to a minimum, FIG. 6 represents a profile of radius of curvature of the lens of FIGS. 3 to 5,
- la figure 7 représente un schéma de profil de rayon de courbure d'un mode de réalisation en variante d'une lentille intraoculaire selon l'invention,  FIG. 7 represents a profile of curvature radius profile of an alternative embodiment of an intraocular lens according to the invention,
- la figure 8 représente un schéma de profil de rayon de courbure d'un mode de réalisation en variante d'une lentille intraoculaire selon l'invention, FIG. 8 represents a profile of the radius of curvature of an alternative embodiment of an intraocular lens according to the invention,
- la figure 9 représente un diagramme de flux en exemple d'un procédé de fabrication d'une lentille intraoculaire selon l'invention, et  FIG. 9 represents an exemplary flow diagram of a method for manufacturing an intraocular lens according to the invention, and
- la figure 10 représente un schéma d'un dispositif de calcul d'un profil de lentille intraoculaire selon l'invention, pouvant être mis en œuvre dans le procédé de la figure 9.  - Figure 10 shows a diagram of a device for calculating an intraocular lens profile according to the invention, which can be implemented in the method of Figure 9.
Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. The drawings and the description below contain, for the most part, elements of a certain character. They can therefore not only serve to better understand the present invention, but also contribute to its definition, if any.
En outre, la description détaillée est augmentée de l'annexe A, qui donne la formulation de certaines formules mathématiques mises en œuvre dans le cadre de l'invention. Cette Annexe est mise à part dans un but de clarification, et pour faciliter les renvois. Elle est partie intégrante de la description, et pourra donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. In addition, the detailed description is augmented by Appendix A, which gives the formulation of certain mathematical formulas implemented in the context of the invention. This Annex is set aside for the purpose of clarification and to facilitate referrals. It is an integral part of the description, and can therefore not only serve to better understand the present invention, but also contribute to its definition, if any.
La figure 1 représente un schéma optique permettant de modéliser la vision dans un œil. Un œil 2 comprend une cornée 4, une pupille 6, un cristallin 8 et une rétine 10. Figure 1 shows an optical diagram for modeling the vision in an eye. An eye 2 comprises a cornea 4, a pupil 6, a lens 8 and a retina 10.
La cornée 4 et le cristallin 8 jouent le rôle de lentilles qui concentrent les rayons lumineux, la pupille 6 joue le rôle d'un diaphragme, et la rétine 10 celui de photorécepteur. Idéalement, la cornée 4 est prolate, et présente un écartement avec la rétine 10 tel que l'ensemble des images se forment de manière focalisée sur cette dernière (aberrations sphériques nulles). Cela n'est en général pas le cas. Comme on peut le voir sur la figure 2, il existe trois types principaux de profils cornéens : The cornea 4 and the lens 8 act as lenses that concentrate the light rays, the pupil 6 acts as a diaphragm, and the retina as the photoreceptor. Ideally, the cornea 4 is prolate, and has a spacing with the retina 10 such that all images are formed in a focused manner on the latter (zero spherical aberrations). This is not usually the case. As can be seen in Figure 2, there are three main types of corneal profiles:
- le profil prolate, pour lequel l'indice kératométrique est légèrement supérieur au centre qu'en périphérie, ce qui induit une asphéricité Q < 0, avec hachures en trait simple sur la figure 2,  the prolate profile, for which the keratometric index is slightly greater at the center than at the periphery, which induces an asphericity Q <0, with simple line hatching in FIG. 2,
- le profil sphérique, pour lequel l'indice kératométrique est constant sur l'œil (Q= 0), et the spherical profile, for which the keratometric index is constant on the eye (Q = 0), and
- le profil oblate, pour lequel l'indice kératométrique est légèrement inférieur au centre qu'en périphérie, ce qui induit une asphéricité Q > 0, avec hachures en double trait sur la figure 2. the oblate profile, for which the keratometric index is slightly lower than the center than at the periphery, which induces an asphericity Q> 0, with double hatching in FIG.
D'une manière générale, un profil prolate ou légèrement hyper-prolate est préféré, car cela permet une meilleure vision de près. Un profil oblate est pénalisant pour la vision de loin, en particulier la nuit. Le cristallin 8 vient en complément de la cornée 4, et subit des déformations afin de permettre l'accommodation pour la vision de près et pour la vision de loin. De fait la cornée 4 et le cristallin 8 peuvent être vus comme un ensemble de focalisation 12, dont le profil est globalement prolate, sphérique ou oblate. La myopie et l'hypermétropie sont deux conditions ophtalmologiques qui ont pour conséquence une vision faussée. Dans le cas de la myopie, l'œil est trop long, et la rétine 10 est disposée après le plan focal de l'ensemble de focalisation. De ce fait, les rayons correspondant aux images éloignées ne sont pas focalisés correctement et la vision de loin n'est pas claire. Dans le cas de l'hypermétropie, c'est l'inverse : l'œil est trop court. Cependant, dans ce cas, l'accommodation du cristallin peut compenser en partie ce défaut. Une autre condition ophtalmologique est la presbytie. In general, a prolate or slightly hyper-prolate profile is preferred because it allows a better near vision. An oblate profile is penalizing for distant vision, especially at night. The lens 8 complements the cornea 4, and undergoes deformations to allow accommodation for near vision and far vision. In fact, the cornea 4 and the crystalline lens 8 can be seen as a focusing assembly 12 whose profile is generally prolate, spherical or oblate. Myopia and hyperopia are two ophthalmological conditions that result in a distorted vision. In the case of myopia, the eye is too long, and the retina 10 is disposed after the focal plane of the focusing assembly. As a result, the rays corresponding to the distant images are not focused correctly and the distance vision is not clear. In the case of hyperopia, the opposite is true: the eye is too short. However, in this case, accommodation of the crystalline lens may partially compensate for this defect. Another ophthalmological condition is presbyopia.
Au fur et à mesure que les personnes vieillissent, ou suite à certains traumatismes, le cristallin 8 peut subir une opacifïcation progressive, qui est également connue sous le nom de cataracte. De plus, à partir d'environ 40 ans, l'œil humain perd peu à peu sa capacité à accommoder (se contracter) pour déformer le cristallin, ce qui est nécessaire pour la mise au point dans la vision de près (perte de l'accommodation). La cataracte est une affection connue depuis l'antiquité, et qui est très bien traitée de nos jours au moyen d'une intervention chirurgicale au cours de laquelle le cristallin 8 est remplacé par une lentille intraoculaire ou implant. Afin de tenir compte des problèmes de vue préexistants chez le patient, divers types d'implants ont été développés, notamment pour corriger la myopie ou l'hypermétropie. Néanmoins, ces implants ont pour conséquence une perte de qualité importante en ce qui concerne la vision de près. La situation est encore pire lorsque l'ensemble de focalisation présente un profil oblate. Pour compenser la presbytie, il est possible de rajouter une loupe, mais cela est gênant. Il apparaît donc qu'il n'est pas possible à ce jour de traiter avec une lentille intraoculaire à la fois la myopie et la presbytie, ni même de traiter l'un des deux isolément sans pénaliser soit la vision de loin, soit la vision de près. Les seules lentilles intraoculaires qui existent dans ce but sont dites « multifocales diffractives », utilisent le principe de la lentille de Augustin Fresnel (1788-1827) décrite en 1822, principe qui, mis à part l'apodisation, n'a guère été amélioré. As people age, or as a result of some trauma, lens 8 may experience progressive opacification, which is also known as cataract. In addition, at around age 40, the human eye gradually loses its ability to accommodate (contract) to deform the lens, which is necessary for near vision development (loss of vision). 'accommodation). Cataract is a condition that has been known since antiquity and is very well treated today by means of a surgical procedure in which lens 8 is replaced by an intraocular lens or implant. In order to take into account pre-existing sight problems in the patient, various types of implants have been developed, in particular to correct myopia or hyperopia. Nevertheless, these implants result in a significant loss of quality with regard to near vision. The situation is even worse when the focus assembly has an oblate profile. To compensate for presbyopia, it is possible to add a magnifying glass, but this is embarrassing. It therefore appears that it is not possible today to treat myopia and presbyopia with an intraocular lens, or even to treat one of the two in isolation without penalizing either distant vision or vision. from close. The only intraocular lenses that exist for this purpose are called "diffractive multifocal", use the principle of the Augustin Fresnel lens (1788-1827) described in 1822, a principle which, apart from apodization, has hardly been improved. .
Ce type de lentille comprend une pluralité de « marches », chaque marche agissant à la manière d'un prisme qui sépare la lumière au moyen de deux foyers : l'un pour la vision de loin, et l'autre pour la vision de près. La lentille devant être d'un seul tenant, les prismes sont reliés entre eux par une portion de continuité, et cette dichotomie induit des halos lumineux gênants, une perte de contraste, et/ou un déficit important de la vision intermédiaire. This type of lens includes a plurality of "steps", each step acting like a prism that separates the light by means of two foci: one for far vision, and the other for near vision. . Since the lens must be in one piece, the prisms are interconnected by a portion of continuity, and this dichotomy induces annoying light halos, a loss of contrast, and / or a significant deficit in the intermediate vision.
D'autres méthodes consistent à utiliser une lentille intraoculaire traitant la vision de près pour un œil, et une lentille intraoculaire traitant la vision de loin pour l'autre œil. Ces traitements réalisent une bascule appelée monovision. Cependant, cela ne donne pas de résultats satisfaisants. Other methods include using an intraocular lens treating near vision for one eye, and an intraocular lens treating distant vision for the other eye. These treatments perform a flip-flop called monovision. However, this does not give satisfactory results.
Les travaux du Demandeur l'ont amené à étudier les profils cornéens pour leur traitement par laser. Plus précisément, le Demandeur a découvert qu'un profil cornéen peut être calculé pour traiter les problèmes liés à la vision de près sans affecter la vision de loin. The Applicant's work led him to study the corneal profiles for their laser treatment. Specifically, the Applicant has discovered that a corneal profile can be calculated to treat problems related to near vision without affecting vision from a distance.
Une explication simplifiée est que ce traitement va produire un profil cornéen travaillé principalement en périphérie, avec un œil légèrement prolate. L'asphéricité qui en découle est utilisée avantageusement pour améliorer la vision de près, tandis que la vision de loin n'est pas affectée, car elle s'exerce principalement au centre de l'œil. Ce procédé est appelé « iso vision avancée » (« advanced isovision » en anglais), et permet à chaque œil d'avoir une excellente vision, à la fois de loin de manière réfractive, et de près de manière asphérique, ce qui s'oppose à la monovision. A simplified explanation is that this treatment will produce a corneal profile worked mainly on the periphery, with a slightly prolate eye. The resulting asphericity is used advantageously to improve near vision, while distant vision is not affected because it is mainly exercised in the center of the eye. This process is called "advanced isovision", and allows each eye to have excellent vision, both refractively and near-aspherically, which is opposes to monovision.
En effet si l'on se réfère aux polynômes de Zernike : Indeed, if we refer to the polynomials of Zernike:
la vision de loin sera corrigée de manière réfractive par une modification du coefficient C4, ou Z(2,0), appelé 1er défocus appartenant au 2eme ordre polynomial, et the far vision is corrected refractive manner by modifying the coefficient C4, or Z (2.0) called 1 belonging defocus on the 2nd order polynomial, and
la vision intermédiaire et de près seront corrigées de manière asphérique, grâce à l'asphéricité négative de la cornée induisant des aberrations sphériques négatives de coefficient C12 ou Z(4,0), appelé 2eme défocus appartenant au 4ème ordre polynomial. the intermediate and near vision will be corrected aspherical way, thanks to the negative asphericity of the cornea inducing negative spherical aberration coefficient C12 or Z (4.0) called 2nd defocus belonging to the 4th order polynomial.
Il est donc possible d'utiliser deux types de corrections optiques, respectivement de loin et de près, qui utilisent des ordres polynomiaux différents, respectivement de niveau deux Z(2 ,0) d'équation polaire (2p2 - 1), et de niveau quatre Z(4 ,0) d'équation polaire (6p4 - 6p2 +1). Ces corrections ne sont donc pas en compétition, mais sont au contraire complémentaires. It is therefore possible to use two types of optical corrections, far and near respectively, which use different polynomial orders, respectively of two level Z (2, 0) of polar equation (2p 2 - 1), and of level four Z (4, 0) of polar equation (6p 4 - 6p 2 +1). These corrections are not in competition, but are instead complementary.
Un tel système optique ne divise pas la lumière en deux, et permet d'atteindre une vision 20/20 Jl en monoculaire, sans compromis ni en vision de loin, ni en vision de près, ni en vision intermédiaire, et sans perte de contraste. En poussant ces recherches, le Demandeur a étendu ses travaux aux lentilles intraoculaires, et a notamment découvert comment celles-ci peuvent être profilées afin de traiter à la fois la vision de près et la vision de loin. La figure 3 représente une vue schématique axiale d'un œil dans lequel une lentille intraoculaire 12 selon l'invention a été implantée. Such an optical system does not divide the light in half, and allows to reach a vision 20/20 Jl in monocular, without compromise neither in distant vision, in near vision, or in intermediate vision, and without loss of contrast . By pushing this research, the Applicant has extended its work to intraocular lenses, including how they can be profiled to treat both near vision and far vision. FIG. 3 represents an axial schematic view of an eye in which an intraocular lens 12 according to the invention has been implanted.
Comme on le verra dans ce qui suit, le profil de la lentille intraoculaire 12 dépend du profil cornéen de l'œil 2, ainsi que des caractéristiques générales de son œil, comme sa longueur etc. Comme cela apparaîtra également, le profil de la lentille intraoculaire 12 dépend d'un paramètre appelé « zone optique utile ». As will be seen in what follows, the profile of the intraocular lens 12 depends on the corneal profile of the eye 2, as well as the general characteristics of his eye, such as its length, etc. As will also appear, the profile of the intraocular lens 12 depends on a parameter called "useful optical area".
En effet, lorsqu'elle est implantée, la lentille intraoculaire 12 vient pratiquement au contact de la pupille 6, comme le cristallin naturel 8 qui est habituellement situé dans la chambre postérieure, à une faible distance de la pupille 6 d'environ 100 μιη. Du fait de son positionnement contre la pupille 6, seule une partie restreinte dite zone optique utile sera traversée par des rayons lumineux. Indeed, when implanted, the intraocular lens 12 comes into practically contact with the pupil 6, as the natural lens 8 which is usually located in the posterior chamber, at a short distance from the pupil 6 of about 100 μιη. Due to its positioning against the pupil 6, only a restricted portion called useful optical zone will be traversed by light rays.
La zone optique utile de la lentille intraoculaire 12 dépend directement de l'état de dilatation de la pupille 6. En effet, plus celle-ci est dilatée, plus grande est la zone optique utile. The useful optical zone of the intraocular lens 12 depends directly on the state of dilation of the pupil 6. Indeed, the more it is dilated, the larger the useful optical area.
Sur la figure 3, la pupille 6 a été représentée dans son état de dilatation maximale, ou pupille scotopique. Dans cette configuration, le diamètre de la pupille est noté Ps. Sur la figure 4, la pupille 6 a été représentée dans son état de dilatation moyen, ou pupille mésopique. Dans cette configuration, le diamètre de la pupille est noté Pm. Sur la figure 5, la pupille 6 a été représentée dans son état de dilatation minimale, ou pupille photopique. Dans cette configuration, le diamètre de la pupille est noté Pp. Chacun de ces états peut être rapproché d'une condition de vue. En effet, lorsqu'il fait nuit, la lumière est minimale, et la pupille 6 sera donc dilatée entre Pm et Ps. Inversement, en plein jour, la lumière est maximale, et la pupille 6 sera donc dilatée entre Pm et Pp. Pour des raisons assez évidentes, la lecture est en général associée à ce dernier cas, c'est-à-dire lorsque la pupille 6 est dilatée entre Pm et Pp. Par conséquent, la lentille intraoculaire 12 présente un profil optimisé pour fonctionner entre Pm et Pp. Avant une opération de la cataracte, le patient est soumis à divers tests, également appelés biométrie. La biométrie est réalisée afin de déterminer un paramètre de la lentille intraoculaire appelé puissance. Ce paramètre sert notamment à choisir un implant adapté à la structure de l'œil du patient, et permet par exemple de corriger sa vision de loin. In Figure 3, the pupil 6 has been shown in its state of maximum dilatation, or scotopic pupil. In this configuration, the pupil diameter is noted Ps. In FIG. 4, the pupil 6 has been shown in its average dilation state, or mesopic pupil. In this configuration, the diameter of the pupil is noted Pm. In Figure 5, the pupil 6 has been shown in its state of minimal expansion, or photopic pupil. In this configuration, the pupil diameter is denoted Pp. Each of these states can be approximated to a view condition. Indeed, when it is dark, the light is minimal, and the pupil 6 will be dilated between Pm and Ps. Conversely, in daylight, the light is maximum, and the pupil 6 will be dilated. between Pm and Pp. For fairly obvious reasons, the reading is generally associated with the latter case, that is to say when the pupil 6 is dilated between Pm and Pp. Therefore, the intraocular lens 12 has a profile. Optimized to work between Pm and Pp. Before a cataract operation, the patient is subjected to various tests, also called biometrics. Biometrics is performed to determine a parameter of the intraocular lens called power. This parameter is used in particular to choose an implant adapted to the structure of the patient's eye, and allows for example to correct its vision from afar.
Dans les faits, la puissance de l'implant repose sur ses rayons de courbures antérieur et postérieur, son épaisseur, et son indice de réfraction n. L'indice n est propre au matériau qui compose l'implant, et est déterminé par rapport à une solution saline d'indice de réfraction 1,336, à 35°C, pour une longueur d'onde de 546,1 nm qui correspond à la longueur d'onde moyenne du spectre perçu par l'œil humain. In fact, the power of the implant is based on its anterior and posterior radii of curvature, its thickness, and its refractive index n. The index n is specific to the material which composes the implant, and is determined with respect to a saline solution of refractive index 1.336, at 35 ° C, for a wavelength of 546.1 nm which corresponds to the average wavelength of the spectrum perceived by the human eye.
Cette puissance est estimée sur une zone optique de 3 mm de diamètre. Le rayon de courbure au centre de la lentille intraoculaire 12 correspondant à cette puissance nominale sera noté Rc dans la suite. La puissance peut être par exemple calculée grâce à une formule de type SRK, qui la calcule à partir d'une constante A dépendant de l'implant, de la longueur L de l'œil, et de l'indice kératométrique central de la cornée du patient. This power is estimated on an optical zone of 3 mm in diameter. The radius of curvature at the center of the intraocular lens 12 corresponding to this nominal power will be noted Rc in the following. The power can be calculated for example by means of a SRK-type formula, which calculates it from an implant-dependent constant A, the length L of the eye, and the central keratometric index of the cornea. of the patient.
De nombreuses autres formules pourront être utilisées pour calculer la puissance en fonction des indications thérapeutiques particulières de chaque patient, et donc permettre d'obtenir le rayon de courbure Rc équivalent. Une fois la puissance nominale déterminée, le rayon de courbure Rc est fixé puisqu'il s'agit du rayon de courbure au centre d'une lentille intraoculaire qui présente la puissance nominale. Au cours de ces travaux sur la chirurgie au laser, le Demandeur a découvert que, pour obtenir un traitement simultané de la myopie/hypermétropie et de la presbytie optimal, il faut obtenir un indice central pour l'ensemble de focalisation qui corrige la myopie/hypermétropie, et moduler le profil excentré par rapport à l'axe optique de manière à obtenir une valeur d'asphéricité Q qui dépend de l'âge du patient. Cela est décrit dans la demande de brevet français FR 11/02842. Dans le cas présent, comme la lentille intraoculaire vient remplacer le cristallin, il n'y a plus d'accommodation du tout. L'asphéricité cible est donc fixe, et peut prendre une valeur nécessaire et suffisante comme -1,0. Et comme on l'a vu plus haut, cette valeur cible d'asphéricité doit être obtenue pour la pupille mésopique. Le Demandeur a donc créé des lentilles intraoculaires dont le profil de rayon de courbure est tel que, dans une zone centrale, la puissance de la lentille intraoculaire est la puissance nominale tirée de la biométrie et qui correspond au rayon de courbure Rc, et, dans une zone périphérique, à une distance correspondant à la pupille mésopique, le rayon de courbure est tel que l'asphéricité est de -1,0. D'une manière générale, la distance à laquelle l'asphéricité obtenue doit être égale à -1,0 sera appelée distance d'emmétropie et notée De. Many other formulas can be used to calculate the power according to the particular therapeutic indications of each patient, and thus to obtain the equivalent radius of curvature Rc. Once the nominal power is determined, the radius of curvature Rc is fixed since it is the radius of curvature at the center of an intraocular lens that has the nominal power. In the course of this work on laser surgery, the Applicant has discovered that, in order to obtain simultaneous treatment of myopia / hyperopia and optimal presbyopia, it is necessary to obtain a central index for the focusing assembly that corrects the myopia / hyperopia, and modulate the eccentric profile with respect to the optical axis so as to obtain an asperity value Q which depends on the age of the patient. This is described in the French patent application FR 11/02842. In this case, as the intraocular lens is replacing the lens, there is no more accommodation at all. The target asphericity is therefore fixed, and can take a necessary and sufficient value such as -1.0. And as we saw above, this target value of asphericity must be obtained for the mesopic pupil. The Applicant has therefore created intraocular lenses whose profile of radius of curvature is such that, in a central zone, the power of the intraocular lens is the nominal power derived from the biometry and which corresponds to the radius of curvature Rc, and in a peripheral zone, at a distance corresponding to the mesopic pupil, the radius of curvature is such that the asphericity is -1.0. In general, the distance at which the asphericity obtained must be equal to -1.0 will be called the emmetropia distance and denoted by De.
Comme on le verra plus bas, la distance De est un paramètre important pour la lentille intraoculaire, puisqu'elle définit indirectement son profil de rayon de courbure. D'une manière générale, la distance De dépend de la pupille mésopique Pm. En variante, la distance De pourra être calculée à partir d'une fonction ayant comme argument la pupille mésopique Pm, ainsi que la pupille photopique Pp et/ou la pupille scotopique Ps. Dans les exemples décrits avec les figures 6 à 8, la distance De est égale à Pm 2. Dans ce qui suit, les distances, qu'elles concernent Ps, Pm, Pp ou De, ou une autre distance, sont données en mm, selon l'axe x, qui est perpendiculaire à l'axe optique y. As will be seen below, the distance De is an important parameter for the intraocular lens, since it indirectly defines its profile of radius of curvature. In general, the distance De depends on the mesopic pupil Pm. As a variant, the distance De can be calculated from a function having as its argument the mesopic pupil Pm, as well as the photopic pupil Pp and / or the scotopic pupil Ps. In the examples described with FIGS. 6 to 8, the distance De is equal to Pm 2. In the following, the distances, whether Ps, Pm, Pp or De, or other distance, are given in mm, along the x axis, which is perpendicular to the axis optical y.
Dans les figures 6 à 8, les profils représentés sont basés sur les paramètres suivants : In Figures 6 to 8, the profiles shown are based on the following parameters:
Pp = 1 mm,  Pp = 1 mm,
De = Pm 2 = 3 mm,  De = Pm 2 = 3 mm,
- Rc = 23 dioptries,  Rc = 23 diopters,
Rp = 17 dioptries, et  Rp = 17 diopters, and
a = 0,5. La figure 6 représente un premier profil de rayon de courbure préféré pour une lentille intraoculaire selon l'invention. a = 0.5. FIG. 6 represents a first profile of preferred radius of curvature for an intraocular lens according to the invention.
Dans ce mode de réalisation, le rayon de courbure de la lentille intraoculaire 12 varie selon quatre zones notées respectivement ZI, Z2, Z3 et Z4. In this embodiment, the radius of curvature of the intraocular lens 12 varies according to four zones denoted respectively ZI, Z2, Z3 and Z4.
Dans l'exemple décrit ici, la zone ZI comprend la partie la lentille intraoculaire selon l'axe x qui est comprise dans la plage [-Pp/2 ; Pp/2]. De fait la zone ZI correspond à la zone de la lentille intraoculaire qui est utile pour la vision de loin. Dans la zone ZI, le rayon de courbure de la lentille intraoculaire est égal au rayon de courbure Rc. Ainsi, la vision de loin est assurée. In the example described here, the zone ZI comprises the part the intraocular lens along the x axis which is in the range [-Pp / 2; Pp / 2]. In fact the zone ZI corresponds to the zone of the intraocular lens which is useful for distant vision. In the zone ZI, the radius of curvature of the intraocular lens is equal to the radius of curvature Rc. Thus, vision from afar is assured.
Dans l'exemple décrit ici, la zone Z2 comprend la partie la lentille intraoculaire qui est comprise selon l'axe x dans les plages [-De ; -Pp/2] et [Pp/2 ; De], c'est-à-dire [-Pm/2 ; -Pp/2] et [Pp/2 ; Pm/2]. De fait la zone Z2 correspond à la zone de la lentille intraoculaire 12 qui est comprise entre la pupille photopique Pp et la pupille mésopique Pm, c'est-à-dire la zone qui est utile pour la lecture ou la vision de près en général. Comme on l'a vu plus haut, le but recherché est que l'asphéricité Q soit égal à -1,0 à la distance De. Pour cela, il faut que la lentille intraoculaire ait un rayon de courbure Rp que l'on peut calculer à partir de la formule [10] de l'Annexe A. In the example described here, the zone Z2 comprises the portion of the intraocular lens which is included along the x axis in the ranges [-From; -Pp / 2] and [Pp / 2; De], i.e., [-Pm / 2; -Pp / 2] and [Pp / 2; Pm / 2]. In fact, the zone Z2 corresponds to the zone of the intraocular lens 12 which is between the photopic pupil Pp and the mesopic pupil Pm, that is to say the zone which is useful for reading or near vision in general. . As we saw above, the aim is that the asphericity Q is equal to -1.0 at the distance De. For this, it is necessary that the intraocular lens has a radius of curvature Rp that we can calculate from formula [10] of Annex A.
Dans la zone Z2, le rayon de courbure de la lentille intraoculaire est donc égale à Rc pour x égal -Pp/2 et à Pp/2, et à Rp pour x égal à -Pm/2 et Pm/2. Entre ces valeurs, le Demandeur a découvert qu'il est avantageux que le rayon de courbure de la lentille intraoculaire dans la zone Z2 évolue selon la formule [20] de l'Annexe A. En effet, ce profil permet d'obtenir l'asphéricité voulue de manière progressive. Dans l'exemple décrit ici, la zone Z3 comprend la partie la lentille intraoculaire qui est comprise selon l'axe x dans les plages [-(2De-Pp/2) ; -De] et [De ; (2De-Pp/2)], c'est-à- dire [-(Pm-Pp/2) ; -Pm/2] et [Pm/2 ; (Pm-Pp/2)]. De fait la zone Z3 correspond à la zone de la lentille intraoculaire qui est comprise entre la pupille photopique Pm et la pupille scotopique Ps, c'est-à-dire la zone de la pupille qui est utilisée pour la vision de nuit. In zone Z2, the radius of curvature of the intraocular lens is therefore equal to Rc for x equal -Pp / 2 and to Pp / 2, and to Rp for x equal to -Pm / 2 and Pm / 2. Between these values, the Applicant has discovered that it is advantageous for the radius of curvature of the intraocular lens in zone Z2 to evolve according to formula [20] of Appendix A. In fact, this profile makes it possible to obtain the desired asphericity in a progressive way. In the example described here, the zone Z3 comprises the portion of the intraocular lens which is included along the x axis in the ranges [- (2De-Pp / 2); -From] and [De; (2De-Pp / 2)], i.e., [- (Pm-Pp / 2); -Pm / 2] and [Pm / 2; (Pp-Pm / 2)]. In fact zone Z3 corresponds to the zone of the intraocular lens which is between the photopic pupil Pm and the scotopic pupil Ps, that is to say the area of the pupil which is used for night vision.
Le Demandeur a découvert qu'il est avantageux que le rayon de courbure de la lentille intraoculaire dans la zone Z3 évolue selon la formule [30] de l'Annexe A. En effet, cela harmonise le profil de la lentille intraoculaire avec la zone Z2. The Applicant has discovered that it is advantageous for the radius of curvature of the intraocular lens in zone Z3 to evolve according to formula [30] of Appendix A. In fact, this harmonises the profile of the intraocular lens with zone Z2. .
Enfin, la zone Z4 comprend, dans l'exemple décrit ici, la partie de la lentille intraoculaire qui est comprise selon l'axe x dans les plages [-6,5 ; -(2De-Pp/2)] et [(2De-Pp/2) ; 6,5], c'est-à-dire [-6,5 ; -(Pm-Pp/2)] et [(Pm-Pp/2) ; 6,5]. De fait, la zone Z4 correspond à la partie de la lentille intraoculaire qui n'est pas exposée à la lumière. Finally, zone Z4 comprises, in the example described here, the portion of the intraocular lens which is included along the x axis in the ranges [-6.5; - (2De-Pp / 2)] and [(2De-Pp / 2); 6.5], i.e., [-6.5; - (Pm-Pp / 2)] and [(Pm-Pp / 2); 6.5]. In fact, zone Z4 corresponds to the portion of the intraocular lens that is not exposed to light.
Le Demandeur a découvert qu'il est avantageux que le rayon de courbure de la lentille intraoculaire soit égal à 2Rp-Rc dans la zone Z4, soit le rayon de courbure de la lentille intraoculaire à l'extrémité de la zone Z3. The Applicant has discovered that it is advantageous for the radius of curvature of the intraocular lens to be 2Rp-Rc in zone Z4, ie the radius of curvature of the intraocular lens at the end of zone Z3.
La figure 7 représente un autre mode de réalisation de la lentille intraoculaire selon l'invention. Dans ce mode de réalisation, le Demandeur a considéré que la progression dans la zone Z3 devait être diminuée, afin que l'asphéricité ne diminue pas de manière trop importante. Les zones ZI à Z4 et les valeurs Rc et Rp n'ont pas été représentées car elles sont identiques à celles de la figure 6. FIG. 7 represents another embodiment of the intraocular lens according to the invention. In this embodiment, the Applicant has considered that the progression in the zone Z3 should be decreased, so that the asphericity does not decrease too much. The zones ZI to Z4 and the values Rc and Rp have not been represented because they are identical to those of FIG.
Pour cela, le rayon de courbure de la lentille intraoculaire dans la zone Z3 évolue selon la formule [30] de l'Annexe A, où le coefficient a est un réel compris dans la plage ]0 ; 1[, et choisi dans cette plage, par exemple en fonction d'un rapport C de la formule [40] de l'Annexe A. Afin de préserver la continuité, le rayon de courbure de la lentille intraoculaire dans la zone Z4 est identique au rayon de courbure de la lentille intraoculaire à l'extrémité de la zone Z3, c'est-à-dire qu'elle est plus importante que dans le cas de la figure 6. En pratique cette valeur est égale à (l+a)Rp-Rc. La figure 8 représente encore un autre mode de réalisation de la lentille intraoculaire selon l'invention. Dans ce mode de réalisation, le Demandeur a simplifié le profil de rayon de courbure de la lentille intraoculaire, de sorte que : For this, the radius of curvature of the intraocular lens in the zone Z3 changes according to the formula [30] of Annex A, where the coefficient a is a real within the range] 0; 1 [, and chosen in this range, for example according to a ratio C of the formula [40] of Appendix A. In order to preserve the continuity, the radius of curvature of the intraocular lens in zone Z4 is identical to the radius of curvature of the intraocular lens at the end of the zone Z3, that is to say that it is greater than in the case of FIG. 6. In practice this value is equal to (l + a ) Rp-Rc. FIG. 8 represents yet another embodiment of the intraocular lens according to the invention. In this embodiment, the Applicant has simplified the radius of curvature profile of the intraocular lens, so that:
- le rayon de courbure dans les zones ZI et Z4 est identique à celle de la lentille de la figure 6,  the radius of curvature in zones ZI and Z4 is identical to that of the lens of FIG. 6,
- le rayon de courbure évolue de manière linéaire dans les zones Z2 et Z3, et  the radius of curvature evolves linearly in zones Z2 and Z3, and
- le rayon de courbure est égal à Rp pour x égal à De et -De, c'est-à-dire -Pm/2 et Pm/2. En variante de ce mode de réalisation, la zone Z3 et la zone Z4 peuvent être fusionnées, et présenter un rayon de courbure égal à Rp, dans le même but que celui poursuivi avec le mode de réalisation de la figure 7. Par souci de simplicité, les zones ZI à Z4 et les valeurs Rc et Rp n'ont également pas été représentées sur cette figure. Dans les modes de réalisation qui précèdent, la zone ZI peut être étendue ou diminuée en largeur, et la zone Z3 peut également être étendue ou supprimée, jusqu'à fusion avec la zone Z2 ou la zone Z4. La zone Z4 peut en outre être délimitée non pas par la valeur x égal à 2De - Pp/2, mais par la valeur x égal Ps. Dans ce cas, les formules de l'Annexe A seront adaptées. Enfin, d'autres fonctions que la fonction cos() pourront être utilisées. Il ressort particulièrement de ces modes de réalisations que le rayon de courbure peut être décrit par une fonction mathématique continue dont les valeurs sont comprises entre Rc et Rp au moins.  the radius of curvature is equal to Rp for x equal to De and -De, that is to say -Pm / 2 and Pm / 2. As a variant of this embodiment, zone Z3 and zone Z4 may be fused, and have a radius of curvature equal to Rp, for the same purpose as that pursued with the embodiment of FIG. 7. For the sake of simplicity zones Z1 to Z4 and the values Rc and Rp have also not been shown in this figure. In the foregoing embodiments, the ZI area may be expanded or decreased in width, and the Z3 area may also be expanded or deleted until it merges with the Z2 area or the Z4 area. Zone Z4 can also be delimited not by the value x equal to 2De - Pp / 2, but by the value x equal Ps. In this case, the formulas of Annex A will be adapted. Finally, functions other than the cos () function can be used. It is particularly apparent from these embodiments that the radius of curvature can be described by a continuous mathematical function whose values are between Rc and Rp at least.
La figure 9 représente un diagramme de flux schématique d'un procédé de fabrication d'une lentille intraoculaire selon l'un des modes de réalisation précédents. FIG. 9 represents a schematic flow diagram of a method of manufacturing an intraocular lens according to one of the preceding embodiments.
Ce procédé débute par une opération 900 dans laquelle des paramètres concernant le patient sont reçus. Ces paramètres sont le rayon de courbure Rc voulu au centre de la lentille intraoculaire ou la puissance nominale correspondante, ainsi qu'au moins les distances Pp et Pm du patient. En variante, la distance Ps peut également être reçue. Ensuite, dans une opération 910, la distance d'emmétropie De est calculée, soit en la définissant égale à Pm/2, soit par une fonction des distances Pm, ainsi que Pp et/ou Ps. L'opération 910 comprend également le calcul du rayon de courbure Rp qui permet d'obtenir une valeur d'asphéricité de -1,0 à la distance -De/2 et De/2. This method begins with an operation 900 in which parameters concerning the patient are received. These parameters are the desired radius of curvature Rc at the center of the intraocular lens or the corresponding nominal power, as well as at least the distances Pp and Pm of the patient. Alternatively, the distance Ps can also be received. Then, in an operation 910, the emmetropia distance De is calculated, either by defining it equal to Pm / 2, or by a function of the distances Pm, as well as Pp and / or Ps. The operation 910 also comprises the calculation a radius of curvature Rp which makes it possible to obtain an asphericity value of -1.0 at the distance -De / 2 and De / 2.
Une fois l'opération 910 terminée, le profil de rayon de courbure de la lentille intraoculaire est calculé dans une opération 920, selon l'un des profils décrits avec les figures 6 à 8, et par définition des différentes zones ZI à Z4. Enfin, dans une opération 930, la lentille intraoculaire est fabriquée selon le profil calculé à l'opération 920. Once the operation 910 is completed, the radius of curvature profile of the intraocular lens is calculated in an operation 920, according to one of the profiles described with FIGS. 6 to 8, and by definition of the different zones ZI to Z4. Finally, in an operation 930, the intraocular lens is manufactured according to the profile calculated in step 920.
Il apparaît que le procédé de la figure 9 comprend un procédé de calcul de profil de rayon de courbure d'une lentille intraoculaire et une étape de fabrication sur la base de ce profil. It appears that the method of FIG. 9 comprises a method for calculating the radius of curvature profile of an intraocular lens and a manufacturing step based on this profile.
La figure 10 représente un schéma simplifié d'un dispositif 20 de calcul de profil de rayon de courbure d'une lentille intraoculaire selon l'invention. Le dispositif 20 comprend une mémoire 24, une unité de traitement 26, une interface 28 et un ordonnanceur 30. FIG. 10 represents a simplified diagram of a device for calculating the radius of curvature profile of an intraocular lens according to the invention. The device 20 comprises a memory 24, a processing unit 26, an interface 28 and a scheduler 30.
La mémoire 24 est dans l'exemple décrit ici un support de stockage classique, qui peut être un disque dur à plateau ou à mémoire flash (SSD), de la mémoire flash ou ROM, un support de stockage physique comme un disque compact (CD), un disque DVD, un disque Blu-Ray, ou tout autre type de support de stockage physique. L'unité de stockage 24 peut également être déportée, sur un support de stockage réseau (SAN), ou sur Internet, ou d'une manière générale dans le "cloud". L'unité de traitement 26 est dans l'exemple décrit ici un élément logiciel exécuté par un ordinateur qui les contient. Cependant, elle pourrait être exécutée de manière répartie sur plusieurs ordinateurs, ou être réalisée sous la forme d'un circuit imprimé (ASIC, FPGA ou autre), ou d'un microprocesseur dédié (NoC ou SoC) à un ou plusieurs cœurs. The memory 24 is in the example described here a conventional storage medium, which can be a hard disk tray or flash memory (SSD), flash memory or ROM, a physical storage medium as a compact disc (CD ), a DVD disc, a Blu-Ray disc, or any other type of physical storage medium. The storage unit 24 can also be deported, on a network storage medium (SAN), or on the Internet, or generally in the "cloud". In the example described here, the processing unit 26 is a software item executed by a computer that contains them. However, it could be performed in a distributed manner on several computers, or be in the form of a printed circuit (ASIC, FPGA or other), or a dedicated microprocessor (NoC or SoC) to one or more cores.
L'interface 28 permet à un praticien d'entrer les paramètres de biométrie relatifs à un patient pour lequel le calcul de profil de rayon de courbure est souhaité, et pour ajuster certains de ces paramètres le cas échéant. L'interface 28 peut être électronique, c'est-à- dire être une liaison entre le dispositif 20 et un autre appareil permettant au praticien d'interagir avec le dispositif 20. L'interface 28 peut également intégrer un tel appareil, et comprendre par exemple un affichage et/ou des haut-parleurs, afin de permettre la communication avec le praticien. The interface 28 allows a practitioner to enter the biometric parameters relating to a patient for whom the radius of curvature profile calculation is desired, and to adjust some of these parameters if necessary. The interface 28 may be electronic, that is to say be a link between the device 20 and another device allowing the practitioner to interact with the device 20. The interface 28 can also integrate such a device, and understand for example a display and / or speakers, to allow communication with the practitioner.
L'ordonnanceur 30 commande sélectivement l'unité de traitement 26 et l'interface 28, et accède à la mémoire 24 pour mettre en œuvre les traitements du procédé de la figure 9. II ressort de ce qui précède que le Demandeur a découvert une lentille intraoculaire dont le profil de rayon de courbure permet de traiter à la fois la myopie/hypermétropie, l'astigmatisme_et la presbytie. Cela est obtenu par la définition d'un profil de rayon de courbure continu et monotone (strictement ou au sens large) qui associe deux valeurs de rayon de courbure (Rc et Rp) dont l'une (celle correspondant à Rc) correspond à une puissance optique nominale déterminée de manière classique. The scheduler 30 selectively controls the processing unit 26 and the interface 28, and accesses the memory 24 to implement the processes of the method of FIG. 9. It follows from the foregoing that the Applicant has discovered a lens intraocular whose profile radius of curvature can treat both myopia / hyperopia, astigmatism_and presbyopia. This is obtained by the definition of a continuous and monotonous radius of curvature profile (strictly or in the broad sense) which associates two values of radius of curvature (Rc and Rp) one of which (that corresponding to Rc) corresponds to a nominal optical power determined in a conventional manner.
Ainsi, le profil de rayon de courbure comprend une zone centrale (ZI) dans laquelle la puissance optique est nominale, et une zone périphérique (Z2, Z3, Z4) dans laquelle la puissance optique varie, de sorte qu'une valeur cible d'asphéricité (-1,0) soit obtenue à une distance choisie (De) de l'axe optique. Dans la zone périphérique, la zone Z2 peut être vue comme une zone d'emmétropie, la zone Z3 comme une zone intermédiaire, et la zone Z4 comme une zone d'extrémité, les zones Z3 et Z4 définissant entre elles une zone externe. Contrairement aux lentilles diffractives, le profil ainsi défini ne nécessite pas de solution de continuité, ni de marche, et en conséquence n'induit donc pas de halos, ni de pertes de contraste. En effet, les aberrations sphériques produites sont comme une propriété optique ajoutée à la caractéristique réfractive, donnée par la puissance centrale de l'implant, et elles sont créées par l'abaissement périphérique du rayon de courbure de l'implant. Cela est notamment obtenu grâce à l'utilisation d'effets optiques non utilisés dans les lentilles intraoculaires connues. En effet, jusqu'à la découverte du Demandeur, il était considéré que seuls les polynômes de Zernicke d'ordre 2 étaient exploitables. Thus, the radius of curvature profile comprises a central zone (ZI) in which the optical power is nominal, and a peripheral zone (Z2, Z3, Z4) in which the optical power varies, so that a target value of asphericity (-1.0) is obtained at a selected distance (De) from the optical axis. In the peripheral zone, the zone Z2 can be seen as an emmetropia zone, the zone Z3 as an intermediate zone, and the zone Z4 as an end zone, the zones Z3 and Z4 defining between them an external zone. Unlike diffractive lenses, the profile thus defined does not require a solution of continuity or step, and therefore does not induce halos or loss of contrast. Indeed, spherical aberrations produced are like a property added to the refractive characteristic, given by the central power of the implant, and they are created by the peripheral lowering of the radius of curvature of the implant. This is especially achieved through the use of optical effects not used in known intraocular lenses. Indeed, until the discovery of the Applicant, it was considered that only Zernicke polynomials of order 2 were exploitable.
On notera que la lentille de l'invention a été décrite dans le but d'obtenir une asphéricité égale à -1,0 à la deuxième distance. Dans le cas plus général, si une valeur différente d' asphéricité cible est voulue, il suffit de changer la valeur du rayon de courbure Rp à la deuxième distance, selon la formule [50] de l'Annexe A. Note that the lens of the invention has been described in order to obtain an asphericity equal to -1.0 at the second distance. In the more general case, if a different target asphericity value is desired, it is sufficient to change the value of the radius of curvature Rp to the second distance, according to the formula [50] of Annex A.
Dans différentes variantes, le dispositif pourra présenter les caractéristiques suivantes : - la zone périphérique (Z2, Z3, Z4) comprend une zone d'emmétropie (Z2), s'étendant entre la première distance (Pp/2) et la deuxième distance (De), dans laquelle le rayon de courbure varie de manière continue et strictement monotone dans la zone d ' emmétropie (Z2) , In different variants, the device may have the following characteristics: the peripheral zone (Z2, Z3, Z4) comprises an emmetropia zone (Z2) extending between the first distance (Pp / 2) and the second distance ( De), in which the radius of curvature varies continuously and strictly monotonically in the emmetropia zone (Z2),
le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20]) dans la zone d'emmétropie (Z2). le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone d'emmétropie (Z2),  the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20]) in the emmetropia zone (Z2). the radius of curvature varies linearly as a function of the distance to the optical axis in the emmetropia zone (Z2),
la zone périphérique (Z2, Z3, Z4) comprend une zone externe (Z3, Z4), s'étendant au-delà la deuxième distance (De), dans laquelle le rayon de courbure varie de manière continue et monotone,  the peripheral zone (Z2, Z3, Z4) comprises an external zone (Z3, Z4), extending beyond the second distance (De), in which the radius of curvature varies continuously and monotonously,
le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20], ([30]) dans la zone externe (Z3, Z4),  the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the external zone (Z3, Z4),
le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone externe (Z3, Z4).  the radius of curvature varies linearly as a function of the distance to the optical axis in the outer zone (Z3, Z4).
le rayon de courbure est sensiblement constant dans la zone externe (Z3, Z4), la zone externe (Z3, Z4) comprend une zone intermédiaire (Z3) s 'étendant entre la deuxième distance (De/2) et une troisième distance (2De-Pp/2), et une zone d'extrémité (Z4) s'étendant entre la troisième distance (De-Pp/2) et l'extrémité de la lentille, la troisième distance (2De-Pp/2) étant calculée à partir d'un diamètre de pupille mésopique (Pm) et d'un diamètre de pupille photopique (Pp) d'un patient, the radius of curvature is substantially constant in the outer zone (Z3, Z4), the outer zone (Z3, Z4) comprises an intermediate zone (Z3) extending between the second distance (De / 2) and a third distance (2De-Pp / 2), and an end zone (Z4) s' extending between the third distance (De-Pp / 2) and the end of the lens, the third distance (2De-Pp / 2) being calculated from a mesopic pupil diameter (Pm) and a diameter of photopic pupil (Pp) of a patient,
le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20], ([30]) dans la zone intermédiaire (Z3),  the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the intermediate zone (Z3),
le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone intermédiaire (Z3), et  the radius of curvature varies linearly as a function of the distance to the optical axis in the intermediate zone (Z3), and
le rayon de courbure est sensiblement constant dans la zone d'extrémité (Z4).  the radius of curvature is substantially constant in the end zone (Z4).
On rappellera que les lentilles intraoculaires sont composées d'une partie centrale dite « optique » de l'implant servant à corriger la vision sur un diamètre de 6 à 6,5 mm, reliée à une plusieurs « haptiques » servant au centrage et à la stabilité de la lentille intraoculaire dans le sac cristallinien. Les lentilles intraoculaires peuvent être monobloc, ou à anses rapportées également appelées implant trois pièces. L'invention décrite plus haut se concentre sur la partie « optique » de la lentille, et n'est donc pas restreinte à un type spécifique d'haptique. D'une manière générale, l'invention concerne une lentille intraoculaire sphérique, ou sphérocylindrique pour corriger un astigmatisme associé. Elle peut être réalisée dans divers type de matériaux hydrophyles , hydrophobes, liquides, etc. En variante, la variation de l'asphéricité Q pourrait être obtenue non pas par variation du rayon de courbure, mais par variation de l'indice n du matériau entre son centre et sa périphérie. De plus, d'autres valeurs Q cibles différentes de -1,00 comme - 1 ,05 ou - 1 , 10, ou autres, pourront également être obtenues. It will be recalled that intraocular lenses are composed of a central part called "optical" of the implant used to correct the vision on a diameter of 6 to 6.5 mm, connected to a number of "haptics" used for centering and stability of the intraocular lens in the crystalline sac. Intraocular lenses can be monobloc, or with attached handles also called three-piece implant. The invention described above focuses on the "optical" part of the lens, and is therefore not restricted to a specific type of haptic. In general, the invention relates to a spherical, or spherocylindrical, intraocular lens for correcting associated astigmatism. It can be made in various types of hydrophilic, hydrophobic, liquid, etc. materials. As a variant, the variation of the asphericity Q could be obtained not by variation of the radius of curvature, but by variation of the index n of the material between its center and its periphery. In addition, other target Q values other than -1.00 such as -1, 05 or -1, 10, or others may also be obtained.
L'invention concerne également un procédé de fabrication d'une lentille intraoculaire, dans lequel un profil de rayon de courbure est déterminé selon le procédé de calcul de profil de rayon de courbure décrit plus haut, et dans lequel une lentille intraoculaire est fabriquée selon ce profil de rayon de courbure. ANNEXE A The invention also relates to a method of manufacturing an intraocular lens, in which a profile of radius of curvature is determined according to the method of calculating the radius of curvature profile described above, and in which an intraocular lens is manufactured according to this method. profile of radius of curvature. ANNEX A

Claims

Revendications 1. Lentille intraoculaire, caractérisée en ce qu'elle présente un axe optique (y), une zone centrale (ZI), et une zone périphérique (Z2, Z3, Z4) sensiblement symétriques par rapport audit axe optique (y) et s 'étendant sensiblement perpendiculairement à celui-ci, ladite zone centrale (ZI) s'étendant jusqu'à une première distance (Pp/2), et la zone périphérique (Z2, Z3, Z4) s'étendant de la première distance (Pp/2) jusqu'à l'extrémité de la lentille intraoculaire, dans laquelle la zone centrale (ZI) présente une puissance optique nominale, et la zone périphérique (Z2, Z3, Z4) présente un rayon de courbure variant de manière continue et monotone en fonction de l'éloignement (x) à l'axe optique (y), de telle sorte qu'une valeur d'asphéricité cible est obtenue à une seconde distance (De) par rapport à l'axe optique (y), la première distance (Pp/2) et la deuxième distance (De) étant calculées à partir respectivement d'un diamètre de pupille photopique (Pp) et d'un diamètre de pupille mésopique (Pm) d'un patient. 1. Intraocular lens, characterized in that it has an optical axis (y), a central zone (ZI), and a peripheral zone (Z2, Z3, Z4) substantially symmetrical with respect to said optical axis (y) and s extending substantially perpendicularly thereto, said central zone (ZI) extending to a first distance (Pp / 2), and the peripheral zone (Z2, Z3, Z4) extending from the first distance (Pp) / 2) to the end of the intraocular lens, in which the central zone (ZI) has a nominal optical power, and the peripheral zone (Z2, Z3, Z4) has a continuously and monotonically varying radius of curvature as a function of the distance (x) to the optical axis (y), so that a target asphericity value is obtained at a second distance (De) from the optical axis (y), the first distance (Pp / 2) and the second distance (De) being calculated from a pupil diameter respectively photopic (Pp) and a mesopic pupil diameter (Pm) of a patient.
2. Lentille intraoculaire selon la revendication 1, dans laquelle la zone périphérique (Z2, Z3, Z4) comprend une zone d'emmétropie (Z2), s'étendant entre la première distance (Pp/2) et la deuxième distance (De), dans laquelle le rayon de courbure varie de manière continue et strictement monotone dans la zone d'emmétropie (Z2). The intraocular lens according to claim 1, wherein the peripheral zone (Z2, Z3, Z4) comprises an emmetropia zone (Z2) extending between the first distance (Pp / 2) and the second distance (De). in which the radius of curvature varies continuously and strictly monotonically in the emmetropia zone (Z2).
3. Lentille intraoculaire selon la revendication 2, dans laquelle le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20]) dans la zone d'emmétropie (Z2). 3. The intraocular lens according to claim 2, wherein the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20]) in the emmetropia zone (Z2).
4. Lentille intraoculaire selon la revendication 2, dans laquelle le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone d'emmétropie (Z2). The intraocular lens of claim 2, wherein the radius of curvature varies linearly as a function of distance to the optical axis in the emmetropia zone (Z2).
5. Lentille intraoculaire selon l'une des revendications précédentes, dans laquelle la zone périphérique (Z2, Z3, Z4) comprend une zone externe (Z3, Z4), s'étendant au- delà la deuxième distance (De), dans laquelle le rayon de courbure varie de manière continue et monotone. 5. Intraocular lens according to one of the preceding claims, wherein the peripheral zone (Z2, Z3, Z4) comprises an outer zone (Z3, Z4), extending beyond the second distance (De), in which the radius of curvature varies continuously and monotonously.
6. Lentille intraoculaire selon la revendication 5, dans laquelle le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20], ([30]) dans la zone externe (Z3, Z4).  Intraocular lens according to claim 5, wherein the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the outer zone ( Z3, Z4).
7. Lentille intraoculaire selon la revendication 5, dans laquelle le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone externe (Z3, Z4). Intraocular lens according to claim 5, wherein the radius of curvature varies linearly as a function of the distance to the optical axis in the outer zone (Z3, Z4).
8. Lentille intraoculaire selon la revendication 5, dans laquelle le rayon de courbure est sensiblement constant dans la zone externe (Z3, Z4). The intraocular lens of claim 5, wherein the radius of curvature is substantially constant in the outer zone (Z3, Z4).
9. Lentille intraoculaire selon l'une des revendications précédentes, dans laquelle la zone externe (Z3, Z4) comprend une zone intermédiaire (Z3) s'étendant entre la deuxième distance (De/2) et une troisième distance (2De-Pp/2), et une zone d'extrémité (Z4) s'étendant entre la troisième distance (De-Pp/2) et l'extrémité de la lentille, la troisième distance (2De-Pp/2) étant calculée à partir d'un diamètre de pupille mésopique (Pm) et d'un diamètre de pupille photopique (Pp) d'un patient. 9. Intraocular lens according to one of the preceding claims, wherein the outer zone (Z3, Z4) comprises an intermediate zone (Z3) extending between the second distance (De / 2) and a third distance (2De-Pp / 2), and an end zone (Z4) extending between the third distance (De-Pp / 2) and the end of the lens, the third distance (2De-Pp / 2) being calculated from a mesopic pupil diameter (Pm) and a photopic pupil diameter (Pp) of a patient.
10. Lentille intraoculaire selon la revendication 9, dans laquelle le rayon de courbure varie en fonction de l'éloignement à l'axe optique selon une fonction au moins en partie trigonométrique ([20], ([30]) dans la zone intermédiaire (Z3). Intraocular lens according to claim 9, wherein the radius of curvature varies as a function of the distance to the optical axis according to an at least partly trigonometric function ([20], ([30]) in the intermediate zone ( Z3).
11. Lentille intraoculaire selon la revendication 9, dans laquelle le rayon de courbure varie de manière linéaire en fonction de l'éloignement à l'axe optique dans la zone intermédiaire (Z3). An intraocular lens according to claim 9, wherein the radius of curvature varies linearly as a function of the distance to the optical axis in the intermediate zone (Z3).
12. Lentille intraoculaire selon l'une des revendications 9 à 11, dans laquelle le rayon de courbure est sensiblement constant dans la zone d'extrémité (Z4). 12. Intraocular lens according to one of claims 9 to 11, wherein the radius of curvature is substantially constant in the end zone (Z4).
13. Procédé de calcul d'un profil de rayon de courbure pour une lentille intraoculaire caractérisé en ce qu'il comprend les étapes suivantes : a) recevoir des paramètres de biométrie d'un patient comprenant au moins un premier rayon de courbure (Rc), un diamètre de pupille photopique (Pp), et un diamètre de pupille mésopique (Pm) 13. A method of calculating a radius of curvature profile for an intraocular lens, characterized in that it comprises the following steps: a) receiving biometric parameters of a patient comprising at least a first radius of curvature (Rc), a photopic pupil diameter (Pp), and a mesopic pupil diameter (Pm)
b) déterminer une distance d'emmétropie (De) à partir au moins du diamètre de pupille mésopique (Pm), et un deuxième rayon de courbure (Rp) à partir du premier rayon de courbure (Rc) et d'une valeur d'asphéricité cible, c) calculer un profil de rayon de courbure dans une direction sensiblement perpendiculaire à un axe optique (y) souhaité pour la lentille intraoculaire, dans lequel le rayon de courbure est égal au premier rayon de courbure (Rc) dans une zone centrale (ZI) s'étendant entre l'axe optique (y) et une première distance (Pp/2) calculée à partir au moins du diamètre de pupille photopique (Pp), et dans lequel, dans une zone périphérique (Z2, Z3, Z4) s'étendant de la première distance (Pp/2) jusqu'à l'extrémité de la lentille intraoculaire, le rayon de courbure varie de manière continue et monotone en fonction de l'éloignement (x) à l'axe optique (y), de telle sorte que le rayon de courbure est égal au deuxième rayon de courbure (Rp) à la distance d'emmétropie (De) par rapport à l'axe optique (y).  b) determining an emmetropic distance (De) from at least the mesopic pupil diameter (Pm), and a second radius of curvature (Rp) from the first radius of curvature (Rc) and a value of target asphericity, c) calculating a radius of curvature profile in a direction substantially perpendicular to a desired optical axis (y) for the intraocular lens, wherein the radius of curvature is equal to the first radius of curvature (Rc) in a central area (ZI) extending between the optical axis (y) and a first distance (Pp / 2) calculated from at least the photopic pupil diameter (Pp), and wherein, in a peripheral zone (Z2, Z3, Z4) extending from the first distance (Pp / 2) to the end of the intraocular lens, the radius of curvature varies continuously and monotonically as a function of the distance (x) to the optical axis ( y), so that the radius of curvature is equal to the second radius of curvature (Rp) at the distance emmetropia (De) with respect to the optical axis (y).
14. Procédé de fabrication d'une lentille intraoculaire, dans lequel un profil de rayon de courbure est déterminé selon le procédé de la revendication 13, et dans lequel une lentille intraoculaire est fabriquée selon ce profil de rayon de courbure. A method of manufacturing an intraocular lens, wherein a radius of curvature profile is determined according to the method of claim 13, and wherein an intraocular lens is fabricated according to this radius of curvature profile.
EP13704186.9A 2012-01-24 2013-01-22 Improved intraocular lens and corresponding manufacturing method Withdrawn EP2806827A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1200190A FR2985900A1 (en) 2012-01-24 2012-01-24 IMPROVED INTRAOCULAR LENS AND METHOD FOR MANUFACTURING THE SAME
PCT/FR2013/050133 WO2013110888A2 (en) 2012-01-24 2013-01-22 Improved intraocular lens and corresponding manufacturing method

Publications (1)

Publication Number Publication Date
EP2806827A2 true EP2806827A2 (en) 2014-12-03

Family

ID=47714425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13704186.9A Withdrawn EP2806827A2 (en) 2012-01-24 2013-01-22 Improved intraocular lens and corresponding manufacturing method

Country Status (13)

Country Link
US (1) US20150297343A1 (en)
EP (1) EP2806827A2 (en)
JP (1) JP2015504752A (en)
KR (1) KR20140119143A (en)
CN (1) CN104203154A (en)
AU (1) AU2013213472A1 (en)
BR (1) BR112014017990A8 (en)
CA (1) CA2861746A1 (en)
CO (1) CO7010812A2 (en)
FR (1) FR2985900A1 (en)
MX (1) MX2014008923A (en)
RU (1) RU2014129644A (en)
WO (1) WO2013110888A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US9817246B2 (en) 2010-12-01 2017-11-14 Amo Groningen B.V. Multifocal lens having an optical add power progression, and a system and method of providing same
WO2017137839A1 (en) 2016-02-09 2017-08-17 Amo Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
IT201600097763A1 (en) * 2016-09-29 2018-03-29 Sifi Medtech Srl LENS FOR ASTIGMATISM
US20200383775A1 (en) * 2019-06-07 2020-12-10 Voptica, S.L Intraocular lens and methods for optimization of depth of focus and the image quality in the periphery of the visual field
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
CN113367840B (en) * 2021-08-12 2021-12-10 微创视神医疗科技(上海)有限公司 Intraocular lens and method of making same
FR3132836A1 (en) * 2022-02-24 2023-08-25 Frédéric Hehn Dilution optic intraocular lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL90669C (en) 1953-07-03
US5344448A (en) * 1992-02-11 1994-09-06 Schneider Richard T Multi-focal intra-ocular implant
WO1997012272A1 (en) * 1995-09-29 1997-04-03 Dunn Stephen A Contact lens and process for fitting
US6596025B2 (en) * 2001-03-15 2003-07-22 Valdemar Portney Narrow profile intraocular lens
US7381221B2 (en) * 2002-11-08 2008-06-03 Advanced Medical Optics, Inc. Multi-zonal monofocal intraocular lens for correcting optical aberrations
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
US7572007B2 (en) * 2006-08-02 2009-08-11 Alcon, Inc. Apodized diffractive IOL with frustrated diffractive region
CA2753639C (en) * 2009-03-05 2016-08-16 Amo Regional Holdings Multizonal lens with enhanced performance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013110888A2 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466507B2 (en) 2012-04-05 2019-11-05 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10209535B2 (en) 2012-04-05 2019-02-19 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US9195074B2 (en) 2012-04-05 2015-11-24 Brien Holden Vision Institute Lenses, devices and methods for ocular refractive error
US11809024B2 (en) 2012-04-05 2023-11-07 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US11644688B2 (en) 2012-04-05 2023-05-09 Brien Holden Vision Institute Limited Lenses, devices and methods for ocular refractive error
US10948743B2 (en) 2012-04-05 2021-03-16 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10203522B2 (en) 2012-04-05 2019-02-12 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US10838235B2 (en) 2012-04-05 2020-11-17 Brien Holden Vision Institute Limited Lenses, devices, and methods for ocular refractive error
US9535263B2 (en) 2012-04-05 2017-01-03 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US9575334B2 (en) 2012-04-05 2017-02-21 Brien Holden Vision Institute Lenses, devices and methods of ocular refractive error
US11320672B2 (en) 2012-10-07 2022-05-03 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US10534198B2 (en) 2012-10-17 2020-01-14 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US9759930B2 (en) 2012-10-17 2017-09-12 Brien Holden Vision Institute Lenses, devices, systems and methods for refractive error
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
US11333903B2 (en) 2012-10-17 2022-05-17 Brien Holden Vision Institute Limited Lenses, devices, methods and systems for refractive error
US10520754B2 (en) 2012-10-17 2019-12-31 Brien Holden Vision Institute Limited Lenses, devices, systems and methods for refractive error
US9541773B2 (en) 2012-10-17 2017-01-10 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error

Also Published As

Publication number Publication date
AU2013213472A1 (en) 2014-08-14
WO2013110888A2 (en) 2013-08-01
FR2985900A1 (en) 2013-07-26
RU2014129644A (en) 2016-02-10
KR20140119143A (en) 2014-10-08
MX2014008923A (en) 2014-11-10
BR112014017990A8 (en) 2017-07-11
CN104203154A (en) 2014-12-10
US20150297343A1 (en) 2015-10-22
CO7010812A2 (en) 2014-07-31
JP2015504752A (en) 2015-02-16
WO2013110888A3 (en) 2013-11-14
CA2861746A1 (en) 2013-08-01
BR112014017990A2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
EP2806827A2 (en) Improved intraocular lens and corresponding manufacturing method
AU2018204425B2 (en) Multi-ring lens, systems and methods for extended depth of focus
BE1022036B1 (en) REFRACTIVE MULTIFOCAL INTRAOCULAR LENS WITH OPTICAL QUALITY OPTIMIZED IN A FOCAL BEACH AND METHOD OF MAKING SAME
CA2379287C (en) Implant forming multifocal intraocular lens
EP2243053A2 (en) Method for determining the configuration of an ophthalmic lens, ophthalmic lens produced according to said method, and method for producing said lens
AU2008204756B2 (en) Alternating optical system: mixing and matching optics to maximize binocular visual benefits
US20090125105A1 (en) Aspheric intraocular lens and method for making the same
FR2989179A3 (en) LENSES, DEVICES, PROCESSES, AND SYSTEMS FOR REFRACTION ERROR
EP1116983A1 (en) Pair of ophthalmic lenses, gamut and method of manufacturing said pair
EP1660929B1 (en) Optical accommodative compensation system
FR2860706A1 (en) Retinal image magnifying system for optical correction of atrophic age-related macular degeneration, has positive power lens, and intraocular lens producing shadow image of object of size lying between twenty and fifty micrometer
CA3076789A1 (en) Assembly consisting of a pair of multifocal ocular implants
EP3415118B1 (en) Intraocular lens implant including a transition surface
BE1027570B1 (en) Intraocular lens with extended depth of field
WO2023161591A1 (en) Intraocular lens with diluted-luminosity optics
EP3998989A1 (en) Diffractive ocular implant with enlarged near vision
FR2996316A1 (en) PROGRESSIVE OPHTHALMIC LENS FOR PATIENT WITH VISUAL DEFICIENCY
EP2757938A1 (en) Device and method to assist treatment of the cornea
Del Águila-Carrasco et al. Tolerance to rotation of toric monofocal and bifocal intraocular lenses. A theoretical study
WO2018055073A1 (en) Intraocular lens with an extended depth of focus
WO2023137462A1 (en) Aspheric phase-ring structured lens designs, manufacture, and uses thereof
CH699972A2 (en) Ophthalmic lens e.g. positive intraocular lens, configuration determining method for correcting presbyopia of young person, involves juxtaposing diffractive phase distribution structure and base optical corrective element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140708

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151021