EP2804259A1 - Radome for a concave reflector antenna - Google Patents

Radome for a concave reflector antenna Download PDF

Info

Publication number
EP2804259A1
EP2804259A1 EP13305610.1A EP13305610A EP2804259A1 EP 2804259 A1 EP2804259 A1 EP 2804259A1 EP 13305610 A EP13305610 A EP 13305610A EP 2804259 A1 EP2804259 A1 EP 2804259A1
Authority
EP
European Patent Office
Prior art keywords
radome
absorbent
reflector
antenna
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13305610.1A
Other languages
German (de)
French (fr)
Other versions
EP2804259B1 (en
Inventor
Armel Lebayon
Denis Tuau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Shanghai Bell Co Ltd
Original Assignee
Alcatel Lucent Shanghai Bell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent Shanghai Bell Co Ltd filed Critical Alcatel Lucent Shanghai Bell Co Ltd
Priority to EP13305610.1A priority Critical patent/EP2804259B1/en
Priority to PCT/IB2014/061437 priority patent/WO2014184755A2/en
Priority to US14/890,701 priority patent/US10224640B2/en
Priority to CN201480027457.XA priority patent/CN105556746B/en
Publication of EP2804259A1 publication Critical patent/EP2804259A1/en
Application granted granted Critical
Publication of EP2804259B1 publication Critical patent/EP2804259B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/026Means for reducing undesirable effects for reducing the primary feed spill-over
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the present invention relates to a telecommunication antenna with concave reflector having for example the shape of at least one parabola portion.
  • These antennas in particular of the microwave type, are usually used in mobile communication networks. These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation.
  • the value of the reflector diameter is determined by the central working frequency of the antenna. The lower the working frequency of the antenna, the greater the diameter of the reflector at equivalent antenna gain.
  • the F / D ratio is less than or equal to 0.25.
  • F is the focal length of the reflector (distance between the top of the reflector and its focus)
  • D is the diameter of the reflector.
  • radome which has an impervious protective surface partitioning the space defined by the reflector and the skirt vis-à-vis the outside.
  • This radome can be flexible or rigid, plane or not, and of any shape.
  • a rigid circular radome, the most used at present, has the advantage of good resistance to the external climatic environment such as rain, wind or snow.
  • the goal is to propose a radome to obtain a radiation pattern leading to satisfactory performance, consistent with existing standards, with a small impact on the gain of the antenna.
  • the object of the present invention is a radome for a concave reflector antenna, fixed directly to the edge of the reflector, the inner surface of the radome having at least one absorbent piece partially covering its surface and disposed along its peripheral edge.
  • the radome is "fixed directly to the reflector edge" because the reflector has no skirt so that the radome is not attached to a skirt, but directly to the reflector.
  • the surface of the radome covered by the absorbent part (s) is less than 15% of the total area.
  • the absorbent piece has an annular shape.
  • the absorbent part has a substantially triangular shape, the base of the absorbent part being rounded along the edge of the radome.
  • the absorbent piece has a substantially triangular shape, a part of its surface having been removed laterally, the base of the absorbent piece following the edge of the radome.
  • the removed surface portion is constituted by the removal of surfaces on each side of the triangle in an arcuate cut.
  • the removed surface portion consists of the elimination of surfaces on each side of the triangle in an isosceles triangle-shaped cutout.
  • the radome comprises two absorbent parts in diametrically opposite position.
  • the radome has been modified by the addition of absorbent material parts with a particularly studied shape to reduce the overflow and at least maintain the performance of the radiation pattern with the least impact on the gain, without it being necessary to add a skirt.
  • the length of the base of the absorbent part is between D / 5 and 2D / 5 where D is the diameter of the radome.
  • the ratio of the length of the base of the absorbent part to the height of the absorbent part is between 1 and 2.
  • the invention further relates to a concave reflector antenna having a radome fixed directly on the edge of the reflector, the inner surface of the radome having at least one absorbent piece partially covering its surface and disposed along its peripheral edge.
  • the radome is circular, plane and rigid.
  • a microwave antenna with low overflow is a guarantee of transmission / reception quality because it makes it possible to achieve the radio link with very little interference between the neighboring antennas, in particular in a zone with a high density of antennas.
  • this antenna is less expensive, smaller in size and easier to transport than antennas of the prior art.
  • the radiation R in dB is given in ordinate, and in abscissa the angle of emission / reception ⁇ in degrees.
  • the figure 1 illustrates an antenna 1 comprising a concave primary reflector 2 and a secondary reflector 3.
  • the antenna 1 is fed by a waveguide 4 which may be a metal hollow tube, for example aluminum.
  • the reflectors 2, 3 are protected by a radome 5.
  • This antenna 1 does not have an absorbent skirt.
  • the waveguide 4 emits incident radiation towards the secondary reflector 3 which is reflected towards the primary reflector 2, forming the main beam 6 towards a receiver. However, part of the incident radiation is returned in a divergent direction and causes losses by overflow 7. Another part of the radiation is reflected by the primary reflector 2, but this reflected radiation is masked by the secondary reflector 3 which returns it again to the primary reflector 2. It is then reflected by the primary reflector 2 and returned in a divergent direction, causing loss by mask effect 8.
  • an antenna 10 comprises a concave primary reflector 11 and a secondary reflector 12.
  • the antenna 10 is powered by a waveguide 13.
  • the reflectors 11, 12 are protected by a radome 14.
  • the waveguide 13 emits a incident radiation towards the secondary reflector 12 , a portion 15 is returned in a divergent direction.
  • Absorbent parts 16 are disposed on the inner face of the radome 14 along the edge of the primary reflector 11. The diverging lateral radiation 15 is absorbed by the parts 16 and the overflow is thus avoided, without compromising the other characteristics.
  • the figure 3 illustrates a first embodiment of a microwave antenna 30 reflector 31 deep concave circular opening, protected by a radome 32 which is here a rigid radome plan.
  • a ring 33 of absorbent material of width H0 is disposed on the inner face 34 of the radome 32 along the peripheral edge of the reflector 31.
  • the width H0 of the absorbent ring 33 depends on the reduction of the overflow.
  • the presence of the absorbent ring 33 makes it possible to significantly reduce the overflow losses.
  • the impact of the absorbent ring 33 on the gain of the antenna 30 will be relatively high because of the large area of the radome covered by the ring, which should not, however, exceed 25% of the surface area. total, and preferably not to exceed 15%.
  • Absorbent pieces 43 are placed diametrically opposite to improve performance in the horizontal plane (azimuth plane) by acting in a skirt-like manner.
  • the absorbent pieces 43 are disposed on the inner face 44 of the radome 41 along its periphery which follows the edge of the reflector 41.
  • the absorbent parts 43 have a particular shape: here substantially triangular, the base of the absorbent part along the edge of the radome which is rounded. From the height H1 of the absorbent part depends the reduction of the overflow and the length B1 of the base of the absorbent part 43 acts on the forward / backward ratio of the antenna, that is to say the ratio between the intensity of the main lobe radiation at the front of the antenna and the intensity of the back lobe at 180 °, here in the horizontal plane.
  • the absorbent parts 43 cover at most 15% of the interior surface of the radome 42.
  • Absorbent parts 53 are arranged on the inner face 54 of the radome 52 along the edge of the reflector 51.
  • the absorbent part 53 is made of an absorbent material such as for example a carbon impregnated polyurethane foam.
  • the thickness of an absorbent part 53 is less than 20 mm, and preferably of the order of 12 mm.
  • the absorbent pieces 53 are placed diametrically opposite to improve the performance in the horizontal plane.
  • the absorbent parts 53 cover at most 15% of the inner surface of the radome 52. Above 15%, the impact of the presence of the absorbent parts 53 on the gain of the antenna becomes important and the secondary lobes of the radiation increase. In this case the absorbent parts 53 cover about 10% of the interior surface of the radome 52. The forward / backward ratio of the radiation pattern is then significantly improved with little impact on the gain (0.3 dB maximum).
  • the length B2 of the base of the triangular absorbent piece 53 is large enough to obtain a high forward / back ratio.
  • the shape of the base of the absorbent part 53 is adapted to that of the edge of the reflector to reduce effectively overflow without the need to increase the height H2 of the absorbent part 53.
  • the height H2 of the absorbent part 53 has a direct impact on the angle range around 60 ° of the radiation pattern of a deep parabolic reflector antenna.
  • the length of the base B2 is preferably between D / 5 and 2D / 5.
  • the ratio B2 / H2 between the length of the base B2 and the height H2 of the absorbent part 53 is preferably between 1 and 2: 1 ⁇ B2 / H2 ⁇ 2.
  • the absorbent piece has the shape of a triangle of which part of the surface has been removed.
  • the particular shape of the absorbent piece 53 is preferably obtained by eliminating rounded surfaces 60 on each side of the triangle in a cutout which may take the form of a circular arc 61, as shown in FIG. figure 6 for example, without modifying the height H2 of the absorbent part 53.
  • the rounded surface or circular segment 60 is a part of a disk 62 defined as a domain separated from the remainder of the disk 62 by a secant cord or straight line 63.
  • the circular segment 60 is the portion of the disk between the secant line 63 and the arc 61.
  • the shape of the absorbent part 53 is calculated to obtain a favorable compromise between the reduction of the overflow, the improvement of the forward / backward ratio and the impact on the gain of the antenna 50.
  • the value of the electromagnetic field of the major part of the central surface of the radome 52 decreases quite rapidly as one approaches the peripheral edge of the circular radome 52 .
  • the particular shape of the absorbent part 53 placed near the edge of the radome 52 makes it possible to create a progressive transition zone between the edge and the central surface of the radome 52.
  • the particular shape of the absorbent piece is preferably obtained from a substantially triangular shape by eliminating surfaces on the sides of the triangle so as to reduce the area corresponding to the tip of the triangle while preserving as much of the surface as possible. based.
  • This shape is obtained by a cutout which may in particular take the form of an arc 61 as illustrated on the Figures 5 and 6 , or a Gaussian curve, or else any other form to reach the purpose sought such as a triangle like on the figure 7 or a rectangle like on the figure 8 for example.
  • the figure 7 illustrates a fourth embodiment of a circular concave reflector 71 microwave antenna 70 protected by a radome 72 rigid plane of circular shape.
  • Absorbent parts 73 are disposed on the internal face 74 of the radome 72.
  • the absorbent part 73 has substantially the shape of a triangle of height H3 and a base length B3 whose surfaces 75 have been removed laterally by a substantially shaped cut. triangular.
  • the base of the absorbent piece 73 is rounded to conform to the shape of the edge of the circular opening of the reflector 72.
  • the figure 8 illustrates a fifth embodiment of a circular microwave antenna 80 reflector circular concave 81 protected by a radome 82 rigid plane of circular shape.
  • Absorbent pieces 83 are disposed on the inner face 84 of the radome 82.
  • the absorbent piece 83 has substantially the shape of a round-headed tee so as to match the shape of the edge of the circular opening of the reflector 82, of height H4 and base length B4. It derives from the triangular shape by removal of surfaces 85 substantially cut in the shape of an isosceles triangle, in particular a right isosceles triangle.
  • the figure 9 illustrates the radiation of a deep reflector antenna having a forward / backward ratio of 0.2.
  • the main reflector of this antenna of the prior art does not have a skirt.
  • Curve 90 illustrates the radiation pattern in the 10GHz frequency band of the primary reflector in the horizontal plane.
  • the reference curve 91 represents the standard profile corresponding to the ETSI class 3 model. Zones 92 correspond to poor performance due to a high level of overflow losses. In zones 93, the side lobes exceed the ETSI standard. In the absence of a skirt, the direct consequence is that the radiation pattern has high overflow peaks in the angular areas 92 corresponding to the edge of the parabolic primary reflector, and an increase in the side lobes corresponding to the zones 93.
  • the figure 10 illustrates the radiation of a deep reflector antenna whose radome comprises absorbent parts according to the second embodiment.
  • Curve 100 illustrates the radiation pattern in the 10 GHz frequency band of the primary reflector in the horizontal plane.
  • the reference curve 101 represents the standard profile corresponding to the ETSI class 3 model.
  • the zones 102 correspond to the edge of the reflector where a smaller overflow occurs than in the previous figure.
  • the zones 103 correspond to the side lobes which are very much diminished.
  • the values of the radiation diagram remain here within the limits of the maximum values allowed by the template of class 3 ETSI despite the absence of skirt.
  • the figure 11 illustrates the radiation pattern of a deep reflector antenna whose radome comprises absorbent parts according to the third embodiment.
  • Curve 110 illustrates the radiation pattern in the 10 GHz frequency band of the primary reflector in the horizontal plane.
  • the reference curve 111 represents the standard profile corresponding to the ETSI class 3 model.
  • the zones 112 correspond to the edge of the reflector where the overflow occurs and the zones 113 correspond to the side lobes.
  • the present invention is not limited to the described embodiments, but it is capable of many variants accessible to those skilled in the art without departing from the spirit of the invention.
  • the described embodiments comprise either an annular absorbent piece or two absorbent pieces in diametrically opposite position. It is possible to envisage using an even greater number (4, 6, 8, etc.) of absorbent part according to the compromise that one is willing to accept between the reduction of the parts by overflow and the impact on the gain. of the antenna.
  • Several forms of the absorbent part have been described in a nonlimiting manner, however, it will be possible to use different shapes obtained by removing side surfaces of various shapes.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

Un radôme pour une antenne à réflecteur concave est fixé directement sur le bord du réflecteur. La surface intérieure du radôme comporte au moins une pièce absorbante couvrant partiellement sa surface et disposée le long de son bord périphérique. La surface du radôme couverte par la ou les pièce(s) absorbante(s) est inférieure à 15% de sa surface totale. Le radôme peut comporter deux pièces absorbantes en position diamétralement opposée. Chaque pièce absorbante peut avoir une forme sensiblement triangulaire, la base de la pièce absorbante étant arrondie suivant le bord du radôme, et une partie de sa surface ayant été enlevée latéralement, de chaque côté du triangle selon une découpe en arc de cercle.A radome for a concave reflector antenna is attached directly to the edge of the reflector. The interior surface of the radome has at least one absorbent piece partially covering its surface and disposed along its peripheral edge. The surface of the radome covered by the absorbent part (s) is less than 15% of its total area. The radome may comprise two absorbent parts in diametrically opposed position. Each absorbent piece may have a substantially triangular shape, the base of the absorbent piece being rounded along the edge of the radome, and a portion of its surface has been removed laterally on each side of the triangle in a circular arcuate cut.

Description

DOMAINEFIELD

La présente invention se rapporte à une antenne de télécommunication à réflecteur concave ayant par exemple la forme d'au moins une portion de parabole,. Ces antennes, notamment de type micro-onde, sont utilisées habituellement dans les réseaux de communication mobile. Ces antennes fonctionnent indifféremment en mode transmetteur ou en mode récepteur, correspondant à deux sens opposés de propagation des ondes RF.The present invention relates to a telecommunication antenna with concave reflector having for example the shape of at least one parabola portion. These antennas, in particular of the microwave type, are usually used in mobile communication networks. These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation.

ARRIERE PLANBACKGROUND

Dans les antennes à réflecteur parabolique, la valeur du diamètre du réflecteur est déterminée par la fréquence centrale de travail de l'antenne. Plus la fréquence de travail de l'antenne est basse, plus le diamètre du réflecteur est important à gain d'antenne équivalent. Pour les antennes à réflecteur profond (« deep dish » en anglais), le rapport F/D est inférieur ou égal à 0,25. Dans ce rapport, F est la distance focale du réflecteur (distance entre le sommet du réflecteur et son foyer) et D est le diamètre du réflecteur. Ces antennes présentent des pertes par débordement (« spillover » en anglais) qui sont élevées et diminuent le rapport avant/arrière (« front-to-back ratio » en anglais) de l'antenne. Les pertes par débordement conduisent à une pollution de l'environnement par les ondes RF et doivent être limitées à des niveaux définis par des normes.In parabolic reflector antennas, the value of the reflector diameter is determined by the central working frequency of the antenna. The lower the working frequency of the antenna, the greater the diameter of the reflector at equivalent antenna gain. For antennas deep reflector ("deep dish" in English), the F / D ratio is less than or equal to 0.25. In this report, F is the focal length of the reflector (distance between the top of the reflector and its focus) and D is the diameter of the reflector. These antennas have spillover losses which are high and reduce the front-to-back ratio of the antenna. Overflow losses lead to environmental pollution by RF waves and must be limited to levels defined by standards.

Une solution habituelle est d'attacher à la périphérie du réflecteur parabolique une paroi cylindrique, appelée aussi jupe (« shroud » en anglais), de diamètre voisin de celui du réflecteur et de hauteur convenable, le plus souvent revêtue d'un matériau absorbant le rayonnement RF. L'utilisation d'une jupe absorbante onéreuse est nécessaire pour limiter l'effet de débordement et améliorer es performances de l'antenne. Néanmoins, cette solution augmente le coût de l'antenne, ses dimensions et rend plus complexe l'emballage pour le transportA usual solution is to attach to the periphery of the parabolic reflector a cylindrical wall, also called skirt ("shroud" in English), of diameter close to that of the reflector and of suitable height, most often coated with a material absorbing the RF radiation. The use of an expensive absorbent skirt is necessary to limit the overflow effect and improve the performance of the antenna. Nevertheless, this solution increases the cost of the antenna, its dimensions and makes more complex the packaging for the transport

Cependant la présence de la jupe augmente la prise au vent de l'antenne et le risque d'accumulation d'éléments polluant. Aussi on associe à la jupe un radôme qui présente une surface protectrice imperméable cloisonnant l'espace défini par le réflecteur et la jupe vis-à-vis de l'extérieur. Ce radôme peut être souple ou rigide, plan ou non, et de forme quelconque. Un radôme rigide circulaire, le plus utilisé actuellement, présente l'avantage d'une bonne résistance vis-à-vis de l'environnement climatique extérieur tel que pluie, vent ou neige.However the presence of the skirt increases the wind gain of the antenna and the risk of accumulation of pollutants. Also associated with the skirt a radome which has an impervious protective surface partitioning the space defined by the reflector and the skirt vis-à-vis the outside. This radome can be flexible or rigid, plane or not, and of any shape. A rigid circular radome, the most used at present, has the advantage of good resistance to the external climatic environment such as rain, wind or snow.

RESUMEABSTRACT

Pour éliminer ces inconvénients, on propose de supprimer la jupe. Toutefois en l'absence de jupe le rayonnement latéral de l'antenne subsiste et peut provoquer un débordement. On cherche donc à limiter ce débordement, tout en conservant des performances de même niveau que les antennes micro-ondes connues ayant un réflecteur parabolique munie d'une jupe.To eliminate these disadvantages, it is proposed to remove the skirt. However, in the absence of skirt, the lateral radiation of the antenna remains and can cause an overflow. It is therefore sought to limit this overflow, while maintaining performance at the same level as known microwave antennas having a parabolic reflector provided with a skirt.

Le but est donc de proposer un radôme permettant d'obtenir un diagramme de radiation conduisant à des performances satisfaisantes, conformes aux normes existantes, avec un faible impact sur le gain de l'antenne.The goal is to propose a radome to obtain a radiation pattern leading to satisfactory performance, consistent with existing standards, with a small impact on the gain of the antenna.

L'objet de la présente invention est un radôme pour une antenne à réflecteur concave, fixé directement sur le bord du réflecteur, la surface intérieure du radôme comportant au moins une pièce absorbante couvrant partiellement sa surface et disposée le long de son bord périphérique.The object of the present invention is a radome for a concave reflector antenna, fixed directly to the edge of the reflector, the inner surface of the radome having at least one absorbent piece partially covering its surface and disposed along its peripheral edge.

Le radôme est « fixé directement sur le bord du réflecteur » car le réflecteur ne comporte pas de jupe de telle sorte que le radôme n'est pas attaché à une jupe, mais directement au réflecteur.The radome is "fixed directly to the reflector edge" because the reflector has no skirt so that the radome is not attached to a skirt, but directly to the reflector.

De préférence la surface du radôme couverte par la ou les pièce(s) absorbante(s) est inférieure à 15% de la surface totale.Preferably the surface of the radome covered by the absorbent part (s) is less than 15% of the total area.

Selon un premier aspect, la pièce absorbante a une forme annulaire.According to a first aspect, the absorbent piece has an annular shape.

Selon un deuxième aspect, la pièce absorbante a une forme sensiblement triangulaire, la base de la pièce absorbante étant arrondie suivant le bord du radôme.According to a second aspect, the absorbent part has a substantially triangular shape, the base of the absorbent part being rounded along the edge of the radome.

Selon un mode de réalisation préféré, la pièce absorbante a une forme sensiblement triangulaire, une partie de sa surface ayant été enlevée latéralement, la base de la pièce absorbante suivant le bord du radôme.According to a preferred embodiment, the absorbent piece has a substantially triangular shape, a part of its surface having been removed laterally, the base of the absorbent piece following the edge of the radome.

Selon une variante, la partie de surface enlevée est constituée par l'élimination de surfaces de chaque côté du triangle selon une découpe en arc de cercle.Alternatively, the removed surface portion is constituted by the removal of surfaces on each side of the triangle in an arcuate cut.

Selon une autre variante, la partie de surface enlevée est constituée par l'élimination de surfaces de chaque côté du triangle selon une découpe en forme de triangle isocèle.According to another variant, the removed surface portion consists of the elimination of surfaces on each side of the triangle in an isosceles triangle-shaped cutout.

De préférence, le radôme comporte deux pièces absorbantes en position diamétralement opposée.Preferably, the radome comprises two absorbent parts in diametrically opposite position.

Le radôme a été modifié par l'ajout de pièces constituées d'un matériau absorbant avec une forme particulièrement étudiée pour réduire le débordement et au moins conserver les performances du diagramme de rayonnement avec le plus faible impact sur le gain, sans qu'il soit nécessaire d'ajouter une jupe.The radome has been modified by the addition of absorbent material parts with a particularly studied shape to reduce the overflow and at least maintain the performance of the radiation pattern with the least impact on the gain, without it being necessary to add a skirt.

Selon une forme d'exécution, la longueur de la base de la pièce absorbante est comprise entre D/5 et 2D/5 où D est le diamètre du radôme.According to one embodiment, the length of the base of the absorbent part is between D / 5 and 2D / 5 where D is the diameter of the radome.

Selon une autre forme d'exécution, le rapport de la longueur de la base de la pièce absorbante à la hauteur de la pièce absorbante est compris entre 1 et 2.According to another embodiment, the ratio of the length of the base of the absorbent part to the height of the absorbent part is between 1 and 2.

L'invention a encore pour objet une antenne à réflecteur concave comportant un radôme fixé directement sur le bord du réflecteur, la surface intérieure du radôme comportant au moins une pièce absorbante couvrant partiellement sa surface et disposée le long de son bord périphérique.The invention further relates to a concave reflector antenna having a radome fixed directly on the edge of the reflector, the inner surface of the radome having at least one absorbent piece partially covering its surface and disposed along its peripheral edge.

Selon un mode particulier de réalisation, le radôme est circulaire, plan et rigide.According to a particular embodiment, the radome is circular, plane and rigid.

Une antenne micro-ondes à faible débordement est une garantie de qualité d'émission/réception car elle permet de réaliser la liaison radio avec de très faibles interférences entre les antennes voisines, en particulier dans une zone à forte densité d'antennes. En outre cette antenne est moins onéreuse, de taille réduite et d'un transport plus facile que les antennes de l'art antérieur.A microwave antenna with low overflow is a guarantee of transmission / reception quality because it makes it possible to achieve the radio link with very little interference between the neighboring antennas, in particular in a zone with a high density of antennas. In addition this antenna is less expensive, smaller in size and easier to transport than antennas of the prior art.

BREVE DESCRIPTIONBRIEF DESCRIPTION

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation, donné bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel

  • la figure 1 illustre schématiquement en coupe une antenne micro-onde à double réflecteur ne comportant pas de jupe absorbante,
  • la figure 2 illustre schématiquement en coupe une antenne micro-onde à double réflecteur selon un mode de réalisation,
  • la figure 3 illustre schématiquement la face interne d'un radôme selon un premier mode de réalisation,
  • la figure 4 illustre schématiquement la face interne d'un radôme selon un deuxième mode de réalisation,
  • la figure 5 illustre schématiquement la face interne d'un radôme selon un troisième mode de réalisation,
  • la figure 6 illustre schématiquement en détail la forme de la pièce diélectrique selon le troisième mode de réalisation,
  • la figure 7 illustre schématiquement la face interne d'un radôme selon un quatrième mode de réalisation,
  • la figure 8 illustre schématiquement la face interne d'un radôme selon un cinquième mode de réalisation,
  • la figure 9 illustre le diagramme de rayonnement dans le plan horizontal d'une antenne de l'art antérieur ne comportant pas de jupe,
  • la figure 10 illustre le diagramme de rayonnement dans le plan horizontal d'une antenne selon le deuxième mode de réalisation,
  • la figure 11 illustre le diagramme de rayonnement dans le plan horizontal d'une antenne selon le troisième mode de réalisation.
Other characteristics and advantages of the present invention will appear on reading the following description of an embodiment, given of course by way of illustration and not limitation, and in the accompanying drawing in which:
  • the figure 1 schematically illustrates in section a microwave antenna with double reflector having no absorbent skirt,
  • the figure 2 schematically illustrates in section a microwave antenna with double reflector according to one embodiment,
  • the figure 3 schematically illustrates the internal face of a radome according to a first embodiment,
  • the figure 4 schematically illustrates the internal face of a radome according to a second embodiment,
  • the figure 5 schematically illustrates the internal face of a radome according to a third embodiment,
  • the figure 6 schematically illustrates in detail the shape of the dielectric piece according to the third embodiment,
  • the figure 7 schematically illustrates the internal face of a radome according to a fourth embodiment,
  • the figure 8 schematically illustrates the internal face of a radome according to a fifth embodiment,
  • the figure 9 illustrates the radiation pattern in the horizontal plane of a prior art antenna having no skirt,
  • the figure 10 illustrates the radiation pattern in the horizontal plane of an antenna according to the second embodiment,
  • the figure 11 illustrates the radiation pattern in the horizontal plane of an antenna according to the third embodiment.

Sur les figures 9 à 11, le rayonnement R en dB est donné en ordonnée, et en abscisse l'angle d'émission/réception α en degrés.On the Figures 9 to 11 , the radiation R in dB is given in ordinate, and in abscissa the angle of emission / reception α in degrees.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

La figure 1 illustre une antenne 1 comprenant un réflecteur primaire 2 concave et un réflecteur secondaire 3. L'antenne 1 est alimentée par un guide d'onde 4 qui peut être un tube creux métallique, par exemple en aluminium. Les réflecteurs 2, 3 sont protégés par un radôme 5. Cette antenne 1 ne comporte pas de jupe absorbante. Le guide d'onde 4 émet un rayonnement incident en direction du réflecteur secondaire 3 qui est réfléchi vers le réflecteur primaire 2, formant le faisceau principal 6 en direction d'un récepteur. Cependant une partie du rayonnement incident est renvoyé dans une direction divergente et provoque des pertes par débordement 7. Une autre partie du rayonnement est réfléchi par le réflecteur primaire 2, mais ce rayonnement réfléchi est masqué par le réflecteur secondaire 3 qui le renvoie à nouveau vers le réflecteur primaire 2. Il est alors réfléchi par le réflecteur primaire 2 et renvoyé dans une direction divergente, provoquant des pertes par effet de masque 8. The figure 1 illustrates an antenna 1 comprising a concave primary reflector 2 and a secondary reflector 3. The antenna 1 is fed by a waveguide 4 which may be a metal hollow tube, for example aluminum. The reflectors 2, 3 are protected by a radome 5. This antenna 1 does not have an absorbent skirt. The waveguide 4 emits incident radiation towards the secondary reflector 3 which is reflected towards the primary reflector 2, forming the main beam 6 towards a receiver. However, part of the incident radiation is returned in a divergent direction and causes losses by overflow 7. Another part of the radiation is reflected by the primary reflector 2, but this reflected radiation is masked by the secondary reflector 3 which returns it again to the primary reflector 2. It is then reflected by the primary reflector 2 and returned in a divergent direction, causing loss by mask effect 8.

Dans le mode de réalisation de l'invention illustré sur la figure 2, une antenne 10 comprend un réflecteur primaire 11 concave et un réflecteur secondaire 12. L'antenne 10 est alimentée par un guide d'onde 13. Les réflecteurs 11, 12 sont protégés par un radôme 14. Le guide d'onde 13 émet un rayonnement incident en direction du réflecteur secondaire 12 dont une partie 15 est renvoyée dans une direction divergente. Des pièces absorbantes 16 sont disposées sur la face interne du radôme 14 le long du bord du réflecteur primaire 11. Le rayonnement latéral divergent 15 est absorbé par les pièces 16 et le débordement est ainsi évité, sans compromettre les autres caractéristiques.In the embodiment of the invention illustrated on the figure 2 an antenna 10 comprises a concave primary reflector 11 and a secondary reflector 12. The antenna 10 is powered by a waveguide 13. The reflectors 11, 12 are protected by a radome 14. The waveguide 13 emits a incident radiation towards the secondary reflector 12 , a portion 15 is returned in a divergent direction. Absorbent parts 16 are disposed on the inner face of the radome 14 along the edge of the primary reflector 11. The diverging lateral radiation 15 is absorbed by the parts 16 and the overflow is thus avoided, without compromising the other characteristics.

La figure 3 illustre un premier mode de réalisation d'une antenne 30 micro-onde à réflecteur 31 concave profond à ouverture circulaire, protégé par un radôme 32 qui est ici un radôme plan rigide. Un anneau 33 en matériau absorbant de largeur H0 est disposé sur la face interne 34 du radôme 32 le long du bord périphérique du réflecteur 31. De la largeur H0 de l'anneau absorbant 33 dépend la réduction du débordement. La présence de l'anneau absorbant 33 permet de réduire significativement les pertes par débordement. Toutefois dans le cas présent, l'impact de l'anneau absorbant 33 sur le gain de l'antenne 30 sera relativement important à cause de la grande surface du radôme couverte par l'anneau qui ne devrait toutefois pas dépasser 25% de la surface totale, et de préférence ne pas dépasser 15%. En outre l'amélioration du diagramme de rayonnement de l'antenne 30 dans le plan horizontal n'est pas privilégiée par ce mode de réalisation. On a décrit une pièce absorbante ayant la forme d'un anneau plein continu. Toutefois on pourra envisager par exemple un anneau formé d'une succession de triangle formant un bord interne denté.The figure 3 illustrates a first embodiment of a microwave antenna 30 reflector 31 deep concave circular opening, protected by a radome 32 which is here a rigid radome plan. A ring 33 of absorbent material of width H0 is disposed on the inner face 34 of the radome 32 along the peripheral edge of the reflector 31. The width H0 of the absorbent ring 33 depends on the reduction of the overflow. The presence of the absorbent ring 33 makes it possible to significantly reduce the overflow losses. However, in the present case, the impact of the absorbent ring 33 on the gain of the antenna 30 will be relatively high because of the large area of the radome covered by the ring, which should not, however, exceed 25% of the surface area. total, and preferably not to exceed 15%. In addition, the improvement of the radiation pattern of the antenna 30 in the horizontal plane is not preferred by this embodiment. An absorbent member having the shape of a continuous solid ring has been described. However one can consider for example a ring formed of a succession of triangles forming a toothed inner edge.

On considérera maintenant la figure 4 qui illustre un deuxième mode de réalisation d'une antenne 40 micro-onde à réflecteur 41 concave profond et à faible distance focale (F/D = 0,2) protégé par un radôme 42 plan rigide de forme circulaire. Des pièces absorbantes 43 sont placées de manière diamétralement opposée afin d'améliorer les performances dans le plan horizontal (plan de l'azimut) en agissant d'une manière analogue à une jupe. Les pièces absorbantes 43 sont disposées sur la face interne 44 du radôme 41 le long de sa périphérie qui suit le bord du réflecteur 41. We will now consider the figure 4 which illustrates a second embodiment of a microwave antenna 40 with a deep concave reflector 41 and low focal length (F / D = 0.2) protected by a radome 42 rigid plane of circular shape. Absorbent pieces 43 are placed diametrically opposite to improve performance in the horizontal plane (azimuth plane) by acting in a skirt-like manner. The absorbent pieces 43 are disposed on the inner face 44 of the radome 41 along its periphery which follows the edge of the reflector 41.

Les pièces absorbantes 43 ont une forme particulière : ici sensiblement triangulaire, la base de la pièce absorbante suivant le bord du radôme qui est arrondi. De la hauteur H1 de la pièce absorbante dépend la réduction du débordement et la longueur B1 de la base de la pièce absorbante 43 agit sur le rapport avant/arrière de l'antenne, c'est-à-dire le rapport entre l'intensité de rayonnement du lobe principal à l'avant de l'antenne et l'intensité du lobe arrière à 180°, ici dans le plan horizontal. Les pièces absorbantes 43 couvrent au plus 15% de la surface intérieure du radôme 42. The absorbent parts 43 have a particular shape: here substantially triangular, the base of the absorbent part along the edge of the radome which is rounded. From the height H1 of the absorbent part depends the reduction of the overflow and the length B1 of the base of the absorbent part 43 acts on the forward / backward ratio of the antenna, that is to say the ratio between the intensity of the main lobe radiation at the front of the antenna and the intensity of the back lobe at 180 °, here in the horizontal plane. The absorbent parts 43 cover at most 15% of the interior surface of the radome 42.

La figure 5 illustre un troisième mode de réalisation avantageux d'une antenne 50 micro-onde fonctionnant dans un domaine de fréquence élevé (GHz), qui comporte un réflecteur 51 concave profond et à faible distance focale (F/D = 0,2) protégé par un radôme 52 plan rigide de forme circulaire. Des pièces absorbantes 53 sont disposées sur la face interne 54 du radôme 52 le long du bord du réflecteur 51. La pièce absorbante 53 est réalisée dans un matériau absorbant tel que par exemple une mousse polyuréthanne imprégnée de carbone. Pour un fonctionnement satisfaisant de l'antenne 50 dans une bande de fréquence de 6 GHz à 40 GHz, l'épaisseur d'une pièce absorbante 53 est inférieure à 20 mm, et de préférence de l'ordre de 12 mm.The figure 5 illustrates a third advantageous embodiment of a microwave antenna 50 operating in a high frequency range (GHz), which comprises a deep concave reflector 51 and a short focal length (F / D = 0.2) protected by a radome 52 rigid plane of circular shape. Absorbent parts 53 are arranged on the inner face 54 of the radome 52 along the edge of the reflector 51. The absorbent part 53 is made of an absorbent material such as for example a carbon impregnated polyurethane foam. For satisfactory operation of the antenna 50 in a frequency band from 6 GHz to 40 GHz, the thickness of an absorbent part 53 is less than 20 mm, and preferably of the order of 12 mm.

Les pièces absorbantes 53 sont placées de manière diamétralement opposée pour améliorer les performances dans le plan horizontal. Les pièces absorbantes 53 couvrent au plus 15% de la surface intérieure du radôme 52. Au-delà de 15%, l'impact de la présence des pièces absorbantes 53 sur le gain de l'antenne devient important et les lobes secondaires du diagramme de rayonnement augmentent. Dans le cas présent les pièces absorbantes 53 couvrent environ 10% de la surface intérieure du radôme 52. Le rapport avant/arrière du diagramme de rayonnement est alors significativement amélioré avec peu d'impact sur le gain (0,3 dB au maximum).The absorbent pieces 53 are placed diametrically opposite to improve the performance in the horizontal plane. The absorbent parts 53 cover at most 15% of the inner surface of the radome 52. Above 15%, the impact of the presence of the absorbent parts 53 on the gain of the antenna becomes important and the secondary lobes of the radiation increase. In this case the absorbent parts 53 cover about 10% of the interior surface of the radome 52. The forward / backward ratio of the radiation pattern is then significantly improved with little impact on the gain (0.3 dB maximum).

La longueur B2 de la base de la pièce absorbante 53 triangulaire est suffisamment importante pour obtenir un rapport avant/arrière élevé. La forme de la base de la pièce absorbante 53 est adaptée à celle du bord du réflecteur afin de réduire efficacement le débordement sans qu'il soit nécessaire d'augmenter la hauteur H2 de la pièce absorbante 53. La hauteur H2 de la pièce absorbante 53 a un impact direct sur le domaine d'angle autour de 60° du diagramme de rayonnement d'une antenne à réflecteur parabolique profond. Par exemple, dans le cas d'un réflecteur concave à ouverture circulaire de diamètre D, la longueur de la base B2 est de préférence comprise entre D/5 et 2D/5. Le rapport B2/H2 entre la longueur de la base B2 et la hauteur H2 de la pièce absorbante 53 est de préférence compris entre 1 et 2 : 1 ≤ B2/H2 ≤ 2. Ces valeurs permettent d'atteindre un résultat en termes de réduction du débordement et de rapport avant/arrière qui est significatif et permet un fonctionnement pleinement satisfaisant d'une telle antenne.The length B2 of the base of the triangular absorbent piece 53 is large enough to obtain a high forward / back ratio. The shape of the base of the absorbent part 53 is adapted to that of the edge of the reflector to reduce effectively overflow without the need to increase the height H2 of the absorbent part 53. The height H2 of the absorbent part 53 has a direct impact on the angle range around 60 ° of the radiation pattern of a deep parabolic reflector antenna. For example, in the case of a circular opening concave reflector of diameter D, the length of the base B2 is preferably between D / 5 and 2D / 5. The ratio B2 / H2 between the length of the base B2 and the height H2 of the absorbent part 53 is preferably between 1 and 2: 1 ≤ B2 / H2 ≤ 2. These values make it possible to achieve a result in terms of reduction. overflow and forward / backward ratio which is significant and allows a fully satisfactory operation of such an antenna.

Dans ce mode de réalisation la pièce absorbante a la forme d'un triangle dont une partie de la surface a été enlevée. La forme particulière de la pièce absorbante 53 est obtenue de préférence en éliminant des surfaces 60 arrondies de chaque côté du triangle selon une découpe qui peut prendre la forme d'un arc de cercle 61, comme illustré sur la figure 6 par exemple, sans modifier la hauteur H2 de la pièce absorbante 53. La surface arrondie ou segment circulaire 60 est une partie d'un disque 62 définie comme un domaine séparé du reste du disque 62 par une corde ou droite sécante 63. Le segment circulaire 60 est donc la partie du disque comprise entre la droite sécante 63 et l'arc de cercle 61. La forme de la pièce absorbante 53 est calculée pour obtenir un compromis favorable entre la réduction du débordement, l'amélioration du rapport avant/arrière et l'impact sur le gain de l'antenne 50. La valeur du champ électromagnétique de la majeure partie de la surface centrale du radôme 52 décroît assez rapidement quand on se rapproche du bord périphérique du radôme 52 circulaire. La forme particulière de la pièce absorbante 53 placée à proximité du bord du radôme 52 permet de créer une zone de transition progressive entre le bord et la surface centrale du radôme 52. In this embodiment the absorbent piece has the shape of a triangle of which part of the surface has been removed. The particular shape of the absorbent piece 53 is preferably obtained by eliminating rounded surfaces 60 on each side of the triangle in a cutout which may take the form of a circular arc 61, as shown in FIG. figure 6 for example, without modifying the height H2 of the absorbent part 53. The rounded surface or circular segment 60 is a part of a disk 62 defined as a domain separated from the remainder of the disk 62 by a secant cord or straight line 63. The circular segment 60 is the portion of the disk between the secant line 63 and the arc 61. The shape of the absorbent part 53 is calculated to obtain a favorable compromise between the reduction of the overflow, the improvement of the forward / backward ratio and the impact on the gain of the antenna 50. The value of the electromagnetic field of the major part of the central surface of the radome 52 decreases quite rapidly as one approaches the peripheral edge of the circular radome 52 . The particular shape of the absorbent part 53 placed near the edge of the radome 52 makes it possible to create a progressive transition zone between the edge and the central surface of the radome 52.

La forme particulière de la pièce absorbante est de préférence obtenue à partir d'une forme sensiblement triangulaire en éliminant des surfaces sur les côtés du triangle de manière à réduire la surface correspondant à la pointe du triangle tout en préservant le plus possible de surface à la base. Cette forme est obtenue par une découpe qui peut notamment prendre la forme d'un arc de cercle 61 comme illustré sur les figures 5 et 6, ou d'une courbe de Gauss, ou bien encore de toute autre forme permettant d'atteindre le but recherché telle qu'un triangle comme sur la figure 7 ou un rectangle comme sur la figure 8 par exemple.The particular shape of the absorbent piece is preferably obtained from a substantially triangular shape by eliminating surfaces on the sides of the triangle so as to reduce the area corresponding to the tip of the triangle while preserving as much of the surface as possible. based. This shape is obtained by a cutout which may in particular take the form of an arc 61 as illustrated on the Figures 5 and 6 , or a Gaussian curve, or else any other form to reach the purpose sought such as a triangle like on the figure 7 or a rectangle like on the figure 8 for example.

La figure 7 illustre un quatrième mode de réalisation d'une antenne 70 micro-onde à réflecteur 71 concave circulaire protégé par un radôme 72 plan rigide de forme circulaire. Des pièces absorbantes 73 sont disposées sur la face interne 74 du radôme 72. La pièce absorbante 73 a sensiblement la forme d'un triangle de hauteur H3 et de longueur de base B3 dont des surfaces 75 ont été enlevées latéralement par une découpe de forme sensiblement triangulaire. La base de la pièce absorbante 73 est arrondie de manière à épouser la forme du bord de l'ouverture circulaire du réflecteur 72. The figure 7 illustrates a fourth embodiment of a circular concave reflector 71 microwave antenna 70 protected by a radome 72 rigid plane of circular shape. Absorbent parts 73 are disposed on the internal face 74 of the radome 72. The absorbent part 73 has substantially the shape of a triangle of height H3 and a base length B3 whose surfaces 75 have been removed laterally by a substantially shaped cut. triangular. The base of the absorbent piece 73 is rounded to conform to the shape of the edge of the circular opening of the reflector 72.

La figure 8 illustre un cinquième mode de réalisation d'une antenne 80 micro-onde à réflecteur 81 concave circulaire protégé par un radôme 82 plan rigide de forme circulaire. Des pièces absorbantes 83 sont disposées sur la face interne 84 du radôme 82. La pièce absorbante 83 a sensiblement la forme d'un T à tête arrondie de manière à épouser la forme du bord de l'ouverture circulaire du réflecteur 82, de hauteur H4 et de longueur de base B4. Elle dérive de la forme triangulaire par enlèvement de surfaces 85 à découpe sensiblement de la forme d'un triangle isocèle, en particulier un triangle isocèle rectangle.The figure 8 illustrates a fifth embodiment of a circular microwave antenna 80 reflector circular concave 81 protected by a radome 82 rigid plane of circular shape. Absorbent pieces 83 are disposed on the inner face 84 of the radome 82. The absorbent piece 83 has substantially the shape of a round-headed tee so as to match the shape of the edge of the circular opening of the reflector 82, of height H4 and base length B4. It derives from the triangular shape by removal of surfaces 85 substantially cut in the shape of an isosceles triangle, in particular a right isosceles triangle.

La figure 9 illustre le rayonnement d'une antenne à réflecteur profond ayant un rapport avant/arrière de 0,2. Le réflecteur principal de cette antenne de l'art antérieur ne comporte pas de jupe. La courbe 90 illustre le diagramme de rayonnement dans la bande de fréquence à 10GHz du réflecteur primaire dans le plan horizontal. La courbe 91 de référence représente le profil standard correspondant au modèle classe 3 ETSI. Les zones 92 correspondent à des performances médiocres à cause d'un niveau élevé des pertes par débordement. Dans les zones 93, les lobes latéraux dépassent la norme ETSI. En l'absence de jupe, la conséquence direct est que le diagramme de rayonnement présente des pics de débordement élevés dans les zones angulaires 92 correspondant au bord du réflecteur primaire parabolique, et une augmentation des lobes latéraux correspondant aux zones 93. The figure 9 illustrates the radiation of a deep reflector antenna having a forward / backward ratio of 0.2. The main reflector of this antenna of the prior art does not have a skirt. Curve 90 illustrates the radiation pattern in the 10GHz frequency band of the primary reflector in the horizontal plane. The reference curve 91 represents the standard profile corresponding to the ETSI class 3 model. Zones 92 correspond to poor performance due to a high level of overflow losses. In zones 93, the side lobes exceed the ETSI standard. In the absence of a skirt, the direct consequence is that the radiation pattern has high overflow peaks in the angular areas 92 corresponding to the edge of the parabolic primary reflector, and an increase in the side lobes corresponding to the zones 93.

La figure 10 illustre le rayonnement d'une antenne à réflecteur profond dont le radôme comporte des pièces absorbantes selon le deuxième mode de réalisation. La courbe 100 illustre le diagramme de rayonnement dans la bande de fréquence à 10 GHz du réflecteur primaire dans le plan horizontal. La courbe 101 de référence représente le profil standard correspondant au modèle classe 3 ETSI. Les zones 102 correspondent au bord du réflecteur où se produit un moindre débordement que sur la figure précédente. Les zones 103 correspondent aux lobes latéraux qui sont très nettement diminués. Contrairement au diagramme de rayonnement illustré par la figure 7, les valeurs du diagramme de rayonnement restent ici dans le cadre des valeurs maximales autorisées par le gabarit de la classe 3 ETSI malgré l'absence de jupe.The figure 10 illustrates the radiation of a deep reflector antenna whose radome comprises absorbent parts according to the second embodiment. Curve 100 illustrates the radiation pattern in the 10 GHz frequency band of the primary reflector in the horizontal plane. The reference curve 101 represents the standard profile corresponding to the ETSI class 3 model. The zones 102 correspond to the edge of the reflector where a smaller overflow occurs than in the previous figure. The zones 103 correspond to the side lobes which are very much diminished. Unlike the radiation pattern illustrated by the figure 7 , the values of the radiation diagram remain here within the limits of the maximum values allowed by the template of class 3 ETSI despite the absence of skirt.

La figure 11 illustre le diagramme de rayonnement d'une antenne à réflecteur profond dont le radôme comporte des pièces absorbantes selon le troisième mode de réalisation. La courbe 110 illustre le diagramme de rayonnement dans la bande de fréquence à 10 GHz du réflecteur primaire dans le plan horizontal. La courbe 111 de référence représente le profil standard correspondant au modèle classe 3 ETSI. Les zones 112 correspondent au bord du réflecteur où se produit le débordement et les zones 113 correspondent aux lobes latéraux.The figure 11 illustrates the radiation pattern of a deep reflector antenna whose radome comprises absorbent parts according to the third embodiment. Curve 110 illustrates the radiation pattern in the 10 GHz frequency band of the primary reflector in the horizontal plane. The reference curve 111 represents the standard profile corresponding to the ETSI class 3 model. The zones 112 correspond to the edge of the reflector where the overflow occurs and the zones 113 correspond to the side lobes.

En comparant les courbes 100 et 110, relatives respectivement aux modes de réalisation des figures 4 et 5, on observe que l'épaisseur du lobe principal dans la zone 104, 114 centrale du diagramme de rayonnement augmente avec la surface du triangle.Comparing the curves 100 and 110, respectively relating to the embodiments of the figures 4 and 5 it is observed that the thickness of the main lobe in the central zone 104, 114 of the radiation pattern increases with the area of the triangle.

Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art sans que l'on s'écarte de l'esprit de l'invention. En particulier, on pourra sans sortir du cadre de l'invention modifier le nombre et la forme des pièces absorbantes. Les modes de réalisation décrits comporte soit une pièce absorbante annulaire, soit deux pièces absorbantes en position diamétralement opposées. On peut envisager d'utiliser un nombre pair supérieur (4, 6, 8, etc...) de pièce absorbante selon le compromis que l'on est disposé à accepter entre la réduction des partes par débordement et l'impact sur le gain de l'antenne. Plusieurs formes de la pièce absorbante ont été décrites de manière non limitative, néanmoins on pourra utiliser des formes différentes obtenues par enlèvement de surfaces latérales de formes variées.Of course, the present invention is not limited to the described embodiments, but it is capable of many variants accessible to those skilled in the art without departing from the spirit of the invention. In particular, without departing from the scope of the invention, it will be possible to modify the number and the shape of the absorbent parts. The described embodiments comprise either an annular absorbent piece or two absorbent pieces in diametrically opposite position. It is possible to envisage using an even greater number (4, 6, 8, etc.) of absorbent part according to the compromise that one is willing to accept between the reduction of the parts by overflow and the impact on the gain. of the antenna. Several forms of the absorbent part have been described in a nonlimiting manner, however, it will be possible to use different shapes obtained by removing side surfaces of various shapes.

Claims (12)

Radôme pour une antenne à réflecteur concave, fixé directement sur le bord du réflecteur, la surface intérieure du radôme comportant au moins une pièce absorbante couvrant partiellement sa surface et disposée le long de son bord périphérique.Radome for a concave reflector antenna, fixed directly to the edge of the reflector, the inner surface of the radome having at least one absorbent piece partially covering its surface and disposed along its peripheral edge. Radôme selon la revendication 2, dans lequel la surface du radôme couverte par la ou les pièce(s) absorbante(s) est inférieure à 15% de la surface totale.Radome according to claim 2, wherein the surface of the radome covered by the absorbent part (s) is less than 15% of the total area. Radôme selon l'une des revendications 1 et 2, dans lequel la pièce absorbante a une forme annulaire.Radome according to one of claims 1 and 2, wherein the absorbent part has an annular shape. Radôme selon l'une des revendications 1 et 2, dans lequel la pièce absorbante a une forme sensiblement triangulaire, la base de la pièce absorbante étant arrondie suivant le bord du radôme.Radome according to one of claims 1 and 2, wherein the absorbent part has a substantially triangular shape, the base of the absorbent part being rounded along the edge of the radome. Radôme selon l'une des revendications 1 et 2, dans lequel la pièce absorbante a une forme sensiblement triangulaire, une partie de sa surface ayant été enlevée latéralement, la base de la pièce absorbante étant arrondie suivant le bord du radôme.Radome according to one of claims 1 and 2, wherein the absorbent part has a substantially triangular shape, part of its surface having been removed laterally, the base of the absorbent part being rounded along the edge of the radome. Radôme selon la revendication 5, dans lequel la partie de surface enlevée est constituée par l'élimination de surfaces de chaque côté du triangle selon une découpe en arc de cercle.Radome according to claim 5, wherein the removed surface portion is constituted by the removal of surfaces on each side of the triangle in an arcuate cut. Radôme selon la revendication 5, dans lequel la partie de surface enlevée est constituée par l'élimination de surfaces de chaque côté du triangle selon une découpe en forme de triangle isocèle..A radome according to claim 5, wherein the removed surface portion is formed by removing surfaces on each side of the triangle in an isosceles triangle-shaped cutout. Radôme selon l'une des revendications 4 à 7, comportant deux pièces absorbantes en position diamétralement opposée.Radome according to one of claims 4 to 7, comprising two absorbent parts in diametrically opposite position. Radôme selon l'une des revendications 4 à 8, dans lequel la longueur de la base de la pièce absorbante est comprise entre D/5 et 2D/5 où D est le diamètre du radôme.Radome according to one of claims 4 to 8, wherein the length of the base of the absorbent part is between D / 5 and 2D / 5 where D is the diameter of the radome. Radôme selon l'une des revendications 4 à 9, dans lequel le rapport de la longueur de la base de la pièce absorbante à la hauteur de la pièce absorbante est compris entre 1 et 2.Radome according to one of claims 4 to 9, wherein the ratio of the length of the base of the absorbent part to the height of the absorbent part is between 1 and 2. Antenne à réflecteur concave comportant un radôme selon l'une des revendications précédentes.Antenna with concave reflector comprising a radome according to one of the preceding claims. Antenne selon la revendication 11, dans laquelle le radôme est circulaire, plan et rigide.Antenna according to claim 11, wherein the radome is circular, planar and rigid.
EP13305610.1A 2013-05-15 2013-05-15 Radome for a concave reflector antenna Active EP2804259B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13305610.1A EP2804259B1 (en) 2013-05-15 2013-05-15 Radome for a concave reflector antenna
PCT/IB2014/061437 WO2014184755A2 (en) 2013-05-15 2014-05-14 Radome for an antenna with a concave-reflector
US14/890,701 US10224640B2 (en) 2013-05-15 2014-05-14 Radome for an antenna with a concave-reflector
CN201480027457.XA CN105556746B (en) 2013-05-15 2014-05-14 Antenna house for the antenna with concave reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13305610.1A EP2804259B1 (en) 2013-05-15 2013-05-15 Radome for a concave reflector antenna

Publications (2)

Publication Number Publication Date
EP2804259A1 true EP2804259A1 (en) 2014-11-19
EP2804259B1 EP2804259B1 (en) 2019-09-18

Family

ID=48577653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13305610.1A Active EP2804259B1 (en) 2013-05-15 2013-05-15 Radome for a concave reflector antenna

Country Status (4)

Country Link
US (1) US10224640B2 (en)
EP (1) EP2804259B1 (en)
CN (1) CN105556746B (en)
WO (1) WO2014184755A2 (en)

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184755A3 (en) * 2013-05-15 2015-04-09 Alcatel-Lucent Shanghai Bell Co.,Ltd Radome for an antenna with a concave-reflector
WO2016089623A1 (en) * 2014-12-02 2016-06-09 Commscope Technologies Llc Antenna radome with absorbers
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847584B2 (en) * 2014-12-02 2017-12-19 Ubiquiti Networks, Inc. Multi-panel antenna system
CN112005438B (en) * 2018-04-23 2024-05-31 奈特卡姆无线私人有限公司 Radome for housing an antenna and method for manufacturing a radome
CN110048229B (en) * 2019-04-01 2023-11-21 贵州航天电子科技有限公司 Efficient anti-leakage protective cover
CN112928493A (en) * 2021-01-28 2021-06-08 Oppo广东移动通信有限公司 Electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671235A1 (en) * 1990-12-28 1992-07-03 Cgti Offset antenna with radome
DE4219582A1 (en) * 1992-06-15 1993-12-16 Holger Dr Frenzel Directive antenna with absorbent region around edge of reflector - has triangular slots or holes leading into absorbent cavity resonator formed by two paraboloids on common axis
US20050035923A1 (en) * 2003-08-14 2005-02-17 Andrew Corporation Dual Radius Twist Lock Radome And Reflector Antenna for Radome
WO2013105086A1 (en) * 2012-01-05 2013-07-18 Sensible Medical Innovations Ltd. Electromagnetic (em) probes, methods of using such em probes and systems which use such electromagnetic em probes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184130A (en) * 2004-12-27 2006-07-13 Tdk Corp Radar device
CN102232258B (en) * 2008-12-05 2014-03-12 日本电气株式会社 Antenna device and communication device provided therewith
WO2011099183A1 (en) * 2010-02-15 2011-08-18 日本電気株式会社 Radiowave absorber and parabolic antenna
FR2968848A1 (en) * 2010-12-14 2012-06-15 Alcatel Lucent PARABOLIC REFLECTOR ANTENNA
EP2804259B1 (en) * 2013-05-15 2019-09-18 Alcatel- Lucent Shanghai Bell Co., Ltd Radome for a concave reflector antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671235A1 (en) * 1990-12-28 1992-07-03 Cgti Offset antenna with radome
DE4219582A1 (en) * 1992-06-15 1993-12-16 Holger Dr Frenzel Directive antenna with absorbent region around edge of reflector - has triangular slots or holes leading into absorbent cavity resonator formed by two paraboloids on common axis
US20050035923A1 (en) * 2003-08-14 2005-02-17 Andrew Corporation Dual Radius Twist Lock Radome And Reflector Antenna for Radome
WO2013105086A1 (en) * 2012-01-05 2013-07-18 Sensible Medical Innovations Ltd. Electromagnetic (em) probes, methods of using such em probes and systems which use such electromagnetic em probes

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10224640B2 (en) 2013-05-15 2019-03-05 Nokia Shanghai Bell Co., Ltd. Radome for an antenna with a concave-reflector
WO2014184755A3 (en) * 2013-05-15 2015-04-09 Alcatel-Lucent Shanghai Bell Co.,Ltd Radome for an antenna with a concave-reflector
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
WO2016089623A1 (en) * 2014-12-02 2016-06-09 Commscope Technologies Llc Antenna radome with absorbers
US10770784B2 (en) 2014-12-02 2020-09-08 Commscope Technologies Llc Antenna radome with absorbers
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Also Published As

Publication number Publication date
WO2014184755A3 (en) 2015-04-09
US10224640B2 (en) 2019-03-05
CN105556746A (en) 2016-05-04
CN105556746B (en) 2019-05-07
EP2804259B1 (en) 2019-09-18
WO2014184755A2 (en) 2014-11-20
US20160087345A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
EP2804259B1 (en) Radome for a concave reflector antenna
EP2264832B1 (en) Secondary reflector for a double reflector antenna
FR2986376A1 (en) SECONDARY REFLECTOR OF DOUBLE REFLECTOR ANTENNA
EP1445829B1 (en) Subreflector for Cassegrain microwave antenna
EP2081258B1 (en) Secondary reflector of an antenna with double reflector
FR2963487A1 (en) PARABOLIC REFLECTOR ANTENNA
EP0520851B1 (en) Antenna combination for reception of signals from satellites and groundstations, particularly for the reception of digital audio broadcasting signals
EP3109941B1 (en) Microwave antenna with dual reflector
EP1489688B1 (en) Feeding for reflector antenna
FR3004586A1 (en) WEATHER RADAR WITH ROTARY ANTENNA
FR3091957A1 (en) Antenna
EP2658032B1 (en) Corrugated horn antenna
FR2813995A1 (en) DIRECTIONAL COUPLER, ANTENNA DEVICE AND RADAR SYSTEM
EP2772985B1 (en) System for attaching a planar radome to the concave reflector of an antenna
FR2699007A1 (en) Reflector for polarimetric radar, especially for the use of caliber or beacon.
WO2008037887A2 (en) Antenna using a pfb (photonic forbidden band) material and system
FR2968848A1 (en) PARABOLIC REFLECTOR ANTENNA
EP3264531A1 (en) Microwave antenna with dual reflector
WO2008065148A2 (en) Device for feeding a reflector antenna
EP2610965B1 (en) Compact broad-band antenna with double linear polarisation
EP2264833B1 (en) Secondary reflector of a parabolic antenna
EP0778632B1 (en) Radio altimeter protected against various detections
EP2811574A1 (en) Rigid radome for a concave reflector antenna
FR3000844A1 (en) Circular network antenna for use in e.g. rubber boat, has aerial elements, and support structure comprising base with upper part having external and internal walls, where external wall is designed planar and arranged transverse to axis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150519

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171024

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 19/19 20060101ALI20190315BHEP

Ipc: H01Q 19/02 20060101ALI20190315BHEP

Ipc: H01Q 17/00 20060101ALI20190315BHEP

Ipc: H01Q 1/42 20060101AFI20190315BHEP

INTG Intention to grant announced

Effective date: 20190411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013060636

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1182390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1182390

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013060636

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

26N No opposition filed

Effective date: 20200619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230330

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230411

Year of fee payment: 11

Ref country code: DE

Payment date: 20230331

Year of fee payment: 11