EP2800865B1 - Ensemble de cimentation de chemisage et de massif de gravier pointe-talon à parcours unique - Google Patents

Ensemble de cimentation de chemisage et de massif de gravier pointe-talon à parcours unique Download PDF

Info

Publication number
EP2800865B1
EP2800865B1 EP13700247.3A EP13700247A EP2800865B1 EP 2800865 B1 EP2800865 B1 EP 2800865B1 EP 13700247 A EP13700247 A EP 13700247A EP 2800865 B1 EP2800865 B1 EP 2800865B1
Authority
EP
European Patent Office
Prior art keywords
port
cementing
borehole
gravel pack
gravel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13700247.3A
Other languages
German (de)
English (en)
Other versions
EP2800865A2 (fr
Inventor
John P. BROUSSARD
Christopher Hall
Ronald Van Petegem
Alvaro J. ARRAZOLA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weatherford Technology Holdings LLC
Original Assignee
Weatherford Technology Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/345,418 external-priority patent/US9260950B2/en
Application filed by Weatherford Technology Holdings LLC filed Critical Weatherford Technology Holdings LLC
Publication of EP2800865A2 publication Critical patent/EP2800865A2/fr
Application granted granted Critical
Publication of EP2800865B1 publication Critical patent/EP2800865B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • E21B43/045Crossover tools

Definitions

  • Horizontal wells that require sand control are typically open hole completions.
  • stand-alone sand screens have been used predominately in these horizontal open holes.
  • operators have also been using gravel packing in these horizontal open holes to deal with sand control issues.
  • the gravel is a specially sized particulate material, such as graded sand or proppant, which is packed around the sand screen in the annulus of the borehole.
  • the gravel acts as a filter to keep any fines and sand of the formation from migrating with produced fluids.
  • a prior art gravel pack assembly 20 illustrated in Figure 1A extends from a packer 14 downhole from casing 12 in a borehole 10, which is a horizontal open hole.
  • a packer 14 downhole from casing 12 in a borehole 10, which is a horizontal open hole.
  • operators attempt to fill the annulus between the assembly 20 and the borehole 10 with gravel (particulate material) by pumping slurry of fluid and gravel into the borehole 10 to pack the annulus.
  • For the horizontal open borehole 10 operators can use an alpha-beta wave (or water packing) technique to pack the annulus.
  • This technique uses a low-viscosity fluid, such as completion brine, to carry the gravel.
  • the assembly 20 in Figure 1A represents such an alpha-beta type.
  • a wash pipe 40 into a screen 25 and pump the slurry of fluid and gravel down an inner string 45.
  • the slurry passes through a port 32 in a crossover tool 30 and into the annulus between the screen 25 and the borehole 10.
  • the crossover tool 30 positions immediately downhole from the gravel pack packer 14 and uphole from the screen 25.
  • the crossover port 32 diverts the flow of the slurry from the inner string 45 to the annulus downhole from the packer 14.
  • another crossover port 34 diverts the flow of returns from the wash pipe 40 to the casing's annulus uphole from the packer 14.
  • the slurry moves out the crossover port 32 and into the annulus.
  • the carrying fluid in the slurry then leaks off through the formation and/or through the screen 25.
  • the screen 25 prevents the gravel in the slurry from flowing into the screen 25.
  • the fluids passing alone through the screen 25 can then return through the crossover port 34 and into the annulus above the packer 14.
  • the gravel drops out of the slurry and first packs along the low side of the borehole's annulus.
  • the gravel collects in stages 16a, 16b, etc., which progress from the heel to the toe in what is termed an alpha wave. Because the borehole 10 is horizontal, gravitational forces dominate the formation of the alpha wave, and the gravel settles along the low side at an equilibrium height along the screen 25.
  • the gravel pack operation When the alpha wave of the gravel pack operation is done, the gravel then begins to collect in stages (not shown) of a beta wave. This forms along the upper side of the screen 25 starting from the toe and progressing to the heel of the screen 25. Again, the fluid carrying the gravel can pass through the screen 25 and up the wash pipe 40. To complete the beta wave, the gravel pack operation must have enough fluid velocity to maintain turbulent flow and move the gravel along the topside of the annulus. To recirculate after this point, operators have to mechanically reconfigure the crossover tool 30 to be able to washdown the pipe 40.
  • FIG. 1B shows an example assembly 20 having shunts 50 and 52 (only two of which are shown).
  • the shunts 50/52 for transport and packing are attached eccentrically to the screen 25.
  • the transport shunts 50 feed the packing shunts 52 with slurry, and the slurry exits from nozzles 54 on the packing shunts 52.
  • the gravel packing operation can avoid areas of high leak off in the borehole 10 that would tend to cause bridges to form and impair the gravel packing.
  • Prior art gravel pack assemblies 20 for both techniques of Figs. 1A-1B have a number of challenges and difficulties.
  • the crossover ports 32/34 may have to be re-configured several times.
  • the slurry pumped at high pressure and flow rate can sometimes dehydrate within the assembly's crossover tool 30 and associated sliding sleeve (not shown). If severe, settled sand or dehydrated slurry can stick to service tools and can even junk the well.
  • the crossover tool 30 is subject to erosion during frac and gravel pack operations, and the crossover tool 30 can stick in the packer 14, which can create extremely difficult fishing jobs.
  • US2006076133 discloses a well completion assembly including apparatus for gravel packing and cementing in a single trip.
  • An outer assembly comprises: a liner and screen; a valved gravel packing port; upper and lower valved cementing ports; and seal bores positioned below and above the gravel packing port and above and below the lower cementing port.
  • An inner assembly includes: a crossover having an outer seal body and shifters to allow opening and closing of valves in the gravel packing and cementing ports. In one position, the crossover seal body mates with seal bores below and above the gravel packing port to allow flow of gravel packing slurry through the gravel packing port. In a second position, the crossover seal body mates with seal bores below and above the lower cementing port to allow flow of cement through the lower cementing port.
  • US2010294495 (A1 ) discloses an open hole completion apparatus including an outer tubing string disposed in an open hole portion of a wellbore.
  • the outer tubing string includes a sand control screen and a shrouded closing sleeve.
  • An inner tubing string is at least partially disposed within the outer tubing string.
  • the inner tubing string includes a crossover assembly.
  • the shrouded closing sleeve has a shroud that creates a channel with a portion of the outer tubing string by extending over a fluid port of the shrouded closing sleeve toward the sand control screen , such that when a treatment fluid is pumped through the inner tubing string, the crossover assembly and the fluid port, the treatment fluid is injected into the wellbore remote from the fluid port.
  • EP1132571 discloses apparatus for fracturing a formation or for gravel packing a borehole including a screen assembly having a plurality of screens mounted on an apertured base member.
  • a flow-control service assembly is disposed within the bore of the screen assembly and includes an outer tubular member and an inner tubular member.
  • the outer tubular member includes a plurality of ports that communicate with the apertures in the screen assembly.
  • the inner tubular member and outer tubular member form an inner annulus
  • the outer tubular member and screen assembly form a medial annulus
  • the screen assembly forms an outer annulus with the wall of the borehole.
  • Barriers are placed around the ports on the outer tubular member to prevent the formation of gravel bridges across the inner annulus.
  • the inner annulus provides alternative flow paths around the ports upon the ports becoming closed to fluid flow such as by bridges.
  • the subject matter of the present disclosure is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
  • a gravel pack apparatus has a liner that extends from a liner hanger in a cased hole. From the liner, one or more gravel pack sections extend into an open borehole.
  • the apparatus has a body passage disposed along its length, and various ports and screen on the apparatus can communicate fluid between the body passage and the borehole annulus.
  • the ports include a gravel pack port, a cementing port, and a returns port, and the screen is disposed between the gravel pack port and the cementing port.
  • the apparatus also includes an inner string having a string passage for conveying fluids, slurry, cement, and the like to an outlet port.
  • the inner string disposes in the body passage of the apparatus at various selective conditions.
  • a first selective condition in the body passage for example, seals around the outlet port on the inner string seal at least partially with seats inside the body passage so the outlet port on the string can communicate with the gravel pack port on the body.
  • the slurry passes through the ports and into the borehole annulus to gravel pack around the screen of the apparatus.
  • the inner string can be moved to several conditions to gravel pack around screens of the one or more gravel pack sections.
  • the apparatus is set up for cementing operations.
  • the inner string is moved to a second selective condition so that the inner string's seals at least partially seal the outlet port with the cementing port.
  • Cementing slurry is pumped down the string passage, and the cementing slurry fills the borehole annulus around the liner.
  • the returns port communicates fluid returns from the borehole annulus around the liner back to the body passage so the fluid returns can be conveyed uphole above the liner.
  • Figure 2 shows a toe-to-heel gravel pack assembly 100 having a liner 170 extending from casing 12 with a liner hanger 14. Extending further down the open borehole 10 from the liner 170, the assembly 100 has a gravel pack section 102 separated from the liner 170 by an isolating element or packer 104.
  • the assembly 100 can be similar to one of the gravel pack assemblies disclosed in U.S. Appl. Ser. No. 12/913,981 .
  • the gravel pack section 102 has ports 132 and a shoe track 120 disposed downhole of a screen 140. Although one section 102 is shown, the assembly 100 can have any number of such gravel pack sections 102 in the borehole 10, and the section(s) 102 can generally have any desired length to meet the needs of the implementation.
  • An inner string 110 deploys in the gravel pack section 102 and performs a wash down operation through a float shoe 126 in the shoe track 120 of the assembly 100. After washdown and setting of the assembly's packer 104, the string's outlet ports 112 with its seals 114 isolate with the flow ports 132 to gravel or frac pack the gravel pack section 102. Operators pump gravel pack slurry down the inner string 110, and the slurry exits the ports 112/132. Once in the borehole 10, gravel in the slurry packs the annulus around the screen 140 in a toe-to-heel gravel packing configuration. Once gravel packing of the section 102 is completed, the inner string 110 can be moved out of the gravel pack section 102 so cementing can be performed on the liner 170 using the inner string 110 and port collars 160A-B as described later.
  • Figure 3 shows another toe-to-heel gravel pack assembly 100 having several gravel pack sections 102A-B separated from one another and separated from a liner 170 by isolating elements or packers 104. Again, any number of such sections 102A-B can be used in the borehole 10, and they can generally have any desired length to meet the needs of the implementation.
  • the depictions in the figures are only meant to be illustrative.
  • the isolating elements 104 and gravel pack sections 102A-B deploy into the well in a single trip. Having the elements 104 and sections 102A-B, the assembly 100 segments several compartmentalized reservoir zones so that gravel pack or frac pack operations can be performed separately on each zone.
  • Each element 104 can have one or more packers to isolate the gravel pack sections 102A-B from one another and from the liner 170. Any suitable packers can be used for the elements 104, hydraulic, hydrostatic, inflatable, or swellable packers. In the present disclosure, the elements 104 are referred to as packers for simplicity.
  • the assembly 100 has a hydraulic service tool (18; Fig. 2 ) that can make up to the liner hanger 14 to set the hanger's packer, and the assembly 100 has an inner string 110 made up to the service tool 18.
  • a hydraulic service tool (18; Fig. 2 ) that can make up to the liner hanger 14 to set the hanger's packer
  • the assembly 100 has an inner string 110 made up to the service tool 18.
  • Each gravel pack section 102A-B has screen sections 140A-B, ported housings 130A-B, alternate path devices or shunts 150, and other components discussed below.
  • the screens 140A-B can use wire-wrapped screens, slotted liners, mesh screens, or any other suitable screen to filter fluid communication from the borehole annulus into the assembly 100.
  • the ported housings 130A-B have flow ports 132A-B communicating with the borehole annulus, and the ported housings 130A-B may be disposed next to or integrated into the screen sections 140A-B.
  • the screen sections 140A-B and the ported housings 130A-B provide slurry packing points for gravel packing operations as disclosed below.
  • the flow ports 132B on the uphole ported housings 130B can communicate with the alternate path devices 150 disposed along the length of the lower screen section 140A.
  • These alternate path devices 150 can be shunts, tubes, concentrically mounted tubing, or other devices known in the art for providing an alternate path for slurry.
  • the alternate path devices 150 are referred to as shunts for simplicity.
  • the shunts 150 communicate from the flow ports 132B to shunt ports toward the distal end of the assembly 100, but the shunts 150 can direct the flow in other directions.
  • the assembly 100 has the liner 170 supported by the liner hanger 14 from the casing 12, and the liner 170 has the port collars 160A-B for the cementing operations.
  • the port collars 160A-B can use any of the available port collars known and used in the art. In general, the port collars 160A-B can remain constantly open, or they can be selectively opened and closed as needed. For example, the port collars 160A-B can have mechanically actuated sliding or rotated sleeves, which can be opened and closed with an appropriate shifting tool.
  • U.S. Pat. No. 6,513,595 discloses one particular example of a port collar that can be used in the disclosed assembly 100. The port collars 160A-B could also be stage tools that are hydraulically opened.
  • FIG. 3 Although the assembly 100 of Figure 3 is similar to one of the gravel pack assemblies disclosed in U.S. Appl. Ser. No. 12/913,981 . Another assembly disclosed in Figures 2A-2C of the U.S. Appl. Ser. No. 12/913,981 could also be used.
  • This other assembly has an open distal end on the inner string that allows slurry and fluid to flow therethrough. Accordingly, after gravel packing is complete, fluid flow through this distal end must be closed off before cementing can be performed. This can be done by closing a valve, seating a ball, or otherwise closing off fluid communication through the distal end so that cement can be properly diverted to the port collar 160A.
  • Figures 4A-4D show the gravel pack assembly 100 during stages of operation.
  • Figures 4A , 4B , and 4C respectively show the gravel pack assembly 100 during a washdown operation, a gravel pack operation, and a cementing operation. Each of these will be discussed in turn.
  • the inner string 110 extending from the service tool 18 disposes through the sections 102A-B of the assembly 100.
  • the inner string 110 installs in the shoe track 120 so that the string's outlet ports 112 can communicate with a float shoe 126 at the end of the track 120.
  • Operators pump washdown fluid down the inner string 110, and the washdown fluid flows out the float shoe 126.
  • the washdown fluid then travels uphole in the annulus of the borehole 10 and out the liner hanger 14, whose packer remains unset at this stage.
  • the inner string 110 is positioned and sealed in selective positions in the assembly's ported housings 130A-B.
  • the ports 112 and seals 114 of the inner string 112 are manipulated in the first gravel pack section 102A, and slurry is then pumped down the inner string 110 so the first section 102A can be packed with a toe-to-heel packing configuration discussed herein.
  • the inner string 110 can be moved to the next gravel pack section 102B as shown in Figure 4B to proceed with gravel packing this section 102B in a similar fashion. The same procedure can repeated along the assembly's length for the various isolated sections 102.
  • the flow ports 132A in the lower ported housing 130A can divert the slurry directly into the borehole annulus, while the flow ports 132B in the upper ported housing 130B direct the slurry into the shunts 150.
  • Other arrangements can be used.
  • the selective positioning and sealing between the string 110 and the housings 130A-B changes fluid paths for the delivery of slurry into the borehole annulus around the screen sections 140A-B in each section 102A-B during the gravel pack operations.
  • the inner string 110 is then raised to the cementing port collar 160A disposed on the liner 170 uphole of the gravel pack sections 102A-B as shown in Figure 4C .
  • Operators manipulate the ports 112 and seals 114 on the inner string 110 in the lower collar 160A (as described in more detail below) and commence pumping cementing slurry down the inner string 110.
  • the cementing slurry exits the ports 112 and the collar 160A, and the cement slurry begins filling the annulus of the borehole 10 around the liner 170 from the downhole packer 104 to the uphole liner hanger 14.
  • the liner hanger 14 can have a set packer isolating the borehole annulus from the casing 12. Therefore, the other port collar 160B uphole on the liner 170 can allow fluid returns from the annulus to flow back into the liner 170 and the uphole to the casing 12.
  • operators clean out any excess cement or the like that may have entered the liner 170 through the uphole port collar 160B, for example.
  • operators can circulate fluid through the assembly 100.
  • the inner string 110 can eventually be removed from the assembly 100 so production operations can commence.
  • the uphole gravel pack section 102B in Figure 4C is separated from the liner 170 by an uppermost packer 104.
  • the packer 104 may be optional in some implementations.
  • Figure 4D shows the assembly 100 without such an uphole packer. Instead, the cement is allowed to interface with the packed gravel in the uphole gravel pack section 102B.
  • the gravel pack assembly 100 includes the liner 170 that extends into the borehole 10 from the liner hanger 14 in the casing 12.
  • the cementing port collar 160A is disposed on the liner 170 uphole of the uppermost packer 104, which isolates the sections 102A-B to be gravel packed from the liner 170.
  • the other port collar 160B disposed on the liner 170 near the liner hanger 14 allows for returns during the cementing operations. Further details of these collars 160A-B and the cementing operation are provided below with reference to Figures 9A through 11B .
  • the assembly 100 can having several gravel pack sections, although Figure 5B only shows the distal section 102A.
  • the section 102A has the screen sections 140A-B, the ported housings 130A-B, and the alternate path devices 150 disposed along its length.
  • Each of the ported housings 130A-B has its flow ports 132A-B for diverting flow, and each of the ported housings 130A-B has the seats 134 defined above and below the outlet ports 132A-B for sealing with the seals 114 on the inner string 110.
  • the flow ports 132A on the lower housing 130A can have a skirt 136 to direct the flow of slurry.
  • the flow ports 132B on the uphole housing 130B communicate with the alternate path devices 150 disposed along the length of the lower screen section 140A.
  • these alternate path devices 150 can be shunts, tubes, concentrically mounted tubing, or other devices known in the art for providing an alternate path for slurry.
  • the shunts 150 communicate flow from the flow ports 132B toward the distal end of the assembly 100, although they could direct flow in other directions.
  • the assembly 100 is run-in hole for the washdown operation.
  • the service tool 18 sits on the liner hanger 14, which can have an unset packer, and seals 16 on the service tool 18 do not seal in the liner hanger 14. In this way, hydrostatic pressure can be transmitted past the seals 16.
  • the inner string 110 extending from the service tool 18 disposes through the screen sections 140A-B of the assembly 100.
  • the inner string 110 can have a reverse taper to reduce circulating pressures if desired.
  • the assembly 100 On the end of the screen sections 140A-B, the assembly 100 has the shoe track 120 with the float shoe 126 and a seat 124.
  • the float shoe 126 has a check valve, sleeve, or the like (not shown) that allows for washing down or circulating fluid around the outside the screen sections 140A-B when running in the well and before the packer 14 is set.
  • the inner string 110 On its distal end, the inner string 110 has the outlet ports 112 isolated by the seals 114. When run in for washdown, one of the string's seals 114 as shown in Figure 5B engages the seat 124 inside the shoe track 120 near the float shoe 126. With the string 110 set in this position, operators pump washdown fluid down the inner string 110, and the circulated fluid flows out the check valve in the float shoe 126, up the annulus, and around the unset packer of the liner hanger 14.
  • a packer setting tool 106 disposed on the inner string 110 can be used for this purpose and can be any suitable tool known in the art for hydraulically or hydrostatically setting a packer.
  • the setting tool 106 can also be used to set other packers of the assembly 100, although the various packers can be set in any number of ways known in the art.
  • the seal 16 on the service tool 18 is raised into the hanger's bore as shown in Figure 6A after releasing from the liner hanger 14. Operators then test the packer on the hanger 14 by pressuring up the casing 12. Fluid passing through any pressure leak at the hanger 14 will go into formation around the screen sections 140A-B. In addition, any leaking fluid will pass into the inner string's outlet ports 112 and up to the surface through the inner string 110. Regardless, the assembly 100 allows operators to maintain hydrostatic pressure on the formation during these various stages of operation.
  • the gravel can pack the borehole annulus in an alpha-beta wave, although other variations can be used.
  • the gravel drops out of the slurry and first packs along the low side of the annulus in the borehole 10.
  • the gravel collects in stages that progress from the toe (near the housing 130A) to the heel (near the packer 104) in an alpha wave. Gravitational forces dominate the formation of the alpha wave, and the gravel settles along the low side at an equilibrium height along the screen sections 140A-B.
  • the borehole 10 then fills in a beta wave along the assembly 100, filling from the heel (near the packer 104) to the toe (near the housing 130A) along the upper side of the borehole annulus.
  • the slurry can flow out of the flow ports 132B and into the surrounding annulus if desired. This is possible if one or more of the flow ports 132B communicate directly with the borehole annulus and do not communicate with one of the shunt 150. All the same, the slurry can flow out of the ports 132B and into the shunts 150 for placement elsewhere in the surrounding annulus. Although the shunts 150 are depicted in a certain way, any desirable arrangement and number of transport and packing devices for an alternate path can be used to feed and deliver the slurry.
  • this second stage of pumping slurry may be used to further gravel pack the borehole 10.
  • pumping the slurry through the shunts 150 enables operators to evacuate excess slurry from the string 110 to the borehole 10 without reversing flow in the string 110 from the first flow direction (i.e., toward the string's ports 112). This is in contrast to the reverse direction of flowing fluid down the annulus between the string 110 and the housings 130A-B/screens 140A-B to evacuate excess slurry from the string 110.
  • the slurry travels from the outlet ports 112, through the flow ports 132B, and through the shunts 150. From the shunts 150, the slurry then passes out the side ports or nozzles 154 in the shunts 150 and fills the annulus around shoe track 120. This provides the gravel packing operation with an alternate path to gravel pack the borehole 10 different from the assembly's primary toe-to-heel path. In this way, the shunts 150 attached to the ported housing 130B above the lower screen section 140A can be used to gravel pack the end of the borehole 10 and/or dispose of excess gravel from the inner string 110 around the shoe track 120.
  • the shunts 150 carry the slurry down the lower screen section 140A so a wash pipe is not needed at the end of the section 140A.
  • a bypass 128 defined in a downhole location of the shoe track 120 allows for returns of fluid during this process.
  • This bypass 128 can be a check valve, a screen portion, a sleeve, or other suitable device that allows the returns (and not gravel) from the borehole 10 to enter the assembly 100.
  • the bypass 128 as a screen portion can have any desirable length along the shoe track 120 depending on the implementation.
  • the fluid returns can pass out the lower screen section 140A, through the packed gravel, and back through upper screen section 140B to travel uphole.
  • the lower ported housing 130A can have a bypass, another shunt, or the like (not shown), which can be used to deliver fluid returns past the seals 114 and seats 134 and uphole.
  • operation may reach a "sand out” condition or a pressure increase while pumping slurry at these upper flow ports 132B.
  • a valve, rupture disc, or other closure device 156 in the shunts 150 can open so the gravel in the slurry can then fill inside the shoe track 120 after evacuating the excess around the shoe track 120. In this way, operators can evacuate excess gravel inside the shoe track 120.
  • next section 102B disposed further uphole can be essentially the same as the previous section 102A.
  • the second section 102B can have the ported housings 130A-B, the screen sections 140A-B, and the shunt tubes 150 just as before.
  • the shunts 150 as shown in Figure 9A may terminate at the downhole end of the section 102B to deposit sand in this area during gravel packing. Much of the other steps for gravel packing the section 102B would be the same as discussed previously.
  • next gravel pack section 102B can be more simplified and can have a ported housing 130 and screen section 140. Gravel packing here would involve toe-to-heel packing along the screen section 140 from the lower ported housing 130 until sandout.
  • the assembly 100 is set to perform the cementing operation of the uphole liner 170.
  • the inner string 110 is moved uphole so that the ported end of the tool 110 leaves the gravel pack sections 102A-B and seats in the port collar 160A uphole of the last packer 104 (if present as in Fig. 4C ) or uphole of the last screen section 140B (as in Fig. 4D ). Operators then pump cement slurry down the inner string 110 so that the cement fills the annulus around the upper liner 170 to set it in the open borehole 10.
  • port collars 160A-B on the liner 170 is shown in more detail in Figure 10A .
  • the outlet ports 112 at the end of the inner string 110 position in the lower port collar 160A, and the seals 114 engage the collar's seats 164 so the string's ports 112 communicates with the collar's ports 162.
  • Cement slurry pumped down the inner string 110 exits the port collar 160A and fills the annulus around the liner 170 between liner hanger 14 and uppermost packer 104 (if used).
  • the ports 162 in the uphole collar 160 disposed on the liner 170 downhole of the liner hanger 14 allow fluid returns from the borehole annulus around the liner 170 to pass into the space between the string 110 and the liner 170. The fluid returns can then pass uphole to the casing 12.
  • cement slurry may collect in the space between the inner string 110 and the liner 170, operators can clear any residual material with a circulating procedure after finishing the cementing operations.
  • the same ports 112 on the inner string 110 used for gravel packing can also be used for cementing in this arrangement.
  • additional ports 112' and seals 114' on the inner string 110 can be used for cementing and are disposed a distance uphole of the ports 112 and seals 114 used for gravel packing.
  • the dual sets of ports 112/112' and seals 114/114' may be useful if more or less ports 112' are needed for cementing than for gravel packing and if the cementing ports 112' need a different size than the gravel pack ports 112. Accordingly, the additional ports 112' and seals 114' may be the same as or different from those ports 112 and seals 114 used for gravel packing.
  • pumping of cement slurry down the inner string 110 is intended to exit the uphole ports 112' and enter the annulus around the liner 170 similar to the way described above.
  • the gravel pack ports 112 are downhole of the cementing ports 112', the gravel pack ports 112 are isolated from fluid flow by a valve 115, which can be closed when cementing is performed.
  • the inner passage of the inner string 110 can be closed using a dropped ball 117 seated on a ball seat 119. The seated ball 117 prevents cementing slurry from passing further down the inner string 110 and diverts the cementing slurry out the cementing ports 112'.
  • the cementing ports 112' are uphole of the gravel pack ports 112, the cementing ports 112' should be closed when gravel packing is to be done. For this reason, the cementing ports 112' can be closed using a sleeve 111 with a ball seat 113. When closed, gravel pack slurry pumped down thee inner string 110 would flow past the closed sleeve 111 to the gravel pack ports 112. When the ball 117 is dropped and fluid pressure is applied, the sleeve 111 moves and opens fluid flow to the cementing ports 112'.
  • the ball 117 may remain in the sleeve's seat 113 or may pass through the seat 113. If the ball 117 remains in the sleeve's seat 113, the seated ball 117 can close of fluid flow past it and can divert the flow of cementing slurry to the cementing ports 112'. In this case, a seat 119 downhole would not be needed. However, the seat 113 on the sleeve 111 may be expandable and can release the ball 117 to engage the lower seat 119 if used.
  • the port collars 160A-B merely had open ports 162, which would presumably remain open during the entire gravel packing and cementing operations.
  • having these open ports 162 on the liner 170 may be acceptable because fluid communication between the liner 170 and the borehole annulus may not be problematic.
  • Figure 11A shows another arrangement of port collars 160A-B for performing cementing operations.
  • the downhole port collar 160A is disposed uphole of the packing element 104 (if used) separating the liner annulus from the gravel pack sections (not shown).
  • This collar 160A can have a valve 165, which can be opened to perform cementing operations, but closed during gravel packing.
  • the uphole port collar 160B can have a valve 165, which can be opened for cementing, but closed during gravel packing.
  • valves 165 could be used, including, but not limited to, sliding sleeves, rotatable sleeves, rupture discs, and the like.
  • the collars 160A-B can use sliding sleeves for the valves 165 to expose the collar's side ports 162 for communicating with the borehole annulus.
  • fluid returns from the gravel packing or other operations can be prevented from cross-flow between the annulus and liner 170.
  • cement slurry can exit the open ports 162 of the lower collar 160A into the liner annulus, and fluid returns can enter from the liner's annulus and into the liner 170 through the uphole collar 160A.
  • These sleeves 165 can be opened using a shifting tool 108 disposed on the inner string 110 that opens the sleeves 165 as it is passed uphole with the string 110 through the collars 160A-B before cementing operations begin.
  • the sleeves 165 can be rotatable in which case a rotating tool 108 can be used.
  • the sleeves 165 can be closed at the end of cementing so production can be performed. Placement of the shifting tool 108 will depend on the particulars of the implementation and the length of the inner string 110 and assembly 100 so depicting of the shifting tool 108 at its location in Figure 11A is only meant to be illustrative.
  • FIG 11B shows the gravel pack assembly 100 during cementing operations using a ported liner hanger 180.
  • the ported liner hanger 180 can have a bypass or passage 182 for returns.
  • the inner string 110 is positioned in the downhole port collar 160A so cementing operations can be preformed.
  • the ported liner hanger 180 with its bypass 182 allows fluid returns in the borehole 10 to enter the casing 12 during cementing.
  • the bypass 182 can take many forms.
  • the liner hanger 180 can have a gap between the liner hanger 180 and the casing 12 that acts as the bypass 182.
  • the bypass 182 can be a port, orifice, or the like defined in the liner hanger 180. With the benefit of the present disclosure, one skilled in art that these and other configurations can be used for the ported liner hanger 180.
  • a horizontal borehole may refer to any deviated section of a borehole defining an angle of 50-degrees or greater and even over 90-degrees relative to vertical.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Claims (19)

  1. Appareil de gravillonnage-cimentation destiné à un trou de forage (10), l'appareil comprenant :
    un corps (102) conçu pour être déployé dans le trou de forage (10) et présentant un passage de corps, une pointe, et un talon, le corps (102) définissant au moins un orifice de gravillonnage (132) situé vers la pointe, un orifice pour retours (160B) situé vers le talon, et un orifice de cimentation (160A) situé entre le au moins un orifice de gravillonnage (132) et l'orifice pour retours (160B), le corps (102) présentant au moins un filtre (140) agencé entre le au moins un orifice de gravillonnage (132) et l'orifice de cimentation (160A) ; et
    une colonne intérieure (110) conçue pour être déployée de manière mobile dans le passage de corps et définissant un passage de colonne avec au moins un orifice de sortie (112),
    un moyen permettant de gravillonner de manière sélective une première partie du trou de forage (10) autour du au moins un filtre (140) de la pointe vers le talon, la colonne intérieure (110) étant mobile vers un premier état sélectif, au sein du passage de corps, qui ferme de manière étanche le au moins un orifice de sortie (112) ainsi que le au moins un orifice de gravillonnage (132) et qui fait communiquer le coulis de gravillonnage du passage de colonne vers le trou de forage (10), et
    un moyen permettant de cimenter de manière sélective une deuxième partie du trou de forage (10) autour du corps (102) de la pointe vers le talon, la colonne intérieure (110) étant mobile vers un deuxième état sélectif fermant de manière étanche le au moins un orifice de sortie (112) ainsi que l'orifice de cimentation (160A) et faisant communiquer le coulis de gravillonnage du passage de colonne vers le trou de forage (10).
  2. Appareil selon la revendication 1, dans lequel, dans le premier état sélectif, le au moins un filtre (140) est conçu pour faire communiquer des retours de gravillonnage du trou de forage (10) vers le passage de corps, et
    dans lequel, dans le deuxième état sélectif, l'orifice pour retours (160B) est conçu pour faire communiquer des retours de cimentation entre le trou de forage (10) et le passage de corps.
  3. Appareil selon la revendication 1 ou 2, dans lequel le corps (102) comprend une colonne perdue (170) agencée dans le trou de forage (10) à partir d'un dispositif de suspension de colonne perdue (14), dans lequel la colonne perdue (170) définit l'orifice de cimentation (160A), et dans lequel le dispositif de suspension de colonne perdue (14) ou la colonne perdue (170) définit l'orifice pour retours (160B).
  4. Appareil selon l'une quelconque des revendications 1, 2 ou 3, dans lequel le corps (102) comprend un élément isolant (104) agencé entre le au moins un filtre (140) et l'orifice de cimentation (160A) et des parties haut de trou et fond de trou isolantes du trou de forage (10).
  5. Appareil selon l'une quelconque des revendications 1 à 4, dans lequel le au moins un orifice de sortie (112) de la colonne intérieure (110) comprend un orifice de sortie de gravillonnage (112) et comprend un orifice de sortie de cimentation (112') agencé en haut de trou par rapport à l'orifice de sortie de gravillonnage (112), et dans lequel la colonne intérieure (110) comprend un clapet (115) fermant de manière sélective une communication fluidique du passage de colonne avec l'orifice de sortie de gravillonnage (112), ou dans lequel la colonne intérieure (110) comprend un manchon (111) agencé mobile dans le passage de colonne et coulissant pour s'ouvrir par rapport à l'orifice de sortie de cimentation (112') en réaction à une pression appliquée à une bille lâchée (117) logée dans le manchon coulissant (111), la bille lâchée (117) empêchant une communication fluidique au sein du passage de colonne avec l'orifice de sortie de gravillonnage (112).
  6. Appareil selon l'une quelconque des revendications 1 à 4, dans lequel au moins un parmi les orifices de cimentation et pour retours (160A-B) comprend un clapet (165) ouvrant de manière sélective une communication fluidique à travers ceux-ci, ou dans lequel au moins un parmi les orifices de cimentation et pour retours (160A-B) comprend un manchon (165) agencé dans le passage de colonne et mobile de manière sélective par rapport au au moins un parmi les orifices de cimentation et pour retours (160A-B), de sorte que la colonne intérieure (110) comprend un sélecteur (108) déplaçant de manière mécanique le manchon (165) lorsqu'il est agencé par rapport à celui-ci.
  7. Appareil selon l'une quelconque des revendications 1 à 6, comprenant en outre un premier dispositif passerelle (150) s'étendant à partir du au moins un orifice de gravillonnage (132) et faisant communiquer le coulis de gravillonnage du au moins un orifice de gravillonnage (132) vers le trou de forage (10).
  8. Appareil selon l'une quelconque des revendications 1 à 7, dans lequel la colonne intérieure (110), dans le premier état sélectif, gravillonne dans le trou de forage (10) de la pointe vers le talon, et dans lequel la colonne intérieure (110), dans le deuxième état sélectif, fournit du coulis de cimentation de la pointe vers le talon du corps (102).
  9. Appareil selon l'une quelconque des revendications 1 à 8, dans lequel le corps (102) définit un orifice de pointe (126) dans une pointe du corps (102), et dans lequel la colonne intérieure (110) déplacée vers un troisième état sélectif au sein du passage de corps ferme de manière étanche l'orifice de sortie (112) ainsi que l'orifice de pointe (126) et fait communiquer le passage de colonne avec le trou de forage (10), et dans lequel l'orifice de pointe (126) comprend une communication de commande de clapet à travers l'orifice de pointe (126).
  10. Appareil selon l'une quelconque des revendications 1 à 9, dans lequel le au moins un orifice de gravillonnage (132) comprend des premier et deuxième orifices de gravillonnage (132A-B), et dans lequel le au moins un filtre (140) comprend un premier filtre (140A) agencé sur le corps (102) entre les premier et deuxième orifices de gravillonnage (132A-B) et comprend un deuxième filtre (140B) agencé sur le corps (102) en haut de trou par rapport au deuxième orifice de gravillonnage (132B), et dans lequel :
    dans une première étape du premier état sélectif, le au moins un orifice de sortie (112) fait communiquer du coulis de gravillonnage avec le trou de forage (10) par l'intermédiaire du premier orifice de gravillonnage (132A) et au moins un parmi les premier et deuxième filtres (140A-B) fait communiquer des retours de gravillonnage du trou de forage (10) vers le passage de corps, et/ou
    dans une deuxième étape du premier état sélectif, le au moins un orifice de sortie (112) fait communiquer du coulis de gravillonnage avec le trou de forage (10) par l'intermédiaire d'un dispositif passerelle (150) alternatif raccordé au deuxième orifice de gravillonnage (132B) et le corps (102) comprend une dérivation (128) faisant communiquer des retours de gravillonnage du trou de forage (10) vers le passage de corps.
  11. Appareil selon l'une quelconque des revendications 1 à 10, comprenant une pluralité d'agencements (102A-B) du au moins un filtre (140) et du au moins un orifice de gravillonnage (132) agencés le long du corps (102) entre la pointe et l'orifice de cimentation (160A), et comprenant en outre une pluralité d'éléments isolants (104A-B) agencés sur le corps (102) entre lesdits agencements (102A-B) du au moins un filtre (140) et du au moins un orifice de gravillonnage (132).
  12. Procédé de gravillonnage-cimentation destiné à un trou de forage (10), le procédé comprenant les étapes consistant à :
    déployer un appareil (100) dans le trou de forage (10), l'appareil (100) présentant une pointe et un talon ;
    déployer une colonne intérieure (110) dans un passage de l'appareil (100) ;
    déplacer au moins un orifice de sortie (112) de la colonne intérieure (110) vers au moins un orifice de gravillonnage (132) agencé entre au moins un filtre (140) et la pointe de l'appareil (100) ;
    gravillonner une première partie du trou de forage (10) autour de l'appareil (100) de la pointe vers le talon grâce à une étape consistant à faire circuler du coulis de gravillonnage à travers le au moins un orifice de gravillonnage (132) jusque dans le trou de forage (10) ;
    déplacer le au moins un orifice de sortie (112) de la colonne intérieure (110) vers un orifice de cimentation (160A) agencé entre le au moins un filtre (140) et le talon de l'appareil (100) ; et
    cimenter une deuxième partie du trou de forage (10) autour de l'appareil (100) de la pointe vers le talon grâce à une étape consistant à faire circuler du coulis de cimentation à travers l'orifice de cimentation (160A) jusque dans le trou de forage (10).
  13. Procédé selon la revendication 12, dans lequel l'étape de cimentation comprend une étape consistant à faire circuler des retours de cimentation en provenance de la deuxième partie du trou de forage (10) à travers un orifice pour retours (160B) agencé entre l'orifice de cimentation (160A) et le talon de l'appareil (100).
  14. Procédé selon la revendication 12 ou 13, dans lequel l'étape de déploiement de l'appareil (100) dans le trou de forage (10) comprend une étape consistant à suspendre une colonne perdue (170) dans le trou de forage (10) à partir d'un dispositif de suspension de colonne perdue (14) situé dans un cuvelage, dans lequel en outre la colonne perdue (170) définit l'orifice de cimentation (160A), et dans lequel le dispositif de suspension de colonne perdue (14) ou la colonne perdue (170) définit l'orifice pour retours (160B).
  15. Procédé selon l'une quelconque des revendications 12, 13 ou 14, comprenant en outre une étape consistant à isoler (104) des parties haut de trou et fond de trou du trou de forage (10) entre le au moins un filtre (140) et l'orifice de cimentation (160A).
  16. Procédé selon l'une quelconque des revendications 12 à 15, dans lequel le au moins un orifice de sortie (112) présent sur la colonne intérieure (110) comprend des premier et deuxième orifices de sortie (112, 112'), et dans lequel l'étape de gravillonnage comprend une étape consistant à faire circuler un coulis de gravillonnage à partir du premier orifice de sortie (112), et dans lequel l'étape de cimentation comprend une étape consistant à faire circuler du coulis de cimentation à partir du deuxième orifice de sortie (112'), et dans lequel l'étape de circulation à partir des premier et deuxième orifices de sortie (112, 112') comprend une étape consistant à ouvrir et fermer (113, 115, 117) de manière sélective une communication fluidique à travers les premier et deuxième orifices de sortie (112, 112').
  17. Procédé selon l'une quelconque des revendications 12 à 15, dans lequel l'étape de circulation de coulis de cimentation à travers l'orifice de cimentation (160A) comprend une étape consistant à ouvrir de manière sélective (165) une communication fluidique à travers l'orifice de cimentation (160A).
  18. Procédé selon l'une quelconque des revendications 12 à 15, et 17, dans lequel l'étape de circulation d'un coulis de cimentation à travers l'orifice de cimentation (160A) comprend une étape consistant à ouvrir de manière sélective (165) une communication fluidique à travers un orifice pour retours (160B) agencé entre l'orifice de cimentation (160A) et le talon du corps (102).
  19. Procédé selon l'une quelconque des revendications 12 à 18, dans lequel l'étape de gravillonnage de la première partie du trou de forage (10) autour de l'appareil (100) comprend une étape consistant à évacuer du coulis de gravillonnage excédentaire de la colonne intérieure (110) vers le trou de forage (10), et dans lequel l'étape d'évacuation du coulis de gravillonnage excédentaire comprend les étapes consistant à :
    évacuer le coulis de gravillonnage excédentaire dans le trou de forage (10) en direction de la pointe de l'appareil (100), et/ou
    évacuer le coulis de gravillonnage excédentaire dans le passage de l'appareil (100) en direction de la pointe, et/ou
    faire circuler des retours de gravillonnage en provenance du trou de forage (10) à travers une dérivation (128) de l'appareil (100).
EP13700247.3A 2012-01-06 2013-01-04 Ensemble de cimentation de chemisage et de massif de gravier pointe-talon à parcours unique Not-in-force EP2800865B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/345,418 US9260950B2 (en) 2010-10-28 2012-01-06 One trip toe-to-heel gravel pack and liner cementing assembly
PCT/US2013/020245 WO2013103785A2 (fr) 2012-01-06 2013-01-04 Ensemble de cimentation de chemisage et de massif de gravier talon-pointe à parcours unique

Publications (2)

Publication Number Publication Date
EP2800865A2 EP2800865A2 (fr) 2014-11-12
EP2800865B1 true EP2800865B1 (fr) 2018-07-11

Family

ID=47557555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13700247.3A Not-in-force EP2800865B1 (fr) 2012-01-06 2013-01-04 Ensemble de cimentation de chemisage et de massif de gravier pointe-talon à parcours unique

Country Status (5)

Country Link
EP (1) EP2800865B1 (fr)
BR (1) BR112014016813A8 (fr)
RU (1) RU2578064C2 (fr)
SG (1) SG11201403515VA (fr)
WO (1) WO2013103785A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3983645A4 (fr) * 2019-06-13 2023-03-01 Services Pétroliers Schlumberger Système et méthodologie de cimentation et d'élimination du sable
US20230349260A1 (en) * 2022-04-27 2023-11-02 Saudi Arabian Oil Company Off-bottom cementing pod

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082007B2 (en) 2010-10-28 2018-09-25 Weatherford Technology Holdings, Llc Assembly for toe-to-heel gravel packing and reverse circulating excess slurry
US9970258B2 (en) * 2014-05-16 2018-05-15 Weatherford Technology Holdings, Llc Remotely operated stage cementing methods for liner drilling installations
US9915105B2 (en) 2014-05-16 2018-03-13 Weatherford Technology Holdings, Llc Swivel and method of use
NO3124015T3 (fr) * 2014-05-20 2018-08-25
NO339650B1 (no) * 2014-10-14 2017-01-16 Archer Oil Tools As Sementering som tillater innledende forlengelsesrørtoppintegritetsttest
BR112021008910A2 (pt) 2018-11-07 2021-08-10 Schlumberger Technology B.V. método de enchimento com cascalho de poços abertos
CN112267855B (zh) * 2020-09-22 2023-02-07 中国石油天然气股份有限公司 调流控水防砂完井管柱和充砂方法
CN113756760B (zh) * 2021-09-28 2024-05-07 核工业北京化工冶金研究院 一种反向填砾装置及反向填砾方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU956761A1 (ru) * 1979-12-13 1982-09-07 Азербайджанский государственный научно-исследовательский и проектный институт нефтяной промышленности Устройство дл создани гравийной набивки
US6481494B1 (en) * 1997-10-16 2002-11-19 Halliburton Energy Services, Inc. Method and apparatus for frac/gravel packs
US6513595B1 (en) 2000-06-09 2003-02-04 Weatherford/Lamb, Inc. Port collar assembly for use in a wellbore
US6675891B2 (en) * 2001-12-19 2004-01-13 Halliburton Energy Services, Inc. Apparatus and method for gravel packing a horizontal open hole production interval
US7337840B2 (en) * 2004-10-08 2008-03-04 Halliburton Energy Services, Inc. One trip liner conveyed gravel packing and cementing system
RU2317404C1 (ru) * 2007-02-13 2008-02-20 Алексей Сергеевич Кашик Способ создания гравийного фильтра в горизонтальной скважине
US8267173B2 (en) * 2009-05-20 2012-09-18 Halliburton Energy Services, Inc. Open hole completion apparatus and method for use of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3983645A4 (fr) * 2019-06-13 2023-03-01 Services Pétroliers Schlumberger Système et méthodologie de cimentation et d'élimination du sable
US11905788B2 (en) 2019-06-13 2024-02-20 Schlumberger Technology Corporation Cementing and sand control system and methodology
US20230349260A1 (en) * 2022-04-27 2023-11-02 Saudi Arabian Oil Company Off-bottom cementing pod
US11867021B2 (en) * 2022-04-27 2024-01-09 Saudi Arabian Oil Company Off-bottom cementing pod

Also Published As

Publication number Publication date
EP2800865A2 (fr) 2014-11-12
WO2013103785A3 (fr) 2014-03-13
BR112014016813A8 (pt) 2017-07-04
RU2014132344A (ru) 2016-02-27
BR112014016813A2 (pt) 2017-06-13
RU2578064C2 (ru) 2016-03-20
WO2013103785A2 (fr) 2013-07-11
SG11201403515VA (en) 2014-07-30

Similar Documents

Publication Publication Date Title
US9260950B2 (en) One trip toe-to-heel gravel pack and liner cementing assembly
EP2800865B1 (fr) Ensemble de cimentation de chemisage et de massif de gravier pointe-talon à parcours unique
US9447661B2 (en) Gravel pack and sand disposal device
AU2011236063B2 (en) Gravel pack assembly for bottom up/toe-to-heel packing
US10082007B2 (en) Assembly for toe-to-heel gravel packing and reverse circulating excess slurry
US8267173B2 (en) Open hole completion apparatus and method for use of same
US9085960B2 (en) Gravel pack bypass assembly
EP0950794B1 (fr) Dispositif et procédé pour l'équipement de puits souterrain
US8245782B2 (en) Tool and method of performing rigless sand control in multiple zones
US11629580B2 (en) Multi-zone single trip completion system
NO20170834A1 (en) Gravel pack service tool with enhanced pressure maintenance
DK2570586T3 (en) Device for disposal of gravel pack and sand
EP2957715B1 (fr) Ensemble pour le compactage de gravier «toe-to-heel» et circulation en sens inverse de la boue en excès
EP2800867B1 (fr) Ensemble de dérivation de massif de gravier
RU2588508C2 (ru) Байпасная компоновка гравийного фильтра
AU2020291524A1 (en) Cementing and sand control system and methodology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEATHERFORD TECHNOLOGY HOLDINGS, LLC

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1017075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013040046

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180711

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1017075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013040046

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

26N No opposition filed

Effective date: 20190412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013040046

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200102

Year of fee payment: 8

Ref country code: NO

Payment date: 20200108

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190104

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200813 AND 20200819

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20201126 AND 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130104

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711