EP2794513B1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
EP2794513B1
EP2794513B1 EP12823023.2A EP12823023A EP2794513B1 EP 2794513 B1 EP2794513 B1 EP 2794513B1 EP 12823023 A EP12823023 A EP 12823023A EP 2794513 B1 EP2794513 B1 EP 2794513B1
Authority
EP
European Patent Office
Prior art keywords
less
content
weight
percentage
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12823023.2A
Other languages
German (de)
French (fr)
Other versions
EP2794513A1 (en
Inventor
Nabil Nahas
Daniel Urffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority to EP17161633.7A priority Critical patent/EP3210954B1/en
Publication of EP2794513A1 publication Critical patent/EP2794513A1/en
Application granted granted Critical
Publication of EP2794513B1 publication Critical patent/EP2794513B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3888Arrangements for carrying or protecting transceivers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks

Definitions

  • the invention relates to a device for communication by radio waves of frequencies between 800 MHz and 3GHz and comprising a ceramic cover through which at least part of said waves passes when the device is used.
  • US 2006/0268528 describes examples of such a device, the cover possibly being made of zirconia in particular.
  • Zirconia is however not very transparent to Hertzian waves of frequencies between 800MHz to 3GHz, which can pose communication problems, for example if the region in which the device is used is poorly covered by the telecommunications network or presents obstacles to waves.
  • materials known for their high transparency to Hertzian waves of frequencies between 800MHz to 3GHz may have limited impact and scratch resistance, which makes them unsuitable if the cover is exposed to the external environment, for example if the cover is a shell of a phone or laptop. In these applications, the device must in fact retain its integrity and its appearance in the event of impact or friction.
  • An aim of the invention is to satisfy, at least partially, this need.
  • sintered product according to the invention is used hereinafter to refer to such a sintered product.
  • cover according to the invention is referred to hereinafter as “cover according to the invention”.
  • particulate mixture according to the invention is used hereinafter to refer to such a particulate mixture.
  • a particulate mixture according to the invention makes it possible to manufacture a sintered part in a sintered product according to the invention.
  • the cover of a device according to the invention is manufactured according to a method according to the invention.
  • step a a particulate mixture according to the invention is prepared.
  • the particulate mixture has a specific area, calculated by the BET method, greater than 3 m 2 / g, preferably greater than 5 m 2 / g, and / or less than 30 m 2 / g, preferably less than 25 m 2 / g, preferably less than 20 m 2 / g. More preferably, it has a median size (D 50 ) of less than 10 ⁇ m, or even less than 5 ⁇ m, or even less than 3 ⁇ m, or even less than 1 ⁇ m, and / or preferably greater than 0.05 ⁇ m.
  • D 50 median size
  • Grinding can be implemented so that each of the powders used in step a) or so that the particulate mixture has the desired particle size characteristics, in particular to obtain good densification of the sintered part.
  • grinding can be implemented so that the first particulate fraction has a median size (D 50 ) of less than 1000 nm and / or so that the second particulate fraction has a size (D 50 ) of less than 10,000 nm.
  • the particulate mixture comprises first and second particulate fractions, the other particulate fractions being optional.
  • the first, second, third and fourth particulate fractions are not necessarily added separately to the particulate mixture.
  • the term "particulate fraction" means only that from the particulate mixture it is possible to separate the particles so as to constitute the first, second, third and fourth particulate fractions.
  • the particulate mixture consists of the first, second and fourth particulate fractions.
  • the particulate mixture consists of the first, second, third and fourth particulate fractions.
  • the first particulate fraction represents more than 70%, or even more than 75%, and / or less than 85% of the particulate mixture, in percentage by mass.
  • the median size of the particles of the first particulate fraction is between 100 nm and 1000 nm, preferably less than 800 nm, or even less than 500 nm.
  • the particle size distribution curve of the first particulate fraction is such that the ratio (D 90 -D 10 ) / D 50 is less than 10, or even less than 5, or even less than 3, or even less than 2.
  • the second particulate fraction comprises less than 25% by mass of particles having a length / width ratio greater than 3, more than 25%, or even more than 40%, or even more than 50% by mass of the particles.
  • particles of the first particulate fraction have a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10.
  • the mechanical properties of the sintered part obtained at the end of step c) are. improved.
  • the zirconia particles of the first particulate fraction comprise a compound capable of stabilizing zirconia chosen from Y 2 O 3 , Sc 2 O 3 , MgO, CaO, CeO 2 and their mixtures, in an amount greater than 2.0% and less at 20.0%, calculated on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 , the MgO + CaO content being less than 5.0% on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .
  • the compound capable of stabilizing zirconia may be chosen from the group formed by Y 2 O 3 , Sc 2 O 3 and their mixtures, the content of the compound capable of stabilizing zirconia then preferably being less than 8%, preferably less than 6.5%, or in the group formed by MgO, CaO and their mixtures, the content of the compound capable of stabilizing zirconia then preferably being less than 4%, or in the group formed by Y 2 O 3 , CeO 2 and their mixtures, the content of the compound capable of stabilizing the zirconia then preferably respecting the relationship 10% ⁇ 3.Y 2 O 3 + CeO 2 ⁇ 20%, the percentages being percentages by mass based on the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .
  • the compound capable of stabilizing zirconia is CeO 2 , that is to say that the first particulate fraction contains only CeO 2 as compound capable of stabilizing zirconia, the content of the compound capable of stabilizing zirconia. zirconia then preferably being greater than 10% and less than 15%, as a percentage by mass based on the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .
  • the compound capable of stabilizing zirconia is Y 2 O 3 , that is to say that the first particulate fraction contains only Y 2 O 3 as compound capable of stabilizing zirconia, the content of the compound capable of stabilizing the zirconia then preferably being greater than 3%, preferably greater than 4%, and / or less than 8%, preferably less than 6.5%, in percentage by mass on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2
  • the zirconia, stabilized or not, and at least part, or even all of the compound capable of stabilizing the zirconia, are preferably intimately mixed.
  • Such an intimate mixture can for example be obtained by co-precipitation or atomization, and possibly be consolidated by heat treatment.
  • the compound capable of stabilizing zirconia can also stabilize zirconia, the compound capable of stabilizing zirconia then being conventionally called “stabilizer”.
  • the zirconia is preferably more than 50%, preferably more than 80%, preferably more than 90%, preferably more than 95%, preferably more than 99%, by mass in one form. quadratic and / or cubic crystallographic, the complement being in a monoclinic crystallographic form.
  • the second particulate fraction represents more than 15%, and / or less than 40%, preferably less than 30%, preferably less than 25% of the particulate mixture, in percentage by mass.
  • the median size of the particles of the second particulate fraction is between 100 nm and 10,000 nm, preferably less than 5000 nm, or even less than 1000 nm.
  • the particle size distribution curve of the second particulate fraction is such that the ratio (D 90 -D 10 ) / D 50 is less than 10, or even less than 5, or even less than 3, or even less than 2.
  • more than 25%, or even more than 40%, or even more than 50% by mass of the particles of the second particulate fraction have a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater. to 10.
  • the mechanical properties of the sintered part obtained at the end of step c) are improved thereby.
  • the second particulate fraction consists of particles of a compound of formula XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as 10 ⁇ m ⁇ 12, n being an integer such as 16 ⁇ n ⁇ 20, and / or particles in a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being integers such as x + a> 0, c> 0, b> 0, a / b ⁇ 2, x / b ⁇ 1, y ⁇ 3 (a + x), and z ⁇ b and / or particles of Si 3 N 4 and / or particles of AIN
  • the second particulate fraction consists of particles of MgAl 12 O 19 and / or particles of LaAl 11 O 18 and / or particles of a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being numbers integers such as x + a> 0, c> 0, b> 0, a / b ⁇ 2, x / b ⁇ 1, y ⁇ 3 (a + x), and z ⁇ b and / or particles in a mixture of these compounds.
  • the second particulate fraction consists of MgAl 12 O 19 particles and / or LaAl 11 O 18 particles and / or orthosilicate particles and / or sorosilicate particles and / or cyclosilicate particles. and / or particles in an inosilicate and / or particles in a phyllosilicate and / or particles in a tectosilicate and / or particles in a clay and / or particles in a mixture of these compounds.
  • the particles of an orthosilicate are particles of forsterite Mg 2 SiO 4 and / or particles of garnet Mg 3 Al 2 (SiO 4 ) 3 and / or particles of grossular Ca 3 Al 2 (SiO 4 ) 3 and / or andalusite Al 2 SiO 5 particles and / or sphene CaTiSiO 5 particles and / or particles in a mixture of these compounds.
  • the particles in an orthosilicate are particles of garnet Mg 3 Al 2 (SiO 4 ) 3 and / or particles of grossular Ca 3 Al 2 (SiO 4 ) 3 and / or particles of sphene CaTiSiO 5 and / or particles in a mixture of these compounds.
  • the particles of a sorosilicate are particles of epidote Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH and / or particles of an yttrium silicate, such as Y 2 Si 2 O 7 , yttrium which may be partially substituted by Sc: (Sc, Y) 2 Si 2 O 7 and / or melilite particles X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures and / or particles in a mixture of these compounds.
  • an yttrium silicate such as Y 2 Si 2 O 7 , yttrium which may be partially substituted by Sc: (Sc, Y) 2 Si 2 O 7 and / or melilite particles X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures and / or particles in a
  • the particles of a cyclosilicate are particles of a cordierite, preferably of Mg 2 Al 3 (Si 5 AlO 18 ).
  • the particles of an inosilicate are particles of a pyroxene, such as MgSiO 3 and (Ca, Mg) Si 2 O 6 and / or particles of an amphibole of the formulas (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 and / or particles as a mixture of these compounds.
  • the particles of an inosilicate are particles of an amphibole of the formula (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 .
  • the particles in a phyllosilicate are particles of serpentine Mg 3 Si 2 O 5 (OH) 4 and / or particles of talc Mg 3 Si 4 O 10 (OH) 2 and / or particles of pyrophyllite Al 2 Si 4 O 10 (OH) 2 and / or particles as a mixture of these compounds.
  • the particles of a phyllosilicate are particles of talc Mg 3 Si 4 O 10 (OH) 2 .
  • the particles of a tectosilicate are particles of a feldspar, preferably of (Ca, Sr) Al 2 Si 2 O 8 .
  • the particles of a clay are particles of a kaolinite and / or particles of a montmorillonite and / or particles of a vermicullite and / or particles of a mixture of these compounds.
  • the clay particles are particles of kaolinite Si 2 O 5 Al 2 (OH) 4 and / or particles of montmorillonite Si 4 O 10 (Al, Mg) 3 (OH) 2 and / or particles of vermicullite (Mg, Ca) (MgAl) 6 (Al, Si) 8 O 22 (OH) 4 .8H 2 O and / or particles as a mixture of these compounds.
  • the third particulate fraction may represent more than 0.5%, and / or less than 8% of the particulate mixture, as a percentage by weight based on the particulate mixture.
  • the inventors have discovered that if the third particulate fraction represents more than 10.0% of the particulate mixture, the mechanical properties, in particular toughness, of the sintered parts produced are degraded. This degradation is problematic in particular when the sintered parts are intended for the manufacture of covers exposed to the outside.
  • a minimum content of 0.5% of the third particulate fraction in the particulate mixture contributes to obtaining well developed and homogeneous colors.
  • the median size of the particles of the third particulate fraction is less than 1000 nm, or even less than 500 nm.
  • the efficiency of these particles in the sintered part is improved thereby.
  • the sintered part has a particularly decorative color.
  • the particles of the third particulate fraction can be produced, in a known manner, by various methods, such as fusion, solid phase synthesis, pyrolysis of salts, precipitation of hydroxides and their calcination, or synthesis by the sol- route. gel.
  • the fourth particulate fraction preferably represents less than 1.5%, preferably less than 1%, more preferably less than 0.5%, preferably less than 0.2%, preferably less than 0.1%, in mass percentage.
  • the fourth particulate fraction consists of the impurities.
  • the oxides represent more than 98%, more than 99%, or even substantially 100% of the mass of the particulate mixture.
  • the particulate mixture may have undergone an additional step, for example an atomization step before going on to step b), in particular to improve its chemical homogeneity.
  • a "ready-to-use" particulate mixture according to the invention can be used.
  • all particulate oxide raw materials can be metered at the time of preparing the feedstock.
  • the starting charge may conventionally comprise one or more deflocculant (s) and / or binder (s) and / or lubricant (s), preferably temporary, conventionally used in shaping processes for the manufacture of preforms to be sintered, for example an acrylic resin, polyethylene glycol (PEG), or polyvinyl alcohol (PVA).
  • deflocculant s
  • binder s
  • lubricant s
  • temporary, conventionally used in shaping processes for the manufacture of preforms to be sintered for example an acrylic resin, polyethylene glycol (PEG), or polyvinyl alcohol (PVA).
  • the starting charge may conventionally comprise a solvent, preferably an aqueous solvent, for example water, the amount of which is suitable for the process used for shaping the starting charge.
  • a solvent preferably an aqueous solvent, for example water, the amount of which is suitable for the process used for shaping the starting charge.
  • the particulate mixture represents more than 90%, preferably more than 95%, or even more than 99% of the mass of the starting charge, the remainder to 100% being constituted by the deflocculant (s), binder (s) ), lubricant (s), solvent and by impurities.
  • the impurities preferably represent less than 2% of the starting charge.
  • step b) the starting charge is shaped, for example by uniaxial pressing in order to form preforms of the desired dimensions.
  • the preform can optionally undergo a drying step and / or a machining step and / or a debinding step and / or a pre-sintering step.
  • the pre-sintering step advantageously allows more precise machining and also to achieve high densities when the sintering is carried out by HIP.
  • the preform is sintered, preferably in air, at atmospheric pressure or under pressure (“Hot Pressing” in English) or hot isostatic pressing (“Hot Isostatic Pressing” in English, or HIP)) and at a temperature between 1200 ° C and 1600 ° C, preferably between 1400 ° C and 1500 ° C, except when the second particulate fraction contains, or even consists of particles of an orthosilicate, in particular Mg 3 Al 2 (SiO 4 ) 3 , Ca 3 Al 2 (SiO 4 ) 3 , CaTiSiO 5 , and / or particles in a sorosilicate, in particular Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH, and / or particles in an inosilicate, in particular (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 , and / or in particles in a tectosilicate, in particular feldspars, and / or in particles in a
  • a Sintering in this temperature range promotes the development of high mechanical properties.
  • the sintering can be carried out at 1300 ° C. for the preforms incorporating silicate particles (obtained from the second particulate fraction) or at 1450 ° C. for the preforms incorporating particles made of an aluminous compound.
  • the holding time at this temperature is preferably between 2 and 8 hours.
  • the rate of rise is conventionally between 10 and 100 ° C./h.
  • the descent speed can be free. If deflocculant (s) and / or binder (s) and / or lubricants are used, the sintering cycle preferably comprises a plateau of 1 to 4 hours at a temperature between 400 ° C and 800 ° C in order to promote the disposal of said products.
  • the second particulate fraction contains, or even consists of particles of SiAlON phase (s), in particular particles of Si 3 N 4 , and / or particles of AlN, and / or particles of Si 2 ON 2 , and / or or particles in an AlON
  • the sintering atmosphere is preferably inert, for example under argon and / or nitrogen, or weakly reducing, such as for example under a mixture of argon and / or nitrogen, and hydrogen, the mixture comprising preferably less than 10 vol% hydrogen.
  • the parameters of the manufacturing process in particular the particle size distribution of the starting charge particles, the sintering additive, the compression to manufacture the preform and the sintering temperature can be adapted, in known manner, to adapt the density of the material. sintered part for the intended application.
  • the sintered part obtained at the end of step c) can be machined and / or undergo a surface treatment, such as for example polishing ( step d) ), and / or sandblasting, and / or chemical treatment (for example hydrophobic), and / or a redox treatment, according to any technique known to those skilled in the art.
  • a surface treatment such as for example polishing ( step d) ), and / or sandblasting, and / or chemical treatment (for example hydrophobic), and / or a redox treatment, according to any technique known to those skilled in the art.
  • step f) the sintered part is integrated as a structural and / or decorative element in a device according to the invention so as to constitute a cover thereof.
  • the communication device comprises a transmitter and / or a receiver of radio waves of frequencies between 800MHz to 3GHz and a cover.
  • the transmitter is an electronic system suitable for processing a signal that it receives, for example a sound signal such as a voice, and consequently emitting radio waves of frequencies between 800 MHz to 3GHz.
  • the receiver is an electronic system suitable for receiving Hertzian waves of frequencies between 800MHz to 3GHz, then processing them, for example to transform them into a signal, for example sound.
  • the received waves are processed by the receiver to be transformed into a sound signal that the user can hear and the user's voice is processed by the transmitter to be transformed into waves. , these waves being transmitted to the telecommunications network.
  • the transmitter and / or the receiver can be configured to transmit and / or receive, respectively, ultra-short waves (FM), radiofrequency waves (RF), waves conforming to the Bluetooth TM standard, to the “Global System for Mobile Communications ”(GSM), to the“ Digital Communication System ”(DCS) standard and / or to the“ Personal Communications Service ”(PCS) standard.
  • FM ultra-short waves
  • RF radiofrequency waves
  • GSM Global System for Mobile Communications
  • DCS Digital Communication System
  • PCS Personal Communications Service
  • the transmitter and / or the receiver can be configured to transmit and / or receive, respectively, waves of frequency greater than 30 MHz, or even greater than 300 MHz and / or less than 20 GHz, or even less than 3 GHz.
  • the communication device is not limited and can in particular be a telephone, a camera, a camera, a computer, a digital tablet, a digital box for a television or a computer, a modem, a decoder, a portable radio, a WiFi receiver or transmitter.
  • the communication device can be portable. It may have a mass of less than 1 kg, preferably less than 500 g.
  • the cover is completely exposed to the external environment. It may be apparent without even partial disassembly of the device.
  • the cover can be fixed, removably or not, on a support of the device. It can in particular be glued, clipped, sewn, force-inserted or co-sintered with its support.
  • the cover defines the entire exterior surface of the device, that is to say the surface of the device exposed to the exterior environment.
  • the chemical analyzes were carried out by X-ray fluorescence for the constituents with a content greater than 0.5%.
  • the content of the constituents present in an amount of less than 0.5% was determined by AES-ICP (“Atomic Emission Spectoscopy-Inductively Coupled Plasma”).
  • the specific area was measured by adsorption of nitrogen at 77 K and calculated by the 1-point BET method, the samples being pretreated at 300 ° C. under a flow of nitrogen for 2 hours before analysis.
  • the particle size distributions were determined by sedigraphy, using a Sedigraph 5100 sedigraph from the company Micromeritics®, after having dispersed under ultrasound a suspension of the powders to be characterized in the presence of sodium metaphosphate.
  • the crystalline phases in a powder or in a sintered part were determined by X-ray diffraction on a Brucker D5000 apparatus (with an adjustment for 2 ⁇ from 5 ° to 80 °, with a step of 0.02 ° and 1 second per step). Prior to the measurement, the sintered part was polished, the last polishing step having been carried out with a 1 ⁇ m Mecaprex LD32-E diamond preparation marketed by the company PRESI, then heat treated at 1000 ° C for 1 hour and cooled to room temperature .
  • EDS Electronic Dispersive Spectroscopy
  • X-ray diffraction analysis an X-ray diffraction analysis
  • elemental mapping by microprobe can also be carried out to identify the nature of the constituents of the sintered part resulting from the third particulate fraction.
  • the average grain size of a sintered part was measured by a “Mean Linear Intercept” method, according to the ASTM E1382-97 standard. According to this standard, analysis lines are drawn on images of said sintered part, then, along each analysis line, the lengths, known as “intercepts”, are measured between two consecutive grain boundaries intersecting said line d. 'to analyse. The average length "l" of the intercepts "l” is then determined. For the tests below, the intercepts were measured on images, obtained by scanning electron microscopy, of sections of the sintered part, said sections having previously been polished until a mirror quality was obtained and then thermally etched for 30 min at a temperature 100 ° C below the sintering temperature, to reveal the grain boundaries. The magnification used for taking the images was chosen so as to visualize approximately 500 grains on an image. 5 images per sintered part were taken. The results obtained by this standard were multiplied by a correction coefficient equal to 1.56 to take account of the three-dimensional aspect.
  • the color measurements were carried out according to standard NF ISO 7724 on polished parts for which the last polishing step was carried out with a Mecaprex LD32-E 1 ⁇ m diamond preparation marketed by the company PRESI, using a CM device. -2500d, manufactured by the Konica Minolta company, with illuminant D65 (natural light), observer at 10 °, and specular reflection excluded.
  • the hardness and toughness of the sintered parts tested were measured by Vickers indentation on polished sintered parts, the last polishing step having been carried out with a 1 ⁇ m diamond paste.
  • the bending strength was measured at room temperature by 3-point bending on machined and chamfered bars of dimensions 45 mm x 4 mm x 3 mm.
  • the dielectric properties of the sintered parts were measured on cylinders with a diameter of 25 mm and a thickness of 2 mm.
  • the volume resistivity is measured according to the ASTM D257 standard.
  • the parts are covered with aluminum sheets with a diameter of 12.7 mm and pressurized to 0.05 MPa.
  • a voltage of 500 V is applied to the sample, the passing current is recorded.
  • the voltage polarity is alternated every 60 seconds for 6 minutes.
  • the volume resistivity value is an average of the 6 measurements.
  • the dielectric permittivity ⁇ r and the loss coefficient tan ⁇ are measured according to the ASTM D150 standard.
  • the parts are covered with aluminum sheets with a diameter of 25 mm and pressurized to 0.1 MPa.
  • An alternating voltage of variable frequency between 1 Hz and 1 MHz is applied to the sample, the passing current is recorded.
  • Example 1 outside the invention, is produced from a particulate mixture consisting of an alumina powder, the main characteristics of which appear in Table 1 below: Table 1 Alumina powder Al 2 O 3 (% by mass) 100% supplement SiO 2 (ppm) 100 Na 2 O (ppm) 140 CaO (ppm) 70 Fe 2 O 3 (ppm) 80 MgO (ppm) ⁇ 20 TiO 2 (ppm) ⁇ 20 Specific area (m 2 / g) 13 D 10 ( ⁇ m) 0.2 D 50 ( ⁇ m) 0.6 D 90 ( ⁇ m) 1.5
  • 2% polyethylene glycol PEG 4000 and 45% deionized water are added to the particulate mixture so as to form a starting charge.
  • the starting charge is dispersed in a mixer for 30 minutes and then spray dried.
  • the powder thus obtained is sieved through a sieve with a mesh size of 250 ⁇ m.
  • the starting charge is shaped by uniaxial pressing at a pressure of 100 MPa.
  • the preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.
  • the preforms are then dried at 110 ° C. for 12 hours.
  • Table 3 summarizes the properties of the sintered parts obtained.
  • Example 2 outside the invention, is produced from a particulate mixture consisting of a zirconia powder, the main characteristics of which appear in Table 2 below: Table 2 Yttria zirconia powder ZrO 2 (% by mass) 100% supplement Y 2 O 3 (% by mass) 5.38 Al 2 O 3 (ppm) 2500 SiO 2 (ppm) 100 Na 2 O (ppm) 140 CaO (ppm) 70 Fe 2 O 3 (ppm) 80 MgO (ppm) ⁇ 20 TiO 2 (ppm) ⁇ 20 Specific area (m 2 / g) 13 d 10 ( ⁇ m) 0.2 d 50 ( ⁇ m) 0.6 d 90 ( ⁇ m) 1.5
  • 2% polyethylene glycol PEG 4000 and 45% deionized water are added to the particulate mixture so as to form a starting charge.
  • the starting charge is dispersed in a mixer for 30 minutes and then spray dried.
  • the powder thus obtained is sieved through a sieve with a mesh size of 250 ⁇ m.
  • the starting charge is shaped by uniaxial pressing at a pressure of 100 MPa.
  • the preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.
  • the preforms are then dried at 110 ° C. for 12 hours.
  • Table 3 summarizes the properties of the sintered parts obtained.
  • 2% of polyethylene glycol PEG 4000 and 45% of deionized water are added so as to form a starting charge.
  • the starting charge is dispersed in a mixer for 30 minutes and then spray dried.
  • the powder thus obtained is sieved through a sieve with a mesh size of 250 ⁇ m.
  • the starting charge is shaped by uniaxial pressing at a pressure of 100 MPa.
  • the preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.
  • the preforms are then dried at 110 ° C. for 12 hours.
  • Tables 3 and 4 summarize the main characteristics of the manufacturing process and the properties of the sintered parts obtained, respectively.
  • Table 3 Example 1 2 3 4 5 6 7 8 9 10 11 Particulate mixture % alumina powder 100 - - - - - - - - - - - - % zirconia powder (first particulate fraction) - 100 80 80 80 80 80 80 80 80 80 80 76 76 Nature of the second particulate fraction - - MgAl 2 O 4 MgAl 12 O 19 cordierite forsterite zircon mullite epidote cordierite forsterite % of the second particulate fraction - - 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
  • a communication device comprises a cover exhibiting both high transparency to radio waves of frequencies between 800 MHz and 3GHz and high resistance to impacts and scratches.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)

Description

Domaine techniqueTechnical area

L'invention concerne un dispositif de communication par ondes hertziennes de fréquences comprises entre 800MHz à 3GHz et comportant un capot céramique traversé par au moins une partie desdites ondes lors de l'utilisation du dispositif.The invention relates to a device for communication by radio waves of frequencies between 800 MHz and 3GHz and comprising a ceramic cover through which at least part of said waves passes when the device is used.

Arrière-plan technologiqueTechnological background

US 2006/0268528 décrit des exemples d'un tel dispositif, le capot pouvant notamment être constitué de zircone. La zircone est cependant peu transparente aux ondes hertziennes de fréquences comprises entre 800MHz à 3GHz, ce qui peut poser des problèmes de communication, par exemple si la région dans laquelle le dispositif est utilisé est mal couverte par le réseau de télécommunication ou présente des obstacles aux ondes. US 2006/0268528 describes examples of such a device, the cover possibly being made of zirconia in particular. Zirconia is however not very transparent to Hertzian waves of frequencies between 800MHz to 3GHz, which can pose communication problems, for example if the region in which the device is used is poorly covered by the telecommunications network or presents obstacles to waves.

Par ailleurs, les matériaux connus pour leur transparence élevée aux ondes hertziennes de fréquences comprises entre 800MHz à 3GHz peuvent présenter une résistance aux chocs et aux rayures limitée, ce qui les rend inadaptés si le capot est exposé à l'environnement extérieur, par exemple si le capot est une coque d'un téléphone ou d'un ordinateur portable. Dans ces applications, le dispositif doit en effet conserver son intégrité et son apparence en cas de choc ou de frottements.In addition, materials known for their high transparency to Hertzian waves of frequencies between 800MHz to 3GHz may have limited impact and scratch resistance, which makes them unsuitable if the cover is exposed to the external environment, for example if the cover is a shell of a phone or laptop. In these applications, the device must in fact retain its integrity and its appearance in the event of impact or friction.

Il existe donc un besoin pour un dispositif de communication par ondes hertziennes de fréquences comprises entre 800MHz à 3GHz et comportant un capot présentant à la fois une haute transparence aux dites ondes et une résistance élevée aux chocs et aux rayures.There is therefore a need for a device for communication by radio waves of frequencies between 800 MHz to 3GHz and comprising a cover having both high transparency to said waves and high resistance to impacts and scratches.

Un but de l'invention est de satisfaire, au moins partiellement, ce besoin.An aim of the invention is to satisfy, at least partially, this need.

Résumé de l'inventionSummary of the invention

Selon l'invention, on atteint ce but au moyen d'un dispositif de communication par ondes hertziennes de fréquences comprises entre 800MHz à 3GHz comportant un capot céramique exposé, au moins en partie, à l'environnement extérieur du dispositif et traversé par au moins une partie desdites ondes lors de l'utilisation du dispositif, ce capot étant au moins en partie constitué en un produit fritté présentant une composition chimique telle que, en pourcentage massique et pour un total de 100% :

  • 32 % ≤ ZrO2 ≤ 95%,
  • 1 % < Y2O3+CeO2+Sc2O3+MgO+CaO,
  • 0% ≤ CeO2 ≤ 26%,
  • 0% ≤ MgO ≤ 43%,
  • 0% ≤ CaO ≤ 37%,
  • 0% ≤ SiO2 ≤ 41%,
  • 0% ≤ Al2O3 ≤ 55%,
  • 0% ≤ TiO2 ≤ 30%,
  • 0% ≤ oxydes de lanthanides excepté CeO2 ≤ 50%,
  • 0% ≤ SrO ≤ 24%,
  • 0% ≤ composés SiAlON ≤ 50%,
  • autres composés ≤ 15%, et
ledit produit fritté comportant, en pourcentage massique sur la base du produit fritté et pour un total de 100% :
  • plus de 50% d'une partie cristallisée, ladite partie cristallisée comportant, en pourcentage massique sur la base de la partie cristallisée et pour un total de 100% :
    • plus de 40% d'une première phase cristallisée constituée de zircone, plus de 50% en masse de ladite zircone étant stabilisée au moyen d'un stabilisant sous une forme quadratique et/ou cubique, le complément étant sous une forme monoclinique,
    • optionnellement, moins de 50% d'une deuxième phase cristallisée constituée par un composé choisi parmi MgAl2O4, XAlmOn, avec X choisi parmi Mg, Ca, Sr, Y, les oxydes de lanthanides et leurs mélanges, m étant un nombre entier tel que 10 ≤ m ≤ 12, n étant un nombre entier tel que 16 ≤ n ≤ 20, Mg3Al2(SiO4)3, ZrSiO4, les silicates d'yttrium, l'yttrium pouvant être partiellement substitué, X2ZSi2O7 avec X choisi parmi Y, les oxydes de lanthanides et leurs mélanges et Z choisi parmi Mg, Al et leurs mélanges, Mg2Al3(Si5AlO18), (Ca,Sr)Al2Si2O8, 3(Al2O3)2(SiO2), les phases SiAlON, et leurs mélanges, et
    • optionnellement, moins de 10% d'une troisième phase cristallisée constituée par un composé choisi parmi les oxydes de structure pérovskite, les oxydes de structure spinelle, les oxydes de structure rutile FO2, l'élément F étant choisi dans le groupe GF(1) formé par les mélanges d'étain et de vanadium, les mélanges de titane et de chrome et de niobium, les mélanges de titane et de chrome et de tungstène, les mélanges de titane et de niobium et de manganèse, les mélanges d'étain et de chrome, et leurs mélanges, les oxydes de structure hématite E2O3, l'élément E étant choisi dans le groupe GE(1) formé par les mélanges d'aluminium et de chrome, les mélanges d'aluminium et de manganèse, et leurs mélanges, les orthosilicates choisis dans le groupe des orthosilicates de zirconium et de praséodyme (Zr,Pr)SiO4, des orthosilicates de zirconium et de vanadium (Zr,V)SiO4, des orthosilicates de zirconium dans lesquels se trouve de l'oxyde de fer en inclusion, et leurs mélanges,
    • moins de 5%, de préférence moins de 3 %, de préférence moins de 1% d'autres phases cristallisées,
  • optionnellement une partie amorphe comportant, en pourcentage massique sur la base de la partie amorphe et pour un total de 100% :
    • une première phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x+a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1,
    • moins de 10%, voire moins de 5%, voire moins de 3 %, voire moins de 1% d'autres phases amorphes,
la somme des teneurs massiques en deuxième phase cristallisée et en première phase amorphe étant supérieure à 10%, de préférence supérieure à 15% et inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 25%.According to the invention, this object is achieved by means of a communication device by Hertzian waves of frequencies between 800MHz to 3GHz comprising a ceramic cover exposed, at least in part, to the external environment of the device and through which at least a part of said waves during use of the device, this cover being at least in part made up of a sintered product having a chemical composition such that, in percentage by mass and for a total of 100%:
  • 32% ≤ ZrO 2 ≤ 95%,
  • 1% <Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO,
  • 0% ≤ CeO 2 ≤ 26%,
  • 0% ≤ MgO ≤ 43%,
  • 0% ≤ CaO ≤ 37%,
  • 0% ≤ SiO 2 ≤ 41%,
  • 0% ≤ Al 2 O 3 ≤ 55%,
  • 0% ≤ TiO 2 ≤ 30%,
  • 0% ≤ lanthanide oxides except CeO 2 ≤ 50%,
  • 0% ≤ SrO ≤ 24%,
  • 0% ≤ SiAlON compounds ≤ 50%,
  • other compounds ≤ 15%, and
said sintered product comprising, in percentage by mass based on the sintered product and for a total of 100%:
  • more than 50% of a crystallized part, said crystallized part comprising, in percentage by mass on the basis of the crystallized part and for a total of 100%:
    • more than 40% of a first crystallized phase consisting of zirconia, more than 50% by mass of said zirconia being stabilized by means of a stabilizer in quadratic and / or cubic form, the remainder being in monoclinic form,
    • optionally, less than 50% of a second crystalline phase consisting of a compound chosen from MgAl 2 O 4 , XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as 10 ≤ m ≤ 12, n being an integer such as 16 ≤ n ≤ 20, Mg 3 Al 2 (SiO 4 ) 3 , ZrSiO 4 , yttrium silicates, yttrium possibly being partially substituted , X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures, Mg 2 Al 3 (Si 5 AlO 18 ), (Ca, Sr) Al 2 Si 2 O 8 , 3 (Al 2 O 3 ) 2 (SiO 2 ), the SiAlON phases, and their mixtures, and
    • optionally, less than 10% of a third crystalline phase consisting of a compound chosen from oxides of perovskite structure, oxides of spinel structure, oxides of rutile structure FO 2 , element F being chosen from group G F ( 1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and their mixtures, oxides of hematite structure E 2 O 3 , element E being chosen from group G E (1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and mixtures thereof, orthosilicates chosen from the group of orthosilicates of zirconium and praseodymium (Zr, Pr) SiO 4 , orthosilicates of zirconium and vanadium (Zr, V) SiO 4 , orthosilicates of zirconium in which there is iron oxide included, and mixtures thereof,
    • less than 5%, preferably less than 3%, preferably less than 1% of other crystallized phases,
  • optionally an amorphous part comprising, in percentage by mass based on the amorphous part and for a total of 100%:
    • a first glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x , a, b, c being integers such that x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1,
    • less than 10%, or even less than 5%, or even less than 3%, or even less than 1% of other amorphous phases,
the sum of the mass contents of the second crystallized phase and of the first amorphous phase being greater than 10%, preferably greater than 15% and less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 25%.

On appelle ci-après « produit fritté selon l'invention » un tel produit fritté. On appelle ci-après « capot selon l'invention » un tel capot.The term “sintered product according to the invention” is used hereinafter to refer to such a sintered product. Such a cover is referred to hereinafter as “cover according to the invention”.

De préférence, un dispositif selon l'invention comporte encore une, et de préférence plusieurs, des caractéristiques optionnelles suivantes :

  • De préférence, la densité du produit fritté selon l'invention est supérieure à 90%, voire supérieure à 95%, voire supérieure à 98%, de préférence supérieure à 99%, de préférence supérieure à 99,5% de la densité théorique. Les inventeurs ont en effet découvert qu'une densité élevée conduit avantageusement à un bon développement de la couleur dans la pièce frittée et à de bonnes propriétés mécaniques.
  • De préférence, la taille moyenne des grains de zircone est inférieure à 10 µm, de préférence inférieure à 5 µm, de préférence inférieure à 1 µm, de préférence inférieure à 0,7 µm, voire inférieure à 0,5 µm, voire encore inférieure à 0,3 µm. Les performances mécaniques en sont avantageusement améliorées.
  • De préférence, la taille moyenne des grains de la deuxième phase cristallisée est inférieure à 50 µm, de préférence inférieure à 10 µm, de préférence inférieure à 5 µm, voire inférieure à 1 µm, voire encore inférieure à 0,5 µm.
  • De préférence, la taille moyenne des grains de la troisième phase cristallisée est inférieure à 1 µm, de préférence inférieure à 0,7 µm, voire inférieure à 0,5 µm, voire encore inférieure à 0,3 µm.
  • Dans un mode de réalisation, les oxydes représentent plus de 98 %, plus de 99 %, voire sensiblement 100 % de la masse du produit fritté selon l'invention.
  • La teneur en zircone du produit fritté selon l'invention est de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%.
  • Dans un mode de réalisation, la teneur en Y2O3+CeO2+Sc2O3+MgO+CaO est inférieure à 18% et la teneur en CaO+MgO est inférieure à 5%.
  • Dans un mode de réalisation, la teneur en Y2O3+Sc2O3 est inférieure à 7,5%, de préférence inférieure à 7% et la teneur en CeO2+MgO+CaO est inférieure à 2%, de préférence inférieure à 1%, de préférence inférieure à 0,5%.
  • Dans un mode de réalisation, la teneur en 3.Y2O3+CeO2 est supérieure à 4%, de préférence supérieure à 5%, de préférence supérieure à 6% et inférieure à 18%, et la teneur en Sc2O3+MgO+CaO est inférieure à 2%, de préférence inférieure à 1%, de préférence inférieure à 0,5%.
  • Dans un mode de réalisation, la teneur en Y2O3 est supérieure à 1%, de préférence supérieure à 2% et inférieure à 8%, de préférence inférieure à 7%, et la teneur en CeO2+Sc2O3+MgO+CaO est inférieure à 2%, de préférence inférieure à 1%, de préférence inférieure à 0,5%.
  • Dans un mode de réalisation, la teneur en CeO2 est supérieure à 4%, de préférence supérieure à 5%, de préférence supérieure à 6% et inférieure à 14%, de préférence inférieure à 13%, et la teneur en Y2O3+Sc2O3+MgO+CaO est inférieure à 2%, de préférence inférieure à 1%, de préférence inférieure à 0,5%.
  • Dans un mode de réalisation, la teneur en MgO est supérieure à 0,7% et inférieure à 34%, voire inférieure à 26%, voire inférieure à 17%.
  • Dans un mode de réalisation, la teneur en Al2O3 est supérieure à 2,5% et inférieure à 46%.
  • Dans un mode de réalisation, la teneur en La2O3 est supérieure à 3,5% et inférieure à 28%, voire inférieure à 20%.
  • Dans un mode de réalisation, la teneur en SiO2 est supérieure à 2,5% et inférieure à 34%.
  • Dans un mode de réalisation, la teneur en CaO est supérieure à 2% et inférieure à 20%, voire inférieure à 13%.
  • Dans un mode de réalisation, la teneur en SrO est supérieure à 3% et inférieure à 16%.
  • Dans un mode de réalisation, la teneur en Y2O3 est supérieure à 6,5% et inférieure à 37%, voire inférieure à 33%.
  • Dans un mode de réalisation, la teneur en Sc2O3 est supérieure à 5% et inférieure à 31%, voire inférieure à 27%.
  • Dans un mode de réalisation, la teneur en phases SiAlON est inférieure à 40%, voire inférieure 30%, voire inférieure à 20%, voire inférieure à 10%, voire sensiblement nulle.
  • De préférence, les phases SiAlON sont choisies parmi Si3N4, AlN, AlON, Si2ON2 et leurs mélanges.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention (c'est-à-dire un procédé comportant les étapes a) à c) et optionnellement une ou plusieurs des étapes d) à f) décrites ci-après) dans lequel le mélange particulaire comporte une deuxième fraction particulaire de MgAl12O19, le produit fritté selon l'invention présente, en pourcentage massique sur la base de la masse du produit et pour un total de 100% :
    • une teneur en MgO supérieure à 0,7%, de préférence supérieure à 1% et de préférence inférieure à 13%, de préférence inférieure à 4%, de préférence inférieure à 3%, de préférence inférieure à 2%, et
    • une teneur en Al2O3 supérieure à 9%, de préférence supérieure à 14% et de préférence inférieure à 55%, de préférence inférieure à 46,5%, de préférence inférieure à 37,5%, de préférence inférieure à 28%, de préférence inférieure à 23,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 31%, de préférence inférieure à 22%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 18%, de préférence inférieure à 9%, de préférence à 5% et
    • une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en MgAl12O19 étant de préférence supérieure à 10%, de préférence supérieure à 15% et inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 25%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée, le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges, étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 75% et de préférence inférieure à 90%, voire inférieure à 85%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 60%, de préférence plus de 70%, de préférence plus de 80%, voire plus de 90%, voire plus de 95% du produit fritté, en pourcentage massique sur la base du produit fritté.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de LaAl11O18, le produit fritté selon l'invention présente, en pourcentage massique sur la base de la masse du produit et pour un total de 100%
    • une teneur en La2O3 supérieure à 2%, de préférence supérieure à 3% et de préférence inférieure à 20%, de préférence inférieure à 11,5%, de préférence inférieure à 9%, de préférence inférieure à 7%, de préférence inférieure à 6, et
    • une teneur en Al2O3 supérieure à 7%, de préférence supérieure à 11,5% et de préférence inférieure à 48%, de préférence inférieure à 39%, de préférence inférieure à 31%, de préférence inférieure à 23,5%, de préférence inférieure à 19,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, voire inférieure à 3%, voire inférieure à 1%, et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (La2O3, Al2O3, ZrO2, Y2O3, CeO2, Sc2O3, CaO, MgO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en LaAl11O18 étant de préférence supérieure à 10%, de préférence supérieure à 15% et inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 25%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée (le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges), étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 75% et de préférence inférieure à 90%, voire inférieure à 85%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 60%, de préférence plus de 70%, de préférence plus de 80%, voire plus de 90%, voire plus de 95% du produit fritté, en pourcentage massique sur la base du produit fritté.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Mg3Al2(SiO4)3, le produit fritté selon l'invention présente
    • une teneur en MgO supérieure à 3%, de préférence supérieure à 4,5% et de préférence inférieure à 24%, de préférence inférieure à 15%, de préférence inférieure à 12%, de préférence inférieure à 9%, de préférence inférieure à 7,5%, et
    • une teneur en Al2O3 supérieure à 2,5%, de préférence supérieure à 3,5% et de préférence inférieure à 21%, de préférence inférieure à 12,5%, de préférence inférieure à 10%, de préférence inférieure à 7,5%, de préférence inférieure à 6,5%, et
    • une teneur en SiO2 supérieure à 4,5%, de préférence supérieure à 6,5% et de préférence inférieure à 31%, de préférence inférieure à 22,5%, de préférence inférieure à 18%, de préférence inférieure à 13,5%, de préférence inférieure à 11,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 42%, de préférence inférieure à 33%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 29%, de préférence inférieure à 20%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, Ce02, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en Mg3Al2(SiO4)3 étant de préférence supérieure à 3%, de préférence supérieure à 5% et inférieure à 44%, de préférence inférieure à 35%, de préférence inférieure à 26%, de préférence inférieure à 21%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 56%, voire supérieure à 65%, voire supérieure à 74%, voire supérieure à 79% et de préférence inférieure à 97%, voire inférieure à 95%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 62%, voire plus de 68%, voire plus de 75%, voire plus de 78% et de préférence moins de 93%, voire moins de 92%, voire moins de 90% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg et optionnellement Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, le produit fritté selon l'invention présente
    • une teneur en SiO2 supérieure à 3%, de préférence supérieure à 5% et de préférence inférieure à 26%, de préférence inférieure à 17%, de préférence inférieure à 14%, de préférence inférieure à 10,5%, de préférence inférieure à 8,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, voire inférieure à 3%, voire inférieure à 1%, et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en ZrSiO4 étant de préférence supérieure à 8%, de préférence supérieure à 12% et inférieure à 50%, de préférence inférieure à 40%, de préférence inférieure à 30%, de préférence inférieure à 25%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée (le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges) étant de préférence supérieure à 40%, de préférence supérieure à 50%, voire supérieure à 60%, voire supérieure à 70%, voire supérieure à 75% et de préférence inférieure à 92%, voire inférieure à 88%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 70%, voire plus de 80%, voire plus de 85% et de préférence moins de 95%, voire moins de 93% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x+a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Ca2Al3(SiO4)(Si2O7)OOH, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 3,5%, de préférence supérieure à 5% et de préférence inférieure à 26%, de préférence inférieure à 17,5%, de préférence inférieure à 14%, de préférence inférieure à 10,5%, de préférence inférieure à 9%, et
    • une teneur en SiO2 supérieure à 4%, de préférence supérieure à 6% et de préférence inférieure à 29%, de préférence inférieure à 20%, de préférence inférieure à 16%, de préférence inférieure à 12%, de préférence inférieure à 10%, et
    • une teneur en CaO supérieure à 2,5%, de préférence supérieure à 3,5% et de préférence inférieure à 21%, de préférence inférieure à 12,5%, de préférence inférieure à 10%, de préférence inférieure à 7,5%, de préférence inférieure à 6,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 39%, de préférence inférieure à 30,5%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 26%, de préférence inférieure à 17,5%, de préférence inférieure à 7,5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%, et
    la teneur en première phase cristallisée étant de préférence supérieure à 80%, voire supérieure à 90%, voire supérieure à 95%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 86%, voire moins de 81% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Ca et optionnellement Mg, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Y2Si2O7, le produit fritté selon l'invention présente
    • une teneur en SiO2 supérieure à 3,5%, de préférence supérieure à 5% et de préférence inférieure à 26%, de préférence inférieure à 17,5%, de préférence inférieure à 14%, de préférence inférieure à 10,5%, de préférence inférieure à 9%, et
    • une teneur en Y2O3 supérieure à 6,5%, de préférence supérieure à 9,5% et de préférence inférieure à 38%, de préférence inférieure à 32,5%, de préférence inférieure à 26%, de préférence inférieure à 19,5%, de préférence inférieure à 16,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 56%, de préférence inférieure à 50,5%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 26%, de préférence inférieure à 17,5%, de préférence inférieure à 5%, voire inférieure à 3%, voire inférieure à 1%, et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%, et
    la teneur en Y2Si2O7 étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée (le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges) étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Y et optionnellement Mg, Ca, Sr, Sc, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, x+a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Sc2Si2O7, le produit fritté selon l'invention présente
    • une teneur en SiO2 supérieure à 4,5%, de préférence supérieure à 7% et de préférence inférieure à 32%, de préférence inférieure à 23%, de préférence inférieure à 18,4%, de préférence inférieure à 14%, de préférence inférieure à 11,5%, et
    • une teneur en Sc2O3 supérieure à 5%, de préférence supérieure à 8% et de préférence inférieure à 36%, de préférence inférieure à 27%, de préférence inférieure à 22%, de préférence inférieure à 16%, de préférence inférieure à 13,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 54%, de préférence inférieure à 45%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en Sc2Si2O7 étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Sc et optionnellement Mg, Ca, Sr, Sc, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, x+a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Mg2Al3(Si5AlO18),le produit fritté selon l'invention présente
    • une teneur en MgO supérieure à 1,5%, de préférence supérieure à 2% et de préférence inférieure à 16,5%, de préférence inférieure à 7,5%, de préférence inférieure à 6%, de préférence inférieure à 4,5%, de préférence inférieure à 3,5%, et
    • une teneur en Al2O3 est supérieure à 2,5%, de préférence supérieure à 4% et de préférence inférieure à 23%, de préférence inférieure à 14,5%, de préférence inférieure à 11,5%, de préférence inférieure à 9%, de préférence inférieure à 7,5%, et
    • une teneur en SiO2 supérieure à 5,5%, de préférence supérieure à 8% et de préférence inférieure à 37%, de préférence inférieure à 28%, de préférence inférieure à 22,5%, de préférence inférieure à 17%, de préférence inférieure à 14%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 34,5%, de préférence inférieure à 25,5%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 21,5%, de préférence inférieure 12,5%, de préférence inférieure à 5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en Mg2Al3(Si5AlO18) étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg et optionnellement Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de Mg3Si4O10(OH)2, le produit fritté selon l'invention présente
    • une teneur en MgO supérieure à 3%, de préférence supérieure à 4,5% et de préférence inférieure à 25%, préférence inférieure à 16,5%, de préférence inférieure à 13,5%, de préférence inférieure à 10%, de préférence inférieure à 8,5%, et
    • une teneur en SiO2 supérieure à 6,5%, de préférence supérieure à 10% et de préférence inférieure à 42%, préférence inférieure à 33,5%, de préférence inférieure à 27%, de préférence inférieure à 20%, de préférence inférieure à 17%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 43%, de préférence inférieure à 34,5%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 30%, de préférence inférieure à 21,5%, de préférence inférieure à 9%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en première phase cristallisée étant de préférence supérieure à 80%, voire supérieure à 90%, voire supérieure à 95%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 86%, voire moins de 81% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg et optionnellement Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a+x > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de CaAl2Si2O8, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 3,5%, de préférence supérieure à 5,5% et de préférence inférieure à 27%, de préférence inférieure à 18,5%, de préférence inférieure à 15%, de préférence inférieure à 11,5%, de préférence inférieure à 9,5%, et
    • une teneur en CaO supérieure à 2%, de préférence supérieure à 3% et de préférence inférieure à 19%, de préférence inférieure à 10%, de préférence inférieure à 8%, de préférence inférieure à 6%, de préférence inférieure à 5%, et
    • une teneur en SiO2 supérieure à 4%, de préférence supérieure à 6,5% et de préférence inférieure à 30%, de préférence inférieure à 21,5%, de préférence inférieure à 17,5%, de préférence inférieure à 13%, de préférence inférieure à 11%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 37%, de préférence inférieure à 28%, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 24%, de préférence inférieure 15%, de préférence inférieure à 5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en première phase cristallisée étant de préférence supérieure à 80%, voire supérieure à 90%, voire supérieure à 95%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 86%, voire moins de 81% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Ca et optionnellement Mg, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de SrAl2Si2O8, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 3%, de préférence supérieure à 4,5% et de préférence inférieure à 24%, de préférence inférieure à 15,5%, de préférence inférieure à 12,5%, de préférence inférieure à 9,5%, de préférence inférieure à 8%, et
    • une teneur en SrO supérieure à 3%, de préférence supérieure à 4,5% et de préférence inférieure à 25%, de préférence inférieure à 16%, de préférence inférieure à 13%, de préférence inférieure à 10%, de préférence inférieure à 8%, et
    • une teneur en SiO2 supérieure à 3,5%, de préférence supérieure à 5,5% et de préférence inférieure à 27%, de préférence inférieure à 18,5%, de préférence inférieure à 15%, de préférence inférieure à 11%, de préférence inférieure à 9,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, voire inférieure à 3%, voire inférieure à 1%, et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1% et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, SrO, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en (Sr,Ca)Al2Si2O8 étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée (le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges) étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Sr et/ou Ca et optionnellement Mg, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0, a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 7%, de préférence supérieure à 10,5% et de préférence inférieure à 45%, de préférence inférieure à 36%, de préférence inférieure à 29%, de préférence inférieure à 22%, de préférence inférieure à 18%, et
    • une teneur en SiO2 supérieure à 2,5%, de préférence supérieure à 4% et de préférence inférieure à 23%, de préférence inférieure à 14%, de préférence inférieure à 11,5%, de préférence inférieure à 8,5%, de préférence inférieure à 7%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, voire inférieure à 3%, voire inférieure à 1%, et une teneur en Sc2O3 de préférence inférieure à 3%, de préférence inférieure à 1%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en 3(Al2O3)2(SiO2) étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée (le stabilisant étant de préférence choisi parmi Y2O3, CeO2 et leurs mélanges) étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Sr, Ca, Mg, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que a > 0, a+x > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de kaolinite, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 4,5%, de préférence supérieure à 7% et de préférence inférieure à 32%, de préférence inférieure à 23%, de préférence inférieure à 18,5%, de préférence inférieure à 14%, de préférence inférieure à 11,5%, et
    • une teneur en SiO2 supérieure à 5%, de préférence supérieure à 8% et de préférence inférieure à 36%, de préférence inférieure à 27%, de préférence inférieure à 22%, de préférence inférieure à 16,5%, de préférence inférieure à 13,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 18% et une teneur en CaO+MgO inférieure à 5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%,
    la teneur en Al2O3SiO2 étant de préférence supérieure à 5%, voire supérieure à 8% et inférieure à 33%, voire inférieure à 25%, voire inférieure à 18%, voire inférieure à 14%, en pourcentage massique sur la base de la partie cristallisée, et
    la teneur en première phase cristallisée étant de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 60%, de préférence supérieure à 67%, voire supérieure à 75%, voire supérieure à 82% et inférieure à 95%, voire inférieure à 92%, en pourcentage massique sur la base de la partie cristallisée, et la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 90%, voire moins de 88%, voire moins de 83% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Sr, Ca, Mg, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • Dans un mode de réalisation, en particulier lorsque le produit fritté est fabriqué suivant un procédé selon l'invention dans lequel le mélange particulaire comporte une deuxième fraction particulaire de montmorillonite, le produit fritté selon l'invention présente
    • une teneur en Al2O3 supérieure à 2,5%, de préférence supérieure à 4% et de préférence inférieure à 21%, de préférence inférieure à 13,5%, de préférence inférieure à 11%, de préférence inférieure à 8%, de préférence inférieure à 7%, et
    • une teneur en SiO2 supérieure à 6%, de préférence supérieure à 9,5% et de préférence inférieure à 40%, de préférence inférieure à 31,5%, de préférence inférieure à 25%, de préférence inférieure à 19%, de préférence inférieure à 16%, et
    • une teneur en MgO supérieure à 1%, de préférence supérieure à 1,5% et de préférence inférieure à 14%, de préférence inférieure à 5%, de préférence inférieure à 4%, de préférence inférieure à 3%, de préférence inférieure à 2,5%, et
    • une teneur en zircone de préférence supérieure à 40%, de préférence supérieure à 48%, de préférence supérieure à 52%, de préférence supérieure à 60%, de préférence supérieure à 65% et/ou inférieure à 93%, de préférence inférieure à 83%, et
    • une somme Y2O3+CeO2+Sc2O3+MgO+CaO inférieure à 32%, de préférence inférieure à 23, de préférence inférieure à 18% et une teneur en CaO+MgO inférieure à 19%, de préférence inférieure à 10%, de préférence inférieure à 5%, et
    • une teneur en autres composés, c'est-à-dire des composés autres que ceux cités ci-dessus (MgO, Al2O3, ZrO2, SiO2, Y2O3, CeO2, Sc2O3, CaO), de préférence des oxydes, inférieure 10%, voire inférieure à 8%, voire inférieure à 5%, voire inférieure à 3%, voire inférieure à 2%, voire inférieure à 1%, voire inférieure à 0,5%, et
    la teneur en première phase cristallisée étant de préférence supérieure à 80%, voire supérieure à 90%, voire supérieure à 95%, en pourcentage massique sur la base de la partie cristallisée, et
    la partie cristallisée représentant de préférence plus de 57%, voire plus de 67%, voire plus de 71% et de préférence moins de 86%, voire moins de 81% du produit fritté, en pourcentage massique sur la base du produit fritté, et
    la partie amorphe comportant plus de 90% d'une phase amorphe vitreuse de composition XxAlaSibOc avec X choisi parmi Mg et optionnellement Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Zr, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c étant des nombres entiers tels que x > 0 <Mg et Al dans phase vitreuse obligatoirement>, a > 0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, en pourcentage massique sur la base de la partie amorphe.
  • De préférence, le produit fritté présente une partie cristallisée comportant plus de 50%, de préférence plus de 60%, voire plus de 70% et/ou moins de 85%, en pourcentage massique sur la base de la partie cristallisée, d'une phase cristallisée constituée de zircone, de préférence plus de 80%, de préférence plus de 90%, de préférence plus de 95%, de préférence plus de 99% de ladite zircone étant stabilisée au moyen d'un stabilisant sous une forme quadratique et/ou cubique, le complément étant sous une forme monoclinique.
  • Dans un mode de réalisation, le produit fritté présente une partie cristallisée comportant plus de 15%, et moins de 40%, de préférence moins de 30%, de préférence moins de 25%, en pourcentage massique sur la base de la partie cristallisée, d'une deuxième phase cristallisée constituée par un composé choisi parmi MgAl2O4, XAlmOn, avec X choisi parmi Mg, Ca, Sr, Y, les oxydes de lanthanides et leurs mélanges, m étant un nombre entier tel que 10 ≤ m ≤ 12, n étant un nombre entier tel que 16 ≤ n ≤ 20, Mg3Al2(SiO4)3, ZrSiO4, les silicates d'yttrium, l'yttrium pouvant être partiellement substitué, X2ZSi2O7 avec X choisi parmi La, Y, les oxydes de lanthanides et leurs mélanges et Z choisi parmi Mg, Al et leurs mélanges, Mg2Al3(Si5AlO18),(Ca,Sr)Al2Si2O8, 3(Al2O3)2(SiO2), les phases SiAlON, et leurs mélanges.
Preferably, a device according to the invention also comprises one, and preferably several, of the following optional characteristics:
  • Preferably, the density of the sintered product according to the invention is greater than 90%, or even greater than 95%, or even greater than 98%, preferably greater than 99%, preferably greater than 99.5% of the theoretical density. The inventors have in fact discovered that a high density advantageously leads to good color development in the sintered part and to good mechanical properties.
  • Preferably, the average size of the zirconia grains is less than 10 μm, preferably less than 5 μm, preferably less than 1 μm, preferably less than 0.7 μm, or even less than 0.5 μm, or even less at 0.3 µm. The mechanical performance is advantageously improved.
  • Preferably, the average size of the grains of the second crystallized phase is less than 50 μm, preferably less than 10 μm, preferably less than 5 μm, or even less than 1 μm, or even less than 0.5 μm.
  • Preferably, the average size of the grains of the third crystallized phase is less than 1 μm, preferably less than 0.7 μm, or even less than 0.5 μm, or even less than 0.3 μm.
  • In one embodiment, the oxides represent more than 98%, more than 99%, or even substantially 100% of the mass of the sintered product according to the invention.
  • The zirconia content of the sintered product according to the invention is preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less 93%, preferably less than 83%.
  • In one embodiment, the content of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO is less than 18% and the content of CaO + MgO is less than 5%.
  • In one embodiment, the content of Y 2 O 3 + Sc 2 O 3 is less than 7.5%, preferably less than 7% and the content of CeO 2 + MgO + CaO is less than 2%, preferably less than 1%, preferably less than 0.5%.
  • In one embodiment, the content of 3.Y 2 O 3 + CeO 2 is greater than 4%, preferably greater than 5%, preferably greater than 6% and less than 18%, and the content of Sc 2 O 3 + MgO + CaO is less than 2%, preferably less than 1%, preferably less than 0.5%.
  • In one embodiment, the Y 2 O 3 content is greater than 1%, preferably greater than 2% and less than 8%, preferably less than 7%, and the CeO 2 + Sc 2 O 3 + content MgO + CaO is less than 2%, preferably less than 1%, preferably less than 0.5%.
  • In one embodiment, the CeO 2 content is greater than 4%, preferably greater than 5%, preferably greater than 6% and less than 14%, preferably less than 13%, and the Y 2 O content 3 + Sc 2 O 3 + MgO + CaO is less than 2%, preferably less than 1%, preferably less than 0.5%.
  • In one embodiment, the MgO content is greater than 0.7% and less than 34%, or even less than 26%, or even less than 17%.
  • In one embodiment, the Al 2 O 3 content is greater than 2.5% and less than 46%.
  • In one embodiment, the La 2 O 3 content is greater than 3.5% and less than 28%, or even less than 20%.
  • In one embodiment, the SiO 2 content is greater than 2.5% and less than 34%.
  • In one embodiment, the CaO content is greater than 2% and less than 20%, or even less than 13%.
  • In one embodiment, the SrO content is greater than 3% and less than 16%.
  • In one embodiment, the Y 2 O 3 content is greater than 6.5% and less than 37%, or even less than 33%.
  • In one embodiment, the Sc 2 O 3 content is greater than 5% and less than 31%, or even less than 27%.
  • In one embodiment, the content of SiAlON phases is less than 40%, or even less than 30%, or even less than 20%, or even less than 10%, or even substantially zero.
  • Preferably, the SiAlON phases are chosen from Si 3 N 4 , AlN, AlON, Si 2 ON 2 and their mixtures.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention (that is to say a process comprising steps a) to c) and optionally one or more of steps d) to f ) described below) in which the particulate mixture comprises a second particulate fraction of MgAl 12 O 19 , the sintered product according to the invention has, in percentage by mass based on the mass of the product and for a total of 100%:
    • an MgO content greater than 0.7%, preferably greater than 1% and preferably less than 13%, preferably less than 4%, preferably less than 3%, preferably less than 2%, and
    • an Al 2 O 3 content greater than 9%, preferably greater than 14% and preferably less than 55%, preferably less than 46.5%, preferably less than 37.5%, preferably less than 28% , preferably less than 23.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO less than 31%, preferably less than 22%, preferably less than 18% and a CaO + MgO content less than 18%, preferably less than 9%, preferably 5% and
    • a Sc 2 O 3 content preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), of preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the MgAl 12 O 19 content preferably being greater than 10%, preferably greater than 15% and less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 25%, in percentage mass based on the crystallized part, and
    the content of first crystallized phase, the stabilizer preferably being chosen from Y 2 O 3 , CeO 2 and their mixtures, preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater at 75% and preferably less than 90%, or even less than 85%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 60%, preferably more than 70%, preferably more than 80%, or even more than 90%, or even more than 95% of the sintered product, in percentage by mass on the basis of the sintered product.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of LaAl 11 O 18, the sintered product according to the invention present, in percentage by mass on the basis of the mass of the product and for a total of 100%
    • a La 2 O 3 content greater than 2%, preferably greater than 3% and preferably less than 20%, preferably less than 11.5%, preferably less than 9%, preferably less than 7%, of preferably less than 6, and
    • an Al 2 O 3 content greater than 7%, preferably greater than 11.5% and preferably less than 48%, preferably less than 39%, preferably less than 31%, preferably less than 23.5% , preferably less than 19.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 18% and a CaO + MgO content of less than 5%, or even less than 3%, or even less than 1%, and a content of Sc 2 O 3 preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (La 2 O 3 , Al 2 O 3 , ZrO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO , MgO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5% ,
    the content of LaAl 11 O 18 preferably being greater than 10%, preferably greater than 15% and less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 25%, in percentage mass based on the crystallized part, and
    the content of first crystallized phase (the stabilizer being preferably chosen from Y 2 O 3 , CeO 2 and their mixtures), preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater than 75% and preferably less than 90%, or even less than 85%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 60%, preferably more than 70%, preferably more than 80%, or even more than 90%, or even more than 95% of the sintered product, in percentage by mass on the basis of the sintered product.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Mg 3 Al 2 (SiO 4 ) 3 , the sintered product according to the invention exhibits
    • an MgO content greater than 3%, preferably greater than 4.5% and preferably less than 24%, preferably less than 15%, preferably less than 12%, preferably less than 9%, preferably less than 7.5%, and
    • an Al 2 O 3 content greater than 2.5%, preferably greater than 3.5% and preferably less than 21%, preferably less than 12.5%, preferably less than 10%, preferably less than 7.5%, preferably less than 6.5%, and
    • an SiO 2 content greater than 4.5%, preferably greater than 6.5% and preferably less than 31%, preferably less than 22.5%, of preferably less than 18%, preferably less than 13.5%, preferably less than 11.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO less than 42%, preferably less than 33%, preferably less than 18% and a CaO + MgO content less than 29%, preferably less than 20%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2, SiO 2 , Y 2 O 3 , Ce02, Sc 2 O 3 , CaO) , preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the content of Mg 3 Al 2 (SiO 4 ) 3 preferably being greater than 3%, preferably greater than 5% and less than 44%, preferably less than 35%, preferably less than 26%, preferably less than 21%, as a percentage by mass based on the crystallized part, and
    the content of first crystallized phase preferably being greater than 40%, preferably greater than 50%, preferably greater than 56%, or even greater than 65%, or even greater than 74%, or even greater than 79% and preferably less than 97%, or even less than 95%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 62%, or even more than 68%, or even more than 75%, or even more than 78% and preferably less than 93%, or even less than 92%, or even less than 90% of the sintered product , as a percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass on the basis of the amorphous part.
  • In one embodiment, the sintered product according to the invention has
    • an SiO 2 content greater than 3%, preferably greater than 5% and preferably less than 26%, preferably less than 17%, preferably less than 14%, preferably less than 10.5%, preferably less at 8.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 18% and a CaO + MgO content of less than 5%, or even less than 3%, or even less than 1%, and a content of Sc 2 O 3 preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the ZrSiO 4 content preferably being greater than 8%, preferably greater than 12% and less than 50%, preferably less than 40%, preferably less than 30%, preferably less than 25%, in percentage by mass on the base of the crystallized part, and
    the content of first crystallized phase (the stabilizer being preferably chosen from Y 2 O 3 , CeO 2 and their mixtures) preferably being greater than 40%, preferably greater than 50%, or even greater than 60%, or even greater than 70 %, or even greater than 75% and preferably less than 92%, or even less than 88%, in percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 70%, or even more than 80%, or even more than 85% and preferably less than 95%, or even less than 93% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn , Co, Cr and their mixtures, x, a, b, c being integers such that x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass based on the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH, the sintered product according to the invention has
    • an Al 2 O 3 content greater than 3.5%, preferably greater than 5% and preferably less than 26%, preferably less than 17.5%, preferably less than 14%, preferably less than 10, 5%, preferably less than 9%, and
    • an SiO 2 content greater than 4%, preferably greater than 6% and preferably less than 29%, preferably less than 20%, preferably less than 16%, preferably less than 12%, preferably less than 10 %, and
    • a CaO content greater than 2.5%, preferably greater than 3.5% and preferably less than 21%, preferably less than 12.5%, preferably less than 10%, preferably less than 7.5 %, preferably less than 6.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 39%, preferably less than 30.5%, preferably less than 18% and a CaO + MgO content of less than 26%, preferably less than 17.5%, preferably less than 7.5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%, and
    the content of first crystallized phase preferably being greater than 80%, or even greater than 90%, or even greater than 95%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 86%, or even less than 81% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Ca and optionally Mg, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass based on the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Y 2 Si 2 O 7 , the sintered product according to the invention has
    • an SiO 2 content greater than 3.5%, preferably greater than 5% and preferably less than 26%, preferably less than 17.5%, preferably less than 14%, preferably less than 10.5% , preferably less than 9%, and
    • a Y 2 O 3 content greater than 6.5%, preferably greater than 9.5% and preferably less than 38%, preferably less than 32.5%, preferably less than 26%, preferably less than 19.5%, preferably less than 16.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 56%, preferably less than 50.5%, preferably less than 18% and a CaO + MgO content of less than 26%, preferably less than 17.5%, preferably less than 5%, or even less than 3%, or even less than 1%, and a Sc 2 O 3 content preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%, and
    the Y 2 Si 2 O 7 content preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14%, in percentage by mass on the base of the crystallized part, and
    the content of first crystallized phase (the stabilizer being preferably chosen from Y 2 O 3 , CeO 2 and their mixtures) preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater 67%, or even greater than 75%, or even greater than 82% and less than 95%, or even less than 92%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, in percentage by mass on the base of the sintered product, and the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Y and optionally Mg, Ca, Sr, Sc, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, as a percentage by mass on the basis of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Sc 2 Si 2 O 7 , the sintered product according to the invention exhibits
    • an SiO 2 content greater than 4.5%, preferably greater than 7% and preferably less than 32%, preferably less than 23%, preferably less than 18.4%, preferably less than 14%, of preferably less than 11.5%, and
    • a Sc 2 O 3 content greater than 5%, preferably greater than 8% and preferably less than 36%, preferably less than 27%, preferably less than 22%, preferably less than 16%, preferably less at 13.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 54%, preferably less than 45%, preferably less than 18% and a CaO + MgO content of less than 5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the Sc 2 Si 2 O 7 content preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14%, in percentage by mass on the base of the crystallized part, and
    the content of crystallized first phase preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater than 67%, or even greater than 75%, or even greater than 82% and less than 95%, or even less than 92%, as a percentage by mass on the basis of the crystallized part, and the crystallized part preferably representing more than 57% , or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Sc and optionally Mg, Ca, Sr, Sc, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, as a percentage by mass on the basis of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Mg 2 Al 3 (Si 5 AlO 18 ), the sintered product according to the invention present
    • an MgO content greater than 1.5%, preferably greater than 2% and preferably less than 16.5%, preferably less than 7.5%, preferably less than 6%, preferably less than 4.5 %, preferably less than 3.5%, and
    • an Al 2 O 3 content is greater than 2.5%, preferably greater than 4% and preferably less than 23%, preferably less than 14.5%, preferably less than 11.5%, preferably less at 9%, preferably less than 7.5%, and
    • an SiO 2 content greater than 5.5%, preferably greater than 8% and preferably less than 37%, preferably less than 28%, preferably less than 22.5%, preferably less than 17%, of preferably less than 14%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 34.5%, preferably less than 25.5%, preferably less than 18% and a CaO + MgO content of less than 21 , 5%, preferably less than 12.5%, preferably less than 5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), from preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the content of Mg 2 Al 3 (Si 5 AlO 18 ) preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14%, in percentage by mass on the basis of the crystallized part, and
    the content of first crystallized phase preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater than 67%, or even greater than 75%, or even greater than 82% and less than 95 %, or even less than 92%, in percentage by mass based on the crystallized part, and the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, as a percentage by mass based on the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass on the basis of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of Mg 3 Si 4 O 10 (OH) 2 , the sintered product according to the invention present
    • an MgO content greater than 3%, preferably greater than 4.5% and preferably less than 25%, preferably less than 16.5%, preferably less than 13.5%, preferably less than 10%, of preferably less than 8.5%, and
    • an SiO 2 content greater than 6.5%, preferably greater than 10% and preferably less than 42%, preferably less than 33.5%, preferably less than 27%, preferably less than 20%, preferably less than 17%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO less than 43%, preferably less than 34.5%, preferably less than 18% and a CaO + MgO content of less than 30%, preferably less than 21.5%, preferably less than 9%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the content of first crystallized phase preferably being greater than 80%, or even greater than 90%, or even greater than 95%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 86%, or even less than 81% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a + x> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage mass based on the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of CaAl 2 Si 2 O 8 , the sintered product according to the invention has
    • an Al 2 O 3 content greater than 3.5%, preferably greater than 5.5% and preferably less than 27%, preferably less than 18.5%, preferably less than 15%, preferably less than 11.5%, preferably less than 9.5%, and
    • a CaO content greater than 2%, preferably greater than 3% and preferably less than 19%, preferably less than 10%, preferably less than 8%, preferably less than 6%, preferably less than 5% , and
    • an SiO 2 content greater than 4%, preferably greater than 6.5% and preferably less than 30%, preferably less than 21.5%, preferably less than 17.5%, preferably less than 13% , preferably less than 11%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO less than 37%, preferably less than 28%, preferably less than 18% and a CaO + MgO content less than 24%, preferably less than 15%, preferably less than 5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the content of first crystallized phase preferably being greater than 80%, or even greater than 90%, or even greater than 95%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 86%, or even less than 81% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Ca and optionally Mg, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in mass percentage on the base of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of SrAl 2 Si 2 O 8 , the sintered product according to the invention exhibits
    • an Al 2 O 3 content greater than 3%, preferably greater than 4.5% and preferably less than 24%, preferably less than 15.5%, preferably less than 12.5%, preferably less than 9.5%, preferably less than 8%, and
    • an SrO content greater than 3%, preferably greater than 4.5% and preferably less than 25%, preferably less than 16%, preferably less than 13%, preferably less than 10%, preferably less than 8%, and
    • an SiO 2 content greater than 3.5%, preferably greater than 5.5% and preferably less than 27%, preferably less than 18.5%, of preferably less than 15%, preferably less than 11%, preferably less than 9.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 18% and a CaO + MgO content of less than 5%, or even less than 3%, or even less than 1%, and a content of Sc 2 O 3 preferably less than 3%, preferably less than 1% and a Sc 2 O 3 content preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , SrO, ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5% ,
    the (Sr, Ca) Al 2 Si 2 O 8 content preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14% , in percentage by mass on the basis of the crystallized part, and
    the content of first crystallized phase (the stabilizer being preferably chosen from Y 2 O 3 , CeO 2 and their mixtures) preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater 67%, or even greater than 75%, or even greater than 82% and less than 95%, or even less than 92%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Sr and / or Ca and optionally Mg, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0, a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, as a percentage by mass on the basis of the amorphous part.
  • In one embodiment, the sintered product according to the invention has
    • an Al 2 O 3 content greater than 7%, preferably greater than 10.5% and preferably less than 45%, preferably less than 36%, preferably less than 29%, preferably less than 22%, of preferably less than 18%, and
    • an SiO 2 content greater than 2.5%, preferably greater than 4% and preferably less than 23%, preferably less than 14%, preferably less than 11.5%, preferably less than 8.5% , preferably less than 7%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 18% and a CaO + MgO content of less than 5%, or even less than 3%, or even less than 1%, and a content of Sc 2 O 3 preferably less than 3%, preferably less than 1%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the 3 (Al 2 O 3 ) 2 (SiO 2 ) content preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14 %, as a percentage by mass on the basis of the crystallized part, and
    the content of first crystallized phase (the stabilizer being preferably chosen from Y 2 O 3 , CeO 2 and their mixtures) preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater 67%, or even greater than 75%, or even greater than 82% and less than 95%, or even less than 92%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Sr, Ca, Mg, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn , Co, Cr and their mixtures, x, a, b, c being numbers integers such as a> 0, a + x> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass on the basis of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of kaolinite, the sintered product according to the invention has
    • an Al 2 O 3 content greater than 4.5%, preferably greater than 7% and preferably less than 32%, preferably less than 23%, preferably less than 18.5%, preferably less than 14% , preferably less than 11.5%, and
    • an SiO 2 content greater than 5%, preferably greater than 8% and preferably less than 36%, preferably less than 27%, preferably less than 22%, preferably less than 16.5%, preferably less at 13.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum of Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO of less than 18% and a CaO + MgO content of less than 5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%,
    the Al 2 O 3 SiO 2 content preferably being greater than 5%, or even greater than 8% and less than 33%, or even less than 25%, or even less than 18%, or even less than 14%, in percentage by mass on the base of the crystallized part, and
    the content of first crystallized phase preferably being greater than 40%, preferably greater than 50%, preferably greater than 60%, preferably greater than 67%, or even greater than 75%, or even greater than 82% and less than 95 %, or even less than 92%, in percentage by mass based on the crystallized part, and the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 90%, or even less than 88%, or even less than 83% of the sintered product, as a percentage by mass based on the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Sr, Ca, Mg, Sc, Y, oxides of lanthanides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such that a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass on the basis of the amorphous part.
  • In one embodiment, in particular when the sintered product is produced according to a process according to the invention in which the particulate mixture comprises a second particulate fraction of montmorillonite, the sintered product according to the invention exhibits
    • an Al 2 O 3 content greater than 2.5%, preferably greater than 4% and preferably less than 21%, preferably less than 13.5%, preferably less than 11%, preferably less than 8% , preferably less than 7%, and
    • an SiO 2 content greater than 6%, preferably greater than 9.5% and preferably less than 40%, preferably less than 31.5%, preferably less than 25%, preferably less than 19%, of preferably less than 16%, and
    • an MgO content greater than 1%, preferably greater than 1.5% and preferably less than 14%, preferably less than 5%, preferably less than 4%, preferably less than 3%, preferably less than 2.5%, and
    • a zirconia content preferably greater than 40%, preferably greater than 48%, preferably greater than 52%, preferably greater than 60%, preferably greater than 65% and / or less than 93%, preferably less than 83%, and
    • a sum Y 2 O 3 + CeO 2 + Sc 2 O 3 + MgO + CaO less than 32%, preferably less than 23, preferably less than 18% and a CaO + MgO content less than 19%, preferably less at 10%, preferably less than 5%, and
    • a content of other compounds, that is to say compounds other than those mentioned above (MgO, Al 2 O 3 , ZrO 2 , SiO 2 , Y 2 O 3 , CeO 2 , Sc 2 O 3 , CaO ), preferably oxides, less than 10%, or even less than 8%, or even less than 5%, or even less than 3%, or even less than 2%, or even less than 1%, or even less than 0.5%, and
    the content of first crystallized phase preferably being greater than 80%, or even greater than 90%, or even greater than 95%, as a percentage by mass on the basis of the crystallized part, and
    the crystallized part preferably representing more than 57%, or even more than 67%, or even more than 71% and preferably less than 86%, or even less than 81% of the sintered product, in percentage by mass on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a glassy amorphous phase of composition X x Al a Si b O c with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b, c being integers such as x> 0 <Mg and Al in the vitreous phase necessarily>, a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, in percentage by mass on the basis of the amorphous part.
  • Preferably, the sintered product has a crystallized part comprising more than 50%, preferably more than 60%, or even more than 70% and / or less than 85%, in percentage by mass on the basis of the crystallized part, of a crystallized phase consisting of zirconia, preferably more than 80%, preferably more than 90%, preferably more than 95%, preferably more than 99% of said zirconia being stabilized by means of a stabilizer in a quadratic form and / or cubic, the complement being in a monoclinic form.
  • In one embodiment, the sintered product has a crystallized part comprising more than 15%, and less than 40%, preferably less than 30%, preferably less than 25%, in percentage by mass on the basis of the crystallized part, of a second crystalline phase consisting of a compound chosen from MgAl 2 O 4 , XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as 10 ≤ m ≤ 12, n being an integer such as 16 ≤ n ≤ 20, Mg 3 Al 2 (SiO 4 ) 3 , ZrSiO 4 , yttrium silicates, yttrium possibly being partially substituted, X 2 ZSi 2 O 7 with X chosen from La, Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures, Mg 2 Al 3 (Si 5 AlO 18 ), (Ca, Sr) Al 2 Si 2 O 8 , 3 (Al 2 O 3 ) 2 (SiO 2 ), the SiAlON phases, and their mixtures.

L'invention concerne également un procédé comportant les étapes suivantes :

  1. a) préparation d'une charge de départ à partir d'un mélange particulaire,
  2. b) mise en forme d'une préforme à partir de ladite charge de départ,
  3. c) frittage de ladite préforme de manière à obtenir une pièce frittée,
  4. d) optionnellement, polissage de ladite pièce frittée, de préférence jusqu'à ce que la rugosité Ra de surface soit inférieure à 0,05 µm, de préférence inférieure à 0,02 µm, de préférence encore inférieure à 0,01 µm,
  5. e) optionnellement, vérification de la couleur de la pièce frittée, notamment par mesure des paramètres L* et/ou a* et/ou b*,
  6. f) optionnellement, assemblage de la pièce frittée de manière qu'elle constitue un capot d'un dispositif de communication selon l'invention.
The invention also relates to a method comprising the following steps:
  1. a) preparation of a starting charge from a particulate mixture,
  2. b) shaping of a preform from said starting charge,
  3. c) sintering of said preform so as to obtain a sintered part,
  4. d) optionally, polishing of said sintered part, preferably until the surface roughness Ra is less than 0.05 μm, preferably less than 0.02 μm, more preferably less than 0.01 μm,
  5. e) optionally, verification of the color of the sintered part, in particular by measuring the parameters L * and / or a * and / or b *,
  6. f) optionally, assembling the sintered part so that it constitutes a cover of a communication device according to the invention.

Selon l'invention, le mélange particulaire comporte, en pourcentage massique et pour un total de 100% :

  • entre 40% et 88% d'une première fraction particulaire constituée de particules de zircone ZrO2 et contenant un composé apte à stabiliser la zircone, ledit composé apte à stabiliser la zircone stabilisant ou non ladite zircone et étant choisi parmi Y2O3, Sc2O3, MgO, CaO, CeO2 et leurs mélanges, et présent en une quantité supérieure à 2,0% et inférieure à 20,0%, calculée sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2, la teneur MgO + CaO étant inférieure à 5,0% sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2, le composé apte à stabiliser la zircone pouvant être remplacé par une quantité équivalente de précurseur(s) de ce composé,
  • entre 10% et 50% d'une deuxième fraction particulaire constituée de particules en un composé de formule XAlmOn, avec X choisi parmi Mg, Ca, Sr, Y, les oxydes de lanthanides et leurs mélanges, m étant un nombre entier tel que 10 ≤ m ≤ 12, n étant un nombre entier tel que 16 ≤ n ≤ 20, et/ou de particules en un composé de formule XxAlaSibOc(OH)y(H2O)z avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c, y, z étant des nombres entiers tels que x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3 (a+x), et z ≤ b, et/ou de particules de phase(s) SiAlON, et/ou de particules en un mélange de ces composés,
  • moins de 10% d'une troisième fraction particulaire constituée de particules en un oxyde de structure pérovskite, optionnellement remplacé, totalement ou en partie, par une quantité équivalente de précurseur(s) de cet oxyde, et/ou de particules en un oxyde de structure spinelle et/ou de particules en un oxyde de structure rutile FO2, l'élément F étant choisi dans le groupe GF(1) formé par les mélanges d'étain et de vanadium, les mélanges de titane et de chrome et de niobium, les mélanges de titane et de chrome et de tungstène, les mélanges de titane et de niobium et de manganèse, les mélanges d'étain et de chrome, et leurs mélanges, et/ou de particules en un oxyde de structure hématite E2O3, l'élément E étant choisi dans le groupe GE(1) formé par les mélanges d'aluminium et de chrome, les mélanges d'aluminium et de manganèse, et leurs mélanges, et/ou de particules en un composé choisi dans le groupe des orthosilicates de zirconium et de praséodyme (Zr,Pr)SiO4, des orthosilicates de zirconium et de vanadium (Zr,V)SiO4, des orthosilicates de zirconium dans lesquels se trouve de l'oxyde de fer en inclusion et leurs mélanges, et/ou de particules en un mélange de ces composés,
  • moins de 2%, de préférence moins de 1% d'une quatrième fraction particulaire constituée d'autres particules.
According to the invention, the particulate mixture comprises, in percentage by mass and for a total of 100%:
  • between 40% and 88% of a first particulate fraction consisting of ZrO 2 zirconia particles and containing a compound capable of stabilizing zirconia, said compound capable of stabilizing zirconia, whether or not stabilizing said zirconia and being chosen from Y 2 O 3 , Sc 2 O 3, MgO, CaO, CeO 2 and mixtures thereof, and present in an amount greater than 2.0% and less than 20.0%, calculated on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3, MgO, CaO and CeO 2 , the MgO + CaO content being less than 5.0% based on the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3, MgO, CaO and CeO 2 , it being possible for the compound capable of stabilizing zirconia to be replaced by an equivalent quantity of precursor (s) of this compound,
  • between 10% and 50% of a second particulate fraction consisting of particles of a compound of formula XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as 10 ≤ m ≤ 12, n being an integer such as 16 ≤ n ≤ 20, and / or particles of a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being integers such as x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, y ≤ 3 (a + x), and z ≤ b, and / or particles of phase (s) SiAlON, and / or particles in a mixture of these compounds,
  • less than 10% of a third particulate fraction consisting of particles of an oxide of perovskite structure, optionally replaced, totally or in part, by an equivalent quantity of precursor (s) of this oxide, and / or of particles of an oxide of spinel structure and / or particles of an oxide of rutile structure FO 2 , the element F being chosen from the group G F (1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and of niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and mixtures thereof, and / or of particles in an oxide of hematite structure E 2 O 3 , element E being chosen from group G E (1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and mixtures thereof, and / or of particles in a compound chosen from the group of orthosilicates of zirconium and praseodymium (Zr, Pr) SiO 4 , orthosilicates of zirconium and vanadium (Zr, V) SiO 4 , orthosilicates of zirconium in which there is iron oxide included and their mixtures, and / or of particles in a mixture of these compounds,
  • less than 2%, preferably less than 1% of a fourth particulate fraction consisting of other particles.

On appelle ci-après « mélange particulaire selon l'invention » un tel mélange particulaire.The term “particulate mixture according to the invention” is used hereinafter to refer to such a particulate mixture.

Un mélange particulaire selon l'invention permet de fabriquer une pièce frittée en un produit fritté selon l'invention.A particulate mixture according to the invention makes it possible to manufacture a sintered part in a sintered product according to the invention.

Dans un mode de réalisation préféré, le capot d'un dispositif selon l'invention est fabriqué suivant un procédé selon l'invention.In a preferred embodiment, the cover of a device according to the invention is manufactured according to a method according to the invention.

De préférence, un procédé selon l'invention comporte encore une, et de préférence plusieurs, des caractéristiques optionnelles suivantes :

  • De préférence, le mélange particulaire présente une aire spécifique, calculée par la méthode BET, supérieure à 3 m2/g, de préférence supérieure à 5 m2/g, et/ou inférieure à 30 m2/g.
  • De préférence, la première fraction particulaire représente plus de 70% et/ou moins de 85% du mélange particulaire, en pourcentage massique.
  • De préférence, la taille médiane des particules de la première fraction particulaire est comprise entre 100 nm et 1000 nm.
  • De préférence, la deuxième fraction particulaire représente plus de 15%, et/ou moins de 40% du mélange particulaire, en pourcentage massique.
  • De préférence, la taille médiane des particules de la deuxième fraction particulaire est comprise entre 100 nm et 10000 nm, de préférence inférieure à 5000 nm.
  • De préférence, plus de 25% en masse des particules de la deuxième fraction particulaire présentent un rapport longueur / largeur supérieur à 3.
  • De préférence, la deuxième fraction particulaire est constituée et/ou de particules en un composé de formule XAlmOn, avec X choisi parmi Mg, Ca, Sr, Y, les oxydes de lanthanides et leurs mélanges, m étant un nombre entier tel que 10 ≤ m ≤ 12, n étant un nombre entier tel que 16 ≤ n ≤ 20, et/ou de particules en un composé de formule XxAlaSibOc(OH)y(H2O)z avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti,Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c, y, z étant des nombres entiers tels que x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3 (a+x), et z ≤ b et/ou de particules de Si3N4 et/ou de particules d'AlN et/ou de particules d'AlON et/ou de particules de Si2ON2 et/ou de particules en un mélange de ces composés. De préférence, la deuxième fraction particulaire est constituée de particules de MgAl12O19 et/ou de particules de LaAl11O18 et/ou de particules en un orthosilicate et/ou de particules en un sorosilicate et/ou de particules en un cyclosilicate et/ou de particules en un inosilicate et/ou de particules en un phyllosilicate et/ou de particules en un tectosilicate et/ou de particules en une argile et/ou de particules en un mélange de ces composés.
  • Dans un mode de réalisation préféré, la deuxième fraction particulaire est constituée
    • de particules de MgAl12O19 de préférence sous la forme de particules présentant un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10 ;
    • de particules de LaAl11O18 de préférence sous la forme de particules présentant un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10 ;
    • de particules de grenat Mg3Al2(SiO4)3 ;
    • de particules d'épidote Ca2Al3(SiO4)(Si2O7)OOH;
    • de particules d'un silicate d'yttrium, comme Y2Si2O7, l'yttrium pouvant être partiellement substitué par Sc : (Sc,Y)2Si2O7 ;
    • de particules de mélilite X2ZSi2O7 avec X choisi parmi Y, les oxydes de lanthanides et leurs mélanges et Z choisi parmi Mg, Al et leurs mélanges ;
    • de particules de cordiérite Mg2Al3(Si5AlO18) ;
    • de particules d'un amphibole de formule (Ca, Al, Mg)7Si8O22(OH)2 ;
    • de particules de talc Mg3Si4O10(OH)2 ;
    • de particules d'un feldspath (Ca, Sr) Al2Si2O8 ;
    • de particules de kaolinite Si2O5Al2(OH)4 ;
    • de particules de montmorillonite Si4O10(Al,Mg)3(OH)2 ;
    • de particules de vermicullite (Mg,Ca)(MgAl)6(Al,Si)8O22(OH)4.8H2O ;
    • ou d'un mélange de telles particules.
  • De préférence, la taille médiane des particules de la troisième fraction particulaire est inférieure à 1000 nm, voire inférieure à 500 nm.
  • La quatrième fraction particulaire représente de préférence moins de 0,5 %, de préférence moins de 0,2 %, de préférence moins de 0,1 % du mélange particulaire, en pourcentage massique. De préférence, la quatrième fraction particulaire est constituée des impuretés.
  • Dans un mode de réalisation, les oxydes représentent plus de 98 %, plus de 99 %, voire sensiblement 100 % de la masse du mélange particulaire.
  • A l'étape c), la préforme est frittée, de préférence à une température comprise entre 1200°C et 1500°C.
Preferably, a method according to the invention also comprises one, and preferably several, of the following optional characteristics:
  • Preferably, the particulate mixture has a specific area, calculated by the BET method, greater than 3 m 2 / g, preferably greater than 5 m 2 / g, and / or less than 30 m 2 / g.
  • Preferably, the first particulate fraction represents more than 70% and / or less than 85% of the particulate mixture, in percentage by mass.
  • Preferably, the median size of the particles of the first particulate fraction is between 100 nm and 1000 nm.
  • Preferably, the second particulate fraction represents more than 15%, and / or less than 40% of the particulate mixture, in percentage by mass.
  • Preferably, the median size of the particles of the second particulate fraction is between 100 nm and 10,000 nm, preferably less than 5,000 nm.
  • Preferably, more than 25% by mass of the particles of the second particulate fraction have a length / width ratio greater than 3.
  • Preferably, the second particulate fraction consists of and / or particles of a compound of formula XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as that 10 ≤ m ≤ 12, n being an integer such as 16 ≤ n ≤ 20, and / or particles of a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being integers such as x + a > 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, y ≤ 3 (a + x), and z ≤ b and / or particles of Si 3 N 4 and / or particles of AlN and / or particles of AlON and / or particles of Si 2 ON 2 and / or particles in a mixture of these compounds . Preferably, the second particulate fraction consists of MgAl 12 O 19 particles and / or LaAl 11 O 18 particles and / or orthosilicate particles and / or sorosilicate particles and / or cyclosilicate particles. and / or particles in an inosilicate and / or particles in a phyllosilicate and / or particles in a tectosilicate and / or particles in a clay and / or particles in a mixture of these compounds.
  • In a preferred embodiment, the second particulate fraction consists of
    • particles of MgAl 12 O 19 , preferably in the form of particles having a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10;
    • particles of LaAl 11 O 18 preferably in the form of particles having a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10;
    • Mg 3 Al 2 (SiO 4 ) 3 garnet particles;
    • epidote particles Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH;
    • particles of an yttrium silicate, such as Y 2 Si 2 O 7 , the yttrium possibly being partially substituted by Sc: (Sc, Y) 2 Si 2 O 7 ;
    • of melilite particles X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures;
    • particles of cordierite Mg 2 Al 3 (Si 5 AlO 18 );
    • particles of an amphibole of the formula (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 ;
    • talc particles Mg 3 Si 4 O 10 (OH) 2 ;
    • particles of a feldspar (Ca, Sr) Al 2 Si 2 O 8 ;
    • kaolinite particles Si 2 O 5 Al 2 (OH) 4 ;
    • montmorillonite particles Si 4 O 10 (Al, Mg) 3 (OH) 2 ;
    • vermicullite particles (Mg, Ca) (MgAl) 6 (Al, Si) 8 O 22 (OH) 4 .8H 2 O;
    • or a mixture of such particles.
  • Preferably, the median size of the particles of the third particulate fraction is less than 1000 nm, or even less than 500 nm.
  • The fourth particulate fraction preferably represents less than 0.5%, preferably less than 0.2%, preferably less than 0.1% of the particulate mixture, in mass percentage. Preferably, the fourth particulate fraction consists of the impurities.
  • In one embodiment, the oxides represent more than 98%, more than 99%, or even substantially 100% of the mass of the particulate mixture.
  • In step c), the preform is sintered, preferably at a temperature between 1200 ° C and 1500 ° C.

DéfinitionsDefinitions

  • On appelle « frittage » une consolidation par traitement thermique à plus de 1100°C d'un agglomérat particulaire, avec éventuellement une fusion, partiellement ou totale, de certains des constituants de cet agglomérat (mais pas de tous ces constituants).The term “sintering” is used to refer to consolidation by heat treatment at more than 1100 ° C. of a particulate agglomerate, possibly with a partial or total melting of some of the constituents of this agglomerate (but not all of these constituents).
  • Une structure cristallographique pérovskite correspond à un agencement particulier d'éléments dans des sites classiquement appelés « sites A » et « sites B ». On appelle habituellement « éléments A » et « éléments B » les éléments disposés sur les sites A et B, respectivement.
    Parmi les composés présentant une structure cristallographique pérovskite, on distingue en particulier les « oxydes de structure pérovskite ». Ces oxydes comprennent notamment des composés de formule ABO3. Tous les sites A et/ou B ne sont pas toujours occupés par des éléments A et/ou B, respectivement.
    Par exemple, un oxyde de lanthane - manganèse (LM) de structure pérovskite est un composé où A est du lanthane et B du manganèse. Sa structure est classiquement définie par une formule du type LaMnO3 . Un autre exemple peut être un oxyde de lanthane - cobalt - fer - manganèse de structure pérovskite où A est du lanthane et B un mélange de cobalt, de fer et de manganèse défini par une formule du type La CoxFeyMnzO 3, avec x + y + z = 1, x, y et z étant les fractions molaires des éléments cobalt, fer et manganèse, respectivement.
    A perovskite crystallographic structure corresponds to a particular arrangement of elements in sites conventionally called “sites A” and “sites B”. We usually call "elements A" and "elements B" the elements arranged on sites A and B, respectively.
    Among the compounds having a perovskite crystallographic structure, a distinction is made in particular between “oxides of perovskite structure”. These oxides include in particular compounds of formula ABO 3 . Not all A and / or B sites are always occupied by A and / or B elements, respectively.
    For example, a lanthanum manganese oxide (LM) of perovskite structure is a compound where A is lanthanum and B is manganese. Its structure is conventionally defined by a formula of the LaMnO 3 type. Another example can be a lanthanum - cobalt - iron - manganese oxide of perovskite structure where A is lanthanum and B a mixture of cobalt, iron and manganese defined by a formula of the type La Co x Fe y Mn z O 3 , with x + y + z = 1, x, y and z being the mole fractions of the elements cobalt, iron and manganese, respectively.
  • Une structure cristallographique spinelle correspond à un agencement particulier d'éléments C et D dans des sites classiquement appelés « sites octaédriques » et « sites tétraédriques ».
    Les composés présentant une structure cristallographique spinelle comprennent notamment les composés de formule CD2O4 appelés « spinelles directs », dans lesquels l'élément C occupe un site tétraédrique et l'élément D occupe un site octaédrique, et les composés de formules D(C,D)O4, appelés « spinelles inverses », dans lesquels l'élément D occupe des sites tétraédriques et octaédriques et l'élément C occupe un site octaédrique.
    Par exemple, un oxyde de cobalt - chrome de structure spinelle direct est un composé où C est du cobalt, disposé sur des sites C, et D du chrome, disposé sur des sites D. Sa structure est classiquement définie par une formule du type CoCr 2 O 4 . Un autre exemple de spinelle est le spinelle inverse TiFe2O4, où C est du titane disposé sur des sites D, et D est du fer disposé sur des sites C et des sites D. Un autre exemple peut être un oxyde de cobalt - fer - chrome de structure spinelle où C est un mélange de cobalt et de fer et D un mélange de fer et de chrome défini par une formule du type (CoxFey )(FezCrt )2 O 4, avec x + y = 1 et z+t = 1, x, y+z et t étant les fractions molaires des éléments cobalt, fer et chrome, respectivement, x et y étant les fractions molaires des éléments présents en sites C, et z et t étant les fractions molaires des éléments présents en sites D.
    A spinel crystallographic structure corresponds to a particular arrangement of elements C and D in sites conventionally called “octahedral sites” and “tetrahedral sites”.
    The compounds having a spinel crystallographic structure include in particular the compounds of formula CD 2 O 4 called “direct spinels”, in which the element C occupies a tetrahedral site and the element D occupies an octahedral site, and the compounds of formulas D ( C, D) O 4 , called "inverse spinels", in which element D occupies tetrahedral and octahedral sites and element C occupies an octahedral site.
    For example, a cobalt - chromium oxide with a direct spinel structure is a compound where C is cobalt, placed on C sites, and D is chromium, placed on D sites. Its structure is conventionally defined by a formula of the CoCr type 2 O 4 . Another example of a spinel is the reverse spinel TiFe 2 O 4 , where C is titanium disposed at D sites, and D is iron disposed at C sites and D sites. Another example can be cobalt oxide - iron - chromium of spinel structure where C is a mixture of cobalt and iron and D is a mixture of iron and chromium defined by a formula of the type ( Co x Fe y ) ( Fe z Cr t ) 2 O 4 , with x + y = 1 and z + t = 1, x, y + z and t being the mole fractions of the elements cobalt, iron and chromium, respectively, x and y being the mole fractions of the elements present at C sites, and z and t being the mole fractions of the elements present at D sites.
  • Une structure cristallographique hématite correspond à un agencement particulier d'éléments dans des sites classiquement appelés « sites E ». On appelle habituellement « éléments E » les éléments disposés sur les sites E.
    Parmi les composés présentant une structure cristallographique hématite, on distingue en particulier les « oxydes de structure hématite ». Ces oxydes comprennent notamment des composés de formule E2O3.
    Par exemple, un oxyde de manganèse - aluminium de structure hématite est un composé où E est un mélange de manganèse et d'alumine. Sa structure est classiquement définie par une formule du type (MnxAly )2 O 3, avec x + y = 1, x et y étant les fractions molaires des éléments manganèse et aluminium, respectivement.
    A hematite crystallographic structure corresponds to a particular arrangement of elements in sites conventionally called “E sites”. We usually call "E elements" the elements arranged on the E sites.
    Among the compounds having a hematite crystallographic structure, a distinction is made in particular between “oxides of hematite structure”. These oxides include in particular compounds of formula E 2 O 3 .
    For example, a manganese-aluminum oxide of hematite structure is a compound where E is a mixture of manganese and alumina. Its structure is conventionally defined by a formula of the type ( Mn x Al y ) 2 O 3 , with x + y = 1, x and y being the mole fractions of the elements manganese and aluminum, respectively.
  • Une structure cristallographique rutile correspond à un agencement particulier d'éléments dans des sites classiquement appelés « sites F ». On appelle habituellement « éléments F » les éléments disposés sur les sites F.
    Parmi les composés présentant une structure cristallographique rutile, on distingue en particulier les « oxydes de structure rutile ». Ces oxydes comprennent notamment des composés de formule FO2.
    Par exemple, un oxyde de manganèse - niobium - titane de structure rutile est un composé où F est un mélange de manganèse de niobium et de titane. Sa structure est classiquement définie par une formule du type (MnxNbyTiz )O 2, avec x + y + z = 1, x, y et z étant les fractions molaires des éléments manganèse, niobium et titane.
    A rutile crystallographic structure corresponds to a particular arrangement of elements in sites conventionally called “F sites”. We usually call "F elements" the elements arranged on the F sites.
    Among the compounds having a rutile crystallographic structure, a distinction is made in particular between “oxides of rutile structure”. These oxides include in particular compounds of formula FO 2 .
    For example, a manganese - niobium - titanium oxide of rutile structure is a compound where F is a mixture of manganese, niobium and titanium. Its structure is conventionally defined by a formula of the type (Mn x Nb y Ti z ) O 2 , with x + y + z = 1, x, y and z being the molar fractions of the elements manganese, niobium and titanium.
  • Un élément A, B, C, D, E, ou F peut comporter plusieurs constituants, une fraction molaire d'un de ces constituants fait référence à la fraction molaire de ce constituant dans ledit élément.An element A, B, C, D, E, or F can comprise several constituents, a mole fraction of one of these constituents refers to the mole fraction of this constituent in said element.
  • Dans une composition chimique, les teneurs en oxydes se rapportent aux teneurs globales pour chacun des éléments chimiques correspondants, exprimées sous la forme de l'oxyde le plus stable, en ne considérant que les composés oxydes. Par exemple, « SiO2 » mesure la quantité de silicium sous la forme de composés oxydes, en considérant tous les composés oxydes de silicium possibles : SiO2, les silicates, etc. En revanche la quantité de silicium sous la forme Si3N4, qui n'est pas un composé oxyde, n'est pas comptabilisée dans « SiO2 ».In a chemical composition, the oxide contents relate to the overall contents for each of the corresponding chemical elements, expressed in the form of the most stable oxide, considering only the oxide compounds. For example, "SiO 2 " measures the amount of silicon in the form of oxide compounds, considering all possible silicon oxide compounds: SiO 2 , silicates, etc. On the other hand, the quantity of silicon in the form Si 3 N 4 , which is not an oxide compound, is not included in “SiO 2 ”.
  • Par « impuretés », on entend les constituants inévitables, introduits nécessairement avec les matières premières ou résultant de réactions avec ces constituants. Les impuretés ne sont pas des constituants nécessaires, mais seulement tolérés. En particulier, les composés faisant partie du groupe des oxydes, nitrures, oxynitrures, carbures, oxycarbures, carbonitrures et espèces métalliques de sodium et autres alcalins sont des impuretés. A titre d'exemples, on peut citer Na2O. En revanche, l'oxyde d'hafnium n'est pas considéré comme une impureté. On considère que, dans un produit fritté selon l'invention ou dans une charge de départ selon l'invention, une teneur totale en impuretés inférieure à 2 % ne modifie pas substantiellement les résultats obtenus.The term “impurities” is understood to mean the inevitable constituents, necessarily introduced with the raw materials or resulting from reactions with these constituents. Impurities are not necessary constituents, but only tolerated. In particular, the compounds belonging to the group of oxides, nitrides, oxynitrides, carbides, oxycarbons, carbonitrides and metallic species of sodium and other alkalis are impurities. By way of examples, mention may be made of Na 2 O. On the other hand, hafnium oxide is not considered to be an impurity. It is considered that, in a sintered product according to the invention or in a starting charge according to the invention, a total impurity content of less than 2% does not substantially modify the results obtained.
  • Dans une source de particules de zircone, HfO2 n'est pas chimiquement dissociable de ZrO2. « ZrO2 » désigne donc classiquement la teneur totale de ces deux oxydes. Selon la présente invention, HfO2 n'est pas ajouté volontairement dans la charge de départ. HfO2 ne désigne donc que les traces d'oxyde d'hafnium, cet oxyde étant toujours naturellement présent dans les sources de zircone à des teneurs généralement inférieures à 2 %. Par souci de clarté, on peut donc désigner indifféremment la teneur en zircone et en traces d'oxyde d'hafnium par « ZrO2 », on encore par « teneur en zircone ».In a source of zirconia particles, HfO 2 is not chemically dissociable from ZrO 2 . “ZrO 2 ” therefore conventionally denotes the total content of these two oxides. According to the present invention, HfO 2 is not added voluntarily in the starting charge. HfO 2 therefore only designates traces of hafnium oxide, this oxide always being naturally present in zirconia sources at contents generally less than 2%. For the sake of clarity, the content of zirconia and of traces of hafnium oxide can therefore be designated indifferently by “ZrO 2 ”, or also by “zirconia content”.
  • On appelle « zircone stabilisée », une zircone stabilisée avec un stabilisant et constituée pour plus de 80 %, voire plus de 90 %, voire plus de 95 %, voire sensiblement 100 %, en volume, de phase quadratique et/ou cubique, le complément à 100 % étant constitué de phase monoclinique. La quantité de zircone stabilisée est mesurée par diffraction X. Sur une pièce massive, la surface de mesure est polie, la dernière étape de polissage étant réalisée avec une préparation diamantée Mecaprex LD32-E 1µm commercialisée par la société PRESI, après que la pièce a subi un traitement thermique à 1000°C pendant 1 heure et a été refroidie à température ambiante. Sur une poudre, la mesure est effectuée directement sur la poudre, sans broyage préalable.The term “stabilized zirconia” means a zirconia stabilized with a stabilizer and comprising more than 80%, or even more than 90%, or even more than 95%, or even substantially 100%, by volume, of quadratic and / or cubic phase, the 100% complement consisting of monoclinic phase. The amount of stabilized zirconia is measured by X-ray diffraction. On a solid part, the measurement surface is polished, the last polishing step being carried out with a Mecaprex LD32-E 1µm diamond preparation marketed by the company PRESI, after the part has heat treated at 1000 ° C for 1 hour and was cooled to room temperature. On a powder, the measurement is carried out directly on the powder, without prior grinding.
  • On appelle « précurseur » d'un produit un composé ou un ensemble de composés qui, lors d'un frittage à l'étape c), sous air, conduisent à la formation dudit produit. Dans le cas particulier d'un oxyde de structure pérovskite, un précurseur dudit oxyde de structure pérovskite est un composé constitué d'un mélange intime des oxydes et/ou des précurseurs des oxydes composant ledit oxyde de structure pérovskite. Un tel mélange intime peut par exemple être obtenu par coprécipitation ou atomisation. De préférence, le mélange intime est consolidé par un traitement thermique. Par exemple, si l'on considère un oxyde de lanthane - cobalt - fer - manganèse de structure pérovskite de formule LaCoxFeyMnzO 3, avec x + y + z = 1, x, y et z étant les fractions molaires des éléments cobalt, fer et manganèse, respectivement, un précurseur de cet oxyde de structure pérovskite est un mélange intime d'oxyde de lanthane, d'oxyde de cobalt, d'oxyde de fer et d'oxyde de manganèse. Un autre précurseur possible est un mélange intime de précurseurs de ces oxydes, comme par exemple un mélange intime de nitrate de lanthane, de nitrate de cobalt, de nitrate de fer et de nitrate de manganèse.The term “precursor” of a product is used to refer to a compound or a set of compounds which, during sintering in step c), in air, leads to the formation of said product. In the particular case of an oxide of perovskite structure, a precursor of said oxide of perovskite structure is a compound consisting of an intimate mixture of the oxides and / or precursors of the oxides composing said oxide of perovskite structure. Such an intimate mixture can for example be obtained by co-precipitation or atomization. Preferably, the intimate mixture is consolidated by heat treatment. For example, if we consider a lanthanum - cobalt - iron - manganese oxide of perovskite structure of the formula LaCo x Fe y Mn z O 3 , with x + y + z = 1, x, y and z being the mole fractions of the elements cobalt, iron and manganese, respectively, a precursor of this oxide of perovskite structure is an intimate mixture of lanthanum oxide, cobalt oxide, iron oxide and manganese oxide. Another possible precursor is an intimate mixture of precursors of these oxides, such as for example an intimate mixture of lanthanum nitrate, cobalt nitrate, iron nitrate and manganese nitrate.
  • Une quantité d'un précurseur d'un produit est dite « équivalente » à une quantité dudit produit lorsque, lors du frittage, elle conduit à ladite quantité dudit produit.A quantity of a precursor of a product is said to be “equivalent” to a quantity of said product when, during sintering, it results in said quantity of said product.
  • Par « temporaire », on entend « pouvant être éliminé de la préforme pendant le frittage ».By "temporary" is meant "capable of being removed from the preform during sintering".
  • On appelle « taille moyenne » des grains d'une pièce frittée, la dimension mesurée selon la méthode de « Mean Linear Intercept » décrite dans la norme ASTM E1382-97. Les résultats obtenus par cette norme ont été multipliés par un coefficient correcteur égal à 1,56 pour tenir compte de l'aspect tridimensionnel.The term “average size” of the grains of a sintered part is used to refer to the dimension measured according to the “Mean Linear Intercept” method described in standard ASTM E1382-97. The results obtained by this standard were multiplied by a correction coefficient equal to 1.56 to take account of the three-dimensional aspect.
  • On appelle « taille médiane » d'un ensemble de particules, généralement notée D50, la taille divisant les particules de cet ensemble en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure, ou inférieure respectivement, à la taille médiane.The term “median size” of a set of particles, generally denoted by D 50 , is the size dividing the particles of this set into first and second populations equal in mass, these first and second populations comprising only particles having a larger size, or less, respectively, than the median size.
  • Les percentiles ou « centiles » 10 (D10) et 90 (D90) sont les tailles de particule correspondant aux pourcentages, en masse, de 10 % et 90 %, respectivement, sur la courbe de distribution granulométrique cumulée des tailles de particules de la poudre, les tailles de particules étant classées par ordre croissant. Par exemple, 10%, en masse, des particules de la poudre ont une taille inférieure à D10 et 90 % des particules en masse ont une taille supérieure à D10. Les percentiles peuvent être déterminés à l'aide d'une distribution granulométrique réalisée à l'aide d'un granulomètre laser.The percentiles or "percentiles" 10 (D 10 ) and 90 (D 90 ) are the particle sizes corresponding to the percentages, by mass, of 10% and 90%, respectively, on the cumulative particle size distribution curve of powder, the particle sizes being classified in ascending order. For example, 10%, by mass, of the particles of the powder have a size less than D 10 and 90% of the particles by mass have a size greater than D 10 . Percentiles can be determined using a particle size distribution performed using a laser particle size analyzer.
  • La longueur d'une particule est sa plus grande dimension. La largeur d'une particule est sa plus grande dimension perpendiculairement à la direction de sa longueur.The length of a particle is its greatest dimension. The width of a particle is its largest dimension perpendicular to the direction of its length.
  • L'aire spécifique est calculée par la méthode BET (Brunauer Emmet Teller) telle que décrite dans Journal of American Chemical Society 60 (1938), pages 309 à 316 .The specific area is calculated by the BET method (Brunauer Emmet Teller) as described in Journal of American Chemical Society 60 (1938), pages 309-316 .
  • Sauf mention contraire,dans les formules, les indices sont des fractions molaires.Unless otherwise indicated, in the formulas, the indices are mole fractions.
  • Sauf mention contraire, tous les pourcentages sont des pourcentages massiques.Unless stated otherwise, all percentages are percentages by weight.
  • Sauf mention contraire, par « comportant un » ou « comprenant un », on entend « comportant au moins un ». Un mélange particulaire selon l'invention peut ainsi comporter, par exemple, un premier pigment en un oxyde de structure pérovskite et un deuxième pigment en un oxyde de structure spinelle.Unless otherwise specified, the term “comprising a” or “comprising a” is understood to mean “comprising at least one”. A particulate mixture according to the invention can thus comprise, for example, a first pigment in an oxide of perovskite structure and a second pigment in an oxide of spinel structure.
  • La définition générique de la composition des particules d'un ensemble de particules, par exemple au moyen d'une formule ou d'une structure, signifie que cet ensemble peut être constitué de particules présentant toutes la même composition ou différentes compositions, chaque particule ayant une composition respectant ladite définition générique. Par exemple, dans un ensemble de « particules en un composé de formule XAlmOn », X et/ou m et/ou n peuvent être différent(s) selon la particule considérée. De même, un ensemble comportant des particules en un orthosilicate de zirconium et de praséodyme et des particules en un orthosilicate de zirconium est un ensemble de « particules en un composé choisi dans le groupe des orthosilicates de zirconium et de praséodyme (Zr,Pr)SiO4, des orthosilicates de zirconium et de vanadium (Zr,V)SiO4, et des orthosilicates de zirconium ». De même un ensemble constitué de particules en différentes cordiérites est un ensemble de « particules en une cordiérite » ou un ensemble constitué de particules en différents oxyde de structure spinelle est un ensemble de particules « en un oxyde de structure spinelle ». Plus généralement, l'expression « particules en un oxyde » d'une structure déterminée, ladite structure pouvant correspondre à n oxydes différents, par exemple « particules en un oxyde de structure pérovskite », inclut tout ensemble de particules dont chaque particule est constituée en un oxyde présentant ladite structure, cet ensemble pouvant contenir des particules en chacun des n oxydes.The generic definition of the composition of the particles of a set of particles, for example by means of a formula or a structure, means that this set can consist of particles all having the same composition or different compositions, each particle having a composition respecting said generic definition. For example, in a set of “particles in a compound of formula XAl m O n ”, X and / or m and / or n may be different depending on the particle considered. Likewise, an assembly comprising particles of zirconium and praseodymium orthosilicate and particles of zirconium orthosilicate is a set of "particles of a compound selected from the group of zirconium and praseodymium orthosilicates (Zr, Pr) SiO 4 , zirconium and vanadium (Zr, V) SiO 4 orthosilicates, and zirconium orthosilicates ”. Likewise, a set made up of particles made of different cordierites is a set of “particles made of a cordierite” or a set made up of particles made of different oxide of spinel structure is a set of particles “of an oxide of spinel structure". More generally, the expression “particles of an oxide” of a determined structure, said structure possibly corresponding to n different oxides, for example “particles of an oxide of perovskite structure”, includes any set of particles of which each particle consists of an oxide having said structure, this assembly possibly containing particles in each of the n oxides.
  • Les phases SiAION cristallisées et les composés SiAION respectent l'une des formules suivantes :
    • SitAlwOuNv, dans laquelle :
      • t est supérieur ou égal à 0, supérieur à 0,05, supérieur à 0,1 ou supérieur à 0,2, et inférieur ou égal à 1, inférieur ou égal à 0,8 ou inférieur ou égal à 0,4,
      • w est supérieur ou égal à 0, ou supérieur à 0,1, supérieur à 0,3 ou supérieur à 0,5, et inférieur ou égal à 1,
      • u est supérieur ou égal à 0, supérieur à 0,1 ou supérieur à 0,2, et inférieur ou égal à 1 ou inférieur ou égal à 0,7,
      • v est supérieur à 0, supérieur à 0,1, supérieur à 0,2 ou supérieur à 0,5, ou supérieur à 0,7, et inférieur ou égal à 1,
      • t+w > 0,
      t, w, u et v étant des indices stoechiométriques et normalisés par rapport à celui qui est le plus élevé, rendu égal à 1 ;
    • MesSi12-(q+r)Al(q+r)OrN16-r, avec 0 ≤ s ≤ 2, Me un cation choisi parmi les cations de lanthanides, Fe, Y, Ca et leurs mélanges, 0 ≤ q ≤ 12, 0 ≤ r ≤ 12 et q+r ≤ 12, généralement appelés « α'-SiAlON » ou « SiAlON-α'».
    The crystallized SiAION phases and the SiAION compounds comply with one of the following formulas:
    • If t Al w O u N v , in which:
      • t is greater than or equal to 0, greater than 0.05, greater than 0.1 or greater than 0.2, and less than or equal to 1, less than or equal to 0.8 or less than or equal to 0.4,
      • w is greater than or equal to 0, or greater than 0.1, greater than 0.3 or greater than 0.5, and less than or equal to 1,
      • u is greater than or equal to 0, greater than 0.1 or greater than 0.2, and less than or equal to 1 or less than or equal to 0.7,
      • v is greater than 0, greater than 0.1, greater than 0.2 or greater than 0.5, or greater than 0.7, and less than or equal to 1,
      • t + w> 0,
      t, w, u and v being stoichiometric indices and normalized with respect to the one which is the highest, made equal to 1;
    • Me s Si 12- (q + r) Al (q + r) O r N 16-r , with 0 ≤ s ≤ 2, Me a cation chosen from the cations of lanthanides, Fe, Y, Ca and their mixtures, 0 ≤ q ≤ 12, 0 ≤ r ≤ 12 and q + r ≤ 12, generally called “α'-SiAlON” or “SiAlON-α '”.

Les phases SiAION cristallisées et les composés SiAION peuvent donc contenir :

  • o des phases AIN et/ou un de ses polytypes, notamment 2H, 8H, 12H, 15R, 21R, et 27R, de formule Sit'Alw'Ou'Nv', dans laquelle les indices stoechiométriques t', w', u' et v', normalisés par rapport à l'indice le plus élevé rendu égal à 1, sont tels que 0 ≤ t' ≤ 0,37 et 0,60 ≤ w' ≤ 1 et 0 ≤ u' ≤ 0,71 et 0,76 ≤ v' ≤ 1 ;
  • o des phases de formule Sit"Alw"Ou"Nv", dans laquelle les indices stoechiométriques t", w", u" et v", normalisés par rapport à l'indice le plus élevé rendu égal à 1, sont tels que 0,43 ≤ t" ≤ 0,75 et 0 ≤ w" ≤ 1 et 0 ≤ u" ≤ 1 et 0,9 ≤ v" ≤ 1, dites « SiAlON-β' ». Les phases cristallisées « SiAlON-β' » peuvent encore s'exprimer avec la formule Si6-zAlzOzN8-z, dans laquelle l'indice z est un indice stoechiométrique tel que 0 ≤ z< 4,2 ;
  • o des phases de formule Sit'''Alw'''Ou'''Nv''', dans laquelle les indices stoechiométriques t''', w''', u''' et v''', normalisés par rapport à l'indice le plus élevé rendu égal à 1, sont tels que t''' = 1 et 0 ≤ w''' ≤ 0,11 et 0,5 ≤ u''' ≤ 0,67 et v''' = 1, dites « SiAlON-O'». Les phases cristallisées « SiAlON-O' » peuvent encore s'exprimer avec la formule Si2-z'Alz'O1+z'N2-z', dans laquelle l'indice z' est un indice stoechiométrique tel que 0 ≤ z< 0,2 ;
  • ∘ Si3N4;
  • ∘ Si2ON2 ;
  • ∘ AlON.
    • Classiquement, « Si3N4 » désigne toutes les formes de Si3N4 (à savoir Si3N4-α et Si3N4-β).
    • On appelle « lanthanides » les éléments chimiques de numéro atomique compris entre 57 (lanthane) et 71 (lutécium), le lanthane et le lutécium étant compris dans lesdits lanthanides.
The crystallized SiAION phases and the SiAION compounds can therefore contain:
  • o AlN phases and / or one of its polytypes, in particular 2H, 8H, 12H, 15R, 21R, and 27R, of formula Si t ' Al w' O u ' N v' , in which the stoichiometric indices t ', w ', u' and v ', normalized with respect to the highest index made equal to 1, are such that 0 ≤ t' ≤ 0.37 and 0.60 ≤ w '≤ 1 and 0 ≤ u' ≤ 0 , 71 and 0.76 ≤ v '≤ 1;
  • o phases of formula Si t " Al w" O u " N v" , in which the stoichiometric indices t ", w", u "and v", normalized with respect to the highest index made equal to 1, are such that 0.43 ≤ t "≤ 0.75 and 0 ≤ w" ≤ 1 and 0 ≤ u "≤ 1 and 0.9 ≤ v" ≤ 1, say “SiAlON-β '”. The “SiAlON-β '” crystallized phases can also be expressed with the formula Si 6-z Al z O z N 8-z , in which the index z is a stoichiometric index such that 0 ≤ z <4.2;
  • o phases of formula Si t ''' Al w''' O u ''' N v''' , in which the stoichiometric indices t ''',w''', u '''andv''' , normalized with respect to the highest index made equal to 1, are such that t '''= 1 and 0 ≤ w''' ≤ 0.11 and 0.5 ≤ u '''≤ 0.67 and v '''= 1, say "SiAlON-O'". The crystallized phases “SiAlON-O '” can also be expressed with the formula Si 2-z' Al z ' O 1 + z' N 2-z ' , in which the index z' is a stoichiometric index such as 0 ≤ z <0.2;
  • ∘ Si 3 N 4 ;
  • ∘ Si 2 ON 2 ;
  • ∘ AlON.
    • Conventionally, “Si 3 N 4 ” denotes all forms of Si 3 N 4 (namely Si 3 N 4 -α and Si 3 N 4 -β).
    • Chemical elements with an atomic number between 57 (lanthanum) and 71 (lutetium) are called “lanthanides”, lanthanum and lutetium being included in said lanthanides.

Description détailléedetailed description

A l'étape a), on prépare un mélange particulaire selon l'invention. In step a), a particulate mixture according to the invention is prepared.

De préférence, le mélange particulaire présente une aire spécifique, calculée par la méthode BET, supérieure à 3 m2/g, de préférence supérieure à 5 m2/g, et/ou inférieure à 30 m2/g, de préférence inférieure à 25 m2/g, de préférence inférieure à 20 m2/g. De préférence encore, il présente une taille médiane (D50) inférieure à 10 µm, voire inférieure à 5 µm, voire inférieure à 3 µm, voire inférieure à 1 µm, et/ou de préférence supérieure à 0,05 µm.Preferably, the particulate mixture has a specific area, calculated by the BET method, greater than 3 m 2 / g, preferably greater than 5 m 2 / g, and / or less than 30 m 2 / g, preferably less than 25 m 2 / g, preferably less than 20 m 2 / g. More preferably, it has a median size (D 50 ) of less than 10 μm, or even less than 5 μm, or even less than 3 μm, or even less than 1 μm, and / or preferably greater than 0.05 μm.

Un broyage peut être mis en oeuvre pour que chacune des poudres utilisées à l'étape a) ou pour que le mélange particulaire présente les caractéristiques granulométriques souhaitées, en particulier pour obtenir une bonne densification de la pièce frittée. En particulier, un broyage peut être mis en oeuvre pour que la première fraction particulaire présente une taille médiane (D50) inférieure à 1000 nm et/ou pour que la deuxième fraction particulaire présente une taille (D50) inférieure à 10000 nm.Grinding can be implemented so that each of the powders used in step a) or so that the particulate mixture has the desired particle size characteristics, in particular to obtain good densification of the sintered part. In particular, grinding can be implemented so that the first particulate fraction has a median size (D 50 ) of less than 1000 nm and / or so that the second particulate fraction has a size (D 50 ) of less than 10,000 nm.

Selon l'invention, le mélange particulaire comporte des première et deuxième fractions particulaires, les autres fractions particulaires étant optionnelles.According to the invention, the particulate mixture comprises first and second particulate fractions, the other particulate fractions being optional.

Les première, deuxième, troisième et quatrième fractions particulaires ne sont pas nécessairement ajoutées séparément dans le mélange particulaire. Le terme « fraction particulaire » signifie seulement qu'à partir de le mélange particulaire, il est possible de séparer les particules de manière à constituer les première, deuxième, troisième et quatrième fractions particulaires.The first, second, third and fourth particulate fractions are not necessarily added separately to the particulate mixture. The term "particulate fraction" means only that from the particulate mixture it is possible to separate the particles so as to constitute the first, second, third and fourth particulate fractions.

Dans un mode de réalisation, le mélange particulaire est constitué des première, deuxième et quatrième fractions particulaires.In one embodiment, the particulate mixture consists of the first, second and fourth particulate fractions.

Dans un mode de réalisation, le mélange particulaire est constitué des première, deuxième, troisième et quatrième fractions particulaires.In one embodiment, the particulate mixture consists of the first, second, third and fourth particulate fractions.

Première fraction particulaireFirst particulate fraction

De préférence, la première fraction particulaire représente plus de 70%, voire plus de 75%, et/ou moins de 85% du mélange particulaire, en pourcentage massique.Preferably, the first particulate fraction represents more than 70%, or even more than 75%, and / or less than 85% of the particulate mixture, in percentage by mass.

De préférence, la taille médiane des particules de la première fraction particulaire est comprise entre 100 nm et 1000 nm, de préférence inférieure à 800 nm, voire inférieure à 500 nm. De préférence, la courbe de répartition granulométrique de la première fraction particulaire est telle que le rapport (D90-D10)/D50 soit inférieur à 10, voire inférieur à 5, voire inférieur à 3, voire inférieur à 2.Preferably, the median size of the particles of the first particulate fraction is between 100 nm and 1000 nm, preferably less than 800 nm, or even less than 500 nm. Preferably, the particle size distribution curve of the first particulate fraction is such that the ratio (D 90 -D 10 ) / D 50 is less than 10, or even less than 5, or even less than 3, or even less than 2.

Dans un mode de réalisation, pourvu que la deuxième fraction particulaire comporte moins de 25% en masse de particules présentant un rapport longueur / largeur supérieur à 3, plus de 25%, voire plus de 40%, voire plus de 50% en masse des particules de la première fraction particulaire présentent un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10. Avantageusement, les propriétés mécaniques de la pièce frittée obtenue en fin d'étape c) en sont améliorées.In one embodiment, provided that the second particulate fraction comprises less than 25% by mass of particles having a length / width ratio greater than 3, more than 25%, or even more than 40%, or even more than 50% by mass of the particles. particles of the first particulate fraction have a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10. Advantageously, the mechanical properties of the sintered part obtained at the end of step c) are. improved.

Les particules de zircone de la première fraction particulaire comportent un composé apte à stabiliser la zircone choisi parmi Y2O3, Sc2O3, MgO, CaO, CeO2 et leurs mélanges, en une quantité supérieure à 2,0% et inférieure à 20,0%, calculée sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2, la teneur MgO + CaO étant inférieure à 5,0% sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2.The zirconia particles of the first particulate fraction comprise a compound capable of stabilizing zirconia chosen from Y 2 O 3 , Sc 2 O 3 , MgO, CaO, CeO 2 and their mixtures, in an amount greater than 2.0% and less at 20.0%, calculated on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 , the MgO + CaO content being less than 5.0% on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .

Le composé apte à stabiliser la zircone peut être choisi dans le groupe formé par Y2O3, Sc2O3 et leurs mélanges, la teneur du composé apte à stabiliser la zircone étant alors de préférence inférieure à 8%, de préférence inférieure à 6,5%, ou dans le groupe formé par MgO, CaO et leurs mélanges, la teneur du composé apte à stabiliser la zircone étant alors de préférence inférieure à 4%, ou dans le groupe formé par Y2O3, CeO2 et leurs mélanges, la teneur du composé apte à stabiliser la zircone respectant alors, de préférence, la relation 10% ≤ 3.Y2O3 + CeO2 ≤ 20%, les pourcentages étant des pourcentages massiques sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2.The compound capable of stabilizing zirconia may be chosen from the group formed by Y 2 O 3 , Sc 2 O 3 and their mixtures, the content of the compound capable of stabilizing zirconia then preferably being less than 8%, preferably less than 6.5%, or in the group formed by MgO, CaO and their mixtures, the content of the compound capable of stabilizing zirconia then preferably being less than 4%, or in the group formed by Y 2 O 3 , CeO 2 and their mixtures, the content of the compound capable of stabilizing the zirconia then preferably respecting the relationship 10% ≤ 3.Y 2 O 3 + CeO 2 ≤ 20%, the percentages being percentages by mass based on the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .

Dans un mode de réalisation, le composé apte à stabiliser la zircone est CeO2, c'est-à-dire que la première fraction particulaire ne comporte que CeO2 comme composé apte à stabiliser la zircone, la teneur du composé apte à stabiliser la zircone étant alors de préférence supérieure à 10% et inférieure à 15%, en pourcentage massique sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2.In one embodiment, the compound capable of stabilizing zirconia is CeO 2 , that is to say that the first particulate fraction contains only CeO 2 as compound capable of stabilizing zirconia, the content of the compound capable of stabilizing zirconia. zirconia then preferably being greater than 10% and less than 15%, as a percentage by mass based on the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2 .

Dans un mode de réalisation, le composé apte à stabiliser la zircone est Y2O3, c'est-à-dire que la première fraction particulaire ne comporte que Y2O3 comme composé apte à stabiliser la zircone, la teneur du composé apte à stabiliser la zircone étant alors de préférence supérieure à 3%, de préférence supérieure à 4%, et/ou inférieure à 8%, de préférence inférieure à 6,5%, en pourcentage massique sur la base de la somme de ZrO2, Y2O3, Sc2O3, MgO, CaO et CeO2 In one embodiment, the compound capable of stabilizing zirconia is Y 2 O 3 , that is to say that the first particulate fraction contains only Y 2 O 3 as compound capable of stabilizing zirconia, the content of the compound capable of stabilizing the zirconia then preferably being greater than 3%, preferably greater than 4%, and / or less than 8%, preferably less than 6.5%, in percentage by mass on the basis of the sum of ZrO 2 , Y 2 O 3 , Sc 2 O 3 , MgO, CaO and CeO 2

La zircone, stabilisée ou non, et au moins une partie, voire la totalité du composé apte à stabiliser la zircone sont de préférence intimement mélangés. Un tel mélange intime peut par exemple être obtenu par co-précipitation ou atomisation, et être éventuellement consolidé par un traitement thermique.The zirconia, stabilized or not, and at least part, or even all of the compound capable of stabilizing the zirconia, are preferably intimately mixed. Such an intimate mixture can for example be obtained by co-precipitation or atomization, and possibly be consolidated by heat treatment.

une partie, voire la totalité du composé apte à stabiliser la zircone peut également stabiliser la zircone, le composé apte à stabiliser la zircone étant alors classiquement appelé « stabilisant ».a part, or even all of the compound capable of stabilizing zirconia can also stabilize zirconia, the compound capable of stabilizing zirconia then being conventionally called “stabilizer”.

Dans la première fraction particulaire, la zircone est de préférence pour plus de 50%, de préférence plus de 80%, de préférence plus de 90%, de préférence plus de 95%, de préférence plus de 99%, en masse sous une forme cristallographique quadratique et/ou cubique, le complément étant sous une forme cristallographique monoclinique.In the first particulate fraction, the zirconia is preferably more than 50%, preferably more than 80%, preferably more than 90%, preferably more than 95%, preferably more than 99%, by mass in one form. quadratic and / or cubic crystallographic, the complement being in a monoclinic crystallographic form.

Deuxième fraction particulaireSecond particulate fraction

De préférence, la deuxième fraction particulaire représente plus de 15%, et/ou moins de 40% de préférence moins de 30%, de préférence moins de 25% du mélange particulaire, en pourcentage massique.Preferably, the second particulate fraction represents more than 15%, and / or less than 40%, preferably less than 30%, preferably less than 25% of the particulate mixture, in percentage by mass.

De préférence, la taille médiane des particules de la deuxième fraction particulaire est comprise entre 100 nm et 10000 nm, de préférence inférieure à 5000 nm, voire inférieure à 1000 nm. De préférence, la courbe de répartition granulométrique de la deuxième fraction particulaire est telle que le rapport (D90-D10)/D50 soit inférieur à 10, voire inférieur à 5, voire inférieur à 3, voire inférieur à 2.Preferably, the median size of the particles of the second particulate fraction is between 100 nm and 10,000 nm, preferably less than 5000 nm, or even less than 1000 nm. Preferably, the particle size distribution curve of the second particulate fraction is such that the ratio (D 90 -D 10 ) / D 50 is less than 10, or even less than 5, or even less than 3, or even less than 2.

De préférence, plus de 25%, voire plus de 40%, voire plus de 50% en masse des particules de la deuxième fraction particulaire présentent un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10. Avantageusement, les propriétés mécaniques de la pièce frittée obtenue en fin d'étape c) en sont améliorées.Preferably, more than 25%, or even more than 40%, or even more than 50% by mass of the particles of the second particulate fraction have a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater. to 10. Advantageously, the mechanical properties of the sintered part obtained at the end of step c) are improved thereby.

De préférence, la deuxième fraction particulaire est constituée de particules en un composé de formule XAlmOn, avec X choisi parmi Mg, Ca, Sr, Y, les oxydes de lanthanides et leurs mélanges, m étant un nombre entier tel que 10 ≤ m ≤ 12, n étant un nombre entier tel que 16 ≤ n ≤ 20, et/ou de particules en un composé de formule XxAlaSibOc(OH)y(H2O)z avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c, y, z étant des nombres entiers tels que x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3 (a+x), et z ≤ b et/ou de particules de Si3N4 et/ou de particules d'AIN et/ou de particules d'AION et/ou de particules de Si2ON2 et/ou de particules en un mélange de ces composés (par exemple des particules constituées de MgAl2O4 et de Mg2Al3(Si5AlO18).Preferably, the second particulate fraction consists of particles of a compound of formula XAl m O n , with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such as 10 ≤ m ≤ 12, n being an integer such as 16 ≤ n ≤ 20, and / or particles in a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being integers such as x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, y ≤ 3 (a + x), and z ≤ b and / or particles of Si 3 N 4 and / or particles of AIN and / or particles of AION and / or particles of Si 2 ON 2 and / or particles in a mixture of these compounds (for example particles consisting of MgAl 2 O 4 and Mg 2 Al 3 (Si 5 AlO 18 ).

De préférence, la deuxième fraction particulaire est constituée de particules de MgAl12O19 et/ou de particules de LaAl11O18 et/ou de particules en un composé de formule XxAlaSibOc(OH)y(H2O)z avec X choisi parmi Mg, Ca, Sr, Sc, Y, les oxydes de lanthanides, Ti, Fe, Mn, Co, Cr et leurs mélanges, x, a, b, c, y, z étant des nombres entiers tels que x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3 (a+x), et z ≤ b et/ou de particules en un mélange de ces composés.Preferably, the second particulate fraction consists of particles of MgAl 12 O 19 and / or particles of LaAl 11 O 18 and / or particles of a compound of formula X x Al a Si b O c (OH) y (H 2 O) z with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y, z being numbers integers such as x + a> 0, c> 0, b> 0, a / b ≤ 2, x / b ≤ 1, y ≤ 3 (a + x), and z ≤ b and / or particles in a mixture of these compounds.

De préférence, la deuxième fraction particulaire est constituée de particules de MgAl12O19 et/ou de particules de LaAl11O18 et/ou de particules en un orthosilicate et/ou de particules en un sorosilicate et/ou de particules en un cyclosilicate et/ou de particules en un inosilicate et/ou de particules en un phyllosilicate et/ou de particules en un tectosilicate et/ou de particules en une argile et/ou de particules en un mélange de ces composés.Preferably, the second particulate fraction consists of MgAl 12 O 19 particles and / or LaAl 11 O 18 particles and / or orthosilicate particles and / or sorosilicate particles and / or cyclosilicate particles. and / or particles in an inosilicate and / or particles in a phyllosilicate and / or particles in a tectosilicate and / or particles in a clay and / or particles in a mixture of these compounds.

De préférence, les particules en un orthosilicate sont des particules en forstérite Mg2SiO4 et/ou des particules en grenat Mg3Al2(SiO4)3 et/ou des particules en grossulaire Ca3Al2(SiO4)3 et/ou des particules en andalousite Al2SiO5 et/ou des particules en sphène CaTiSiO5 et/ou des particules en un mélange de ces composés. De préférence, les particules en un orthosilicate sont des particules en grenat Mg3Al2(SiO4)3 et/ou des particules en grossulaire Ca3Al2(SiO4)3 et/ou des particules en sphène CaTiSiO5 et/ou des particules en un mélange de ces composés.Preferably, the particles of an orthosilicate are particles of forsterite Mg 2 SiO 4 and / or particles of garnet Mg 3 Al 2 (SiO 4 ) 3 and / or particles of grossular Ca 3 Al 2 (SiO 4 ) 3 and / or andalusite Al 2 SiO 5 particles and / or sphene CaTiSiO 5 particles and / or particles in a mixture of these compounds. Preferably, the particles in an orthosilicate are particles of garnet Mg 3 Al 2 (SiO 4 ) 3 and / or particles of grossular Ca 3 Al 2 (SiO 4 ) 3 and / or particles of sphene CaTiSiO 5 and / or particles in a mixture of these compounds.

De préférence, les particules en un sorosilicate sont des particules en épidote Ca2Al3(SiO4)(Si2O7)OOH et/ou des particules en un silicate d'yttrium, comme Y2Si2O7, l'yttrium pouvant être partiellement substitué par Sc : (Sc,Y)2Si2O7 et/ou des particules de mélilite X2ZSi2O7 avec X choisi parmi Y, les oxydes de lanthanides et leurs mélanges et Z choisi parmi Mg, Al et leurs mélanges et/ou des particules en un mélange de ces composés.Preferably, the particles of a sorosilicate are particles of epidote Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH and / or particles of an yttrium silicate, such as Y 2 Si 2 O 7 , yttrium which may be partially substituted by Sc: (Sc, Y) 2 Si 2 O 7 and / or melilite particles X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures and / or particles in a mixture of these compounds.

De préférence, les particules en un cyclosilicate sont des particules en une cordiérite, de préférence en Mg2Al3(Si5AlO18).Preferably, the particles of a cyclosilicate are particles of a cordierite, preferably of Mg 2 Al 3 (Si 5 AlO 18 ).

De préférence, les particules en un inosilicate sont des particules en un pyroxène, comme MgSiO3 et (Ca,Mg)Si2O6 et/ou des particules en un amphibole de formules (Ca, Al, Mg)7Si8O22(OH)2 et/ou des particules en un mélange de ces composés. De préférence, les particules en un inosilicate sont des particules en un amphibole de formule (Ca, Al, Mg)7Si8O22(OH)2.Preferably, the particles of an inosilicate are particles of a pyroxene, such as MgSiO 3 and (Ca, Mg) Si 2 O 6 and / or particles of an amphibole of the formulas (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 and / or particles as a mixture of these compounds. Preferably, the particles of an inosilicate are particles of an amphibole of the formula (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 .

De préférence, les particules en un phyllosilicate sont des particules de serpentine Mg3Si2O5(OH)4 et/ou des particules de talc Mg3Si4O10(OH)2 et/ou des particules de pyrophyllite Al2Si4O10(OH)2 et/ou des particules en un mélange de ces composés. De préférence, les particules en un phyllosilicate sont des particules de talc Mg3Si4O10(OH)2.Preferably, the particles in a phyllosilicate are particles of serpentine Mg 3 Si 2 O 5 (OH) 4 and / or particles of talc Mg 3 Si 4 O 10 (OH) 2 and / or particles of pyrophyllite Al 2 Si 4 O 10 (OH) 2 and / or particles as a mixture of these compounds. Preferably, the particles of a phyllosilicate are particles of talc Mg 3 Si 4 O 10 (OH) 2 .

De préférence, les particules en un tectosilicate sont des particules en un feldspath, de préférence en (Ca, Sr) Al2Si2O8.Preferably, the particles of a tectosilicate are particles of a feldspar, preferably of (Ca, Sr) Al 2 Si 2 O 8 .

De préférence, les particules en une argile sont des particules en une kaolinite et/ou des particules en une montmorillonite et/ou des particules en une vermicullite et/ou des particules en un mélange de ces composés. De préférence, les particules en une argile sont des particules en kaolinite Si2O5Al2(OH)4 et/ou des particules en montmorillonite Si4O10(Al,Mg)3(OH)2 et/ou des particules en vermicullite (Mg,Ca)(MgAl)6(Al,Si)8O22(OH)4.8H2O et/ou des particules en un mélange de ces composés.Preferably, the particles of a clay are particles of a kaolinite and / or particles of a montmorillonite and / or particles of a vermicullite and / or particles of a mixture of these compounds. Preferably, the clay particles are particles of kaolinite Si 2 O 5 Al 2 (OH) 4 and / or particles of montmorillonite Si 4 O 10 (Al, Mg) 3 (OH) 2 and / or particles of vermicullite (Mg, Ca) (MgAl) 6 (Al, Si) 8 O 22 (OH) 4 .8H 2 O and / or particles as a mixture of these compounds.

Dans un mode de réalisation préféré, la deuxième fraction particulaire est constituée

  • de particules de MgAl12O19 de préférence sous la forme de particules présentant un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10 ;
  • de particules de LaAlnO18 de préférence sous la forme de particules présentant un rapport longueur / largeur supérieur à 3, voire supérieur à 5, voire supérieur à 7, voire supérieur à 10 ;
  • de particules de grenat Mg3Al2(SiO4)3 ;
  • de particules d'épidote Ca2Al3(SiO4)(Si2O7)OOH;
  • de particules d'un silicate d'yttrium, comme Y2Si2O7, l'yttrium pouvant être partiellement substitué par Sc : (Sc,Y)2Si2O7 ;
  • de particules de mélilite X2ZSi2O7 avec X choisi parmi Y, les oxydes de lanthanides et leurs mélanges et Z choisi parmi Mg, Al et leurs mélanges, et leurs mélanges ;
  • de particules de cordiérite Mg2Al3(Si5AlO18) ;
  • de particules d'un amphibole de formules (Ca, Al, Mg)7Si8O22(OH)2 ;
  • de particules de talc Mg3Si4O10(OH)2 ;
  • de particules d'un feldspath (Ca, Sr) Al2Si2O8
  • de particules de kaolinite Si2O5Al2(OH)4 ;
  • de particules de montmorillonite Si4O10(Al,Mg)3(OH)2 ,
  • de particules de vermicullite (Mg,Ca)(MgAl)6(Al,Si)8O22(OH)4.8H2O
  • ou d'un mélange de telles particules.
In a preferred embodiment, the second particulate fraction consists of
  • particles of MgAl 12 O 19 , preferably in the form of particles having a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10;
  • particles of LaAl n O 18 , preferably in the form of particles having a length / width ratio greater than 3, or even greater than 5, or even greater than 7, or even greater than 10;
  • Mg 3 Al 2 (SiO 4 ) 3 garnet particles;
  • epidote particles Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH;
  • particles of an yttrium silicate, such as Y 2 Si 2 O 7 , the yttrium possibly being partially substituted by Sc: (Sc, Y) 2 Si 2 O 7 ;
  • of melilite particles X 2 ZSi 2 O 7 with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures, and their mixtures;
  • particles of cordierite Mg 2 Al 3 (Si 5 AlO 18 );
  • particles of an amphibole of the formulas (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 ;
  • talc particles Mg 3 Si 4 O 10 (OH) 2 ;
  • of particles of a feldspar (Ca, Sr) Al 2 Si 2 O 8
  • kaolinite particles Si 2 O 5 Al 2 (OH) 4 ;
  • Montmorillonite particles Si 4 O 10 (Al, Mg) 3 (OH) 2 ,
  • vermicullite particles (Mg, Ca) (MgAl) 6 (Al, Si) 8 O 22 (OH) 4 .8H 2 O
  • or a mixture of such particles.

Troisième fraction particulaireThird particulate fraction

La troisième fraction particulaire peut représenter plus de 0,5%, et/ou moins de 8% du mélange particulaire, en pourcentage massique sur la base du mélange particulaire.The third particulate fraction may represent more than 0.5%, and / or less than 8% of the particulate mixture, as a percentage by weight based on the particulate mixture.

Les inventeurs ont découvert que si la troisième fraction particulaire représente plus de 10,0% du mélange particulaire, les propriétés mécaniques, notamment de ténacité, des pièces frittées fabriquées sont dégradées. Cette dégradation est problématique en particulier lorsque les pièces frittées sont destinées à la fabrication de capots exposés à l'extérieur.The inventors have discovered that if the third particulate fraction represents more than 10.0% of the particulate mixture, the mechanical properties, in particular toughness, of the sintered parts produced are degraded. This degradation is problematic in particular when the sintered parts are intended for the manufacture of covers exposed to the outside.

une teneur minimale de 0,5 % de la troisième fraction particulaire dans le mélange particulaire contribue à l'obtention de couleurs bien développées et homogènes.a minimum content of 0.5% of the third particulate fraction in the particulate mixture contributes to obtaining well developed and homogeneous colors.

De préférence, la taille médiane des particules de la troisième fraction particulaire est inférieure à 1000 nm, voire inférieure à 500 nm. Avantageusement, l'efficacité de ces particules dans la pièce frittée en est améliorée.Preferably, the median size of the particles of the third particulate fraction is less than 1000 nm, or even less than 500 nm. Advantageously, the efficiency of these particles in the sintered part is improved thereby.

De préférence, la troisième fraction particulaire est constituée

  • de particules en un oxyde de structure pérovskite, optionnellement remplacé(s), totalement ou en partie, par une quantité équivalente de précurseur(s) de ces oxydes, et/ou de particules en un mélange de pérovskites et/ou de précurseur(s) de pérovskite, et/ou
  • de particules en un oxyde de structure spinelle et/ou de particules en un mélange de spinelles et/ou
  • de particules en un oxyde de structure rutile FO2, l'élément F étant choisi dans le groupe GF(1) formé par les mélanges d'étain et de vanadium, les mélanges de titane et de chrome et de niobium, les mélanges de titane et de chrome et de tungstène, les mélanges de titane et de niobium et de manganèse, les mélanges d'étain et de chrome, et/ou de particules en un mélange de ces composés, et/ou
  • de particules en un oxyde de structure hématite E2O3, l'élément E étant choisi dans le groupe GE(1) formé par les mélanges d'aluminium et de chrome, les mélanges d'aluminium et de manganèse, et/ou de particules en un mélange de ces composés, et/ou
  • de particules en un orthosilicate de zirconium et de praséodyme (Zr,Pr)SiO4 et/ou de particules en un orthosilicate de zirconium et de vanadium (Zr,V)SiO4, et/ou de particules en un orthosilicate de zirconium dans lequel se trouve de l'oxyde de fer en inclusion.
Preferably, the third particulate fraction consists of
  • of particles in an oxide of perovskite structure, optionally replaced, totally or in part, by an equivalent quantity of precursor (s) of these oxides, and / or of particles in a mixture of perovskites and / or precursor (s) ) perovskite, and / or
  • particles of an oxide of spinel structure and / or particles of a mixture of spinels and / or
  • of particles in an oxide of rutile structure FO 2 , the element F being chosen from the group G F (1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and / or particles in a mixture of these compounds, and / or
  • of particles in an oxide of hematite structure E 2 O 3 , the element E being chosen from the group G E (1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and / or particles in a mixture of these compounds, and / or
  • particles of zirconium and praseodymium orthosilicate (Zr, Pr) SiO 4 and / or particles of zirconium and vanadium (Zr, V) orthosilicate SiO 4 , and / or particles of zirconium orthosilicate in which iron oxide is included.

Avantageusement, la pièce frittée présente une couleur particulièrement décorative.Advantageously, the sintered part has a particularly decorative color.

De préférence, la troisième fraction particulaire est constituée :

  • de particules en un oxyde de structure pérovskite ABO3 pouvant comporter une, voire plusieurs, des caractéristiques optionnelles suivantes :
    • l'élément A au site A de la structure pérovskite est choisi dans le groupe GA(1) formé par le calcium Ca, le strontium Sr, le baryum Ba, le lanthane La, le praséodyme Pr, le néodyme Nd, le bismuth Bi, le cérium Ce, et leurs mélanges ;
    • De préférence, A est choisi dans le groupe GA(2) formé par le lanthane, le praséodyme, le néodyme, le bismuth, le cérium, et leurs mélanges ;
    • De préférence, A est choisi dans le groupe GA(3) formé par le lanthane ;
    • L'élément B au site B de la structure pérovskite est choisi dans le groupe GB(1) formé par les mélanges de cobalt et de fer, les mélanges de cobalt et de manganèse, les mélanges de cobalt et de chrome, les mélanges de cobalt et de nickel, les mélanges de chrome et de manganèse, les mélanges de chrome et de nickel, les mélanges de chrome et de fer, les mélanges de manganèse et de fer, les mélanges de manganèse et de nickel, les mélanges de nickel et de fer, les mélanges de cobalt et de titane, les mélanges de cobalt et de cuivre, le cobalt, les mélanges de chrome et de titane, les mélanges de chrome et de cuivre, les mélanges de nickel et de titane, le chrome, le nickel, le cuivre, le fer, les mélanges de nickel et de cuivre, et leurs mélanges ;
    • De préférence, l'élément B est choisi dans le groupe GB(2) formé par les mélanges de cobalt et de fer, les mélanges de cobalt et de manganèse, les mélanges de chrome et de manganèse, les mélanges de chrome et de fer, les mélanges de cobalt et de chrome et de fer, les mélanges de cobalt et de chrome et de fer et de manganèse, les mélanges de cobalt et de fer et de manganèse, les mélanges de cobalt et de chrome, les mélanges de cobalt et de nickel, les mélanges de cobalt et de titane, les mélanges de cobalt et de cuivre, le cobalt, les mélanges de chrome et de nickel, les mélanges de chrome et de titane, les mélanges de chrome et de cuivre, les mélanges de chrome et de fer et de manganèse, les mélanges de nickel et de fer, les mélanges de nickel et de manganèse, les mélanges de nickel et de cobalt, les mélanges de nickel et de titane, les mélanges de nickel et de cobalt et de chrome, les mélanges de nickel et de cobalt et de chrome et de manganèse, les mélanges de nickel et de chrome et de manganèse, le chrome, le nickel, le cuivre ;
    et/ou
  • de particules en un oxyde de structure spinelle CD2O4 ou D(C,D)O4 pouvant comporter une, voire plusieurs, des caractéristiques optionnelles suivantes :
    • l'élément C de la structure spinelle est choisi dans le groupe GC(1) formé par le nickel Ni dans une fraction molaire comprise entre 0 et 0,2 ou dans une fraction molaire égale à 1, le cuivre Cu dans une fraction molaire comprise entre 0 et 0,2, le fer Fe dans une fraction molaire comprise entre 0,2 et 0,6 ou dans une fraction molaire égale à 1, le zinc Zn dans une fraction molaire comprise entre 0 et 0,2 ou dans une fraction molaire égale à 1, le manganèse Mn dans une fraction molaire comprise entre 0 et 0,4, le cobalt Co dans une fraction molaire comprise entre 0 et 0,4 ou dans une fraction molaire comprise entre 0,4 et 1, l'étain Sn dans une fraction molaire comprise entre 0 et 0,2 ou dans une fraction molaire égale à 1, les mélanges de zinc et de fer, les mélanges de fer et de manganèse, les mélanges de zinc et de manganèse, les mélanges de cobalt et de zinc, et leurs mélanges ;
    • De préférence, l'élément C est choisi dans le groupe GC(2) formé par le nickel Ni dans une fraction molaire comprise entre 0 et 0,2 ou dans une fraction molaire égale à 1, le fer Fe dans une fraction molaire comprise entre 0,2 et 0,6 ou dans une fraction molaire égale à 1, le zinc Zn dans une fraction molaire égale à 1, le manganèse Mn dans une fraction molaire comprise entre 0 et 0,4, le cobalt Co dans une fraction molaire comprise entre 0 et 0,4 ou dans une fraction molaire comprise entre 0,4 et 1, l'étain Sn dans une fraction molaire comprise entre 0 et 0,2 ou dans une fraction molaire égale à 1, les mélanges de zinc et de fer, les mélanges de fer et de manganèse, les mélanges de zinc et de manganèse, les mélanges de cobalt et de zinc, et leurs mélanges ;
    • L'élément D de la structure spinelle est choisi dans le groupe GD(1) formé par le manganèse Mn dans une fraction molaire comprise entre 0 et 0,4, le fer Fe dans une fraction molaire comprise entre 0 et 0,6 ou dans une fraction molaire égale à 1 (c'est-à-dire que D est l'élément Fe), le chrome Cr dans une fraction molaire comprise entre 0,2 et 0,6 et dans une fraction molaire égale à 1, l'aluminium Al dans une fraction molaire comprise entre 0 et 1, le titane Ti dans une fraction molaire comprise entre 0 et 1, le cobalt dans une fraction molaire égale à 1 sauf si l'élément C est le cobalt, les mélanges de fer et de chrome, les mélanges de fer et de chrome et de manganèse, les mélanges de manganèse et de chrome, les mélanges d'aluminium et de chrome, et leurs mélanges ;
    • De préférence, l'élément D est choisi dans le groupe GD(2) formé par le manganèse Mn dans une fraction molaire comprise entre 0 et 0,4, le fer Fe dans une fraction molaire comprise entre 0,2 et 0,6 et dans une fraction molaire égale à 1, le chrome Cr dans une fraction molaire comprise entre 0 et 0,6 et dans une fraction molaire égale à 1, l'aluminium Al dans une fraction molaire égale à 1, le titane Ti dans une fraction molaire égale à 1, le cobalt dans une fraction molaire égale à 1 sauf si l'élément C est le cobalt, les mélanges de fer et de chrome, les mélanges de fer et de chrome et de manganèse, les mélanges de manganèse et de chrome, les mélanges d'aluminium et de chrome, et leurs mélanges ;
    et/ou
  • de particules en un oxyde de structure hématite E2O3, l'élément E étant choisi dans le groupe GE(1) formé par les mélanges d'aluminium et de chrome, les mélanges d'aluminium et de manganèse, et leurs mélanges ;
    et/ou
  • de particules en un oxyde de structure rutile FO2, l'élément F étant choisi dans le groupe GF(1) formé par les mélanges d'étain et de vanadium, les mélanges de titane et de chrome et de niobium, les mélanges de titane et de chrome et de tungstène, les mélanges de titane et de niobium et de manganèse, les mélanges d'étain et de chrome, et leurs mélanges ;
    et/ou
  • de particules en un orthosilicate choisis dans le groupe des orthosilicates de zirconium et de praséodyme (Zr,Pr)SiO4, des orthosilicates de zirconium et de vanadium (Zr,V)SiO4, des orthosilicates de zirconium dans lesquels se trouve de l'oxyde de fer en inclusion, et leurs mélanges.
Preferably, the third particulate fraction consists of:
  • of particles made of an oxide of perovskite ABO 3 structure which may include one, or even more, of the following optional characteristics:
    • element A at site A of the perovskite structure is chosen from group G A (1) formed by calcium Ca, strontium Sr, barium Ba, lanthanum La, praseodymium Pr, neodymium Nd, bismuth Bi , cerium Ce, and mixtures thereof;
    • Preferably, A is chosen from the group G A (2) formed by lanthanum, praseodymium, neodymium, bismuth, cerium, and mixtures thereof;
    • Preferably, A is chosen from the group G A (3) formed by lanthanum;
    • Element B at site B of the perovskite structure is chosen from group G B (1) formed by mixtures of cobalt and iron, mixtures of cobalt and manganese, mixtures of cobalt and chromium, mixtures of cobalt and nickel, mixtures of chromium and manganese, mixtures of chromium and nickel, mixtures of chromium and iron, mixtures of manganese and iron, mixtures of manganese and nickel, mixtures of nickel and of iron, mixtures of cobalt and titanium, mixtures of cobalt and copper, cobalt, mixtures of chromium and titanium, mixtures of chromium and copper, mixtures of nickel and titanium, chromium, nickel, copper, iron, mixtures of nickel and copper, and mixtures thereof;
    • Preferably, element B is chosen from group G B (2) formed by mixtures of cobalt and iron, mixtures of cobalt and manganese, mixtures of chromium and manganese, mixtures of chromium and iron , mixtures of cobalt and chromium and iron, mixtures of cobalt and chromium and iron and manganese, mixtures of cobalt and iron and manganese, mixtures of cobalt and chromium, mixtures of cobalt and of nickel, mixtures of cobalt and titanium, mixtures of cobalt and copper, cobalt, mixtures of chromium and nickel, mixtures of chromium and titanium, mixtures of chromium and copper, mixtures of chromium and iron and manganese, mixtures of nickel and iron, mixtures of nickel and manganese, mixtures of nickel and cobalt, mixtures of nickel and titanium, mixtures of nickel and cobalt and chromium, mixtures of nickel and cobalt and chromium and manganese, mixtures of nickel and chromium e t manganese, chromium, nickel, copper;
    and or
  • particles made of an oxide of spinel structure CD 2 O 4 or D (C, D) O 4 which may have one, or even more, of the following optional characteristics:
    • the element C of the spinel structure is chosen from the group G C (1) formed by nickel Ni in a molar fraction between 0 and 0.2 or in a molar fraction equal to 1, copper Cu in a molar fraction between 0 and 0.2, iron Fe in a mole fraction between 0.2 and 0.6 or in a mole fraction equal to 1, zinc Zn in a mole fraction between 0 and 0.2 or in a molar fraction equal to 1, manganese Mn in a molar fraction between 0 and 0.4, cobalt Co in a molar fraction between 0 and 0.4 or in a molar fraction between 0.4 and 1, the tin Sn in a mole fraction between 0 and 0.2 or in a mole fraction equal to 1, mixtures of zinc and iron, mixtures of iron and manganese, mixtures of zinc and manganese, mixtures of cobalt and zinc, and mixtures thereof;
    • Preferably, the element C is chosen from the group G C (2) formed by nickel Ni in a molar fraction of between 0 and 0.2 or in a molar fraction equal to 1, iron Fe in a molar fraction of between 0.2 and 0.6 or in a mole fraction equal to 1, zinc Zn in a mole fraction equal to 1, manganese Mn in a mole fraction between 0 and 0.4, cobalt Co in a mole fraction between 0 and 0.4 or in a molar fraction between 0.4 and 1, tin Sn in a molar fraction between 0 and 0.2 or in a molar fraction equal to 1, mixtures of zinc and iron, mixtures of iron and manganese, mixtures of zinc and manganese, mixtures of cobalt and zinc, and mixtures thereof;
    • Element D of the spinel structure is chosen from group G D (1) formed by manganese Mn in a molar fraction between 0 and 0.4, iron Fe in a molar fraction between 0 and 0.6 or in a molar fraction equal to 1 (that is to say that D is the element Fe), chromium Cr in a molar fraction between 0.2 and 0.6 and in a molar fraction equal to 1.1 'aluminum Al in a molar fraction between 0 and 1, titanium Ti in a molar fraction between 0 and 1, cobalt in a molar fraction equal to 1 except if the element C is cobalt, mixtures of iron and chromium, mixtures of iron and chromium and manganese, mixtures of manganese and chromium, mixtures of aluminum and chromium, and mixtures thereof;
    • Preferably, element D is chosen from group G D (2) formed by manganese Mn in a molar fraction between 0 and 0.4, iron Fe in a molar fraction between 0.2 and 0.6 and in a molar fraction equal to 1, chromium Cr in a molar fraction between 0 and 0.6 and in a molar fraction equal to 1, aluminum Al in a molar fraction equal to 1, titanium Ti in a fraction molar equal to 1, cobalt in a molar fraction equal to 1 except if the element C is cobalt, mixtures of iron and chromium, mixtures of iron and chromium and manganese, mixtures of manganese and chromium , mixtures of aluminum and chromium, and mixtures thereof;
    and or
  • of particles in an oxide of hematite structure E 2 O 3 , the element E being chosen from the group G E (1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and mixtures thereof ;
    and or
  • of particles in an oxide of rutile structure FO 2 , the element F being chosen from the group G F (1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and mixtures thereof;
    and or
  • of particles in an orthosilicate selected from the group of zirconium and praseodymium orthosilicates (Zr, Pr) SiO 4 , zirconium and vanadium (Zr, V) SiO 4 orthosilicates, zirconium orthosilicates in which is present. inclusion iron oxide, and mixtures thereof.

Les particules de la troisième fraction particulaire peuvent être fabriquées, de manière connue, par différents procédés, comme la fusion, la synthèse en phase solide, la pyrolyse de sels, la précipitation d'hydroxydes et leur calcination, ou la synthèse par voie sol-gel.The particles of the third particulate fraction can be produced, in a known manner, by various methods, such as fusion, solid phase synthesis, pyrolysis of salts, precipitation of hydroxides and their calcination, or synthesis by the sol- route. gel.

Quatrième fraction particulaireFourth particulate fraction

La quatrième fraction particulaire représente de préférence moins de 1,5%, de préférence moins de 1 %, de préférence encore moins de 0,5 %, de préférence moins de 0,2%, de préférence moins de 0,1 %, en pourcentage massique. De préférence, la quatrième fraction particulaire est constituée des impuretés.The fourth particulate fraction preferably represents less than 1.5%, preferably less than 1%, more preferably less than 0.5%, preferably less than 0.2%, preferably less than 0.1%, in mass percentage. Preferably, the fourth particulate fraction consists of the impurities.

Dans un mode de réalisation, les oxydes représentent plus de 98 %, plus de 99 %, voire sensiblement 100 % de la masse du mélange particulaire.In one embodiment, the oxides represent more than 98%, more than 99%, or even substantially 100% of the mass of the particulate mixture.

Le mélange particulaire peut avoir subi une étape supplémentaire, par exemple une étape d'atomisation avant de passer à l'étape b), notamment pour en améliorer l'homogénéité chimique.The particulate mixture may have undergone an additional step, for example an atomization step before going on to step b), in particular to improve its chemical homogeneity.

Un mélange particulaire selon l'invention "prêt-à-l'emploi" peut être mis en oeuvre. En variante, toutes les matières premières particulaires d'oxydes peuvent être dosées au moment de la préparation de la charge de départ.A "ready-to-use" particulate mixture according to the invention can be used. Alternatively, all particulate oxide raw materials can be metered at the time of preparing the feedstock.

Outre le mélange particulaire, la charge de départ peut comporter, classiquement, un ou plusieurs défloculant(s) et/ou liant(s) et/ou lubrifiant(s), de préférence temporaires, utilisés classiquement dans les procédés de mise en forme pour la fabrication de préformes à fritter, par exemple une résine acrylique, du polyéthylène glycol (PEG), ou de l'alcool polyvinylique (APV).In addition to the particulate mixture, the starting charge may conventionally comprise one or more deflocculant (s) and / or binder (s) and / or lubricant (s), preferably temporary, conventionally used in shaping processes for the manufacture of preforms to be sintered, for example an acrylic resin, polyethylene glycol (PEG), or polyvinyl alcohol (PVA).

Enfin, la charge de départ peut comporter, classiquement, un solvant, de préférence un solvant aqueux, par exemple de l'eau, dont la quantité est adaptée au procédé utilisé pour la mise en forme de la charge de départ.Finally, the starting charge may conventionally comprise a solvent, preferably an aqueous solvent, for example water, the amount of which is suitable for the process used for shaping the starting charge.

De préférence, le mélange particulaire représente plus de 90%, de préférence plus de 95%, voire plus de 99% de la masse de la charge de départ, le complément à 100% étant constitué par les défloculant(s), liant(s), lubrifiant(s), le solvant et par les impuretés. Les impuretés représentent de préférence moins de 2% de la charge de départ.Preferably, the particulate mixture represents more than 90%, preferably more than 95%, or even more than 99% of the mass of the starting charge, the remainder to 100% being constituted by the deflocculant (s), binder (s) ), lubricant (s), solvent and by impurities. The impurities preferably represent less than 2% of the starting charge.

A l'étape b), la charge de départ est mise en forme, par exemple par pressage uniaxial afin de former des préformes aux dimensions désirées. In step b), the starting charge is shaped, for example by uniaxial pressing in order to form preforms of the desired dimensions.

D'autres techniques telles que le coulage en barbotine, le coulage en bande, le pressage isostatique, le coulage d'un gel, le moulage par injection ou une combinaison de ces techniques peuvent être utilisées.Other techniques such as slip casting, strip casting, isostatic pressing, gel casting, injection molding or a combination of these techniques can be used.

Avant l'étape c), la préforme peut optionnellement subir une étape de séchage et/ou une étape d'usinage et/ou une étape de déliantage et/ou une étape de pré-frittage. L'étape de pré-frittage permet avantageusement des usinages plus précis et également d'atteindre des densités importantes lorsque le frittage s'effectue par HIP.Before step c), the preform can optionally undergo a drying step and / or a machining step and / or a debinding step and / or a pre-sintering step. The pre-sintering step advantageously allows more precise machining and also to achieve high densities when the sintering is carried out by HIP.

A l'étape c), la préforme est frittée, de préférence sous air, à pression atmosphérique ou sous pression (pressage à chaud (« Hot Pressing » en anglais) ou pressage isostatique à chaud (« Hot Isostatic Pressing » en anglais, ou HIP)) et à une température comprise entre 1200°C et 1600°C, de préférence entre 1400°C et 1500°C, excepté lorsque la deuxième fraction particulaire contient, voire est constituée de particules en un orthosilicate, notamment Mg3Al2(SiO4)3, Ca3Al2(SiO4)3, CaTiSiO5, et/ou de particules en un sorosilicate, notamment Ca2Al3(SiO4)(Si2O7)OOH, et/ou de particules en un inosilicate, notamment (Ca, Al, Mg)7Si8O22(OH)2, et/ou de particules en un tectosilicate, notamment les feldspaths, et/ou de particules en une argile, notamment une vermiculite, auquel cas la température est de préférence comprise entre 1250°C et 1350°C. Avantageusement, un frittage dans ce domaine de température favorise le développement de propriétés mécaniques élevées. Par exemple, le frittage peut être effectué à 1300°C pour les préformes incorporant des particules silicatées (issues de la deuxième fraction particulaire) ou à 1450°C pour les préformes incorporant des particules en un composé alumineux. In step c), the preform is sintered, preferably in air, at atmospheric pressure or under pressure (“Hot Pressing” in English) or hot isostatic pressing (“Hot Isostatic Pressing” in English, or HIP)) and at a temperature between 1200 ° C and 1600 ° C, preferably between 1400 ° C and 1500 ° C, except when the second particulate fraction contains, or even consists of particles of an orthosilicate, in particular Mg 3 Al 2 (SiO 4 ) 3 , Ca 3 Al 2 (SiO 4 ) 3 , CaTiSiO 5 , and / or particles in a sorosilicate, in particular Ca 2 Al 3 (SiO 4 ) (Si 2 O 7 ) OOH, and / or particles in an inosilicate, in particular (Ca, Al, Mg) 7 Si 8 O 22 (OH) 2 , and / or in particles in a tectosilicate, in particular feldspars, and / or in particles in a clay, in particular a vermiculite, in which case the temperature is preferably between 1250 ° C and 1350 ° C. Advantageously, a Sintering in this temperature range promotes the development of high mechanical properties. For example, the sintering can be carried out at 1300 ° C. for the preforms incorporating silicate particles (obtained from the second particulate fraction) or at 1450 ° C. for the preforms incorporating particles made of an aluminous compound.

Le temps de maintien à cette température est de préférence compris entre 2 et 8 heures. La vitesse de montée est classiquement comprise entre 10 et 100°C/h. La vitesse de descente peut être libre. Si des défloculant(s) et/ou liant(s) et/ou lubrifiants sont utilisés, le cycle de frittage comprend de préférence un palier de 1 à 4 heures à une température comprise entre 400°C et 800°C afin de favoriser l'élimination desdits produits.The holding time at this temperature is preferably between 2 and 8 hours. The rate of rise is conventionally between 10 and 100 ° C./h. The descent speed can be free. If deflocculant (s) and / or binder (s) and / or lubricants are used, the sintering cycle preferably comprises a plateau of 1 to 4 hours at a temperature between 400 ° C and 800 ° C in order to promote the disposal of said products.

Si la deuxième fraction particulaire contient, voire est constituée de particules de phase(s) SiAlON, en particulier de particules en Si3N4, et/ou de particules en AlN, et/ou de particules en Si2ON2, et/ou de particules en un AlON, l'atmosphère de frittage est de préférence inerte, par exemple sous argon et/ou azote, ou faiblement réductrice, comme par exemple sous un mélange argon et/ou azote, et d'hydrogène, le mélange comportant de préférence moins de 10 vol% d'hydrogène.If the second particulate fraction contains, or even consists of particles of SiAlON phase (s), in particular particles of Si 3 N 4 , and / or particles of AlN, and / or particles of Si 2 ON 2 , and / or or particles in an AlON, the sintering atmosphere is preferably inert, for example under argon and / or nitrogen, or weakly reducing, such as for example under a mixture of argon and / or nitrogen, and hydrogen, the mixture comprising preferably less than 10 vol% hydrogen.

Les paramètres du procédé de fabrication, en particulier la granulométrie des particules de la charge de départ, l'additif de frittage, la compression pour fabriquer la préforme et la température de frittage peuvent être adaptés, de manière connue, pour adapter la densité de la pièce frittée à l'application visée.The parameters of the manufacturing process, in particular the particle size distribution of the starting charge particles, the sintering additive, the compression to manufacture the preform and the sintering temperature can be adapted, in known manner, to adapt the density of the material. sintered part for the intended application.

La pièce frittée obtenue en fin de l'étape c) peut être usinée et/ou subir un traitement de surface, comme par exemple un polissage (étape d)), et/ou un sablage, et/ou un traitement chimique (par exemple hydrophobique), et/ou un traitement redox, selon toute technique connue de l'homme du métier.The sintered part obtained at the end of step c) can be machined and / or undergo a surface treatment, such as for example polishing ( step d) ), and / or sandblasting, and / or chemical treatment (for example hydrophobic), and / or a redox treatment, according to any technique known to those skilled in the art.

A l'étape f), la pièce frittée est intégrée comme élément structural et/ou décoratif dans un dispositif selon l'invention de manière à en constituer un capot.In step f), the sintered part is integrated as a structural and / or decorative element in a device according to the invention so as to constitute a cover thereof.

Dispositif de communicationCommunication device

Le dispositif de communication comporte un émetteur et/ou un récepteur d'ondes hertziennes de fréquences comprises entre 800MHz à 3GHz et un capot.The communication device comprises a transmitter and / or a receiver of radio waves of frequencies between 800MHz to 3GHz and a cover.

L'émetteur est un système électronique adapté pour traiter un signal qu'il reçoit, par exemple un signal sonore tel qu'une voix, et émettre en conséquence des ondes hertziennes de fréquences comprises entre 800MHz à 3GHz.The transmitter is an electronic system suitable for processing a signal that it receives, for example a sound signal such as a voice, and consequently emitting radio waves of frequencies between 800 MHz to 3GHz.

Le récepteur est un système électronique adapté pour recevoir des ondes hertziennes de fréquences comprises entre 800MHz à 3GHz, puis les traiter, par exemple pour les transformer en un signal, par exemple sonore.The receiver is an electronic system suitable for receiving Hertzian waves of frequencies between 800MHz to 3GHz, then processing them, for example to transform them into a signal, for example sound.

Par exemple, dans le cas d'un téléphone, les ondes reçues sont traitées par le récepteur pour être transformées en un signal sonore que l'utilisateur peut entendre et la voix de l'utilisateur est traitée par l'émetteur pour être transformée en ondes, ces ondes étant émises à destination du réseau de télécommunication.For example, in the case of a telephone, the received waves are processed by the receiver to be transformed into a sound signal that the user can hear and the user's voice is processed by the transmitter to be transformed into waves. , these waves being transmitted to the telecommunications network.

L'émetteur et/ou le récepteur peuvent être configurés pour émettre et/ou recevoir, respectivement, des ondes ultra-courtes (FM), des ondes radiofréquences (RF), des ondes conformes au standard Bluetooth™, au standard « Global System for Mobile Communications » (GSM), au standard « Digital Communication System » (DCS) et/ou au standard « Personal Communications Service » (PCS).The transmitter and / or the receiver can be configured to transmit and / or receive, respectively, ultra-short waves (FM), radiofrequency waves (RF), waves conforming to the Bluetooth ™ standard, to the “Global System for Mobile Communications ”(GSM), to the“ Digital Communication System ”(DCS) standard and / or to the“ Personal Communications Service ”(PCS) standard.

L'émetteur et/ou le récepteur peuvent être configurés pour émettre et/ou recevoir, respectivement, des ondes de fréquence supérieure à 30 MHz, voire supérieure à 300 MHz et/ou inférieures à 20 GHz, voire inférieure à 3 GHz.The transmitter and / or the receiver can be configured to transmit and / or receive, respectively, waves of frequency greater than 30 MHz, or even greater than 300 MHz and / or less than 20 GHz, or even less than 3 GHz.

Le dispositif de communication n'est pas limité et peut notamment être un téléphone, un appareil photo, une caméra, un ordinateur, une tablette numérique, un boitier numérique pour téléviseur ou pour ordinateur, un modem, un décodeur, un baladeur radio, un récepteur ou un émetteur WiFi. Le dispositif de communication peut être portable. Il peut présenter une masse inférieure à 1 kg, de préférence inférieure à 500 g.The communication device is not limited and can in particular be a telephone, a camera, a camera, a computer, a digital tablet, a digital box for a television or a computer, a modem, a decoder, a portable radio, a WiFi receiver or transmitter. The communication device can be portable. It may have a mass of less than 1 kg, preferably less than 500 g.

Dans un mode de réalisation, le capot est totalement exposé à l'environnement extérieur. Il peut être apparent sans démontage, même partiel du dispositif.In one embodiment, the cover is completely exposed to the external environment. It may be apparent without even partial disassembly of the device.

Le capot peut être fixé, de manière amovible ou non sur un support du dispositif. Il peut en particulier être collé, clipsé, cousu, inséré en force ou cofritté avec son support.The cover can be fixed, removably or not, on a support of the device. It can in particular be glued, clipped, sewn, force-inserted or co-sintered with its support.

Dans un mode de réalisation, le capot définit toute la surface extérieure du dispositif, c'est-à-dire la surface du dispositif exposée à l'environnement extérieur.In one embodiment, the cover defines the entire exterior surface of the device, that is to say the surface of the device exposed to the exterior environment.

ExemplesExamples

Les analyses chimiques ont été réalisées par fluorescence X en ce qui concerne les constituants dont la teneur est supérieure à 0,5 %. La teneur des constituants présents en une quantité inférieure à 0,5 % a été déterminée par AES-ICP (« Atomic Emission Spectoscopy-Inductively Coupled Plasma » en anglais).The chemical analyzes were carried out by X-ray fluorescence for the constituents with a content greater than 0.5%. The content of the constituents present in an amount of less than 0.5% was determined by AES-ICP (“Atomic Emission Spectoscopy-Inductively Coupled Plasma”).

L'aire spécifique a été mesurée par adsorption d'azote à 77 K et calculée par la méthode BET à 1 point, les échantillons étant prétraités à 300°C sous flux d'azote pendant 2 heures avant analyse.The specific area was measured by adsorption of nitrogen at 77 K and calculated by the 1-point BET method, the samples being pretreated at 300 ° C. under a flow of nitrogen for 2 hours before analysis.

Les distributions granulométriques ont été déterminées par sédigraphie, au moyen d'un sédigraphe Sedigraph 5100 de la société Micromeritics®, après avoir dispersé sous ultrasons une suspension des poudres à caractériser en présence de métaphosphate de sodium.The particle size distributions were determined by sedigraphy, using a Sedigraph 5100 sedigraph from the company Micromeritics®, after having dispersed under ultrasound a suspension of the powders to be characterized in the presence of sodium metaphosphate.

Les phases cristallines dans une poudre ou dans une pièce frittée ont été déterminées par diffraction X sur un appareil Brucker D5000 (avec un réglage pour 2θ de 5° à 80°, avec un pas de 0,02° et 1 seconde par pas). Préalablement à la mesure, la pièce frittée a été polie, la dernière étape de polissage ayant été réalisée avec une préparation diamantée Mecaprex LD32-E 1µm commercialisée par la société PRESI, puis traitée thermiquement à 1000°C pendant 1 heure et refroidie à température ambiante.The crystalline phases in a powder or in a sintered part were determined by X-ray diffraction on a Brucker D5000 apparatus (with an adjustment for 2θ from 5 ° to 80 °, with a step of 0.02 ° and 1 second per step). Prior to the measurement, the sintered part was polished, the last polishing step having been carried out with a 1µm Mecaprex LD32-E diamond preparation marketed by the company PRESI, then heat treated at 1000 ° C for 1 hour and cooled to room temperature .

Une analyse EDS (« Energy Dispersive Spectroscopy » en anglais), une analyse par diffraction X, et/ou une cartographie élémentaire par microsonde peuvent également être réalisées pour identifier la nature des constituants de la pièce frittée issus de la troisième fraction particulaire. Alternativement, il est possible de faire subir au mélange particulaire selon l'invention, de préférence après mise en forme dudit mélange particulaire, un traitement thermique de façon à mettre en évidence une coloration après ledit traitement thermique, confirmant la présence d'un pigment.An EDS (“Energy Dispersive Spectroscopy”) analysis, an X-ray diffraction analysis, and / or an elemental mapping by microprobe can also be carried out to identify the nature of the constituents of the sintered part resulting from the third particulate fraction. Alternatively, it is possible to subject the particulate mixture according to the invention, preferably after shaping of said particulate mixture, a heat treatment so as to demonstrate a coloration after said heat treatment, confirming the presence of a pigment.

La taille moyenne des grains d'une pièce frittée a été mesurée par une méthode de « Mean Linear Intercept », selon la norme ASTM E1382-97. Suivant cette norme, on trace des lignes d'analyse sur des images de ladite pièce frittée, puis, le long de chaque ligne d'analyse, on mesure les longueurs, dites « intercepts », entre deux joints de grains consécutifs coupant ladite ligne d'analyse. On détermine ensuite la longueur moyenne « l' » des intercepts « l ». Pour les tests ci-dessous, les intercepts ont été mesurés sur des images, obtenues par microscopie électronique à balayage, de sections de la pièce frittée, lesdites sections ayant préalablement été polies jusqu'à obtention d'une qualité miroir puis attaquées thermiquement pendant 30 min à une température inférieure de 100°C à la température de frittage, pour révéler les joints de grains. Le grossissement utilisé pour la prise des images a été choisi de façon à visualiser environ 500 grains sur une image. 5 images par pièce frittée ont été réalisées. Les résultats obtenus par cette norme ont été multipliés par un coefficient correcteur égal à 1,56 pour tenir compte de l'aspect tridimensionnel.The average grain size of a sintered part was measured by a “Mean Linear Intercept” method, according to the ASTM E1382-97 standard. According to this standard, analysis lines are drawn on images of said sintered part, then, along each analysis line, the lengths, known as “intercepts”, are measured between two consecutive grain boundaries intersecting said line d. 'to analyse. The average length "l" of the intercepts "l" is then determined. For the tests below, the intercepts were measured on images, obtained by scanning electron microscopy, of sections of the sintered part, said sections having previously been polished until a mirror quality was obtained and then thermally etched for 30 min at a temperature 100 ° C below the sintering temperature, to reveal the grain boundaries. The magnification used for taking the images was chosen so as to visualize approximately 500 grains on an image. 5 images per sintered part were taken. The results obtained by this standard were multiplied by a correction coefficient equal to 1.56 to take account of the three-dimensional aspect.

Les mesures de couleur ont été réalisées selon la norme NF ISO 7724 sur des pièces polies dont la dernière étape de polissage a été réalisée avec une préparation diamantée Mecaprex LD32-E 1µm commercialisée par la société PRESI, à l'aide d'un appareil CM-2500d, fabriqué par la société Konica Minolta, avec illuminant D65 (lumière naturelle), observateur à 10°, et réflexion spéculaire exclue.The color measurements were carried out according to standard NF ISO 7724 on polished parts for which the last polishing step was carried out with a Mecaprex LD32-E 1µm diamond preparation marketed by the company PRESI, using a CM device. -2500d, manufactured by the Konica Minolta company, with illuminant D65 (natural light), observer at 10 °, and specular reflection excluded.

La dureté et la ténacité des pièces frittées testées ont été mesurées par indentation Vickers sur des pièces frittées polies, la dernière étape de polissage ayant été réalisée avec une pâte diamantée de 1 µm.The hardness and toughness of the sintered parts tested were measured by Vickers indentation on polished sintered parts, the last polishing step having been carried out with a 1 μm diamond paste.

La résistance en flexion a été mesurée à température ambiante par flexion 3 points sur des barrettes usinées et chanfreinées de dimensions 45 mm x 4 mm x 3 mm.The bending strength was measured at room temperature by 3-point bending on machined and chamfered bars of dimensions 45 mm x 4 mm x 3 mm.

Les propriétés diélectriques des pièces frittées ont été mesurées sur des cylindres de diamètre 25 mm et d'épaisseur 2 mm. La résistivité volumique est mesurée selon la norme ASTM D257. Les pièces sont recouvertes par des feuillets d'aluminium de diamètre 12,7 mm est mis en pression à 0,05 MPa. Une tension de 500 V est appliquée sur l'échantillon, le courant passant est enregistré. La polarité de la tension est alternée toutes les 60 secondes pendant 6 minutes. La valeur de résistivité volumique est une moyenne des 6 mesures. La permittivité diélectrique εr et le coefficient de pertes tan δ sont mesurés selon la norme ASTM D150. Les pièces sont recouvertes par des feuillets d'aluminium de diamètre 25 mm est mis en pression à 0,1 MPa. Une tension alternative de fréquence variable entre 1 Hz et 1 MHz est appliquée sur l'échantillon, le courant passant est enregistré.The dielectric properties of the sintered parts were measured on cylinders with a diameter of 25 mm and a thickness of 2 mm. The volume resistivity is measured according to the ASTM D257 standard. The parts are covered with aluminum sheets with a diameter of 12.7 mm and pressurized to 0.05 MPa. A voltage of 500 V is applied to the sample, the passing current is recorded. The voltage polarity is alternated every 60 seconds for 6 minutes. The volume resistivity value is an average of the 6 measurements. The dielectric permittivity ε r and the loss coefficient tan δ are measured according to the ASTM D150 standard. The parts are covered with aluminum sheets with a diameter of 25 mm and pressurized to 0.1 MPa. An alternating voltage of variable frequency between 1 Hz and 1 MHz is applied to the sample, the passing current is recorded.

Les exemples non limitatifs suivants sont donnés dans le but d'illustrer l'invention.The following nonlimiting examples are given for the purpose of illustrating the invention.

L'exemple 1, hors invention, est réalisé à partir d'un mélange particulaire consistant en une poudre d'alumine dont les principales caractéristiques figurent dans le tableau 1 suivant : Tableau 1 Poudre d'alumine Al2O3 (% massique) Complément à 100% SiO2 (ppm) 100 Na2O (ppm) 140 CaO (ppm) 70 Fe2O3 (ppm) 80 MgO (ppm) <20 TiO2 (ppm) <20 Aire spécifique (m2/g) 13 D10 (µm) 0,2 D50 (µm) 0,6 D90 (µm) 1,5 Example 1, outside the invention, is produced from a particulate mixture consisting of an alumina powder, the main characteristics of which appear in Table 1 below: Table 1 Alumina powder Al 2 O 3 (% by mass) 100% supplement SiO 2 (ppm) 100 Na 2 O (ppm) 140 CaO (ppm) 70 Fe 2 O 3 (ppm) 80 MgO (ppm) <20 TiO 2 (ppm) <20 Specific area (m 2 / g) 13 D 10 (µm) 0.2 D 50 (µm) 0.6 D 90 (µm) 1.5

2% de polyéthylène glycol PEG 4000 et 45% d'eau permutée sont ajoutés au mélange particulaire de manière à former une charge de départ. La charge de départ est dispersée dans un mélangeur pendant 30 minutes puis séchée par atomisation. La poudre ainsi obtenue est tamisée à travers un tamis de maille égale à 250 µm.2% polyethylene glycol PEG 4000 and 45% deionized water are added to the particulate mixture so as to form a starting charge. The starting charge is dispersed in a mixer for 30 minutes and then spray dried. The powder thus obtained is sieved through a sieve with a mesh size of 250 μm.

La charge de départ est mise en forme par pressage uniaxial à une pression de 100 MPa. Les préformes obtenues se présentent sous la forme de pastilles de 32 mm de diamètre et de 5 mm d'épaisseur.The starting charge is shaped by uniaxial pressing at a pressure of 100 MPa. The preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.

Les préformes sont ensuite séchées à 110°C pendant 12 heures.The preforms are then dried at 110 ° C. for 12 hours.

Les préformes sont frittées selon le cycle suivant :

  • montée en température à 500°C à 100°C/h,
  • maintien à 500°C pendant 2 heures,
  • montée en température jusqu'à 1450°C, à 100°C/h,
  • maintien à 1450°C pendant 2 heures,
  • descente en température par refroidissement naturel.
The preforms are sintered according to the following cycle:
  • temperature rise to 500 ° C to 100 ° C / h,
  • hold at 500 ° C for 2 hours,
  • temperature rise up to 1450 ° C, at 100 ° C / h,
  • hold at 1450 ° C for 2 hours,
  • temperature drop by natural cooling.

Le tableau 3 résume les propriétés des pièces frittées obtenues.Table 3 summarizes the properties of the sintered parts obtained.

L'exemple 2, hors invention, est réalisé à partir d'un mélange particulaire consistant en une poudre de zircone dont les principales caractéristiques figurent dans le tableau 2 suivant : Tableau 2 Poudre de zircone yttriée ZrO2 (% massique) Complément à 100% Y2O3 (% massique) 5,38 Al2O3 (ppm) 2500 SiO2 (ppm) 100 Na2O (ppm) 140 CaO (ppm) 70 Fe2O3 (ppm) 80 MgO (ppm) <20 TiO2 (ppm) <20 Aire spécifique (m2/g) 13 d10 (µm) 0,2 d50 (µm) 0,6 d90 (µm) 1,5 Example 2, outside the invention, is produced from a particulate mixture consisting of a zirconia powder, the main characteristics of which appear in Table 2 below: Table 2 Yttria zirconia powder ZrO 2 (% by mass) 100% supplement Y 2 O 3 (% by mass) 5.38 Al 2 O 3 (ppm) 2500 SiO 2 (ppm) 100 Na 2 O (ppm) 140 CaO (ppm) 70 Fe 2 O 3 (ppm) 80 MgO (ppm) <20 TiO 2 (ppm) <20 Specific area (m 2 / g) 13 d 10 (µm) 0.2 d 50 (µm) 0.6 d 90 (µm) 1.5

2% de polyéthylène glycol PEG 4000 et 45% d'eau permutée sont ajoutés au mélange particulaire de manière à former une charge de départ. La charge de départ est dispersée dans un mélangeur pendant 30 minutes puis séchée par atomisation. La poudre ainsi obtenue est tamisée à travers un tamis de maille égale à 250 µm.2% polyethylene glycol PEG 4000 and 45% deionized water are added to the particulate mixture so as to form a starting charge. The starting charge is dispersed in a mixer for 30 minutes and then spray dried. The powder thus obtained is sieved through a sieve with a mesh size of 250 μm.

La charge de départ est mise en forme par pressage uniaxial à une pression de 100 MPa. Les préformes obtenues se présentent sous la forme de pastilles de 32 mm de diamètre et de 5 mm d'épaisseur.The starting charge is shaped by uniaxial pressing at a pressure of 100 MPa. The preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.

Les préformes sont ensuite séchées à 110°C pendant 12 heures.The preforms are then dried at 110 ° C. for 12 hours.

Les préformes sont frittées selon le cycle suivant :

  • montée en température à 500°C à 100°C/h,
  • maintien à 500°C pendant 2 heures,
  • montée en température jusqu'à 1450°C, à 100°C/h,
  • maintien à 1450°C pendant 2 heures,
  • descente en température par refroidissement naturel.
The preforms are sintered according to the following cycle:
  • temperature rise to 500 ° C to 100 ° C / h,
  • hold at 500 ° C for 2 hours,
  • temperature rise up to 1450 ° C, at 100 ° C / h,
  • hold at 1450 ° C for 2 hours,
  • temperature drop by natural cooling.

Le tableau 3 résume les propriétés des pièces frittées obtenues.Table 3 summarizes the properties of the sintered parts obtained.

Les exemples 3 à 11, selon l'invention, sont réalisés, à partir d'un mélange particulaire obtenu à partir de la poudre de zircone utilisée dans l'exemple 2 et :

  • pour l'exemple 3, d'une poudre de spinelle MgAl2O4, commercialisée par la société Baikowski, présentant une pureté supérieure à 99,9% et une taille médiane égale à 0,3 µm ;
  • pour l'exemple 4, d'une poudre de MgAl12O19, obtenue par traitement thermique de poudre de boehmite AIOOH et d'hydroxyde de magnésium à 1500°C pendant 5h. La poudre obtenue présente une pureté supérieure à 99% et une morphologie en plaquette de diamètre égale à 5 µm ;
  • pour l'exemple 5, d'une poudre de cordiérite Al3Mg2AlSi5O18, obtenue par traitement thermique de poudre de boehmite AlOOH, d'hydroxyde de magnésium et de silice colloïdale Ludox à 1500°C pendant 5h. La poudre est ensuite broyée en voie humide afin d'obtenir une poudre de taille médiane égale à 0,3 µm ;
  • pour l'exemple 6, d'une poudre de forstérite Mg2SiO4, présentant une pureté supérieure à 95 %. La poudre est broyée en voie humide afin d'obtenir une poudre de taille médiane égale à 0,3 µm ;.
  • pour l'exemple 7, d'une poudre de zircon ZrSiO4, commercialisée par la société Moulin des Prés sous la dénomination ZK4, présentant une pureté supérieure à 98 % et une taille médiane égale à 3 µm ;
  • pour l'exemple 8, d'une poudre de mullite 3Al2O3-2SiO2, obtenue par traitement thermique de poudre de boehmite AlOOH et de silice colloïdale Ludox à 1400°C pendant 5h. La poudre est ensuite broyée en voie humide afin d'obtenir une poudre de taille médiane égale à 0,3 µm ;
  • pour l'exemple 9, d'une poudre d'épidote Ca2Al3(SiO4)3OH, présentant une pureté supérieure à 95 %. La poudre est calcinée à 800°C pendant 2h. La poudre est ensuite broyée en voie humide afin d'obtenir une poudre de taille médiane égale à 0,3 µm ;
  • pour l'exemple 10, d'une poudre cordiérite identique à celle utilisée dans l'exemple 5 et comme troisième fraction particulaire une poudre de spinelle CoAl2O4, commercialisée par la société Ferro, présentant une pureté supérieure à 99 %, broyée en voie humide afin d'obtenir une taille médiane égale à 0,3 µm ;
  • pour l'exemple 11, d'une poudre de forstérite identique à celle utilisée dans l'exemple 6 et comme troisième fraction particulaire une poudre d'hématite Fe2O3, commercialisée par la société BASF, présentant une pureté supérieure à 99 % et une taille médiane égale à 0,3 µm.
Examples 3 to 11, according to the invention, are produced from a particulate mixture obtained from the zirconia powder used in Example 2 and:
  • for Example 3, a MgAl 2 O 4 spinel powder, marketed by the company Baikowski, exhibiting a purity greater than 99.9% and a median size equal to 0.3 μm;
  • for example 4, a powder of MgAl 12 O 19 , obtained by heat treatment of powder of boehmite AIOOH and of magnesium hydroxide at 1500 ° C for 5 h. The powder obtained has a purity of greater than 99% and a platelet morphology with a diameter of 5 μm;
  • for example 5, a cordierite powder Al 3 Mg 2 AlSi 5 O 18 , obtained by heat treatment of boehmite powder AlOOH, magnesium hydroxide and Ludox colloidal silica at 1500 ° C for 5 h. The powder is then wet ground in order to obtain a powder with a median size equal to 0.3 μm;
  • for example 6, a powder of forsterite Mg 2 SiO 4 , having a purity greater than 95%. The powder is wet milled in order to obtain a powder with a median size equal to 0.3 μm ;.
  • for example 7, a zircon powder ZrSiO 4 , marketed by the company Moulin des Prés under the name ZK4, exhibiting a purity greater than 98% and a median size equal to 3 μm;
  • for Example 8, a 3Al 2 O 3 -2SiO 2 mullite powder, obtained by heat treatment of AlOOH boehmite powder and Ludox colloidal silica at 1400 ° C for 5 h. The powder is then wet ground in order to obtain a powder with a median size equal to 0.3 μm;
  • for example 9, an epidote powder Ca 2 Al 3 (SiO 4 ) 3 OH, having a purity greater than 95%. The powder is calcined at 800 ° C. for 2 hours. The powder is then wet ground in order to obtain a powder with a median size equal to 0.3 μm;
  • for example 10, a cordierite powder identical to that used in example 5 and as third particulate fraction a CoAl 2 O 4 spinel powder, marketed by the company Ferro, having a purity greater than 99%, ground in wet process in order to obtain a median size equal to 0.3 µm;
  • for example 11, a forsterite powder identical to that used in example 6 and as a third particulate fraction a powder of hematite Fe 2 O 3 , marketed by the company BASF, having a purity greater than 99% and a median size equal to 0.3 μm.

Pour chacun des mélanges particulaires ainsi obtenus, 2% de polyéthylène glycol PEG 4000 et 45% d'eau permutée sont ajoutés de manière à former une charge de départ. La charge de départ est dispersée dans un mélangeur pendant 30 minutes puis séchée par atomisation. La poudre ainsi obtenue est tamisée à travers un tamis de maille égale à 250 µm.For each of the particulate mixtures thus obtained, 2% of polyethylene glycol PEG 4000 and 45% of deionized water are added so as to form a starting charge. The starting charge is dispersed in a mixer for 30 minutes and then spray dried. The powder thus obtained is sieved through a sieve with a mesh size of 250 μm.

La charge de départ est mise en forme par pressage uniaxial à une pression de 100 MPa. Les préformes obtenues se présentent sous la forme de pastilles de 32 mm de diamètre et de 5 mm d'épaisseur.The starting charge is shaped by uniaxial pressing at a pressure of 100 MPa. The preforms obtained are in the form of pellets 32 mm in diameter and 5 mm in thickness.

Les préformes sont ensuite séchées à 110°C pendant 12 heures.The preforms are then dried at 110 ° C. for 12 hours.

Lesdites préformes ont ensuite été frittées selon le cycle suivant :

  • montée en température à 500°C à 100°C/h,
  • maintien à 500°C pendant 2 heures,
  • montée en température jusqu'à une température T, à 100°C/h,
  • maintien à la température T pendant 2 heures,
  • descente en température par refroidissement naturel.
Said preforms were then sintered according to the following cycle:
  • temperature rise to 500 ° C to 100 ° C / h,
  • hold at 500 ° C for 2 hours,
  • temperature rise to a temperature T, at 100 ° C / h,
  • maintenance at temperature T for 2 hours,
  • temperature drop by natural cooling.

Les tableaux 3 et 4 résument les principales caractéristiques du procédé de fabrication et les propriétés des pièces frittées obtenues, respectivement. Tableau 3 Exemple 1 2 3 4 5 6 7 8 9 10 11 Mélange particulaire % poudre d'alumine 100 - - - - - - - - - - % poudre de zircone (première fraction particulaire) - 100 80 80 80 80 80 80 80 76 76 Nature de la deuxième fraction particulaire - - MgAl2O4 MgAl12O19 cordiérite forstérite zircon mullite épidote cordiérite forstérite % de la deuxième fraction particulaire - - 20 20 20 20 20 20 20 20 20 taille médiane de la deuxième fraction particulaire (µm) - - 0,2 5 0,3 0,3 3 0,3 0,3 0,3 0,3 Nature de la troisième fraction particulaire - - - - - - - - - CoAl2O4 Fe2O3 % de la troisième fraction particulaire - - - - - - - - - 4 4 taille médiane de la troisième fraction particulaire (µm) - - - - - - - - - 0,3 0,2 Procédé Procédé Température de frittage T (°C) 1450 1450 1450 1450 1450 1350 1450 1450 1350 1450 1350 Tableau 4 1 2 3 4 5 6 7 8 9 10 11 densité apparente (g/cm3) 3,95 6,05 5,31 5,40 4,75 5,10 5,54 5,12 4,70 4,70 5,11 %ZrO2 (+ HfO2) < 0,01 94,2 75,4 75,4 75,4 75,4 88,8 75,4 75,4 72,3 72,3 %Y2O3 < 0,01 5,38 4,30 4,30 4,30 4,30 4,29 4,29 4,30 4,12 4,10 %Al2O3 > 99,9 0,25 14,1 19,0 7,2 0,20 0,21 14,6 7,1 8,9 0,19 %MgO < 0,002 < 0,002 5,62 1,21 2,76 11,5 0,03 0,02 0,30 2,75 10,9 %SiO2 0,01 0,01 0,01 0,01 10,2 8,54 6,60 5,6 9,6 10,2 8,4 %Autres 0,05 0,05 0,05 0,05 0,10 0,10 0,20 0,10 3,2 1,73 4,1 % de la première phase cristallisée sur la base de la partie cristallisée - 100 80 80 90 95 80 90 98 87 95 % de la deuxième phase cristallisée, sur la base de la partie cristallisée - - 20 20 10 5 20 10 2 10 5 nature de la deuxième phase cristallisée - - MgAl2O4 MgAl12O19 Mg2Al3(Si5Al O18) Mg2SiO4 et MgSiO3 ZrSiO4 3Al2O3.2SiO2 et Al2O3 CaAl2Si2O8, Mg2Al3(Si5Al O18) Mg2SiO4 et MgSiO3 et Fe2O3 présence d'une première phase vitreuse amorphe non non non non Oui Oui non Oui Oui Oui Oui composition de la première phase vitreuse amorphe - - - - 50% SiO2, 35% Al2O3, 15% MgO 47% SiO2, 52,4% MgO, 0,1% Al2O3, 0,5% Y2O3 - 30% SiO2, 69,5% Al2O3, 0,5% Y2O3 50% SiO2, 30% Al2O3, 20% CaO 49,5% SiO2, 35% Al2O3, 15% MgO, 0,5%CoO 46,5% SiO2, 51,4% MgO, 2% Fe2O3, 0,1% Al2O3 Module de rupture (MPa) 350 1200 800 1000 1000 900 900 1000 700 1000 800 Dureté Vickers (Hv) 2100 1350 1400 1100 1100 1000 1100 1000 900 1100 900 Ténacité (MPa·m1/2) 4 9 6 8 7 6 7 7 6 7 6 Résistivité volumique à 20°C (Ω.cm) 4,0.1014 3,0.1012 4,3.1012 3,4.1012 7,5.1012 9,8.1012 8,1.1012 5,9.1012 6,6.1012 2,3.1012 1,2.1012 permittivité diélectrique relative, εr, à 1 MHz 9,43 30 23,09 23,76 19,86 18,27 22,74 18,56 18,86 20,01 24,89 Coefficient de pertes, tanδ, mesuré à 1 MHz 0,038 0,046 0,047 0,054 0,049 0,047 0,050 0,048 0,046 0,048 0,053 εr.tanδ, mesuré à 1 MHz 0,36 1,38 1,09 1,28 0,97 0,86 1,14 0,89 0,87 0,96 1,28 L*/a*/b* - - - - - - - - - 45/5/-40 35/20/40 Tables 3 and 4 summarize the main characteristics of the manufacturing process and the properties of the sintered parts obtained, respectively. Table 3 Example 1 2 3 4 5 6 7 8 9 10 11 Particulate mixture % alumina powder 100 - - - - - - - - - - % zirconia powder (first particulate fraction) - 100 80 80 80 80 80 80 80 76 76 Nature of the second particulate fraction - - MgAl 2 O 4 MgAl 12 O 19 cordierite forsterite zircon mullite epidote cordierite forsterite % of the second particulate fraction - - 20 20 20 20 20 20 20 20 20 median size of the second particle fraction (µm) - - 0.2 5 0.3 0.3 3 0.3 0.3 0.3 0.3 Nature of the third particulate fraction - - - - - - - - - CoAl 2 O 4 Fe 2 O 3 % of the third particulate fraction - - - - - - - - - 4 4 median size of the third particle fraction (µm) - - - - - - - - - 0.3 0.2 Process Process Sintering temperature T (° C) 1450 1450 1450 1450 1450 1350 1450 1450 1350 1450 1350 1 2 3 4 5 6 7 8 9 10 11 apparent density (g / cm 3 ) 3.95 6.05 5.31 5.40 4.75 5.10 5.54 5.12 4.70 4.70 5.11 % ZrO 2 (+ HfO 2 ) <0.01 94.2 75.4 75.4 75.4 75.4 88.8 75.4 75.4 72.3 72.3 % Y 2 O 3 <0.01 5.38 4.30 4.30 4.30 4.30 4.29 4.29 4.30 4.12 4.10 % Al 2 O 3 > 99.9 0.25 14.1 19.0 7.2 0.20 0.21 14.6 7.1 8.9 0.19 % MgO <0.002 <0.002 5.62 1.21 2.76 11.5 0.03 0.02 0.30 2.75 10.9 % SiO 2 0.01 0.01 0.01 0.01 10.2 8.54 6.60 5.6 9.6 10.2 8.4 %Others 0.05 0.05 0.05 0.05 0.10 0.10 0.20 0.10 3.2 1.73 4.1 % of the first crystallized phase based on the crystallized part - 100 80 80 90 95 80 90 98 87 95 % of the second crystallized phase, based on the crystallized part - - 20 20 10 5 20 10 2 10 5 nature of the second crystallized phase - - MgAl 2 O 4 MgAl 12 O 19 Mg 2 Al 3 (Si 5 Al O 18 ) Mg 2 SiO 4 and MgSiO 3 ZrSiO 4 3Al 2 O 3. 2SiO 2 and Al 2 O 3 CaAl 2 Si 2 O 8 , Mg 2 Al 3 (Si 5 Al O 18 ) Mg 2 SiO 4 and MgSiO 3 and Fe 2 O3 presence of a first amorphous vitreous phase no no no no Yes Yes no Yes Yes Yes Yes composition of the first amorphous vitreous phase - - - - 50% SiO 2 , 35% Al 2 O 3 , 15% MgO 47% SiO 2 , 52.4% MgO, 0.1% Al 2 O 3 , 0.5% Y 2 O 3 - 30% SiO 2 , 69.5% Al 2 O 3 , 0.5% Y 2 O 3 50% SiO 2 , 30% Al 2 O 3 , 20% CaO 49.5% SiO 2 , 35% Al 2 O 3 , 15% MgO, 0.5% CoO 46.5% SiO 2 , 51.4% MgO, 2% Fe 2 O 3 , 0.1% Al 2 O 3 Modulus of rupture (MPa) 350 1200 800 1000 1000 900 900 1000 700 1000 800 Vickers hardness (Hv) 2100 1350 1400 1100 1100 1000 1100 1000 900 1100 900 Tenacity (MPa m 1/2 ) 4 9 6 8 7 6 7 7 6 7 6 Volume resistivity at 20 ° C (Ω.cm) 4.0.10 14 3.0.10 12 4.3.10 12 3,4.10 12 7.5.10 12 9.8.10 12 8,1.10 12 5,9.10 12 6.6.10 12 2.3.10 12 1.2.10 12 relative dielectric permittivity, εr, at 1 MHz 9.43 30 23.09 23.76 19.86 18.27 22.74 18.56 18.86 20.01 24.89 Loss coefficient, tanδ, measured at 1 MHz 0.038 0.046 0.047 0.054 0.049 0.047 0.050 0.048 0.046 0.048 0.053 εr.tanδ, measured at 1 MHz 0.36 1.38 1.09 1.28 0.97 0.86 1.14 0.89 0.87 0.96 1.28 L * / a * / b * - - - - - - - - - 45/5 / -40 35/20/40

Les inventeurs considèrent que le compromis recherché est le suivant :

  • module de rupture supérieur à 350 MPa, de préférence supérieur à 500 MPa, de préférence supérieur à 700 MPa, et
  • ténacité supérieure à 4 MPa·m1/2, de préférence supérieure à 5 MPa·m1/2, de préférence supérieure à 6 MPa·m1/2, de préférence supérieure à 7 MPa·m1/2, et
  • un produit εr.tanδ mesuré à 1 MHz inférieur à 1,35, de préférence inférieur à 1,30, de préférence inférieur à 1,2, de préférence inférieur à 1,1, de préférence inférieur à 1.
The inventors consider that the desired compromise is as follows:
  • modulus of rupture greater than 350 MPa, preferably greater than 500 MPa, preferably greater than 700 MPa, and
  • toughness greater than 4 MPa m 1/2 , preferably greater than 5 MPa m 1/2 , preferably greater than 6 MPa m 1/2 , preferably greater than 7 MPa m 1/2 , and
  • a product ε r .tanδ measured at 1 MHz of less than 1.35, preferably less than 1.30, preferably less than 1.2, preferably less than 1.1, preferably less than 1.

Les exemples 3 à 11 satisfont au compromis, les exemples 5, 6, 8 et 9 étant préférés entre tous.Examples 3-11 satisfy the compromise, with Examples 5, 6, 8 and 9 being most preferred.

Comme cela apparaît clairement à présent, un dispositif de communication selon l'invention comporte un capot présentant à la fois une haute transparence aux ondes hertziennes de fréquences comprises entre 800MHz à 3GHz et une résistance élevée aux chocs et aux rayures.As now clearly appears, a communication device according to the invention comprises a cover exhibiting both high transparency to radio waves of frequencies between 800 MHz and 3GHz and high resistance to impacts and scratches.

Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits fournis à titre d'exemples illustratifs et non limitatifs.Of course, the present invention is not limited to the embodiments described provided by way of illustrative and non-limiting examples.

Claims (15)

  1. A device for communication by radio waves having frequencies of between 800 MHz and 3 GHz comprising a ceramic housing exposed, at least in part, to the external environment of the device and through which at least a portion of said waves passes during the use of the device, this housing being at least partially composed of a sintered product exhibiting a chemical composition such that, as percentage by weight and for a total of 100%:
    - 32 % ≤ ZrO2 ≤ 95%,
    - 1 % < Y2O3+CeO2+Sc2O3+MgO+CaO,
    - 0% ≤ CeO2 ≤ 26%,
    - 0% ≤ MgO ≤ 43%,
    - 0% ≤ CaO ≤ 37%,
    - 0% ≤ SiO2 ≤ 41%,
    - 0% ≤ Al2O3 ≤ 55%,
    - 0% ≤ TiO2 ≤ 30%,
    - 0% ≤ lanthanide oxides, except for CeO2 ≤ 50%,
    - 0% ≤ SrO ≤ 24%,
    - 0% ≤ SiAlON compounds ≤ 50%,
    - other compounds ≤ 15%, and
    said sintered product comprising, as percentage by weight on the basis of the sintered product and for a total of 100%:
    - more than 50% of a crystalline part, said crystalline part comprising, as percentage by weight on the basis of the crystalline part and for a total of 100%:
    - more than 40% of a first crystalline phase composed of zirconia, more than 50% by weight of said zirconia being stabilized by means of a stabilizer in a quadratic and/or cubic form, the remainder being in a monoclinic form,
    - optionally, less than 50% of a second crystalline phase composed of a compound chosen from MgAl2O4, XAlmOn, with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such that 10 ≤ m ≤ 12 and n being an integer such that 16 ≤ n ≤ 20, Mg3Al2(SiO4)3, ZrSiO4, yttrium silicates, it being possible for the yttrium to be partially replaced, X2ZSi2O7, with X chosen from Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures, Mg2Al3(Si5AlO18), (Ca,Sr)Al2Si2O8, 3(Al2O3)2(SiO2), SiAION phases, and their mixtures, and
    - optionally less than 10% of a third crystalline phase composed of a compound chosen from oxides of perovskite structure, oxides of spinel structure, oxides of rutile structure FO2, the element F being chosen from the group GF(1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and their mixtures, oxides of hematite structure E2O3, the element E being chosen from the group GE(1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and their mixtures, orthosilicates chosen from the group of zirconium and praseodymium orthosilicates (Zr,Pr)SiO4, zirconium and vanadium orthosilicates (Zr,V)SiO4, zirconium orthosilicates in which iron oxide is found in inclusion, and their mixtures,
    - less than 5% of other crystalline phases,
    - optionally an amorphous part comprising, as percentage by weight on the basis of the amorphous part and for a total of 100%:
    - a first vitreous amorphous phase having the composition XxAlaSibOc with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x+a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1,
    - less than 10% of other amorphous phases,
    the sum of the contents by weight of second crystalline phase and of first amorphous phase being greater than 10% and less than 50%,
    a SiAION phase being a phase observing one of the following formulae:
    - SitAlwOuNv, in which:
    - t is greater than or equal to 0 and less than or equal to 1,
    - w is greater than or equal to 0 and less than or equal to 1,
    - u is greater than or equal to 0 and less than or equal to 1,
    - v is greater than 0 and less than or equal to 1,
    - t+w > 0,
    t, w, u and v being stochiometric indices standardized with respect to the highest one, rendered equal to 1;
    - MesSi12-(q+r)Al(q+r)OrN16-r, with 0 ≤ s ≤ 2, Me a cation chosen from cations of lanthanides, Fe, Y, Ca, Li and their mixtures, 0 ≤ q ≤ 12, 0 ≤ r ≤ 12 and q+r ≤ 12.
  2. The device as claimed in the preceding claim, in which the density of the sintered product is greater than 90% of the theoretical density.
  3. The device as claimed in any one of the preceding claims, in which said sintered product is such that:
    - the mean size of the zirconia grains is less than 10 µm, and/or
    - the mean size of the grains of the second crystalline phase is less than 50 µm, and/or
    - the mean size of the grains of the third crystalline phase is less than 1 µm.
  4. The device as claimed in any one of the preceding claims, in which said sintered product exhibits a zirconia content of greater than 48% and/or less than 83%, as percentage by weight.
  5. The device as claimed in any one of the preceding claims, in which said sintered product exhibits a composition such that the Y2O3 content is greater than 1% and less than 8% and the CeO2+Sc2O3+MgO+CaO content is less than 2% and/or such that:
    - the CeO2 content is greater than 4% and less than 14%, and the Y2O3+Sc2O3+MgO+CaO content is less than 2%, and/or
    - the Y2O3+CeO2+Sc2O3+MgO+CaO content is less than 18% and the CaO+MgO content is less than 5%, and/or
    - the Y2O3+Sc2O3 content is less than 7.5% and the CeO2+MgO+CaO content is less than 2%, and/or
    - the 3.Y2O3+CeO2 content is greater than 4% and less than 18%, and the Sc2O3+MgO+CaO content is less than 2%, and/or
    - the MgO content is greater than 0.7% and less than 34%, and/or
    - the Al2O3 content is greater than 2.5% and less than 46%, and/or
    - the La2O3 content is greater than 3.5% and less than 28%, and/or
    - the SiO2 content is greater than 2.5% and less than 34%, and/or
    - the CaO content is greater than 2% and less than 20%, and/or
    - the SrO content is greater than 3% and less than 16%, and/or
    - the Y2O3 content is greater than 6.5% and less than 37%, and/or
    - the Sc2O3 content is greater than 5% and less than 31%.
  6. The device as claimed in any one of the preceding claims, in which said sintered product exhibits a crystalline part comprising more than 50% and less than 85%, as percentage by weight on the basis of the crystalline part, of a crystalline phase composed of zirconia, more than 80% of said zirconia being stabilized by means of a stabilizer in a quadratic and/or cubic form, the remainder being in a monoclinic form and/or said sintered product exhibits a crystalline part comprising more than 15% and less than 40%, preferably less than 30%, preferably less than 25%, as percentage by weight on the basis of the crystalline part, of a second crystalline phase composed of a compound chosen from MgAl2O4, XAlmOn, with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such that 10 ≤ m ≤ 12, and n being an integer such that 16 ≤ n ≤ 20, Mg3Al2(SiO4)3, ZrSiO4, yttrium silicates, it being possible for the yttrium to be partially replaced, X2ZSi2O7, with X chosen from La, Y, lanthanide oxides and their mixtures and Z chosen from Mg, Al and their mixtures, Mg2Al3(Si5AlO18), (Ca,Sr)Al2Si2O8, 3(Al2O3)2(SiO2), SiAION phases, and their mixtures.
  7. The device as claimed in any one of the preceding claims, in which said sintered product exhibits, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 9% and less than 55%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 31% and a CaO+MgO content of less than 18%, with a MgO content of greater than 0.7% and less than 13%, and
    the MgAl12O19 content being between 10% and 50%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 60% of the sintered product, as percentage by weight on the basis of the sintered product,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%
    - an La2O3 content of greater than 2% and less than 20%, and
    - an Al2O3 content of greater than 7% and less than 48%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 18% and a CaO+MgO content of less than 5%, and
    the LaAl11O18 content being between 10% and 50%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 60% of the sintered product, as percentage by weight on the basis of the sintered product,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 2.5% and less than 21%, and
    - a SiO2 content of greater than 4.5% and less than 31%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 42% and less than 18% and a CaO+MgO content of less than 29%, with a MgO content of greater than 3% and less than 24%,
    the Mg3Al2(SiO4)3 content being between 3% and 44%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 62% and less than 93% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - a SiO2 content of greater than 3% and less than 26%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 18% and a CaO+MgO content of less than 5%,
    the ZrSiO4 content being between 8% and 50%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 70% and less than 95% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x+a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 3.5% and less than 26%, and
    - a SiO2 content of greater than 4% and less than 29%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 39% and a CaO+MgO content of less than 26%, with a CaO content of greater than 2.5% and less than 21%,
    the crystalline part representing more than 57% and less than 86% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Ca and optionally Mg, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - a SiO2 content of greater than 3.5% and less than 26%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 56% and CaO+MgO content of less than 26%, with a Y2O3 content of greater than 6.5% and less than 38%, and
    the Y2Si2O7 content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Y and optionally Mg, Ca, Sr, Sc, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, x+a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - a SiO2 content of greater than 4.5% and less than 32%, and
    - an Sc2O3 content of greater than 5% and less than 36%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 54% and a CaO+MgO content of less than 5%,
    the Sc2Si2O7 content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Sc and optionally Mg, Ca, Sr, Sc, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, x+a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%,
    - an Al2O3 content of greater than 2.5%, and less than 23%, and
    - a SiO2 content of greater than 5.5% and less than 37%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 34.5% and a CaO+MgO content of less than 21.5%, with a MgO content of greater than 1.5% and less than 16.5%,
    the Mg2Al3(Si5AlO18) content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - a SiO2 content of greater than 6.5% and less than 42%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 43% and a CaO+MgO content of less than 30%, with a MgO content of greater than 3% and less than 25%,
    the crystalline part representing more than 57% and less than 86% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a+x > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 3.5% and less than 27%, and
    - a SiO2 content of greater than 4% and less than 30%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 37% and a CaO+MgO content of less than 24%, with a CaO content of greater than 2% and less than 19%,
    the crystalline part representing more than 57% and less than 86% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Ca and optionally Mg, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 3% and less than 24%, and
    - an SrO content of greater than 3% and less than 25%, and
    - a SiO2 content of greater than 3.5% and less than 27%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 18% and a CaO+MgO content of less than 5%,
    the (Sr,Ca)Al2Si2O3 content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Sr and/or Ca and optionally Mg, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0, a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 7% and less than 45%, and
    - a SiO2 content of greater than 2.5% and less than 23%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 18% and a CaO+MgO content of less than 5%,
    the 3(Al2O3)2(SiO2) content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Sr, Ca, Mg, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that a > 0, a+x > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 4.5% and less than 32%, and
    - a SiO2 content of greater than 5% and less than 36%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 18% and a CaO+MgO content of less than 5%,
    the Al2O3SiO2 content being greater than 5% and less than 33%, as percentage by weight on the basis of the crystalline part, and
    the crystalline part representing more than 57% and less than 90% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Sr, Ca, Mg, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part,
    or, as percentage by weight on the basis of the weight of the product and for a total of more than 95%:
    - an Al2O3 content of greater than 2.5% and less than 21%, and
    - a SiO2 content of greater than 6% and less than 40%, and
    - a zirconia content of greater than 40% and less than 93%, and
    - a Y2O3+CeO2+Sc2O3+MgO+CaO sum of less than 32% and a CaO+MgO content of less than 19%, with a MgO content of greater than 1% and less than 14%,
    the crystalline part representing more than 57% and less than 86% of the sintered product, as percentage by weight on the basis of the sintered product, and
    the amorphous part comprising more than 90% of a vitreous amorphous phase having the composition XxAlaSibOc, with X chosen from Mg and optionally Ca, Sr, Sc, Y, lanthanide oxides, Ti, Zr, Fe, Mn, Co, Cr and their mixtures, x, a, b and c being integers such that x > 0 <Mg and Al in vitreous phase necessarily>, a > 0, c > 0, b > 0, a/b ≤ 2 and x/b ≤ 1, as percentage by weight on the basis of the amorphous part.
  8. A process comprising the following stages:
    a) preparation of a starting charge by way of a particulate mixture,
    b) forming a preform from said starting charge,
    c) sintering said preform, such as to obtain a sintered part,
    d) optionally, polishing said sintered part,
    e) optionally, confirmation of the color of the sintered part,
    f) optionally, assembling the sintered part so that it constitutes a housing of a communication device according to any one of the preceding claims,
    the particulate mixture comprising, as percentage by weight and for a total of 100%:
    - between 40% and 88% of a first particulate fraction composed of zirconia ZrO2 particles and comprising a compound capable of stabilizing the zirconia, said compound capable of stabilizing the zirconia stabilizing or not stabilizing said zirconia and being chosen from Y2O3, Sc2O3, MgO, CaO, CeO2 and their mixtures, and present in an amount of greater than 2.0% and less than 20.0%, calculated as percentages by weight on the basis of the sum of ZrO2, Y2O3, Sc2O3, MgO, CaO and CeO2, the MgO + CaO content being less than 5.0% on the basis of the sum of ZrO2, Y2O3, Sc2O3, MgO, CaO and CeO2, it being possible for the compound capable of stabilizing the zirconia to be replaced by an equivalent amount of precursor(s) of this compound,
    - between 10% and 50% of a second particulate fraction composed of particles made of a compound of formula XAlmOn, with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such that 10 ≤ m ≤ 12 and n being an integer such that 16 ≤ n ≤ 20, and/or of particles made of a compound of formula XxAlaSibOc(OH)y(H2O)z, with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y and z being integers such that x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3(a+x) and z ≤ b, and/or of SiAION particles and/or of particles made of a mixture of these compounds,
    - less than 10% of a third particulate fraction composed of particles made of an oxide of perovskite structure, optionally replaced, totally or partially, by an equivalent amount of precursor(s) of this oxide, and/or of particles made of an oxide of spinel structure and/or of particles made of an oxide of rutile structure FO2, the element F being chosen from the group GF(1) formed by mixtures of tin and vanadium, mixtures of titanium and chromium and niobium, mixtures of titanium and chromium and tungsten, mixtures of titanium and niobium and manganese, mixtures of tin and chromium, and their mixtures, and/or of particles made of an oxide of hematite structure E2O3, the element E being chosen from the group GE(1) formed by mixtures of aluminum and chromium, mixtures of aluminum and manganese, and their mixtures, and/or of particles made of a compound chosen from the group of the zirconium and praseodymium orthosilicates (Zr,Pr)SiO4, zirconium and vanadium orthosilicates (Zr,V)SiO4, zirconium orthosilicates in which iron oxide is found in inclusion, and their mixtures, and/or of particles made of a mixture of these compounds,
    - less than 2% of a fourth particulate fraction composed of other particles,
    a SiAION phase being a phase observing one of the following formulae:
    - SitAlwOuNv, in which:
    - t is greater than or equal to 0 and less than or equal to 1,
    - w is greater than or equal to 0 and less than or equal to 1,
    - u is greater than or equal to 0 and less than or equal to 1,
    - v is greater than 0 and less than or equal to 1,
    - t+w > 0,
    t, w, u and v being stochiometric indices standardized with respect to the highest one, rendered equal to 1;
    - MesSi12-(q+r)Al(q+r)OrN16-r, with 0 ≤ s ≤ 2, Me a cation chosen from cations of lanthanides, Fe, Y, Ca, Li and their mixtures, 0 ≤ q ≤ 12, 0 ≤ r ≤ 12 and q+r ≤ 12.
  9. The process as claimed in the preceding claim, in which the particulate mixture exhibits a specific surface, calculated by the BET method, of greater than 3 m2/g and less than 30 m2/g.
  10. The process as claimed in either one of the two immediately preceding claims, in which the first particulate fraction represents more than 70% and/or less than 85% of the particulate mixture, as percentage by weight and/or the median size of the particles of the first particulate fraction of the particulate mixture is between 100 nm and 1000 nm.
  11. The process as claimed in any one of the three immediately preceding claims, in which the second particulate fraction represents more than 15% and/or less than 40% of the particulate mixture, as percentage by weight and/or the median size of the particles of the second particulate fraction of the particulate mixture is between 100 nm and 10 000 nm and/or more than 25% by weight of the particles of the second particulate fraction exhibit a length/width ratio of greater than 3.
  12. The process as claimed in any one of the four immediately preceding claims, in which the second particulate fraction is composed of particles made of a compound of formula XAlmOn, with X chosen from Mg, Ca, Sr, Y, lanthanide oxides and their mixtures, m being an integer such that 10 ≤ m ≤ 12 and n being an integer such that 16 ≤ n ≤ 20, and/or of particles made of a compound of formula XxAlaSibOc(OH)y(H2O)z, with X chosen from Mg, Ca, Sr, Sc, Y, lanthanide oxides, Ti, Fe, Mn, Co, Cr and their mixtures, x, a, b, c, y and z being integers such that x+a >0, c > 0, b > 0, a/b ≤ 2, x/b ≤ 1, y ≤ 3(a+x) and z ≤ b, and/or of Si3N4 particles and/or of AIN particles and/or of AION particles and/or of Si2ON2 particles and/or of particles made of a mixture of these compounds.
  13. The process as claimed in any one of claims 8 to 12, in which the median size of the particles of the third particulate fraction is less than 1000 nm and/or the fourth particulate fraction represents less than 0.5% of the particulate mixture, as percentage by weight.
  14. The process as claimed in any one of claims 8 to 13, in which the oxides represent more than 98% of the weight of the particulate mixture.
  15. The process as claimed in any one of claims 8 to 14, in which, in stage c), the preform is sintered at a temperature of between 1200°C and 1500°C.
EP12823023.2A 2011-12-23 2012-12-20 Communication device Active EP2794513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17161633.7A EP3210954B1 (en) 2011-12-23 2012-12-20 Process for producing a sintered article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162382A FR2985137B1 (en) 2011-12-23 2011-12-23 COMMUNICATION DEVICE
PCT/IB2012/057511 WO2013093822A1 (en) 2011-12-23 2012-12-20 Communication device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17161633.7A Division-Into EP3210954B1 (en) 2011-12-23 2012-12-20 Process for producing a sintered article
EP17161633.7A Division EP3210954B1 (en) 2011-12-23 2012-12-20 Process for producing a sintered article

Publications (2)

Publication Number Publication Date
EP2794513A1 EP2794513A1 (en) 2014-10-29
EP2794513B1 true EP2794513B1 (en) 2018-06-13

Family

ID=47678918

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17161633.7A Active EP3210954B1 (en) 2011-12-23 2012-12-20 Process for producing a sintered article
EP12823023.2A Active EP2794513B1 (en) 2011-12-23 2012-12-20 Communication device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17161633.7A Active EP3210954B1 (en) 2011-12-23 2012-12-20 Process for producing a sintered article

Country Status (6)

Country Link
US (1) US9284228B2 (en)
EP (2) EP3210954B1 (en)
KR (1) KR101630815B1 (en)
CN (1) CN104136396B (en)
FR (1) FR2985137B1 (en)
WO (1) WO2013093822A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216740A1 (en) 2012-02-16 2013-08-22 Apple Inc. Interlocking flexible segments formed from a rigid material
US10086484B2 (en) 2012-10-12 2018-10-02 Apple Inc. Manufacturing of computing devices
US9852723B2 (en) 2014-03-27 2017-12-26 Apple Inc. Acoustic modules
WO2015153485A1 (en) 2014-04-01 2015-10-08 The Research Foundation For The State University Of New York Electrode materials for group ii cation-based batteries
CN205115306U (en) * 2014-09-30 2016-03-30 苹果公司 Pottery part
US10071539B2 (en) 2014-09-30 2018-09-11 Apple Inc. Co-sintered ceramic for electronic devices
US10207387B2 (en) 2015-03-06 2019-02-19 Apple Inc. Co-finishing surfaces
US10216233B2 (en) 2015-09-02 2019-02-26 Apple Inc. Forming features in a ceramic component for an electronic device
FR3056208A1 (en) * 2016-09-19 2018-03-23 Saint-Gobain Centre De Recherches Et D'etudes Europeen COLORED FRITTED PRODUCT BASED ON ALUMINA AND ZIRCONIA
FR3068035A1 (en) * 2017-06-22 2018-12-28 Saint-Gobain Centre De Recherches Et D'etudes Europeen FRITTE PRODUCT BASED ON ALUMINA AND ZIRCONIA
US10542628B2 (en) 2017-08-02 2020-01-21 Apple Inc. Enclosure for an electronic device having a shell and internal chassis
CN110436921B (en) * 2019-08-16 2022-03-15 Oppo广东移动通信有限公司 Ceramic product, preparation method thereof and electronic equipment
CN113004033B (en) * 2019-12-20 2022-11-11 比亚迪股份有限公司 Zirconia ceramic and preparation method and application thereof
WO2021225190A1 (en) * 2020-05-07 2021-11-11 엘지전자 주식회사 Low-k, high-strength ceramic composition, and rear cover using same for mobile device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910467A1 (en) * 2006-12-21 2008-06-27 Saint Gobain Ct Recherches Sintered product useful e.g. to manufacture glass furnace, preferably electrode holder block, made from initial feedstock containing zircon and oxide based chemical composition comprising e.g. silicon dioxide, zirconium dioxide and dopant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986005174A1 (en) * 1985-03-07 1986-09-12 Nippon Soda Co., Ltd. Sintered zirconia and process for its production
FR2579199B1 (en) * 1985-03-22 1992-08-21 Noritake Co Ltd CERAMIC BASED ON ZIRCONIA
US4804644A (en) * 1986-05-28 1989-02-14 Cookson Group Plc Ceramic material
GB8712683D0 (en) * 1987-05-29 1987-07-01 Cookson Group Plc Ceramic material
US7724532B2 (en) * 2004-07-02 2010-05-25 Apple Inc. Handheld computing device
FR2929940B1 (en) * 2008-04-11 2010-05-21 Saint Gobain Ct Recherches PARTICLE IN MOLTEN CERAMIC MATERIAL.
FR2929941B1 (en) * 2008-04-15 2011-03-04 Saint Gobain Ct Recherches DIRT FRITTE PRODUCT BASED ON ZIRCON
FR2959506B1 (en) * 2010-04-30 2014-01-03 Thales Sa CERAMIC COMPOSITE MATERIAL BASED ON BETA-EUCRYPTITE AND OXIDE AND PROCESS FOR THE PRODUCTION OF SAID MATERIAL

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910467A1 (en) * 2006-12-21 2008-06-27 Saint Gobain Ct Recherches Sintered product useful e.g. to manufacture glass furnace, preferably electrode holder block, made from initial feedstock containing zircon and oxide based chemical composition comprising e.g. silicon dioxide, zirconium dioxide and dopant

Also Published As

Publication number Publication date
US20140342900A1 (en) 2014-11-20
FR2985137B1 (en) 2015-12-04
EP2794513A1 (en) 2014-10-29
US9284228B2 (en) 2016-03-15
KR20140112523A (en) 2014-09-23
EP3210954A1 (en) 2017-08-30
EP3210954B1 (en) 2019-07-31
FR2985137A1 (en) 2013-06-28
CN104136396A (en) 2014-11-05
KR101630815B1 (en) 2016-06-15
CN104136396B (en) 2016-04-13
WO2013093822A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
EP2794513B1 (en) Communication device
EP2516352B1 (en) Ceramic powder of granules
US8814965B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body and preparation processes thereof
EP2448881B1 (en) Colored sintered zirconia
KR101122929B1 (en) Method for manufacturing transparent polycrystalline aluminum oxynitride
JP4607253B2 (en) Spark plug and method of manufacturing spark plug
EP2740717A2 (en) Sintered coloured ceramic object
CN101712870A (en) Fluorescent substance and process for producing the same, and luminescent element using the same
WO2009099184A1 (en) Zirconia sintered body and manufacturing method thereof
US20190389771A1 (en) Semiconductive ceramic member and holder for wafer conveyance
FR3039540A1 (en) ALUMINA AND ZIRCONIA-BASED FRITTED PRODUCT
JP5762522B2 (en) Cordierite sintered body and member for semiconductor manufacturing equipment comprising this cordierite sintered body
KR102557205B1 (en) Transparent AlN sintered body and its manufacturing method
FR3012135A1 (en) PARTICULATE MIXTURE FOR THE PRODUCTION OF A YTTRIED ZIRCONY PRODUCT
WO2023127562A1 (en) Dental-use alumina pre-sintered body that becomes highly translucent alumina sintered body
JP2023163322A (en) Method for producing zirconia composite ceramic and method for producing zirconia ceramic prosthesis for dental use
TWI496759B (en) Semi - conductive ceramic sintered body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160629

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 35/111 20060101ALI20170131BHEP

Ipc: H04M 1/18 20060101ALN20170131BHEP

Ipc: C04B 35/488 20060101AFI20170131BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H04M 1/18 20060101ALN20170214BHEP

Ipc: C04B 35/111 20060101ALI20170214BHEP

Ipc: C04B 35/488 20060101AFI20170214BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170717

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 35/44 20060101ALI20171117BHEP

Ipc: C04B 35/488 20060101AFI20171117BHEP

Ipc: H04M 1/18 20060101ALN20171117BHEP

Ipc: C04B 35/18 20060101ALI20171117BHEP

Ipc: C04B 33/04 20060101ALI20171117BHEP

Ipc: C04B 35/111 20060101ALI20171117BHEP

Ipc: C04B 35/16 20060101ALI20171117BHEP

Ipc: C04B 35/634 20060101ALI20171117BHEP

Ipc: C04B 35/597 20060101ALI20171117BHEP

Ipc: C04B 35/195 20060101ALI20171117BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1008358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012047505

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180913

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1008358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181013

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012047505

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181220

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121220

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221025

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 12

Ref country code: DE

Payment date: 20231214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 12