EP2787882B1 - Positionierung eines bestimmten volumens für mr-spektroskopie - Google Patents

Positionierung eines bestimmten volumens für mr-spektroskopie Download PDF

Info

Publication number
EP2787882B1
EP2787882B1 EP12819138.4A EP12819138A EP2787882B1 EP 2787882 B1 EP2787882 B1 EP 2787882B1 EP 12819138 A EP12819138 A EP 12819138A EP 2787882 B1 EP2787882 B1 EP 2787882B1
Authority
EP
European Patent Office
Prior art keywords
interest
volume
image data
positioning
segmented structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12819138.4A
Other languages
English (en)
French (fr)
Other versions
EP2787882A1 (de
Inventor
Lyubomir Georgiev ZAGORCHEV
Stewart Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of EP2787882A1 publication Critical patent/EP2787882A1/de
Application granted granted Critical
Publication of EP2787882B1 publication Critical patent/EP2787882B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • A61B5/748Selection of a region of interest, e.g. using a graphics tablet
    • A61B5/7485Automatic selection of region of interest
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription

Definitions

  • the following generally relates to Magnetic Resonance Spectroscopic Imaging (MRSI) and more particularly to positioning a volume of interest, such as a voxel, in segmented structure in Magnetic Resonance Imaging (MRI) image data, which localizes the volume of interest for Magnetic Resonance Spectroscopic (MRS) biochemical composition analysis.
  • MRSI Magnetic Resonance Spectroscopic Imaging
  • MRS is a non-invasive analytical technique that can be used to determine biochemical composition in-vivo in association with, for example, neurodegenerative disorders such as brain tumors, strokes, seizure disorders, and Alzheimer's disease.
  • the MR signal produces a spectrum of resonances that correspond to different molecular arrangements of an isotope being "excited.” This signature has been used to determine information about metabolic disorders affecting the brain and to provide information about tumor metabolism.
  • MRSI combines MRI and MRS.
  • a volume of interest (VOI) is used to spatially localize spectra from which MRS determines the biochemical composition for the VOI.
  • VOI volume of interest
  • a single voxel is used to define the VOI, and the accuracy of the position of the voxel affects the outcome of the determination of the biochemical composition. That is, if the voxel is intended to be inside certain structure, then positioning the voxel such that a portion of it is outside the structure will result in a less accurate reading as biochemical composition other than the structure is also captured.
  • the user in one instance, manually positions the voxel in the structure.
  • it can be difficult to manually and accurately position a voxel in the structure, especially for small structures.
  • the voxel is typically constrained, for practical reasons, to be rectangular, whereas structure tends to be irregular in shape. Again, inaccurate positioning can lead to less accurate or even inaccurate results.
  • multiple procedures e.g., corresponding to different contrast images
  • are performed to facilitate positioning which makes the process tedious and time consuming.
  • Rakesh Sharma "Molecular Imaging by Proton Magnetic Resonance Imaging (MRI) and MR Spectroscopic Imaging (MRSI) in Neurodegeneration ", INFORMATICA MEDICA SLOVENICA, vol. 10, no. 1, 30 June 2005, pages 35-55, XP055056876 , discloses the use of proton magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopic imaging (MRSI) as integrated method to investigate NAA, creatine and choline changes in brain metabolites in Alzheimer's disease and epilepsy. Multislice H-1 MRSI technique of human brain, without volume preselection is used.
  • MRI segmentation and completely automated spectral curve fitting facilitate quantitative data analysis in Alzheimer's disease and molecular imaging basis of prediction for epilepsy at different locations in the brain.
  • MRI and MRSI integrated method is evaluated to characterize the anatomical and metabolite changes in disease.
  • a MRSI system according to independent claim 1 is provided, with preferred embodiments defined in dependent claims 2-7 and 14.
  • the invention may take form in various components and arrangements of components, and in various steps and arrangements of steps.
  • the drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
  • MRSI system 100 is schematically illustrated.
  • the system 100 includes an MRI scanner 102, a volume of interest positioner 104 and an MRS analyzer 128, which is shown in communication with reference data memory 108 and one or more output devices (output device(s)) 110.
  • the MRI scanner 102 includes a main magnet 112, gradient (x, y and/or z) coils 114, and an RF coil 116.
  • the main magnet 112 (which can be a superconducting, resistive, permanent, or other type of magnet) produces a substantially homogeneous, temporally constant main magnetic field B 0 in an examination region 118.
  • the gradient coils 114 generate time varying gradient magnetic fields along the x, y and/or z-axes of the examination region 118.
  • the illustrated RF coil 116 includes a transmission portion that transmits a radio frequency signal (e.g., at the Larmor frequency of nuclei of interest such as hydrogen, Helium, etc.) that excites the nuclei of interest in the examination region 118 and a receive portion that receives MR signals emitted by excited nuclei.
  • a radio frequency signal e.g., at the Larmor frequency of nuclei of interest such as hydrogen, Helium, etc.
  • the transmission and receive portions can alternatively be located in separate coils.
  • An MR reconstructor 120 reconstructs the MR signals and generates MRI image data.
  • a subject support 122 supports a subject such as a human or animal patient in the examination region 116.
  • a general purpose computing system serves as an operator console 124 and includes an output device such as a display and an input device such as a keyboard, mouse, and/or the like.
  • Software resident on the console 124 allows the operator to interact with the scanner 102, for example, to select an imaging protocol, to initiate scanner, etc.
  • a data repository 126 can be used to store the image data generated by the scanner 102 and/or other image data.
  • the illustrated data repository 126 may include one or more of a picture archiving and communication system (PACS), a radiology information system (RIS), a hospital information system (HIS), an electronic medical record (EMR) database, a sever, a computer, and/or other data repository.
  • the data repository 126 can be local to the system 100 or remote from the system 100.
  • the volume of interest positioner 104 is configured to automatically position a volume of interest, such as one or more voxels, with respect to structure segmented in MRI image data obtained from the scanner 102, the repository 126 and/or other source.
  • the illustrated volume of interest positioner 104 receives an input signal, which can include indicia indicating an anatomical model of interest, particular segmented structure, a positioning rule of interest, and/or other information. As described in greater detail below, in one instance the volume of interest positioner 104 utilizes this input to accurately and reproducibly position a volume of interest with respect to segmented in the MRI image data for MRS analysis.
  • volume of interest positioner 104 can be implemented via a processor executing one or more computer readable instructions encoded or embedded on computer readable storage medium such as physical memory. Additionally or alternatively, at least one of the one or more computer readable instructions executed by the processor is carried by a carrier wave, a signal, or other non-computer readable storage medium such as a transitory medium.
  • the MRS analyzer 128 analyzes the volume of interest. This includes quantifying biochemical composition in the volume of interest with respect to the segmented structure and/or comparing the quantified value and/or a change in the quantified value over time with a predetermined threshold to determine whether a disease has regressed or progressed.
  • the accurate positioning of the volume of interest also allows for accurate and reproducible quantification of biochemical composition, development of biochemical biomarkers from MRI image data for certain diseases as the biochemical composition for a disease will generally be the same across patients, development of a database of reference data based on MRI image data for known "normal" patients and known "diseased” patients, and/or extraction/query of information from a segmentation using the normative dataset.
  • the functions of the MRS analyzer 128 can be implemented via a processor executing one or more computer readable instructions encoded or embedded on computer readable storage medium such as physical memory. Additionally or alternatively, at least one of the one or more computer readable instructions executed by the processor is carried by a carrier wave, a signal, or other non-computer readable storage medium such as a transitory medium.
  • the reference data memory 108 can be used to store results of MRS analysis, including the quantified biochemical composition information, the change in quantified biochemical composition information, the results of the comparison of the quantified biochemical composition information, the results of the comparison of the change in quantified biochemical composition information, the biochemical biomarkers, the database of normative and abnormal reference data, and/or other information.
  • the output device 110 can be used to visually display, transfer and/or otherwise disseminate the information.
  • the output device 110 may include a display monitor, portable memory, a printer, and/or other output device.
  • FIGURE 2 schematically illustrates an example of the volume of interest positioner 104.
  • An image segmenter 202 receives the MRI image data and obtains an anatomical model of interest from an anatomical model bank 204.
  • An example anatomical model of interest 300 is shown in FIGURE 3 .
  • the illustrated model of interest 300 represents a human brain. However, it is to be understood that the model of interest 300 may represent other anatomy. In addition, there may be more than one brain model, for example, one for infants, one for pediatrics and one for adults.
  • the illustrated model of interest 300 is a surface representation of a shape-constrained deformable brain model.
  • the image segmenter 202 is configured to segment the anatomy represented in the MRI image data based on the anatomy represented in the model of interest 300. In one non-limiting instance, this includes performing an initial registration between the model of interest 300 and the MRI image data, transforming the model of interest 300 to the anatomy in the MRI image data based on a transform (e.g., the Hough transform), performing a parametric adaptation of the model of interest 300 (e.g., pose and/or piecewise), and performing a deformable adaptation of the model 300. Other known techniques can alternatively be used.
  • a transform e.g., the Hough transform
  • a parametric adaptation of the model of interest 300 e.g., pose and/or piecewise
  • deformable adaptation of the model 300 e.g., pose and/or piecewise
  • a structure identifier 206 identifies one or more segmented structures of the segmented MRI image data. For example, where the input signal includes information identifying the hippocampus, the structure identifier 206 identifies the segmented hippocampus in the segmented MRI image data.
  • a volume of interest generator 208 generates a volume of interest to be positioned with respect to the identified segmented structure.
  • the volume of interest generator 208 generates and positions the volume of interest based on one or more positioning rules of a positioning rules bank 210.
  • the particular positioning rule may be determined based on the information in the input signal and/or otherwise.
  • FIGURE 4 shows the placement of a rectangular voxel 402 completely inside an irregular shaped segmented structure 404.
  • the segmented structure 404 is represented via a mesh, and the voxel 402 is positioned in the mesh using mesh vertices as anchors.
  • the vertices include the eight (8) corners, and the volume of interest is placed to satisfy constraints imposed by the locations of the mesh vertices, dependent upon the particular criteria desired by the user, for example, that the voxel is fully contained within the boundaries of the structure of interest.
  • another rule may indicate that a square voxel volume of interest be placed X% inside and (100-X)% outside of the outer surface boundary of the identified segmented structure.
  • Another rule may indicate that a spherical volume of interest be placed completely outside of the surface boundary of the identified segmented structure, but within a predetermined x,y,z coordinate therefrom.
  • Another rule may indicate that an irregular shape volume of interest be placed inside the surface boundary so as to conform to the entire shape of the identified segmented structure or a subportion thereof.
  • Irregular shaped voxels could be defined by masking the volume within a structure of interest.
  • FIGURE 5 shows the placement of an irregular shaped voxel 502 inside an irregular shaped segmented structure 504.
  • another rule may indicate a location within the identified segmented structure to place the volume of interest. For example, a rule may indicate whether the volume of interest is placed at the head, middle and/or tail of the segmented structure (e.g., the hippocampus). Another rule may indicate the positioning of multiple volumes of interest. Other rules are also contemplated herein.
  • the volume of interest generator 208 can be trained to position the volume of interest. In this instance, a user initially manually positions a volume of interest. The volume of interest generator 208 then can automatically position a subsequent same volume of interest based on the manual placement. The volume of interest generator 208 then can automatically positions a next volume of interest based on one or more of the manual placements and previous automatic placement. This can be repeated one or more times. In addition, the user can modify the position of the volume of interest.
  • a data router 212 routes the information in the input signal. For example, information corresponding to the model of interest is routed to the image segmenter 202, information corresponding to the segmented structure is routed to the structure of interest identifier 206, and information corresponding to the positioning rule of interest is routed to the volume of interest generator 208.
  • the volume of interest positioner 104 outputs at least a signal indicative of the volume of interest positioned in the segmented structure. As shown in FIGURE 1 , this signal is provided to the MRS analyzer 128, which can analyze the volume of interest as discussed herein and/or otherwise.
  • FIGURE 6 shows a variation in which the date router 212 also routes the indicia indicating the segmented structure to the MRS analyzer 128 ( FIGURE 1 ). With this indicia, the MRS analyzer 128 can automatically obtain suitable reference data from the reference data memory 130 ( FIGURE 1 ) without user interaction.
  • reference data can include, for example, biochemical normative data to compare with the biochemical data or change therein determined from the volume of interest.
  • FIGURE 7 shows a variation in which the structure of interest is first identified, and the image segmenter 202 segments a subset of structure such as only the identified structure from the MRI image data. The volume of interest is then placed with respect to the segmented structure as described herein.
  • FIGURE 8 shows a variation in which the image segmenter 202 and the anatomical model bank 204 are separate from and not part of the volume of interest positioner 104.
  • FIGURE 9 illustrates a method for positioning a volume of interest in structure of interest in MRI image data.
  • MRI image data is segmented, producing segmented MRI image data in which different anatomical structure represented in the MRI image data is segmented. As discussed herein, this may include using a predefined anatomical model.
  • a segmented structure is identified in the segmented MRI image data.
  • the identified segmented structure is identified based on input including information indicative of particular structure selected by a user.
  • a volume of interest is automatically positioned with respect to the identified segmented MRI image data based on one or more positioning rules.
  • the one or more rules include instructions which allow the volume of interest to be accurately and reproducibly positioned in the same segmented structure in the same and/or different segmented MRI image data.
  • volume of interest is analyzed to determine a biochemical composition of the tissue represented by volume of interest.
  • the above may be implemented via one or more processors executing one or more computer readable instructions encoded or embodied on computer readable storage medium such as physical memory which causes the one or more processors to carry out the various acts and/or other functions and/or acts. Additionally or alternatively, the one or more processors can execute instructions carried by transitory medium such as a signal or carrier wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Claims (14)

  1. System (100) zur Magnetresonanzspektroskopie-Bildgebung (MRS-B), das aus Folgendem besteht:
    einer Strukturkennung (206), die so konfiguriert ist, dass sie eine vorgegebene segmentierte Struktur in segmentierten MRI-Bilddaten identifiziert;
    eine Positionierungsregel-Datenbank (210), die so konfiguriert ist, dass sie Regeln für die Positionierung eines interessierenden Volumens (IV) in Bezug auf die identifizierte vorbestimmte segmentierte Struktur der segmentierten MRI-Bilddaten für eine Analyse der biochemischen Zusammensetzung mittels Magnetresonanzspektroskopie (MRS) speichert; und
    einen Generator (208) für interessierende Volumen, der so konfiguriert ist, dass er das interessierende Volumen in Bezug auf die identifizierte vorbestimmte segmentierte Struktur auf Grundlage einer oder mehrerer Regeln zur Positionierung des interessierenden Volumens in Bezug auf die identifizierte vorbestimmte segmentierte Struktur positioniert
    wobei das MRS-B-System (100) ferner einen MRS-Analysator (128) umfasst, der so konfiguriert ist, dass er eine biochemische Zusammensetzung des in der segmentierten Struktur positionierten Volumens von Interesse (IV) bestimmt.
  2. MRS-B-System (100) nach Anspruch 1, bei dem die vorgegebene segmentierte Struktur als ein Netz dargestellt wird und der Generator (208) für interessierende Volumen so konfiguriert ist, dass er das interessierende Volumen in Bezug auf die vorgegebene segmentierte Struktur unter Verwendung von Netz-Eckpunkten als Verankerungspunkte positioniert.
  3. Das MRS-B-System (100) nach einem der Ansprüche 1 bis 2, wobei das interessierende Volumen vollständig innerhalb der vorgegebenen segmentierten Struktur positioniert ist; oder
    wobei das interessierende Volumen teilweise innerhalb und teilweise außerhalb der vorbestimmten segmentierten Struktur positioniert ist; oder
    wobei das interessierende Volumen vollständig außerhalb der vorgegebenen segmentierten Struktur positioniert ist.
  4. MRS-B-System (100) nach Anspruch 3, wobei der Generator (208) für interessierende Volumen so konfiguriert ist, dass er das interessierende Volumen an einer ersten Stelle in Bezug auf die vorbestimmte segmentierte Struktur in ersten Bilddaten und an einer zweiten Stelle in Bezug auf die vorbestimmte segmentierte Struktur in zweiten Bilddaten positioniert, wobei die erste und die zweite Stelle im Wesentlichen die gleiche Stelle sind.
  5. MRS-B-System (100) nach einem der Ansprüche 1 bis 4, wobei der Generator (208) des interessierenden Volumen-so konfiguriert ist, dass er das interessierende Volumen auf Grundlage mindestens eines oder mehrerer zuvor positionierter interessierender Volumina positioniert.
  6. MRS-B-System (100) nach einem der Ansprüche 1 bis 5, wobei das interessierende Volumen einen oder mehrere Voxel einschließt.
  7. MRS-B-System (100) nach einem der Ansprüche 1 bis 6, wobei die biochemische Zusammensetzung auf eine neurodegenerative Erkrankung eines Patienten gemäß den MRI-Bilddaten hinweist.
  8. Verfahren, die aus Folgendem besteht:
    Identifizierung (904) einer vorbestimmten segmentierten Struktur in segmentierten MRI-Bilddaten; und
    Positionierung (906) eines interessierenden Volumens (IV) in Bezug auf die identifizierte vorbestimmte segmentierte Struktur für eine Analyse der biochemischen Zusammensetzung mittels Magnetresonanzspektroskopie (MRS), wobei die Positionierung (906) auf einer oder mehreren Regeln zur Positionierung des interessierenden Volumens (IV) in der identifizierten vorbestimmten segmentierten Struktur basiert, wobei die Regeln zur Positionierung des interessierenden Volumens (IV) in einer Positionierungsregel-Datenbank gespeichert sind; und
    Bestimmung einer biochemischen Zusammensetzung des in der segmentierten Struktur positionierten interessierenden Volumens (IV).
  9. Verfahren nach Anspruch 8, bei dem die vorgegebene segmentierte Struktur als ein Netz dargestellt wird und die Positionierung (906) die Positionierung des interessierenden Volumens in Bezug auf die vorgegebene segmentierte Struktur unter Verwendung von Netz-Eckpunkten als Verankerungspunkte umfasst.
  10. Verfahren nach einem der Ansprüche 8 bis 9, das ferner Folgendes umfasst:
    Erzeugung einer Datenbank mit Referenzdaten durch Verarbeitung von MRI-Bilddaten, die Patienten mit bekannten neurodegenerativen Störungen und Patienten ohne neurodegenerative Störungen zugeordnet sind, und Speicherung der biochemischen Zusammensetzungen und einer Zuordnung zwischen den biochemischen Zusammensetzungen und den neurodegenerativen Erkrankungen.
  11. Verfahren nach einem der Ansprüche 8 bis 10, das ferner Folgendes umfasst:
    Bestimmung eines biochemischen Biomarkers durch Verarbeitung von MRI-Bilddaten, die Patienten mit einer bekannten neurodegenerativen Erkrankung zugeordnet sind, wobei die biochemische Zusammensetzung einen charakteristischen biochemischen Biomarker der bekannten neurodegenerativen Erkrankung darstellt.
  12. Verfahren nach einem der Ansprüche 8 bis 11, das ferner Folgendes umfasst:
    Positionierung des interessierenden Volumens in Bezug auf die identifizierte vorbestimmte segmentierte Struktur von zweiten MRI-Bilddaten auf Grundlage einer oder mehrerer der Positionierungsregeln, wobei das interessierende Volumen in den MRI-Bilddaten und in den zweiten MRI-Bilddaten an derselben Stelle positioniert wird.
  13. Verfahren nach Anspruch 12, wobei die MRI-Bilddaten und die zweiten MRI-Bilddaten einem gleichen Patienten zugeordnet sind; oder wobei die MRI-Bilddaten und die zweiten MRI-Bilddaten verschiedenen Patienten zugeordnet sind.
  14. Computerlesbares Speichermedium mit Anweisungen, um ein Prozessor-System zu veranlassen, das Verfahren gemäß einem der Ansprüche 8 bis 13 auszuführen.
EP12819138.4A 2011-12-09 2012-12-04 Positionierung eines bestimmten volumens für mr-spektroskopie Active EP2787882B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161568700P 2011-12-09 2011-12-09
PCT/IB2012/056938 WO2013084142A1 (en) 2011-12-09 2012-12-04 Magnetic resonance spectroscopic imaging volume of interest positioning

Publications (2)

Publication Number Publication Date
EP2787882A1 EP2787882A1 (de) 2014-10-15
EP2787882B1 true EP2787882B1 (de) 2020-04-22

Family

ID=47628404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12819138.4A Active EP2787882B1 (de) 2011-12-09 2012-12-04 Positionierung eines bestimmten volumens für mr-spektroskopie

Country Status (6)

Country Link
US (1) US9588204B2 (de)
EP (1) EP2787882B1 (de)
JP (1) JP6510236B2 (de)
CN (1) CN103987313B (de)
BR (1) BR112014013456A2 (de)
WO (1) WO2013084142A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761166B2 (en) * 2014-09-26 2020-09-01 Koninklijke Philips N.V. Imaging system for single voxel spectroscopy
US20170086766A1 (en) * 2015-09-30 2017-03-30 Curvebeam Llc System for assessing bone fusion
US10641854B2 (en) * 2016-12-01 2020-05-05 Regents Of The University Of Minnesota Systems and methods for automatic voxel positioning in magnetic resonance spectroscopy
JP6765396B2 (ja) * 2017-07-11 2020-10-07 富士フイルム株式会社 医用画像処理装置、方法およびプログラム
CN109620407B (zh) * 2017-10-06 2024-02-06 皇家飞利浦有限公司 治疗轨迹引导系统
CN112822981A (zh) * 2018-10-09 2021-05-18 皇家飞利浦有限公司 自动eeg传感器配准
CN109725274B (zh) * 2018-12-30 2021-03-09 上海联影医疗科技股份有限公司 磁共振波谱扫描以及其扫描调整方法、装置、设备和存储介质
US11170245B2 (en) * 2019-06-21 2021-11-09 StraxCorp Pty. Ltd. Method and system for selecting a region of interest in an image
US11263749B1 (en) 2021-06-04 2022-03-01 In-Med Prognostics Inc. Predictive prognosis based on multimodal analysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430430B1 (en) * 1999-04-29 2002-08-06 University Of South Florida Method and system for knowledge guided hyperintensity detection and volumetric measurement
US7319784B2 (en) * 2003-02-05 2008-01-15 National Research Council Of Canada Magnetic resonance spectroscopy using a conformal voxel
EP1974313A4 (de) 2005-12-30 2011-11-16 Yeda Res & Dev Auf die medizinische anwendungsanalyse angewandter integrierter segmentierungs- und klassifizierungsansatz
US7633293B2 (en) * 2006-05-04 2009-12-15 Regents Of The University Of Minnesota Radio frequency field localization for magnetic resonance
US8831703B2 (en) * 2006-10-23 2014-09-09 The General Hospital Corporation Selective MR imaging of segmented anatomy
US20090143669A1 (en) * 2007-12-04 2009-06-04 Harms Steven E Color mapped magnetic resonance imaging
US20120197104A1 (en) * 2009-10-24 2012-08-02 Stc.Unm System and methods for automatic placement of spatial supression regions in mri and mrsi
US9025841B2 (en) 2009-11-18 2015-05-05 Siemens Aktiengesellschaft Method and system for segmentation of the prostate in 3D magnetic resonance images
JP2011156108A (ja) 2010-01-29 2011-08-18 Toshiba Corp 磁気共鳴スペクトロスコピー装置
DE102010012797B4 (de) * 2010-03-25 2019-07-18 Siemens Healthcare Gmbh Rechnergestützte Auswertung eines Bilddatensatzes
FR2983999B1 (fr) * 2011-12-12 2014-07-11 Univ Nancy I Henri Poincare Procede de reconstruction d'un signal en imagerie medicale a partir de mesures experimentales perturbees, et dispositif d'imagerie medicale mettant en oeuvre ce procede

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112014013456A2 (pt) 2017-06-13
JP6510236B2 (ja) 2019-05-08
CN103987313A (zh) 2014-08-13
US20140320129A1 (en) 2014-10-30
CN103987313B (zh) 2018-01-16
EP2787882A1 (de) 2014-10-15
JP2015500082A (ja) 2015-01-05
US9588204B2 (en) 2017-03-07
WO2013084142A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
EP2787882B1 (de) Positionierung eines bestimmten volumens für mr-spektroskopie
Quadrelli et al. Hitchhiker's guide to voxel segmentation for partial volume correction of in vivo magnetic resonance spectroscopy
US8488857B2 (en) Automated diagnosis and alignment supplemented with positron emission tomography (PET) and magnetic resonance (MR) flow estimation
Mouches et al. A statistical atlas of cerebral arteries generated using multi-center MRA datasets from healthy subjects
Catana et al. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype
Schoonheim et al. Gender-related differences in functional connectivity in multiple sclerosis
Ashton et al. Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI
US9928589B2 (en) Apparatus and method for supporting acquisition of multi-parametric images
US20190223750A1 (en) Medical image diagnostic apparatus and medical image display apparatus for volume image correlations
US10794979B2 (en) Removal of image artifacts in sense-MRI
WO2017081302A1 (en) Medical instrument for analysis of white matter brain lesions
JP2010517030A (ja) 神経変性疾患の診断を支援するためのツール
EP2747658B1 (de) Verfahren zur berechnung und darstellung von gehirnamyloid in der grauen substanz
US9760991B2 (en) System and method for image intensity bias estimation and tissue segmentation
US20170300622A1 (en) Systems and methods for estimating histological features from medical images using a trained model
US20090087047A1 (en) Image display device and image display program storage medium
Stewart et al. QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping
JP6776249B2 (ja) Mri又はct用のスキャンジオメトリプランニング方法
US7787684B2 (en) Method for planning an examination in a magnetic resonance system
Geng et al. Automated MR image prescription of the liver using deep learning: Development, evaluation, and prospective implementation
Weng et al. Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times
Gartus et al. Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects
Du et al. Reproducibility of volume and asymmetry measurements of hippocampus, amygdala, and entorhinal cortex on traveling volunteers: a multisite MP2RAGE prospective study
US20230316716A1 (en) Systems and methods for automated lesion detection using magnetic resonance fingerprinting data
WO2020200831A1 (en) Automated voxel positioning for in vivo magnetic resonance spectroscopy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012069516

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1258987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602012069516

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1258987

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012069516

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201204

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211221

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220628

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221204