EP2785455A1 - Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system - Google Patents

Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system

Info

Publication number
EP2785455A1
EP2785455A1 EP12795395.8A EP12795395A EP2785455A1 EP 2785455 A1 EP2785455 A1 EP 2785455A1 EP 12795395 A EP12795395 A EP 12795395A EP 2785455 A1 EP2785455 A1 EP 2785455A1
Authority
EP
European Patent Office
Prior art keywords
cobalt
catalyst system
general formula
bph
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12795395.8A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ralf Jackstell
Carolin Ziebart
Christopher Federsel
Matthias Beller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer Technology Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services GmbH filed Critical Bayer Technology Services GmbH
Publication of EP2785455A1 publication Critical patent/EP2785455A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/10Preparation of carboxylic acid amides from compounds not provided for in groups C07C231/02 - C07C231/08
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0247Tripodal ligands, e.g. comprising the tris(pyrazolyl)borate skeleton, "tpz", neutral analogues thereof by CH/BH exchange or anionic analogues of the latter by exchange of one of the pyrazolyl groups for an anionic complexing group such as carboxylate or -R-Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen

Definitions

  • the invention relates to a process for the conversion of carbon dioxide or bicarbonates to formic acid derivatives using a catalytic system consisting of a cobalt complex of cobalt salt and at least one tripodal tetradentate ligand.
  • the catalyst complex can be used as a homogeneous catalyst.
  • the invention also relates to the new cobalt complexes per se.
  • the hydrogenation of carbon dioxide (Scheme 1) and bicarbonates (Scheme 2) is usually carried out using transition metal catalysts such as iridium, ruthenium, and rhodium.
  • transition metal catalysts such as iridium, ruthenium, and rhodium.
  • an iridium (III) catalyst generates 3,500,000 TON (turn over numbers) at 120 ° C and 60 bar CO2 / H2 after a reaction time of 48 hours (Nozaki (R. Tanaka, M. Yamashita, K. Nozaki, J. Chem Chem. Soc., 2009, 131, 14168-14169) using a cationic Cp * Ir (III) catalyst with phenanthroline derivatives as ligands (Y. Himeda, N. Onozawa- Komatsuzaki, H. Sugihara, K. Kasuga, Organometallics 2007, 26, 702-712), a TON for the hydrogenation of carbon dioxide of 222,000 could be achieved.
  • the invention therefore an object of the invention to search for inexpensive technically applicable catalyst systems for the implementation of carbon dioxide and bicarbonates, which achieve high activities and under simple reaction conditions, preferably at room temperature, work.
  • the invention describes the use of cobalt complexes as catalysts for the production of formic acid and formic acid derivatives using carbon dioxide or bicarbonates at low ( ⁇ 140 ° C) temperatures and preferably under low pressure ( ⁇ 100 bar) in good yields and high conversions.
  • the invention also relates to new cobalt complexes.
  • the process according to the invention is characterized in that a novel catalyst system comprising a cobalt salt and at least one tripodal tetradentate ligand is used.
  • the catalytic system can be used as a homogeneous cobalt complex.
  • the catalyst can be separated and reused after a reaction. Over a wide temperature and pressure range, the catalyst is stable.
  • a suitable solvent should be used for the operation.
  • suitable solvents for the conversion of carbon dioxide or bicarbonates to corresponding formic acid derivatives are selected from the group comprising alcohols, e.g. Methanol, ethanol, isopropanol, ether, e.g. THF, dioxane, MTBE, ETBE, ketones, e.g. Acetone, dibutyl ketone, amines, e.g. Monoethanolamine, amides e.g. NMP, dimethylformamide, dibutylformamide, organic carbonates e.g. For example, propylene carbonate and water.
  • alcohols e.g. Methanol, ethanol, isopropanol, ether, e.g. THF, dioxane, MTBE, ETBE, ketones, e.g. Acetone, dibutyl ketone, amines, e.g. Monoethanolamine, amides e.g. NMP, dimethylformamide,
  • the resulting formic acid derivative may be any salt.
  • the cation may be an organic or inorganic cation, eg Li + , Na + , K + , Ca 2+ , Mg 2 ++ , Al 3+ , Fe 2+ , Co 2+ , Mn 2+ , NH 4 + , NEt 4 + .
  • the hydrogenation of carbon dioxide to corresponding formic acid derivatives, such as formic acid-amine adducts, alkyl formates and / or formamides, with the cobalt catalyst system according to the invention are preferably bases, e.g. Alkylamines (tertiary or secondary), preferably tri- or diethylamine, are added.
  • the reaction temperatures should generally be between 40 ° C and 140 ° C.
  • the preferred temperature range is 60 ° C to 120 ° C. Most preferable is the temperature range 80 ° C to 120 ° C. In the entire proposed temperature range, formic acid derivatives can be generated with high selectivity.
  • the pressure on hydrogen should generally be between 5 and 100 bar.
  • the catalyst system described may consist of an in situ generated catalyst, cobalt source and ligand, or a previously synthesized cobalt complex.
  • a catalyst system according to the invention is used which represents a cobalt complex consisting of a cation and an anion or a neutral cobalt complex having the general formula (Ia) or (Ib),
  • X is selected from the group comprising N2, Hb, H, CO, CO2, H2O, halide, acetylacetonate (acac “ ), perchlorate (CIO4 2” ) and sulfate (S0 4 2 “ ), formate, (HCO2 " )
  • m means the number 1, 2, 3, 4, 5 or 6; preferably 1, 2 or 3;
  • n is the number 1 or 2.
  • L represents a tripodal ligand of the general formula (II):
  • D and Z are the same or different and selected from the group comprising N, O, P and S;
  • R 1, R 2 are the same or different selected from the group comprising alkyl
  • R 3 , R 4 identically or differently selected, from the group comprising alkyl (C 1 -C 6), cycloalkyl (C 3 -C 10), aryl or heteroaryl;
  • D and / or Z may be coordinated with the cobalt.
  • Y " is a monovalent anion selected from the group comprising halides, P (R) 6 “ , S (R) 6 “ , B (R) 4 “ , where R is an alkyl (C1-C6), cycloalkyl (C3) C6), aryl or halogen radical, triflate and mesylate anions.
  • R is an alkyl (C1-C6), cycloalkyl (C3) C6), aryl or halogen radical, triflate and mesylate anions.
  • Y " BF 4 " , PF 6 “ or BPh 4 " .
  • Halogen or halides include Cl, F, Br and I.
  • alkyl groups methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl and n-hexyl may occur.
  • cycloalkyl groups which may be mentioned are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Aryl for the purposes of the invention, means aromatic ring systems which may be phenyl, naphthyl, phenanthrenyl and anthracenyl.
  • Heteroaryl represents hetero-aromatic ring systems which may be five-membered and six-membered heterocycles in which at least one carbon atom is replaced by nitrogen, oxygen and / or sulfur, preferably pyridine, quinoline, pyrimidine, quinazoline, furan, pyrazole, pyrrole , Imidazole, oxazole, thiophene, thiazole, triazole.
  • m is preferably 1 or 2.
  • n is preferably 1.
  • Preferred ligands of the general formula (II) are those in which D is nitrogen (N) or phosphorus (P). Z is preferably phosphorus (P).
  • R3 and R4 are preferably phenyl. q and r are preferably 1.
  • Y " is preferably BF 4 " , PF 6 “ or BPh 4 " .
  • the invention also provides the catalyst system of the general formulas (Ia) and (Ib) per se, where X, L, m and n have the abovementioned meanings.
  • the ligand to be used is a tetradentate ligand coordinated to the cobalt.
  • a cobalt source is used as a precatalyst together with a ligand of the general formula (II).
  • the cobalt source used may be a Co (0), Co (II) or Co (III) source.
  • Preferred sources are cobalt Co (BF 4) 2 -6H 2 0, Co (acac) 2 or Co (acac). 3
  • ligands used are T1 or T2.
  • the ligand is added in excess or in excess to the cobalt source, preferably the ratio cobalt source: ligand at 1: 1 or with an excess ligand.
  • Cobalt complexes of the general formula (la) very particularly preferably employed are in the inventive method, for example, [Co (acac) (T1)] BPh 4, [Co (acac) (T1)] BF 4, [CoH (T1)] BPh 4, [ CoH (T1)] BF 4, [Co (H) 2 (T1)] BPh 4, [Co (H) 2 (T1)] BF 4, [Co (H) 2 (T1)] PF. 6
  • the preparation of cobalt catalyst complexes can be carried out as follows:
  • a preferably used in situ catalyst system from a Co source preferably cationic Co (BF 4 ) 2 -6H 2 O, and the ligand T1 ligand tris [(2-diphenylphosphino) ethyl] phosphine (T1); MW 670.69052, melting point 134-139 ° C., commercially available from Acros or Sigma Aldrich
  • high activities could be achieved in various solvents, bases and under pressures of 5-80 bar, eg for the preparation of sodium formate from sodium bicarbonate (TON 3877).
  • Cobalt-catalyzed reactions are generally not transferable to iron-catalyzed reactions, and vice versa.
  • the catalyst activity was 6 times higher than the best TON when using an iron catalyst described in the literature and 2 times higher than when using the best noble metal catalyst system.
  • the cobalt catalyst system preferably used according to the invention is therefore even superior to previous systems based on the use of noble metal-containing catalyst systems.
  • Trifluoromethanesulfonic acid (1 .5 equivalents) is added slowly to the solution changing the color from yellow to dark red. After stirring for 10 minutes, 43 mg of NaBF 4 , (1 .5 equivalents) in 5 mL of distilled ethanol are added. The entire solution is concentrated to about 50% and the complex is precipitated as a red solid. It is filtered and dried in vacuo.
  • 1 H NMR: m, ⁇ ⁇ -1 1.10 -1 1 .36
  • Alkyl Formates The synthesis of the alkyl formates was analogous to the synthesis of sodium formate, except that 20 ml of the corresponding alcohol and 2 ml of triethylamine were added.
  • the reaction mixture is treated in an autoclave with 30 bar C0 2 and 60 bar of hydrogen at room temperature, then heated to 100 ° C and stirred for 20 h. After cooling and releasing the pressure, a GC analysis was carried out.
  • Formamide Formation Formamide synthesis was analogous to the sodium formate synthesis except that 0.025 mole of the corresponding amine (dimethylamine, piperidine) was added to 20 mL of MeOH. To the reaction solution then 30 bar of CO2 and 60 bar of hydrogen are pressed and stirred for 20 h at 100 ° C. The analysis was performed by GC with diglyme as an internal standard. The yields were calculated on the amine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP12795395.8A 2011-11-29 2012-11-26 Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system Withdrawn EP2785455A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110087302 DE102011087302A1 (de) 2011-11-29 2011-11-29 Verfahren zur Umsetzung von Kohlendioxid und Bikarbonaten zu Ameisensäurederivaten unter Verwendung eines katalytischen Systems
PCT/EP2012/073550 WO2013079421A1 (de) 2011-11-29 2012-11-26 Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system

Publications (1)

Publication Number Publication Date
EP2785455A1 true EP2785455A1 (de) 2014-10-08

Family

ID=47290940

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12795395.8A Withdrawn EP2785455A1 (de) 2011-11-29 2012-11-26 Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system

Country Status (5)

Country Link
US (1) US20150105571A1 (zh)
EP (1) EP2785455A1 (zh)
CN (1) CN104220167A (zh)
DE (1) DE102011087302A1 (zh)
WO (1) WO2013079421A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985254B (zh) * 2015-02-17 2018-03-16 上海中科绿碳化工科技有限公司 一种制备甲酰胺类化合物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120047239A (ko) * 2009-06-26 2012-05-11 바스프 에스이 포름산의 제조 방법
CN102060877B (zh) * 2010-11-26 2014-07-23 中国科学院上海有机化学研究所 一类含有双齿含氮配体的过渡金属络合物、合成方法及其用途
DE102011007661A1 (de) * 2011-04-19 2012-10-25 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verfahren zur Wasserstoffgewinnung durch katalytische Zersetzung von Ameisensäure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013079421A1 *

Also Published As

Publication number Publication date
WO2013079421A1 (de) 2013-06-06
DE102011087302A1 (de) 2013-05-29
US20150105571A1 (en) 2015-04-16
CN104220167A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
DE69220061T2 (de) Herstellung von chiralen phospholanen aus chiralen zyklischen sulfaten von 1,4-diolen
DE69512415T2 (de) Heteroaromatische diphospine als chirale liganden
DE10100708A1 (de) Neue N-Phenylpyrrolbisphosphanverbindungen und deren Metallkomplexe
DE602005003572T2 (de) Ferrocenylliganden für homogene, enantioselektive hydrierungskatalysatoren
DE102011007661A1 (de) Verfahren zur Wasserstoffgewinnung durch katalytische Zersetzung von Ameisensäure
DE60023914T2 (de) Chirale liganden, ihre übergangsmetallkomplexe und die anwendung dieser in asymmetrischen reaktionen
DE69114986T2 (de) Eine Phosphino-Binapthyl-Verbindung und Übergangsmetall-Komplexe davon.
DE69014724T2 (de) Verbindung des 2,2-bis(Diphenylphosphino)-1,1-binaphtyl und katalytische Komplexe davon.
EP0780157B1 (de) Rutheniumkomplexe mit einem chiralen, zweizähnigen Phosphinoxazolin-Liganden zur enantioselektiven Transferhydrierung von prochiralen Ketonen
US5202493A (en) Chiral tridentate bis(phospholane) ligands
DE69713841T2 (de) Optisch aktive Diphospin Verbindungen,Verfahren zu ihrer Herstellung, Übergangsmetall Komplexe, die diese Verbindungen als Ligand enthalten und Verfahren zur Herstellung optisch aktiver Substanzen unter Verwendung dieser Komplexe
DE102005014055A1 (de) Unsymmetrisch substituierte Phospholankatalysatoren
EP1300410B1 (de) Neue Übergangsmetall-Komplexe mit Diamino-Carbenliganden und deren Einsatz in Übergangsmetallkatalysierten Reaktionen
EP1175426B1 (de) Bidentate organophosphorliganden und ihre verwendung
DE60209344T2 (de) Liganden und deren verwendung
EP2107065A1 (de) Ruthenium-Komplexe mit (P-P)-koordinierten Di-Phosphor-Donorliganden sowie Verfahren zu ihrer Herstellung
EP1499625B1 (de) Ferrocenylliganden und ein verfahren zur herstellung solcher liganden
EP2785455A1 (de) Verfahren zur umsetzung von kohlendioxid und bikarbonaten zu ameisensäurederivaten unter verwendung eines kobaltkomplexes als katalytisches system
DE10040726A1 (de) Cycloaliphatisch-aromatische Diphosphine und ihre Verwendung in der Katalyse
EP1483276B1 (de) Ferrocenylliganden und ihre verwendung in der katalyse
EP1201673A1 (de) Bidentate Organophosphorliganden und ihre Verwendung in der Katalyse
EP1119574B1 (de) Substituierte isophosphindoline und ihre verwendung
DE102004022397A1 (de) Chirale C2-symmetrische Biphenyle, deren Herstellung sowie Metallkomplexe enthaltend diese Liganden und deren Verwendung als Katalysatoren in chirogenen Synthesen
Rabijasz Synthesis and Characterization of PN-supported Mn (I) Alkyl Complexes
EP1885732A2 (de) CHIRALE DIPHOLPHONITE ALS LIGANDEN IN DER RUTHENIUM-KATALYSIERTEN ENANTIOSELEKTIVEN REDUKTION VON KETONEN, ß-KETOESTERN UND KETIMINEN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150522

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151002