EP2783747B1 - Method and device for the contactless mixing of liquids - Google Patents
Method and device for the contactless mixing of liquids Download PDFInfo
- Publication number
- EP2783747B1 EP2783747B1 EP14162100.3A EP14162100A EP2783747B1 EP 2783747 B1 EP2783747 B1 EP 2783747B1 EP 14162100 A EP14162100 A EP 14162100A EP 2783747 B1 EP2783747 B1 EP 2783747B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- particles
- radiation
- interaction
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 84
- 238000000034 method Methods 0.000 title claims description 71
- 238000002156 mixing Methods 0.000 title claims description 36
- 239000002245 particle Substances 0.000 claims description 72
- 230000005855 radiation Effects 0.000 claims description 55
- 238000005259 measurement Methods 0.000 claims description 33
- 230000003993 interaction Effects 0.000 claims description 27
- 239000007864 aqueous solution Substances 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 24
- 238000002965 ELISA Methods 0.000 claims description 15
- 238000010897 surface acoustic wave method Methods 0.000 claims description 14
- 238000003380 quartz crystal microbalance Methods 0.000 claims description 13
- 238000012575 bio-layer interferometry Methods 0.000 claims description 8
- 238000004611 spectroscopical analysis Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000007481 next generation sequencing Methods 0.000 claims description 4
- 230000004001 molecular interaction Effects 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 72
- 230000003287 optical effect Effects 0.000 description 20
- 239000011521 glass Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000005484 gravity Effects 0.000 description 12
- 230000005670 electromagnetic radiation Effects 0.000 description 10
- 230000005284 excitation Effects 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 9
- 239000000872 buffer Substances 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000012780 transparent material Substances 0.000 description 6
- -1 Suprasil Chemical compound 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229920002307 Dextran Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 206010013457 Dissociation Diseases 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000012864 cross contamination Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 239000002102 nanobead Substances 0.000 description 2
- 239000002107 nanodisc Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000000492 total internal reflection fluorescence microscopy Methods 0.000 description 2
- DNXHEGUUPJUMQT-UHFFFAOYSA-N (+)-estrone Natural products OC1=CC=C2C3CCC(C)(C(CC4)=O)C4C3CCC2=C1 DNXHEGUUPJUMQT-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 101001007348 Arachis hypogaea Galactose-binding lectin Proteins 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 206010013710 Drug interaction Diseases 0.000 description 1
- DNXHEGUUPJUMQT-CBZIJGRNSA-N Estrone Chemical compound OC1=CC=C2[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CCC2=C1 DNXHEGUUPJUMQT-CBZIJGRNSA-N 0.000 description 1
- 238000001327 Fƶrster resonance energy transfer Methods 0.000 description 1
- 101000626125 Homo sapiens Tetranectin Proteins 0.000 description 1
- 206010022528 Interactions Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 TeflonĀ® Polymers 0.000 description 1
- 102100024554 Tetranectin Human genes 0.000 description 1
- 241001441724 Tetraodontidae Species 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000003016 alphascreen Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000005293 duran Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229960003399 estrone Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000198 fluorescence anisotropy Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001768 microscale thermophoresis Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000001089 thermophoresis Methods 0.000 description 1
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/05—Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
- B01F33/053—Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being magnetic or electromagnetic energy, radiation working on the ingredients or compositions for or during mixing them
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/05—Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
- B01F33/055—Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being particle radiation working on the ingredients or compositions for or during mixing them
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/12—Mixers in which the mixing of the components is achieved by natural convection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/3034—Micromixers using induced convection or movement in the mixture to mix or move the fluids without mechanical means, e.g. thermodynamic instability, strong gradients, etc.
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0418—Geometrical information
- B01F2215/0431—Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/0472—Numerical temperature values
Definitions
- the invention generally relates to a method and a device for non-contact mixing of liquids or for mixing particles in a liquid and in particular for mixing aqueous solutions.
- directed liquid radiation is generated by targeted irradiation of electromagnetic radiation into the liquid in order, for example, to transport particles, preferably particles dissolved in the liquid, to a surface or boundary surface of a sample chamber or a surface of a liquid volume in order to mix the particles the liquid, in particular at the surface / interface to provide.
- the invention is advantageous in that a "depletion layer" or an "enhancement layerā with a reduced or increased particle concentration at the surface / interface is avoided, so that surface-based measurement methods can be improved.
- the invention is also advantageous in that it allows small volumes (micro-volumes), which are difficult to mix, for example, due to mechanical effects such as shaking or shaking, to be mixed.
- the invention also relates to a method and a device for investigating specific and nonspecific interactions or interactions of particles, which are preferably dissolved in a liquid, with surfaces or interfaces.
- fluorescence measurements are fluorescence measurements, fluorescence anisotropy measurements, Fƶrster resonance energy transfer measurements (FRET), total internal reflection fluorescence microscopy (TIRFM), backscattering interferometry measurements (BSI), absorption measurements, spectroscopic measurements, AlphaScreenĀ® assays , MicroScale Thermophoresis Measurements (MST), Patch Clamp Measurements.
- FRET Fƶrster resonance energy transfer measurements
- TRFM total internal reflection fluorescence microscopy
- BSI backscattering interferometry measurements
- absorption measurements spectroscopic measurements
- AlphaScreenĀ® assays are MicroScale Thermophoresis Measurements (MST), Patch Clamp Measurements.
- Another method of avoiding the depletion layer moves or "shakes" the sample chamber macroscopically with respect to a surface sensor.
- a problem with this method is that the sample chamber must be open to the outside and so can evaporate the aqueous solution and / or can be contaminated by external influences.
- the mechanical "shaking" of the open sample chamber is also problematic, since the shaking overflow liquids / "spill" and so can penetrate into adjacent open sample chambers.
- the invention generally relates to a method for mixing fluids, preferably liquids or for mixing particles in a fluid or a liquid.
- the invention relates to a method for mixing of dissolved and / or undissolved particles in the liquid.
- the present invention relates to the mixing of any kind of particles or particles such as (bio) molecules, (nano) particles, (micro) beads, (bio) polymers, paints, emulsifiers, cells (biological cells), viruses, bacteria, Lipids, vesicles, liposomes, nanodiscs, pigments, dispersing additives, pastes.
- the liquid is provided as a liquid volume in at least one sample chamber, wherein the sample chamber may be open or closed.
- the liquid can also be provided in the form of a drop, wherein according to the invention a thermal convection flow is generated within the droplet.
- the liquid drop may be provided on a suitable slide (see discussion below) and, for example, surrounded by an oil layer to prevent evaporation. According to a preferred embodiment, the provision of very small volumes of liquid in glass capillaries already suffices.
- a convection flow is achieved in the liquid volume by irradiation of electromagnetic radiation in the liquid volume and in particular a mixing of Liquid with the particles present therein at a surface of the liquid volume or at an interface or boundary layer between the liquid volume and a material layer of the sample chamber achieved.
- the inventive method and the associated apparatus is thus applicable to measuring methods in which preferably measured at the surface or interface of a liquid, since according to the invention a depletion zone, depletion layer, enrichment zone, enrichment layer or a concentration shift at the surface or interface is avoided.
- a good mixing in contact surfaces between solids for example inner surface of a sample chamber or of glass capillaries
- a surface or contact surface according to the invention is not limited to a flat surface, but may also be three-dimensional or fractal, e.g. when dextran or dendrimer coated glass substrates are used and the interaction between e.g. Antibody and antigen takes place on / in the dextran layer.
- the thermal convection flow is generated by means of at least one electromagnetic radiation source, preferably a light source.
- the thermal convection flow is generated by means of an infrared (IR) radiation source.
- IR radiation can be generated with known IR radiation sources and preferably positioned locally by an optical means (eg, lens and / or mirror / reflector) in the liquid also be focused.
- an optical means eg, lens and / or mirror / reflector
- IR LEDs are used as the radiation source.
- the liquid is preferably heated locally at the location of the radiated beam and thus generates the thermal convection flow.
- the present invention preferably produces liquid streams directly, and preferably purely optically and in particular completely contactless, directly in the liquid / solution with the particles. Since liquids to be examined are often aqueous solutions, it is particularly advantageous in these cases to select the electromagnetic radiation in the infrared wavelength range, due to the advantageous absorption behavior.
- an aqueous solution not only absorbs the energy of the IR laser radiation, but also the pulse of the photons of the IR laser radiation (light pressure) has an influence on the convection behavior (see FIGS. 2A, 2B ).
- the energy absorption heats the aqueous solution locally at the location where the IR laser radiation is radiated into the aqueous solution, which leads to thermal convection.
- the momentum of the photons of the IR laser radiation is transferred to the aqueous solution.
- the flow velocity of the thermal convection can be amplified (antiparallel to gravitation) or attenuated (parallel to gravitation).
- the laser radiation can also be aligned vertically or obliquely to the gravitation.
- the wavelength of the preferred IR radiation is preferably in the range 1200 nm to 2000 nm. More preferred are the specific IR laser wavelengths: 980 nm (+/- 10 nm); 1450 nm (+/- 20 nm); 1480 nm (+/- 20 nm); 1550 nm (+/- 20 nm) and 1920 nm (+/- 20 nm).
- the invention also relates to a device for carrying out the method according to the invention.
- the method according to the invention is preferably used in combination with surface / interface-based measuring methods / measuring devices.
- This allows, for example, specific chemical, biochemical Interactions at interfaces are safely and reliably investigated, preferably in extremely small volumes.
- non-specific effects such as "sticking", physisorption, chemisorption, sorption, adsorption, absorption, electrochemical processes, catalytic processes, etc. can also be investigated
- the mixing method according to the invention can be used, for example, in combination with measuring device for determining optical properties on a thin layer, whereby, for example, chemical, biochemical, medical and / or physical reactions, binding and / or addition processes as well as other interactions on the thin layer are detected can.
- measuring methods for example, light, preferably light of a specific wavelength, is irradiated onto a sample to be examined, the sample being bound to a thin layer. Changes in the optical layer thickness are detected or measured, for example, by means of interference phenomena, which results in conclusions on reactions of the examined sample with a suitably pretreated thin layer.
- volume consumption can be reduced from a few 100 microliters to a few milliliters to a few nanoliters to a few microliters. Volumes of from 1 microliter to 10 microliters are preferably used as the volume according to the invention.
- Elaborate flow cells, microfluidics, pumps, valves and hoses are preferably eliminated, whereby a device according to the invention is very robust and preferably can not be contaminated by any residues in hoses and / or valves and it also prevents loss of sample / particles in the sample Adherence (adsorption / chemsorption / physorption) of the particles to the surfaces of the hoses and valves (more generally: to the surfaces of the dead volumes).
- both open and closed sample chambers can be used, whereby vaporization / evaporation of the (aqueous) solution can also be avoided by closed sample chambers. This is advantageous, for example, in that significantly longer measurement times are possible.
- convection is caused by a flow that can carry particles.
- Cause of the transporting flow can basically be different forces, such. As weight or forces resulting from pressure, density, temperature or concentration differences.
- the method of the invention preferably produces a free or natural convention, i.e., convection caused by a temperature gradient.
- the temperature increase is preferably so low that the particles or the sample are not damaged and / or negatively affected.
- free convection due to thermal density differences may be described as follows: When heated, fabrics tend to expand (except, for example, the density anomaly of the water). Under the influence of the gravitational force, areas of lower density rise within the fluid against the gravitational field (buoyancy), while areas of higher density sink therein. For example, if heat is applied to the bottom of a sample chamber and the top of the sample is allowed to cool, a continuous flow is created: the liquid heats up, expands, and rises. Once there, the liquid cools down, contracts again and sinks to be heated again below.
- the velocity of the liquid streams of the thermal convection according to the invention can preferably be determined by varying the optical energy or power, the focusing or defocusing, the intensity, the direction, the parallelism (or also the convergence and divergence) and / or the position of the focus relative to surface / thin film, the number of beams (laser beam can be split to heat several places at the same time), the duration of irradiation, pulse width modulation (pulse height, pulse duration, repetition rate), wavelength, moving beam velocity, irradiated radiation and / or be changed or controlled relative to the direction of gravity relative to gravity.
- the position of the irradiated radiation can vary, for example the focus can be positioned in all three spatial directions by means of mirror systems (see laser scanner) and be moved at different speeds. Since the present invention can also generate liquid streams perpendicular to the surfaces of sample chambers by means of optically generated thermal convection (as opposed to liquid streams generated by external pumps), mixing the liquid and reducing a depletion layer is very efficient.
- the rate of thermal convection depends, among other things, on the chamber thickness (height in the direction of gravity) of the sample chamber and, in particular, on the chamber geometry.
- edge surfaces of a sample chamber can significantly influence the speed of thermal convection.
- Preference is given to sample chambers that are thick enough (for example> 0.05 mm) to achieve a desired rapid flow velocity of the thermal convection in order to avoid the " depletion layer" or an enrichment layer.
- a thermal convection such that preferably a laminar flow is generated, preferably at low Reynolds numbers (Reynolds number Re ā 1000).
- sample chambers also liquid drops or water drops
- a layer thickness of at least 0.05 mm is preferred because at lower layer thicknesses or smaller thicknesses of the sample chamber, the convection effect is too weak to achieve a desired mixing.
- layer thicknesses of the liquid or thicknesses of the sample chamber not greater than 11.5 mm (well depth in the case of multiwell plates).
- An exemplary convection velocity for a sample chamber that is 1 mm in height and 5 mm in diameter, 20 ā l in volume, 52 Ā° C chamber temperature, 1480 nm IR laser with 75 mW light output is at medium speed of about 0.4 mm / s.
- a typical or average extent of the convection flow lines in this example is about 2 mm in diameter.
- exemplary diffusion constants D of biomolecules are between 1 ā m 2 / s and 400 ā m 2 / s.
- the movement / displacement / mixing of the particles due to the convection flow is adapted to the movement of the particles (Brownian motion) due to their diffusion (diffusion constant D).
- diffusion constant D diffusion constant of the particles to be examined
- there is a preferred average flow velocity of the thermal convection to be used and thus, for example, preferably also radiation intensities or configurations for the irradiation of the radiation to be used. Due to the very flexible and easily variable and preferably purely optical construction according to the invention, the convection flow and thus the mixing can preferably be adjusted to the particles to be examined, without a new structure having to be built specifically for each particle.
- rate constants can be exemplified as follows. Assume a chemical reaction of molecule A of concentration [A] with molecule B of concentration / surface density [B] to complex D of concentration [D].
- mixing according to the invention are ādiagnosticsā (mixing also important in ELISA), the field of electrochemistry, the range of catalysts, or the area of quality control ("sticking" to surfaces to avoid it).
- rates of āstickingā of particles or measuring the strength of "sticking"("sticking", physorption, chemsorption, adsorption, absorption) can be measured.
- thermal convection is to be generated for mixing by means of IR LEDs.
- IR LEDs are cheap; one can e.g. Insert 384 LEDs or 96, or 24 or 16 to mix many wells simultaneously.
- IR LEDs typically have less light output than IR lasers, but since the layer thickness of the aqueous solution in the wells is very large (typically> 1 mm), the IR radiation is very well absorbed (Beer-Lambert's Law) and so are IR LEDs powerful enough.
- the method according to the invention is advantageous for reaction kinetics measurements or biomolecule analysis.
- the method can be used with NanoTemperĀ® capillaries (for example, glass capillaries with inner diameter of 0.05 mm to 0.8 mm), preferably with inner diameters of 0.2 mm, 0.35 mm, 0.5 mm and 0.8 mm and outer diameters less than or equal to 1.0 mm.
- no flow cells are necessary and filling of the capillaries can be carried out purely passively by capillary forces.
- the inner surface of the glass capillary may be untreated or at least partially specifically coated / modified (e.g., with antibody, antigen, DNA, RNA, PNA, TNA, proteins, peptides, cells, polymers, etc.) or not.
- the disclosed method can generally be carried out with sample compartments having at least one region which is transparent.
- Transparency in physics is the ability of matter to transmit electromagnetic waves (transmission). In everyday life, the term is usually related to light, that is, to the spectral range of electromagnetic radiation visible to humans.
- the transparent material is preferably in a wavelength range between 200 nm to 2000 nm permeable, ie preferably also for infrared light and / or UV light.
- the transparent material is transparent to light in the range of 200 nm to 900 nm, preferably 250 nm to 900 nm, preferably 275 nm to 850 nm.
- the transparent material is also transparent to light of the following wavelength: 940 nm to 1040 nm (preferably 980 nm +/- 10 nm), 1150 nm to 1210 nm, 1380 nm to 1600 nm (preferably 1450 nm +/- 10 nm and / or 1480 nm +/- 10 nm and / or 1550 nm +/- 10 nm), 1900 nm to 2000 nm (preferably 1930 nm +/- 10 nm).
- the transparent material may comprise, for example, glass and / or a polymer.
- Possible materials are borosilicate or borosilicate glass such as Brosilikatglas 3.3 (for example DURAN glass), quartz glass, such as Suprasil, Infrasil, Synthetic quartz glass or silica glass, soda lime glass, Bk-7, ASTM Type 1 Class A glass, ASTM type 1 Class B glass.
- the polymer may be PTFE, PMMA, Zeonor TM, Zeonex TM, Teflon AF, PC, PE, PET, PP (polypropylene), PPS, PVDF, PFA, FEP, and / or acrylic glass].
- the disclosed method can also be used with pipette tips, in particular with at least partially transparent pipette tips, for example made of polypropylene.
- the process according to the invention can also be used with reaction vessels, for example reaction vessels made of glass or plastic ("Eppis"), preferably transparent glass and plastic.
- reaction vessels for the "Realtime PCR (Polymerase Chain Reaction)" for example, with reaction vessels for the "Realtime PCR (Polymerase Chain Reaction)".
- the method according to the invention can also be used with chambers / capillaries for electrophoresis, preferably capillary electrophoresis.
- the method according to the invention can also be used in the detection range of HPLC / UHPLC (High Performance Liquid Chromatography (HPLC).)
- HPLC High Performance Liquid Chromatography
- the disclosed method can also be used with microfluidic chambers / microfluidic chips
- the method according to the invention can be used with sealed / sealed multititre plates (multiwell plates).
- the disclosed method can be used in sealed / sealed ampoules, for example glass ampoules or plastic ampoules, preferably transparent ampoules, for example substances in the ampoules for forensic or diagnostic tests be enclosed, which must not be contaminated and therefore preferably should not be opened.
- the inventive method can also be done with multi-well plates (multiwell plates) which have a non-transparent bottom.
- multititer plates (multiwell plates) for filling with pipettes or pipetting robots are open, preferably open at the top.
- the process according to the invention can also be used everywhere, for example, where mixing / flow generation by means of external flow (pumping) and / or mechanical shaking is not possible (for example all closed reaction vessels / microcavities) or useful, but the aqueous solution is optically accessible.
- the method according to the invention can be used in diagnostics, also for mixing in ELISA plates. Another exemplary application is quality control.
- the mixing method according to the invention can be combined with a multiplicity of different known measuring and reading techniques, in particular for measuring specific and unspecific interactions of particles at surfaces / interfaces.
- the following typical surface techniques are mentioned by way of example: For measurement, methods such as reflectometric interference spectroscopy (RlfS), Bio-Layer Interferometry (BLI), the surface plasmon resonance (English Surface Plasmon Resonance, SPR), the quartz crystal microbalances (English Quartz Crystal Microbalance, QCM), surface acoustic wave (SAW), enzyme-linked immunosorbent assay (ELISA) or nanopores or transistors (Next Generation Sequencing). For example, these measuring methods may be performed by a combination of e.g.
- Glass capillaries of certain diameter as a sample chamber of the aqueous solution with the particles, IR laser / LED for generating a thermal convection in the aqueous solution in the glass capillaries and a corresponding measurement or experimental arrangement can be improved.
- the disclosed method for mixing liquids or particles with a liquid relates to the steps of providing a volume of liquid and generating a thermal convection flow on at least one surface / interface of the liquid volume by irradiating electromagnetic radiation into the liquid volume.
- the liquid volume may be provided, for example, in a sample chamber that is open or closed.
- a microcavity may serve as the sample chamber, more preferably a capillary or a pipette tip.
- a sample chamber should have at least one region that is at least partially transparent.
- the sample chamber has a thickness of 0.01 mm to 25 mm, preferably 0.05 mm to 12 mm, preferably 0.05 mm to 1 mm.
- capillaries have an inner diameter of 0.01 mm to 3 mm, preferably 0.05 mm to 0.8 mm, wherein the capillaries are preferably at least partially made of glass or other at least partially transparent materials.
- the volume of liquid may also be provided as drops on a slide.
- the sample chamber has a volume of 0.001 ā l to 1000 ā l, preferably from 0.1 ā l to 200 ā l, preferably from 1 ā l to 10 ā l, preferably from 1 ā l to 6 ā l.
- the surface of the liquid volume is preferably formed by the interface between liquid volume and a surface of the sample chamber or, for example, by the interface between liquid volume and a surface of the slide.
- the liquid used is preferably an aqueous solution, but is not limited thereto.
- the electromagnetic radiation preferably has IR radiation or only wavelengths in the IR range and is preferably generated by a laser and / or an LED.
- the incident radiation may be parallel and / or anti-parallel to gravity and / or may include a component oriented perpendicular to gravity.
- the temperature gradient is generated in a small range, preferably in a range of 0.00001 mm 2 to 1 cm 2 , preferably generated in a range of 0.0001 mm 2 to 12 mm 2 .
- a detection area for measuring properties of the liquid or particles in the liquid may be spaced from the area in which the radiation is irradiated.
- the detection area may be spaced at least 0.01 mm from the incident beam, the distance preferably being measured perpendicular to the direction of irradiation.
- the detection area and the irradiation area may also overlap.
- the detection surface is often larger than a well-focused laser beam (for example, 2 ā m diameter can be achieved with IR). Therefore, in this embodiment, preferably the entire detection surface is swept by the convection flow.
- the overlap of the detection area and the irradiation area is, for example, in the structures Fig. 5 or Fig. 6 applicable. Since everything is focused by the same optics, the heating focus of the IR radiation is preferably within the detection range
- Preferred flow velocities of the convection flow are in the range of 0.0001 mm / s to 10 mm / s, preferably 0.0005 mm / s to 2 mm / s.
- the mixing method according to the invention is particularly advantageous when it is combined with additional measuring methods.
- the present invention also relates to a method for investigating molecular interactions on and / or in a thin layer in a liquid volume according to claim 7.
- a sample chamber is provided for carrying out such a measurement in the form of a capillary, pipette tip, multiwell plate or a microfluidic chip.
- the interaction is preferably measured by means of reflectometric interference spectroscopy (RlfS), surface plasmon resonance (SPR), enzyme-linked immunosorbent assay (ELISA), quartz crystal microbalances (QCM), and / or surface acoustic wave, (surface acoustic wave; SAW).
- the measurement of the interaction may be at least one method from the group: Reflectometric Interference Spectroscopy (RlfS), Bio-Layer Interferometry (BLI), Surface Plasmon Resonance (SPR), Quartz Crystal Microbalance (QCM), Surface Acoustic Wave, SAW, Enzyme linked immunosorbent assay (ELISA), nanopores or transistors (Next Generation Sequencing).
- the present invention also relates to a device for mixing liquids or particles with a liquid, in particular for carrying out a method described above, according to claim 9.
- a system with a device for mixing and a device for measuring is disclosed, wherein the Measuring device preferably for measuring a specific or nonspecific interaction of the particles with a surface / interface of a sample chamber or a slide is used.
- FIG. 3 shows by way of example the detection area 80 for measurements of the specific and unspecific interaction of particles.
- the sample chamber 45 shown is an example of a capillary.
- the detection area 80 is preferably located at the surface / interface of the measurement volume within the capillary 45, i. on the inside of the sample chamber 45.
- the detection area 80 can be selected around the area of an irradiated IR radiation 30 such that it is smaller, larger or the same size as the area swept by the thermal convection 90.
- the detection region 80 may be, for example, a thin layer and contain, for example, antibodies for the specific detection of antigens. In other words, the detection region is located on the surface of the liquid or the surface of the capillary 45.
- the detection region 80 may, for example, also be composed of several different thin layers, which differ, for example, in their refractive index, polarizability or their fluorescence.
- the convection is preferably adjusted so that no depletion layer or enrichment layer is formed in the detection area.
- the thermal convection can be adjusted so that it particles from far outside the Detection area, for example, a few millimeters away, transported into the detection area.
- Order can be varied, but it is crucial that there is a certain distance between IR laser focus (determines the "convection rollers") and the place where the interaction is detected on the surface. The distance between them is important as the IR laser produces different thermal convection currents depending on the power and chamber thickness and chamber geometry. You have to set it all up so that you have the right thermal convection currents at the interaction site (to avoid the depletion layer of the molecules).
- FIG. 4 shows an exemplary arrangement in which the inventive method is applied.
- Infrared laser radiation 30 is radiated from below into a sample chamber 45 having a liquid volume, here an aqueous solution with particles 50, and generates a thermal convection 90 in the sample chamber 45.
- the flow velocities in the liquid are represented by corresponding vectors.
- a symmetrical convection around the irradiated laser beam 30 can be seen.
- the reflectometric interference spectroscopy (RIfS) method is used as a detection method for measuring the interaction of the particles 105 dissolved in the liquid with a thin layer (shown hatched) of functionally immobilized molecules / particles 103.
- RIfS is a physical method based on the interference of white light on thin layers. This method is used in practice, for example, to investigate molecular interactions.
- the basic measuring principle corresponds to the Fabry-Perot interferometer.
- RIfS is mainly used as a detection method in chemo- and biosensors.
- As sensitive layers mostly non-selective measuring polymers are used, which sort analytes either by their size (so-called molecular sieve effect in microporous polymers) or due to different polarities (eg functionalized polydimethylsiloxanes).
- polymers such as polyethylene glycols or dextranes are applied to the layer system and immobilized thereon recognition structures for biomolecules.
- all substance classes can be used as recognition structures (proteins such as antibodies, DNA / RNA such as aptamers, small organic molecules such as estrone, but also lipids such as phospholipid membranes).
- a carrier 46 which may be part of the sample chamber 45.
- the sample to be examined is provided as a drop or liquid layer on the carrier.
- the carrier 46 may be made of glass or plastic, for example.
- the thin layer to be examined comprising a layer 103 of functionally immobilized molecules and another layer 102 of molecules, which is arranged between the layer 103 and the carrier 46, is shown schematically.
- the layer 102 serves, in particular, for better adhesion of the thin layer on the carrier 46.
- the layer / layer 102 of molecules (eg PEG or dextran, etc.) which is arranged between the layer 103 and the carrier 46 (illustrated schematically) can be referred to, for example Spacer and / or serve as immobilization aid for the functional molecules of layer 103.
- the layer 102 also serves in particular for better adhesion of the layer / thin layer 103 on the carrier.
- sample particles 105 can bind.
- the thickness of the thin layer increases, the distance of its upper boundary surface 104 to the phase boundary between the thin layer and the support (or the lower boundary surface of the thin layer) is larger.
- irradiated light 31 which is used for the measurement, we now also reflected at the boundary surface 104 after connection of the sample particles 105.
- the boundary surface 104 is formed opposite to the solution with particles 50, for example, when the particles from the aqueous solution bind to the functionally immobilized molecules in the thin layer 103.
- the reflected beam 113 at this boundary surface 104 is shown schematically.
- the reflected beams 112, 111a, 111b and 110 are also shown, which are reflected at interfaces that lie below the boundary surface 104. Since the incident light has to cover a greater path length up to the boundary surface 104, a shift of the interferogram, which is produced by the superimposition of the reflected electromagnetic radiation 110, 111 a, 111 b, 112 and 113, results. This shift can be measured with time resolution, which allows conclusions about the change in layer thickness and thus the interaction of the dissolved particles 105 with the functionally immobilized particles 103.
- the particles 105 in the aqueous solution are biomolecules such as DNA, RNA, proteins, antibodies, antigens, etc. Small molecules, nanoparticles, polymers, peptides, PNA, etc. or even cells, viruses, bacteria, vesicles, Liposomes, microbeads, nanobeads, nanodiscs, etc.
- FIG. 5 shows by way of example the application of the method in a concrete experimental arrangement, but without being limited thereto.
- the reference numeral 1 denotes a light source used for the measurement.
- the light source 1 may be one or more LEDs, one or more lasers and / or one or more SLEDs (superluminescent LED).
- the light of the light source 1 serves primarily to irradiate a sample 50 to be examined, preferably to irradiate it vertically.
- the light emitted by the light source 1 can be changed by means of known optical means, for example by means of a diffuser 4 and / or a lens system (not shown).
- a diffuser 4 can be used to evenly distribute the light and a lens system can be used to focus the light as desired.
- the light passes through a polarizer 5, for example for producing linearly polarized light.
- the light can also pass through a filter 14, so that a light beam 31 with defined properties is irradiated onto the sample 50.
- the filter 14 may, for example, be a wavelength filter, for example a bandpass filter, or a longpass filter or a shortpass filter.
- the beam splitter 7 is used to divide the light beam into a measuring beam or measuring beam path 9 and a reference beam or reference beam path 11, the measuring beam path being shown at the bottom and the reference beam path 11 pointing to the left to the reference beam.
- Detector assembly 19 ' is shown.
- the beam splitter 7 preferably has a polarizing property. However, the beam splitter 7 may also be omitted in certain embodiments. Then also eliminates the reference beam path 11, or the whole reference branch of reference beam path 11, reference lens system 17 ', reference detector filter 23' and reference detector 19 '.
- the reference detector array 19 ' may be, for example, a photodiode, a photomultiplier (photomultiplier, photomultiplier tube, PMT), a charge coupled device (CCD) camera, a complementary metal (CMOS) CMOS Oxide Semiconductor; complementary metal oxide semiconductor), a diode array, or an avalanche photodiode.
- the reference branch may have a reference lens system 17 'in front of the reference detector arrangement 19' for imaging / focusing on the reference detector arrangement 19 'and / or a reference detector filter 23', for example a bandpass filter, or a longpass filter or a short-pass filter.
- the measuring beam path 9 can, before it hits the sample 50, be changed with additional optical means, which are arranged after the beam splitter 7.
- additional optical means which are arranged after the beam splitter 7.
- a second optical correction element 36 is shown, which can optionally be extended with a lens or a lens / lens system, for example, the phase shift, polarization change and / or optical path change may be accompanied by the (second) beam splitter 34 for coupling the infrared laser radiation, to compensate / correct.
- the second optical correction element 36 and / or the optional lens or the optional lens system can also serve to focus the beam paths on the sample 50.
- the sample 50 may be deposited on a carrier 46 as a droplet or in a sample chamber 45, as in FIGS FIGS. 2 to 4 shown provided.
- a sample chamber may be a capillary, a microcavity, a reaction vessel ("Eppi"), a microfluidic device, or a pipette tip without being limited thereto.
- the sample 50 to be investigated is preferably a liquid, preferably an aqueous solution, with particles 105 present therein (see US Pat Fig. 4 ), which may be in dissolved or undissolved form.
- the support 46 is preferably at least partially transparent, with the illustrated support 46 being a slide glass formed from a glass on which a thin layer 103 is formed.
- the thin layer 103 to be examined comprises, for example, a layer of functionally immobilized molecules.
- the thin layer 103 is influenced by the sample 50 to be examined. For example, interaction of the molecules on the thin layer 103 with the corresponding particles 105 in the sample leads to a layer thickness change (see Fig. 4 ). This change in layer thickness influences the light conducted via the measuring beam path 9 onto the carrier 46 and reflected on the surface of the thin layer, which light is deflected by the beam splitter 7 and imaged on a detector arrangement 19.
- the measuring branch (to the right of the beam splitter 7) is preferably similar to the detector arrangement 19 or even identical to the reference branch (to the right of the beam splitter 7).
- the detector assembly 19 for example, a Photodiode, a photomultiplier (photomultiplier tube, photomultiplier tube, PMT), a CCD camera (Charge-Coupled Device), a complementary metal oxide semiconductor (CMOS), a diode array or an avalanche Be photodiode.
- the measuring branch may have a lens system 17 in front of the detector arrangement 19 for imaging / focusing on the detector arrangement 19 and / or a detector filter 23, for example a bandpass filter, or a longpass filter or a shortpass filter.
- the multiple reflection is preferably used at the interfaces of the thin layer for the measurement, wherein the reflected steel with the two detector arrays 19, 19 'are detected.
- the second beam splitter 34 is arranged below the first beam splitter 7.
- the second beam splitter 34 is shown above the first beam splitter 7 by way of example.
- the infrared laser radiation 30, which is emitted by the laser 32 and optionally with an optical means 33, for example lenses, or lens system, for example, collimator for parallelization and / or focusing of the infrared laser radiation is changed, in the measuring beam path 9 coupled.
- the beam splitter 34 may be similar to the beam splitter 7, be the same, or have other properties.
- the beam splitter 34 may be a dichroic mirror or a "hot mirror". It is again explicitly emphasized here that the irradiated electromagnetic radiation 31 is used for the measurement, whereas the irradiated electromagnetic radiation 30 serves to generate a convection.
- the experimental arrangement described above is only one of many examples according to the invention and the invention is by no means restricted to a specific arrangement of the optical means described above.
- the experimental setup is not limited to the orientation shown. So the light can come from the bottom left or right instead of from above and the corresponding optical Means be moved or rotated accordingly.
- the order of the optical means is not limited to the illustrated embodiment and can be changed according to the desired irradiation and measurement characteristics.
- a transmission can also be measured according to the invention.
- the convection generation method of the present invention can be easily implemented even in such a transmission test setup.
- the one to Fig. 5 shows very similar experimental arrangement, but irradiates the light of the IR laser at a different location.
- FIGS. 2A and 2B show by way of example the influence of the orientation of an irradiated IR laser beam 30 relative to gravity on the thermal convection within a sample chamber 45, in which an aqueous solution 50 with particles dissolved therein (not shown) is located. Also marked are the velocity vectors (arrows) and the flow lines (lines) of the thermal convection 90.
- FIGS. 7A and 7B show by way of example the irradiation of radiation, preferably IR radiation, for example of laser radiation 30 in the filled with an aqueous solution 50 "well" 45 a multiwell plate, such as a 96, 384 or 1536 well multiwell plate.
- the irradiated IR radiation 30 generates a thermal convection 90 in the irradiated sample chamber "well" 45.
- the IR radiation 30 is irradiated through a transparent bottom 47 of a multiwell plate.
- this multiwell plate may have a non-transparent bottom 48, but also, for example, a transparent bottom or even a partially transparent bottom.
- FIG. 8 shows by way of example the application of the disclosed method in a concrete experimental arrangement, but without being limited thereto.
- the reference numeral 1a denotes a light source used for the measurement.
- the light source 1a may be one or more LEDs, one or more lasers, and / or one or more SLEDs (Super Luminescent LED).
- Reference numeral 1b denotes a light source used for the measurement.
- the light source 1b may be one or more LEDs, one or more lasers, and / or one or more SLEDs (Super Luminescent LED).
- the light source 1b has a different wavelength or a different wavelength range than the light source 1a.
- the light of the light source 1a and / or 1b is preferably used to irradiate a sample 50 to be examined.
- the light emitted by the light sources 1a and / or 1b can be changed by means of known optical means, for example by means of a lens 26 and / or a lens system (not shown) or an aperture (not shown) or a polarizing filter.
- the light of the light source 1a preferably passes through an excitation filter 25, preferably a bandpass filter
- the light of the light source 1b preferably passes through an excitation filter 24, preferably a bandpass filter.
- the excitation filter 24 has a different transmission range than the excitation filter 25.
- Reference numeral 23 refers to an optional detector filter, for example a bandpass filter or a longpass filter or a shortpass filter or a dualpass or multipass filter. In the case of fluorescence, the filter 23 may also be referred to as an emission filter.
- the light of the two excitation light sources is preferably combined, for example, reflected by the dichroic mirror 28 and then preferably by another dichroic mirror 29 in the direction of the object lens system 38.
- the dichroic mirror 29 is also preferably used to separate the excitation light from the detection light.
- the excitation light preferably passes through another dichroic mirror 34 ("hot mirror") and is then preferably from the object lens system 38 through the transparent bottom 47 of the multiwell plate into the aqueous solution 50, in the sample chamber 45, preferably a " Well "a multiwell plate, focused.
- the excitation light excites the fluorescence of fluorescent particles 105, for example proteins with intrinsic fluorescence and / or fluorescence-labeled biomolecules or other fluorescent substances.
- the fluorescent light is collected by the object lens system 38, preferably a lens, a combination of lenses or a microscope objective, then passes through the dichroic mirrors 34 and 29, then the detection filter 23, preferably an emission filter, for example a bandpass filter, dual pass filter or multipass filter, and is then focused by a lens 17, for example an asphere, onto the detector 19, for example a photodiode, a PMT, a CCD camera, a CMOS camera, a diode array, an avalanche photodiode.
- the detection filter 23 preferably an emission filter, for example a bandpass filter, dual pass filter or multipass filter, and is then focused by a lens 17, for example an asphere, onto the detector 19, for example a photodiode, a PMT, a CCD camera, a CMOS camera, a diode array, an avalanche photodiode.
- the infrared radiation for generating the thermal convection is preferably generated by means of a fiber-coupled infrared laser 32.
- the fiber of the laser is coupled, for example by means of a fiber coupling 27, preferably with collimating functionality, in the optics or the optical system.
- the infrared radiation may be changed by known optical means, for example by means of a lens 26 and / or a lens system (not shown) or an aperture (not shown) or a polarizing filter. For example, it may be parallelized or focused by the lens 26, for example an asphere.
- the infrared radiation is mirrored by the dichroic mirror 34 ("hot mirror") in the object lens system 38.
- the object lens system 38 then focuses the infrared radiation 30 through the transparent bottom 47 of the multiwell plate into the aqueous solution 50 of the sample chamber 45, preferably a "well" of a multiwell plate.
- the multiwell plate is preferably a 96 well plate or 384 well plate or 1536 well plate.
- the infrared radiation 30 generates a defined thermal convection 90 there for the mixing of the particles 105 in the aqueous solution 50.
- the particles are, for example, biomolecules such as DNA, RNA, PNA, proteins, antibodies, antigens or small molecules, cells, viruses, bacteria, microbeads, nanobeads, nanoparticles, polymers, peptides.
- the device can also be used for the detection and quantification of biomolecule aggregation, for example, the aggregation of proteins or therapeutic Antikƶprern.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
Die Erfindung betrifft allgemein ein Verfahren und eine Vorrichtung zum berĆ¼hrungslosen Durchmischen von FlĆ¼ssigkeiten bzw. zum Durchmischen von Partikeln in einer FlĆ¼ssigkeit und insbesondere zum Durchmischen von wƤssrigen Lƶsungen. ErfindungsgemĆ¤Ć wird durch gezieltes Einstrahlen elektromagnetischer Strahlung in die FlĆ¼ssigkeit eine gerichtete FlĆ¼ssigkeitsbewegung erzeugt, um beispielsweise Partikel, vorzugsweise in der FlĆ¼ssigkeit gelƶste Partikel, zu einer OberflƤche bzw. GrenzflƤche einer Probenkammer bzw. einer OberflƤche eines FlĆ¼ssigkeitsvolumens zu transportieren, um fĆ¼r eine Durchmischung der Partikel mit der FlĆ¼ssigkeit, insbesondere an der OberflƤche/GrenzflƤche zu sorgen. Die Erfindung ist dahingehend vorteilhaft, dass eine "Verarmungsschicht" oder eine "Anreicherungsschicht" mit einer verminderten bzw. erhƶhten Partikel-Konzentration an der OberflƤche/GrenzflƤche vermieden wird, sodass OberflƤchen bzw. GrenzflƤchen basierte Messverfahren verbessert werden kƶnnen.The invention generally relates to a method and a device for non-contact mixing of liquids or for mixing particles in a liquid and in particular for mixing aqueous solutions. In accordance with the invention, directed liquid radiation is generated by targeted irradiation of electromagnetic radiation into the liquid in order, for example, to transport particles, preferably particles dissolved in the liquid, to a surface or boundary surface of a sample chamber or a surface of a liquid volume in order to mix the particles the liquid, in particular at the surface / interface to provide. The invention is advantageous in that a "depletion layer" or an "enhancement layer" with a reduced or increased particle concentration at the surface / interface is avoided, so that surface-based measurement methods can be improved.
Die Erfindung ist auch dahingehend vorteilshaft, dass sie erlaubt kleine Volumina (Mikro-Volumina), die sich beispielsweise durch mechanische Einwirkungen wie schĆ¼tteln oder rĆ¼tteln schlecht durchmischen lassen, zu durchmischen.The invention is also advantageous in that it allows small volumes (micro-volumes), which are difficult to mix, for example, due to mechanical effects such as shaking or shaking, to be mixed.
Speziell betrifft die Erfindung auch ein Verfahren bzw. eine Vorrichtung zur Untersuchung spezifischer und unspezifischer Interaktionen bzw. Wechselwirkungen von Partikeln, die vorzugsweise in einer FlĆ¼ssigkeit gelƶst sind, mit OberflƤchen bzw. GrenzflƤchen.In particular, the invention also relates to a method and a device for investigating specific and nonspecific interactions or interactions of particles, which are preferably dissolved in a liquid, with surfaces or interfaces.
Die Messung physikalischer, chemischer, biochemischer und/oder biologischer VorgƤnge, wie Reaktionen, Bindungs- und AnlagerungsvorgƤnge und sonstige Wechselwirkungen von Partikeln mit OberflƤchen sind von groĆem Interesse in den Bereichen der QualitƤtskontrolle, Wirkstoffforschung, Medizin, Grundlagenforschung und molekularen Diagnostik. Zur Untersuchung dieser VorgƤnge werden Methoden wie die Reflektometrische Interferenzspektroskopie (RlfS), Bio-Layer Interferometry (BLI), die OberflƤchen Plasmonen Resonanz (Surface Plasmone Resonance, SPR), die Quarzkristall-Mikrowaagen (Quartz Crystal Microbalance, QCM), akustische OberflƤchenwelle, kurz AOW, (engl. SAW fĆ¼r surface acoustic wave), Enzyme Linked Immunosorbent Assay (ELISA), oder auch Nanoporen oder Transistoren (Next Generation Sequencing) eingesetzt.The measurement of physical, chemical, biochemical and / or biological processes, such as reactions, binding and attachment processes and other interactions of particles with surfaces are of great interest in the fields of quality control, drug discovery, medicine, basic research and molecular diagnostics. To investigate these processes, methods such as Reflectometric Interference Spectroscopy (RlfS), Bio-Layer Interferometry (BLI), Surface Plasmon Resonance (SPR), Quartz Crystal Microbalances (QCM), Surface Acoustic Wave, Short AOW (SAW for surface acoustic wave), Enzyme Linked Immunosorbent Assay (ELISA), or nanopores or transistors (Next Generation Sequencing).
Weitere beispielhafte Methoden sind Fluoreszenzmessungen, Fluoreszenz Anisotropie Messungen, Fƶrster-Resonanz-Energie-Transfer Messungen (FRET), Interne Totalreflexionsfluoreszenzmikroskopie (englisch total internal reflection fluorescence microscopy, TIRFM), Backscattering Interferometrie Messungen (BSI), Absorptionsmessungen, Spektroskopische Messungen, AlphaScreenĀ® Assays, MicroScale Thermophoresis Messungen (MST), Patch Clamp Messungen.Further exemplary methods are fluorescence measurements, fluorescence anisotropy measurements, Fƶrster resonance energy transfer measurements (FRET), total internal reflection fluorescence microscopy (TIRFM), backscattering interferometry measurements (BSI), absorption measurements, spectroscopic measurements, AlphaScreenĀ® assays , MicroScale Thermophoresis Measurements (MST), Patch Clamp Measurements.
Vorzugsweise werden die zu untersuchenden Partikel in einer FlĆ¼ssigkeit, vorzugsweise einer wƤssrigen Lƶsung, bereitgestellt. OberflƤchen basierende Verfahren sind generell darauf angewiesen, dass die zu untersuchenden Partikel die OberflƤche der FlĆ¼ssigkeit bzw. die OberflƤche einer Probenkammer Ć¼ber einen lƤngeren Zeitraum, der Messzeit bzw. Inkubations- oder Verfahrenszeit, hinweg erreichen kƶnnen. Aufgrund der endlichen Konzentration der Partikel in der FlĆ¼ssigkeit als auch aufgrund der begrenzten Diffusionskonstante (Diffusionsgeschwindigkeit) der Partikel, bildet sich hƤufig eine sogenannte "Verarmungsschicht" (englisch "Depletionlayer", siehe beispielsweise
- a) Bindung (Messung der Bindungsrate/Bindungskinetik), Verarmungsschicht stƶrt. Hier gibt man eine Lƶsung in die Probenkammer bestehend aus Puffer und gelƶsten zu untersuchenden Partikeln A der Konzentration [A]. Die Bindungskinetik wird beschrieben durch die Rate gamma: Ī³=kon * [A] + koff d.h. die Bindungsrate (Assoziationsrate) kon kann bei Zugabe des Puffers mit Partikel A nicht unabhƤngig von der Dissoziationsrate koff gemessen werden. Man kann nur eine apparente Rate gamma messen die aber von der Konzentration [A] abhƤngt. Man will aber oft die KonzentrationsunabhƤngigen Raten kon und koff bestimmen. Deshalb ist auch b) nƶtig.
Bei a) stƶrt die Verarmungsschicht (Anbindung, Assoziation) bei b) stƶrt die Anreicherungsschicht (Dissoziation). - b) Messung der Dissoziation/Dissoziationsrate koff, Anreicherungsschicht stƶrt (siehe bsp. auch "
Blocking rebinding with soluble receptor" in J. Mol. Recognit. 1999;12:293-299
- a) Binding (measurement of binding rate / binding kinetics), depletion layer disturbs. Here, a solution is introduced into the sample chamber consisting of buffer and dissolved particles A of the concentration [A] to be examined. The binding kinetics is described by the rate gamma: Ī³ = k on * [ A ] + k off ie the binding rate (association rate) k on can not be measured independently of the dissociation rate k off when adding the buffer with particle A. One can only measure an apparent rate of gamma, which depends on the concentration [A]. But you often want that Determine concentration-independent rates k on and k off . Therefore b) is necessary.
In a) the depletion layer (binding, association) at b) disturbs the enrichment layer (dissociation). - b) Measurement of dissociation / dissociation rate k off , enrichment layer interferes (see also "
Blocking rebinding with soluble receptor "in J. Mol. Recognit. 1999; 12: 293-299
Da man, wie in a) beschrieben die kon und koff nicht unabhƤngig messen kann ist ein zweites Experiment notwendig mit dem man koff alleine bestimmen und dann zusammen mit a) bzw. einer wiederholten Messung von a) bei jeweils unterschiedlichen Konzentrationen [A], die kon bestimmen kann:
Hier gibt man nur den Puffer, ohne Partikel A, in die Probenkammer in der zuvor die Bindung von A gemessen wurde. In der Probenkammer liegt A gebunden an die OberflƤche vor, man versucht ihn dann mit dem Puffer "wegzuspĆ¼len" bzw. abzulƶsen, um die reine koff von A messen zu kƶnnen. Gibt man also reinen Puffer zu einer Probenkammer in der A an die OberflƤche gebunden ist (bzw. an die dort immobilisierten MolekĆ¼le B gebunden ist), dann muss sich ein neues chemisches Gleichgewicht einstellen (das zuvor eingestellte chemische Gleichgewicht hat sich fĆ¼r einen Puffer der A enthƤlt eingestellt), das fĆ¼hrt dazu dass sich die MolekĆ¼le A lƶsen. Transportiert man das sich lƶsende MolekĆ¼l A schnell genug weg, dann kann es nicht wieder an die OberflƤche binden (das wĆ¼rde dazu fĆ¼hren dass man wieder gamma, also kon und koff gleichzeitig misst) und man kann so die reine koff Rate messen. Wird A nicht schnell genug abtransportiert bildet sich die Anreicherungsschicht. Die kon bzw. koff werden Ć¼blicherweise in den Einheiten: kon: 1/([s]*[M]) bzw. koff: 1/[s] angegeben.Since, as described in a), the k on and k off can not be measured independently, a second experiment is necessary to determine k off alone and then together with a) or a repeated measurement of a) at different concentrations [A ], can determine the k on:
Here, only the buffer, without Particle A, is added to the sample chamber in which the binding of A was previously measured. In the sample chamber A is bound to the surface, you try it with the buffer "wegzuspĆ¼len" or replace, in order to measure the pure k off of A. Thus, if pure buffer is bound to a sample chamber in which A is bound to the surface (or bound to the molecules B immobilized there), then a new chemical equilibrium must be established (the previously set chemical equilibrium has become for a buffer of A contains set), which causes the molecules A to dissolve. If you move the dissolving molecule A away fast enough, it will not be able to re-bind to the surface (which would cause you to measure gamma again, so k on and k off at the same time) and you can measure the pure k off rate. If A is not transported away fast enough, the enrichment layer forms. The k on and k off are usually given in the units: k on : 1 / ([s] * [M]) or k off : 1 / [s].
In bekannten Verfahren wird versucht, diese Verarmungsschicht bzw. Anreicherungsschicht durch einen konstanten FlĆ¼ssigkeitsstrom, der beispielsweise durch ƤuĆere Pumpen erzeugt wird, zu verringern. Dieser Ansatz hat den groĆen Nachteil, dass durch die ƤuĆeren Pumpen, Ventile und/oder SchlƤuche ein groĆes Totvolumen entsteht und das ganze System sehr fehleranfƤllig ist. Zudem sind Lecks, Verschmutzung der SchlƤuche und Ventile, Kreuzkontamination durch alte Proben die nicht vollstƤndig entfernt werden konnten, Ursache fĆ¼r weitere Messfehler. Da bei den Nutzern oft nur sehr wenig oder sehr teures Probenmaterial vorhanden ist, sind die oben diskutierten Totvolumina ein groĆer wirtschaftlicher Nachteil. Zudem sind meist sehr groĆe/voluminƶse, schwer zu transportierende GerƤtschaften zur Steuerung und Regelung der Pumpen und Ventile und damit des FlĆ¼ssigkeitsstromes vorteilhaft. Das kann unter anderem deren Einsatz in der "point of care" / "point-of-need" Diagnostik verhindern.In known methods, it is attempted to reduce this depletion layer or enrichment layer by a constant liquid flow, which is generated, for example, by external pumps. This approach has the great disadvantage that a large dead volume is created by the outer pumps, valves and / or hoses and the whole system is very error prone. In addition, leaks, contamination of hoses and valves, cross-contamination from old samples that could not be completely removed, cause further measurement errors. Because with the users often very little or very expensive sample material is present, the dead volumes discussed above are a major economic disadvantage. In addition, usually very large / voluminous, difficult to transport equipment for controlling and regulating the pumps and valves and thus the liquid flow are advantageous. Among other things, this can prevent their use in "point of care" / "point-of-need" diagnostics.
Ein anderes Verfahren mit dem die Verarmungsschicht vermieden werden soll bewegt bzw. "rĆ¼ttelt" die Probenkammer makroskopisch gegenĆ¼ber einem OberflƤchensensor. Ein Problem dieses Verfahrens besteht jedoch darin, dass die Probenkammer nach auĆen offen sein muss und so die wƤssrige Lƶsung verdampfen kann und/oder durch ƤuĆere EinflĆ¼sse verschmutzt werden kann. Das mechanische "RĆ¼tteln" der offenen Probenkammer ist zudem problematisch, da durch das RĆ¼tteln FlĆ¼ssigkeiten Ć¼berlaufen/"Ć¼berschwappen" und so in benachbarte offene Probenkammern eindringen kƶnnen.Another method of avoiding the depletion layer moves or "shakes" the sample chamber macroscopically with respect to a surface sensor. A problem with this method, however, is that the sample chamber must be open to the outside and so can evaporate the aqueous solution and / or can be contaminated by external influences. The mechanical "shaking" of the open sample chamber is also problematic, since the shaking overflow liquids / "spill" and so can penetrate into adjacent open sample chambers.
Daneben wird auf die Patentschrift
Es ist eine Aufgabe der vorliegenden Erfindung insbesondere die oben genannten Nachteile aus dem Stand der Technik zur reduzieren bzw. zu Ć¼berwinden und ein neues, vorzugsweise vorteilhafteres Verfahren sowie eine entsprechende Vorrichtung und System bereitzustellen.It is an object of the present invention, in particular, to reduce or overcome the above-mentioned disadvantages of the prior art and to provide a new, preferably more advantageous method and a corresponding device and system.
Die Aufgabe wird durch die Merkmale der unabhƤngigen AnsprĆ¼che gelƶst. Weitere bevorzugte AusfĆ¼hrungsformen ergeben sich aus den UnteransprĆ¼chen und den folgenden Aspekten bzw. AusfĆ¼hrungsbeispielen.The object is solved by the features of the independent claims. Further preferred embodiments will become apparent from the subclaims and the following aspects or exemplary embodiments.
Die Erfindung betrifft allgemein ein Verfahren zur Durchmischung von Fluiden, vorzugsweise FlĆ¼ssigkeiten bzw. zur Durchmischen von Partikeln in einem Fluid bzw. einer FlĆ¼ssigkeit. Vorzugsweise betrifft die Erfindung ein Verfahren zur Durchmischung von in der FlĆ¼ssigkeit gelƶsten und/oder ungelƶsten Partikeln. Generell betrifft die vorliegende Erfindung die Durchmischung jeglicher Art von Partikeln bzw. Teilchen wie beispielsweise (Bio)MolekĆ¼le, (Nano)Partikel, (Mikro)beads, (Bio)Polymere, Lacke, Emulgatoren, Zellen (biologischen Zellen), Viren, Bakterien, Lipiden, Vesikel, Liposomen, Nanodiscs, Pigmente, Dispergieradditive, Pasten.The invention generally relates to a method for mixing fluids, preferably liquids or for mixing particles in a fluid or a liquid. Preferably, the invention relates to a method for mixing of dissolved and / or undissolved particles in the liquid. In general, the present invention relates to the mixing of any kind of particles or particles such as (bio) molecules, (nano) particles, (micro) beads, (bio) polymers, paints, emulsifiers, cells (biological cells), viruses, bacteria, Lipids, vesicles, liposomes, nanodiscs, pigments, dispersing additives, pastes.
Vorzugsweise wird die FlĆ¼ssigkeit als FlĆ¼ssigkeitsvolumen in zumindest einer Probenkammer bereitgestellt, wobei die Probenkammer offen oder verschlossen sein kann. Alternativ zu einer Probenkammer kann die FlĆ¼ssigkeit auch in Form eines Tropfens bereitgestellt werden, wobei erfindungsgemĆ¤Ć eine thermischer Konvektions-Strƶmungen innerhalb des Tropfens erzeugt wird. Beispielsweise kann der FlĆ¼ssigkeitstropfen auf einem geeigneten ObjekttrƤger (siehe Diskussion unten) bereitgestellt werden und beispielsweise von einer Ćlschicht umgeben sein, um eine Verdunstung zu verhindern. GemĆ¤Ć einer bevorzugten AusfĆ¼hrungsform reicht bereits die Bereitstellung sehr kleiner FlĆ¼ssigkeitsvolumina in Glaskapillaren.Preferably, the liquid is provided as a liquid volume in at least one sample chamber, wherein the sample chamber may be open or closed. As an alternative to a sample chamber, the liquid can also be provided in the form of a drop, wherein according to the invention a thermal convection flow is generated within the droplet. For example, the liquid drop may be provided on a suitable slide (see discussion below) and, for example, surrounded by an oil layer to prevent evaporation. According to a preferred embodiment, the provision of very small volumes of liquid in glass capillaries already suffices.
UnabhƤngig davon, ob die FlĆ¼ssigkeit mit darin vorhandenen (gelƶsten oder ungelƶsten) Partikeln innerhalb einer Probenkammer oder innerhalb eines Tropfens fĆ¼r eine Messung bereitgestellt wird, wird eine Konvektions-Strƶmung in dem FlĆ¼ssigkeitsvolumen durch Einstrahlung von elektromagnetischer Strahlung in das FlĆ¼ssigkeitsvolumen erreicht und insbesondere eine Durchmischung der FlĆ¼ssigkeit mit den darin vorhandenen Partikeln an einer OberflƤche des FlĆ¼ssigkeitsvolumens bzw. an einer GrenzflƤche bzw. Grenzschicht zwischen dem FlĆ¼ssigkeitsvolumen und einer Materialschicht der Probenkammer erreicht. Das erfindungsgemƤĆe Verfahren sowie die dazugehƶrige Vorrichtung ist somit fĆ¼r Messverfahren anwendbar, bei denen vorzugsweise an der OberflƤche bzw. GrenzflƤche einer FlĆ¼ssigkeit gemessen wird, da erfindungsgemĆ¤Ć eine Verarmungszone, Verarmungschicht, Anreicherungszone, Anreicherungsschicht bzw. eine Konzentrationsverschiebung an der OberflƤche bzw. GrenzflƤche vermieden wird.Regardless of whether the liquid is provided with therein (dissolved or undissolved) particles within a sample chamber or within a drop for a measurement, a convection flow is achieved in the liquid volume by irradiation of electromagnetic radiation in the liquid volume and in particular a mixing of Liquid with the particles present therein at a surface of the liquid volume or at an interface or boundary layer between the liquid volume and a material layer of the sample chamber achieved. The inventive method and the associated apparatus is thus applicable to measuring methods in which preferably measured at the surface or interface of a liquid, since according to the invention a depletion zone, depletion layer, enrichment zone, enrichment layer or a concentration shift at the surface or interface is avoided.
ErfindungsgemĆ¤Ć soll insbesondere eine gute Durchmischung in KontaktflƤchen zwischen Festkƶrper (z.B. innere OberflƤche einer Probenkammer bzw. von Glaskapillaren) und der FlĆ¼ssigkeit erreicht werden. Eine erfindungsgemƤĆe OberflƤche bzw. KontaktflƤche ist jedoch nicht auf eine ebene FlƤche beschrƤnk, sondern kann auch dreidimensional bzw. fraktal sein, z.B. wenn Dextran oder Dendrimer beschichtete Glassubstrate verwendet werden und die Interaktion zwischen z.B. Antikƶrper und Antigen an/in der Dextran-Schicht stattfindet.According to the invention, in particular a good mixing in contact surfaces between solids (for example inner surface of a sample chamber or of glass capillaries) and the liquid is to be achieved. However, a surface or contact surface according to the invention is not limited to a flat surface, but may also be three-dimensional or fractal, e.g. when dextran or dendrimer coated glass substrates are used and the interaction between e.g. Antibody and antigen takes place on / in the dextran layer.
Vorzugsweise wird die thermische Konvektions-Strƶmung mit Hilfe zumindest einer elektromagnetischen Strahlungsquelle, vorzugsweise eine Lichtquelle erzeugt. ErfindungsgemĆ¤Ć wird die thermische Konvektions-Strƶmung mit Hilfe einer infraroten (IR-)Strahlenquelle erzeugt. Beispielsweise kann IR-Strahlung mit bekannten IR-Strahlungsquellen erzeugt werden und vorzugsweise durch ein optisches Mittel (beispielsweise Linse und/oder Spiegel/Reflektor) in der FlĆ¼ssigkeit lokal positioniert und auch fokussiert werden. AbhƤngig von dem erfindungsgemƤĆen Versuchsaufbau bzw. der Anwendung kann es auch vorteilhaft sein, wenn der IR-Strahl parallelisiert wird oder sogar defokussiert wird (divergent). ErfindungsgemĆ¤Ć werden IR-LEDs als Strahlungsquelle verwendet.Preferably, the thermal convection flow is generated by means of at least one electromagnetic radiation source, preferably a light source. According to the invention, the thermal convection flow is generated by means of an infrared (IR) radiation source. For example, IR radiation can be generated with known IR radiation sources and preferably positioned locally by an optical means (eg, lens and / or mirror / reflector) in the liquid also be focused. Depending on the experimental setup according to the invention or the application, it may also be advantageous if the IR beam is parallelized or even defocused (divergent). According to the invention, IR LEDs are used as the radiation source.
Insbesondere wird die FlĆ¼ssigkeit vorzugsweise lokal am Ort des eingestrahlten Strahls erwƤrmt und so die thermische Konvektions-Strƶmung erzeugt. Mit anderen Worten, die vorliegende Erfindung erzeugt FlĆ¼ssigkeitsstrƶme vorzugsweise direkt, und vorzugsweise rein optisch und insbesondere vƶllig berĆ¼hrungslos direkt in der FlĆ¼ssigkeit/Lƶsung mit den Partikeln. Da es sich bei zu untersuchenden FlĆ¼ssigkeiten hƤufig um wƤssrige Lƶsungen handelt, ist es in diesen FƤllen besonders vorteilhaft, die elektromagnetische Strahlung im Infraroten WellenlƤngenbereich auszuwƤhlen, aufgrund des vorteilhaften Absorptionsverhaltens.In particular, the liquid is preferably heated locally at the location of the radiated beam and thus generates the thermal convection flow. In other words, the present invention preferably produces liquid streams directly, and preferably purely optically and in particular completely contactless, directly in the liquid / solution with the particles. Since liquids to be examined are often aqueous solutions, it is particularly advantageous in these cases to select the electromagnetic radiation in the infrared wavelength range, due to the advantageous absorption behavior.
Die Erfinder der vorliegenden Erfindung haben zudem erkannt, dass eine wƤssrige Lƶsung nicht nur die Energie der IR-Laserstrahlung absorbiert, sondern auch der Impuls der Photonen der IR-Laserstrahlung (Lichtdruck) einen Einfluss auf das Konvektionsverhalten hat (siehe
Die WellenlƤnge der bevorzugten IR-Strahlung liegt vorzugsweise im Bereich 1200 nm bis 2000 nm. Weiter bevorzugt sind die speziellen IR-LaserwellenlƤngen: 980 nm (+/- 10 nm); 1450 nm (+/- 20 nm); 1480 nm (+/- 20 nm); 1550 nm (+/- 20 nm) und 1920 nm (+/- 20 nm).The wavelength of the preferred IR radiation is preferably in the range 1200 nm to 2000 nm. More preferred are the specific IR laser wavelengths: 980 nm (+/- 10 nm); 1450 nm (+/- 20 nm); 1480 nm (+/- 20 nm); 1550 nm (+/- 20 nm) and 1920 nm (+/- 20 nm).
Die Erfindung betrifft zudem eine Vorrichtung, um das erfindungsgemƤĆe Verfahren durchzufĆ¼hren. Insbesondere wird das erfindungsgemƤĆe Verfahren vorzugsweise in Kombination mit OberflƤchen/GrenzflƤchen basierten Messverfahren/Messvorrichtungen eingesetzt. Dadurch kƶnnen beispielsweise spezifische chemische, biochemische Interaktionen an GrenzflƤchen sicher und zuverlƤssig untersucht werden, vorzugsweise in extrem kleinen Volumina. Neben spezifischen Interaktionen von Partikeln mit GrenzflƤchen kƶnnen auch unspezifische Effekte, wie beispielsweise "Kleben", Physisorption, Chemisorption, Sorption ,Adsorption, Absorption, elektrochemische Prozesse, katalytische Prozesse usw. untersucht werdenThe invention also relates to a device for carrying out the method according to the invention. In particular, the method according to the invention is preferably used in combination with surface / interface-based measuring methods / measuring devices. This allows, for example, specific chemical, biochemical Interactions at interfaces are safely and reliably investigated, preferably in extremely small volumes. In addition to specific interactions of particles with interfaces, non-specific effects such as "sticking", physisorption, chemisorption, sorption, adsorption, absorption, electrochemical processes, catalytic processes, etc. can also be investigated
So kann das erfindungsgemƤĆe Durchmischungsverfahren beispielsweise in Kombination mit Messvorrichtung zur Bestimmung von optischen Eigenschaften an einer dĆ¼nnen Schicht verwendet werden, wodurch beispielsweise chemische, biochemische, medizinische und/oder physikalische Reaktionen, Bindungs- und/oder AnlagerungsvorgƤnge sowie sonstige Wechselwirkungen an der dĆ¼nnen Schicht nachgewiesen werden kƶnnen. Bei bekannten Messverfahren wird beispielsweise Licht, vorzugsweise Licht einer bestimmten WellenlƤnge, auf eine zu untersuchende Probe eingestrahlt, wobei die Probe an eine dĆ¼nne Schicht gebunden ist. Ćnderungen in der optischen Schichtdicke werden beispielsweise mittels Interferenzerscheinungen detektiert bzw. gemessen, woraus sich RĆ¼ckschlĆ¼sse auf Reaktionen der untersuchten Probe mit einer entsprechend vorbehandelten dĆ¼nnen Schicht ergeben.Thus, the mixing method according to the invention can be used, for example, in combination with measuring device for determining optical properties on a thin layer, whereby, for example, chemical, biochemical, medical and / or physical reactions, binding and / or addition processes as well as other interactions on the thin layer are detected can. In known measuring methods, for example, light, preferably light of a specific wavelength, is irradiated onto a sample to be examined, the sample being bound to a thin layer. Changes in the optical layer thickness are detected or measured, for example, by means of interference phenomena, which results in conclusions on reactions of the examined sample with a suitably pretreated thin layer.
Ein weiterer Vorteil des erfindungsgemƤĆen Verfahrens besteht beispielsweise auch darin, dass es kein Totvolumen gibt. ErfindungsgemĆ¤Ć kann der Volumenverbrauch von einigen 100 Mikrolitern bis einigen Milliliter auf einige Nanoliter bis einige Mikroliter reduziert werden. Vorzugsweise werden als erfindungsgemƤĆes Volumen Volumina von 1 Mikroliter bis 10 Mikroliter eingesetzt. AufwƤndige Flusszellen, Mikrofluidiken, Pumpen, Ventile und SchlƤuche entfallen vorzugsweise, wodurch eine erfindungsgemƤĆe Vorrichtung sehr robust ist und vorzugsweise nicht durch etwaige RĆ¼ckstƤnde in SchlƤuchen und/oder Ventilen verschmutzt werden kann und es verhindert auch den Verlust der Probe/der Partikel in der Probe durch Kleben (Adsorption/Chemsorption/Physorption) der Partikel an den OberflƤchen der SchlƤuche und Ventile (allgemeiner: an den OberflƤchen der Totvolumina).Another advantage of the method according to the invention, for example, is that there is no dead volume. According to the invention, the volume consumption can be reduced from a few 100 microliters to a few milliliters to a few nanoliters to a few microliters. Volumes of from 1 microliter to 10 microliters are preferably used as the volume according to the invention. Elaborate flow cells, microfluidics, pumps, valves and hoses are preferably eliminated, whereby a device according to the invention is very robust and preferably can not be contaminated by any residues in hoses and / or valves and it also prevents loss of sample / particles in the sample Adherence (adsorption / chemsorption / physorption) of the particles to the surfaces of the hoses and valves (more generally: to the surfaces of the dead volumes).
Da die FlĆ¼ssigkeitsstrƶme vorzugsweise vƶllig berĆ¼hrungslos, rein optisch erzeugt werden, kann eine Kreuzkontamination und/oder Verschmutzung der Proben vermindert und vorzugsweise sogar ausgeschlossen werden. ErfindungsgemĆ¤Ć kƶnnen sowohl offene als abgeschlossene Probenkammern verwenden werden, wobei durch geschlossene Probenkammern zudem eine Verdampfung/Verdunstung der (wƤssrigen) Lƶsung vermieden werden kann. Dies ist beispielsweise dahingehend vorteilhaft, dass damit deutlich lƤngere Messzeiten mƶglich sind.Since the liquid streams are preferably generated completely contactless, purely optically, cross-contamination and / or contamination of the samples can be reduced and preferably even excluded. According to the invention, both open and closed sample chambers can be used, whereby vaporization / evaporation of the (aqueous) solution can also be avoided by closed sample chambers. This is advantageous, for example, in that significantly longer measurement times are possible.
Generell wird Konvektion wird durch eine Strƶmung hervorgerufen, die Partikel befƶrdern kann. Ursache fĆ¼r die transportierende Strƶmung kƶnnen grundsƤtzlich unterschiedliche KrƤfte sein, wie z. B. Gewichtskraft oder KrƤfte, die von Druck-, Dichte-, Temperatur- oder Konzentrationsunterschieden herrĆ¼hren. Man unterscheidet dabei die erzwungene Konvektion, bei der der Teilchentransport durch ƤuĆere Einwirkung, zum Beispiel ein GeblƤse oder eine Pumpe, hervorgerufen wird, und freie oder natĆ¼rliche Konvektion, bei der der Teilchentransport vorzugsweise ausschlieĆlich durch Auswirkungen des Temperaturgradienten hervorgerufen wird. Das erfindungsgemƤĆe Verfahren erzeugt vorzugsweise eine freie bzw. natĆ¼rliche Konvention, d.h., Konvektion die durch einen Temperaturgradienten hervorgerufen wird. Die Temperaturerhƶhung ist dabei vorzugsweise so gering, dass die Partikel bzw. die Probe nicht beschƤdigt und/oder negativ beeinflusst werden.Generally, convection is caused by a flow that can carry particles. Cause of the transporting flow can basically be different forces, such. As weight or forces resulting from pressure, density, temperature or concentration differences. A distinction is made here between forced convection, in which the particle transport is caused by external action, for example a blower or a pump, and free or natural convection, in which the particle transport is preferably caused exclusively by effects of the temperature gradient. The method of the invention preferably produces a free or natural convention, i.e., convection caused by a temperature gradient. The temperature increase is preferably so low that the particles or the sample are not damaged and / or negatively affected.
Eine freie Konvektion aufgrund thermischer Dichteunterschiede kann beispielsweise wie folgt beschrieben werden: Bei ErwƤrmung dehnen sich Stoffe in der Regel aus (Ausnahme z.B. die Dichteanomalie des Wassers). Unter Einwirkung der Gravitationskraft steigen innerhalb einer FlĆ¼ssigkeit Bereiche mit geringerer Dichte gegen das Gravitationsfeld auf (Auftrieb), wƤhrend Bereiche mit hƶherer Dichte darin absinken. Wenn beispielsweise an der Unterseite einer Probenkammer WƤrme zugefĆ¼hrt wird und an der Oberseite die Mƶglichkeit zur AbkĆ¼hlung besteht, so entsteht eine kontinuierliche Strƶmung: Die FlĆ¼ssigkeit wird erwƤrmt, dehnt sich dabei aus und steigt nach oben. Dort angelangt kĆ¼hlt die FlĆ¼ssigkeit ab, zieht sich dabei wieder zusammen und sinkt ab, um unten erneut erwƤrmt zu werden.For example, free convection due to thermal density differences may be described as follows: When heated, fabrics tend to expand (except, for example, the density anomaly of the water). Under the influence of the gravitational force, areas of lower density rise within the fluid against the gravitational field (buoyancy), while areas of higher density sink therein. For example, if heat is applied to the bottom of a sample chamber and the top of the sample is allowed to cool, a continuous flow is created: the liquid heats up, expands, and rises. Once there, the liquid cools down, contracts again and sinks to be heated again below.
Die Geschwindigkeit der FlĆ¼ssigkeitsstrƶme der erfindungsgemƤĆen thermischen Konvektion kann vorzugsweise mittels Variation der optischen Energie bzw. Leistung, der Fokussierung oder Defokussierung, der IntensitƤt, der Richtung, der ParallelitƤt (bzw. auch Konvergenz und Divergenz) und/oder der Lage des Fokus relativ zur zu untersuchenden OberflƤche/dĆ¼nnen Schicht, der Anzahl der Strahlen (Laserstrahl kann aufgespalten werden um mehrere Orte gleichzeitig zu heizen), der Einstrahldauer, der Pulsweitenmodulation (Pulshƶhe, Pulsdauer, Wiederholrate), der WellenlƤnge, der Geschwindigkeit des bewegten Strahls, der eingestrahlten Strahlung und/oder abhƤngig von der Einstrahlrichtung relativ zur Gravitation verƤndert bzw. kontrolliert werden. Die Position der eingestrahlten Strahlung (z.B. Position des Fokus der eingestrahlten Strahlung) kann variieren, beispielsweise kann der Fokus mittels Spiegelsystemen (vgl. Laserscanner) in allen drei Raumrichtungen positioniert und mit verschiedenen Geschwindigkeiten bewegt werden. Da die vorliegende Erfindung mittels optisch erzeugter thermischer Konvektion auch FlĆ¼ssigkeitsstrƶme senkrecht zu den OberflƤchen von Probenkammern erzeugen kann (im Gegensatz zu FlĆ¼ssigkeitsstrƶmen die von ƤuĆeren Pumpen erzeugt werden), ist die Durchmischung der FlĆ¼ssigkeit und die Reduzierung einer Verarmungsschicht sehr effizient.The velocity of the liquid streams of the thermal convection according to the invention can preferably be determined by varying the optical energy or power, the focusing or defocusing, the intensity, the direction, the parallelism (or also the convergence and divergence) and / or the position of the focus relative to surface / thin film, the number of beams (laser beam can be split to heat several places at the same time), the duration of irradiation, pulse width modulation (pulse height, pulse duration, repetition rate), wavelength, moving beam velocity, irradiated radiation and / or be changed or controlled relative to the direction of gravity relative to gravity. The position of the irradiated radiation (eg position of the focus of the irradiated radiation) can vary, for example the focus can be positioned in all three spatial directions by means of mirror systems (see laser scanner) and be moved at different speeds. Since the present invention can also generate liquid streams perpendicular to the surfaces of sample chambers by means of optically generated thermal convection (as opposed to liquid streams generated by external pumps), mixing the liquid and reducing a depletion layer is very efficient.
Die Geschwindigkeit der thermischen Konvektion ist unter anderem von der Kammerdicke (Hƶhe in Richtung Gravitation) der Probenkammer und insbesondere von der Kammergeometrie abhƤngig. Insbesondere kƶnnen RandflƤchen einer Probenkammer die Geschwindigkeit der thermischen Konvektion signifikant beeinflussen. Bevorzugt sind Probenkammern die dick genug sind (beispielsweise > 0,05mm), um eine gewĆ¼nschte schnelle Strƶmungsgeschwindigkeit der thermischen Konvektion zu erreichen, um den "Depletionlayer" (die Verarmungsschicht) bzw. eine Anreicherungsschicht zu vermeiden.The rate of thermal convection depends, among other things, on the chamber thickness (height in the direction of gravity) of the sample chamber and, in particular, on the chamber geometry. In particular, edge surfaces of a sample chamber can significantly influence the speed of thermal convection. Preference is given to sample chambers that are thick enough (for example> 0.05 mm) to achieve a desired rapid flow velocity of the thermal convection in order to avoid the " depletion layer" or an enrichment layer.
Insbesondere ist es bevorzugt, erfindungsgemĆ¤Ć eine thermische Konvektion so zu erreichen, dass vorzugsweise eine laminare Strƶmung, vorzugsweise bei kleinen Reynolds-Zahlen erzeugt (Reynolds-Zahl Re< 1000) wird. Vorzugsweise setzt man Probenkammern (auch FlĆ¼ssigkeitstropfen bzw. Wassertropfen) mit einem Volumen von <= 200Āµl (MikrokavitƤt) ein. Zudem ist eine Schichtdicke von mindestens 0,05mm bevorzugt, da bei geringeren Schichtdicken bzw. geringeren Dicken der Probenkammer der Konvektionseffekt zu schwach ist, um eine gewĆ¼nschte Durchmischung zu erreichen. Auch ist es bevorzugt, Schichtdicken der FlĆ¼ssigkeit bzw. Dicken der Probenkammer nicht grƶĆer als 11,5 mm (Well-Tiefe bei Multiwellplatten) zu verwenden.In particular, it is preferred according to the invention to achieve a thermal convection such that preferably a laminar flow is generated, preferably at low Reynolds numbers (Reynolds number Re <1000). It is preferable to use sample chambers (also liquid drops or water drops) with a volume of <= 200 Ī¼l (microcavity). In addition, a layer thickness of at least 0.05 mm is preferred because at lower layer thicknesses or smaller thicknesses of the sample chamber, the convection effect is too weak to achieve a desired mixing. It is also preferable to use layer thicknesses of the liquid or thicknesses of the sample chamber not greater than 11.5 mm (well depth in the case of multiwell plates).
Eine beispielhafte Konvektionsgeschwindigkeiten bei einer Probenkammer, die als Scheibe mit 1 mm Hƶhe und 5 mm Durchmesser, einem Volumen von 20 Āµl, einer Kammertemperatur von 52Ā°C, einem IR-Laser mit 1480 nm bei eingestrahlter Lichtleistung von 75 mW liegt bei einer mittleren Geschwindigkeit von ca. 0,4 mm/s. Eine typische bzw. mittlere Ausdehnung der Konvektionsstrƶmungslinien in diesem Beispiel liegt bei ca. 2 mm Durchmesser.An exemplary convection velocity for a sample chamber that is 1 mm in height and 5 mm in diameter, 20 Ī¼l in volume, 52 Ā° C chamber temperature, 1480 nm IR laser with 75 mW light output is at medium speed of about 0.4 mm / s. A typical or average extent of the convection flow lines in this example is about 2 mm in diameter.
Bei der folgenden Probenkammer-Geometrie: Scheibe mit 0,05 mm Hƶhe und 5 mm Durchmesser; Kammertemperatur: 20Ā°C; IR-Laser: 1480 nm; Temperaturerhƶhung durch IR-Laserstrahlung: 1,25 K; liegt die typische/mittlere Geschwindigkeit der Konvektion bei ca. 0,0005 mm/s wenn die IR-Laserstrahlung antiparallel zur Gravitation ausgerichtet ist, die thermische Konvektion also unterstĆ¼tzt.For the following sample chamber geometry: disc with 0.05 mm height and 5 mm diameter; Chamber temperature: 20 Ā° C; IR laser: 1480 nm; Temperature increase by IR laser radiation: 1.25 K; is the typical / average velocity of convection at about 0.0005 mm / s when the IR laser radiation is aligned antiparallel to gravity, so the thermal convection supported.
Im Folgenden wird ein Vergleich der Konvektionsgeschwindigkeit mit der DiffusionsGeschwindigkeit der Partikel diskutiert. Dieser Vergleich zeigt beispielsweise, dass die endliche, und daher zu langsame, Diffusion zum Problem der Verarmungs- bzw. Anreicherungsschicht fĆ¼hren kann. Beispielhafte Diffusionskonstanten D von BiomolekĆ¼len liegen zwischen 1 Āµm2/s und 400 Āµm2/s.In the following, a comparison of the convection rate with the diffusion speed of the particles is discussed. This comparison shows, for example, that the finite, and therefore too slow, diffusion can lead to the problem of the depletion layer. Exemplary diffusion constants D of biomolecules are between 1 Ī¼m 2 / s and 400 Ī¼m 2 / s.
Vorzugsweise erfolgt die Bewegung/Verschiebung/Durchmischung der Partikel aufgrund der Konvektionsstrƶmung angepasst an die Bewegung der Partikel (Brownsche Bewegung) aufgrund ihrer Diffusion (Diffusionskonstante D). Je nach Diffusionskonstante der zu untersuchenden Partikel gibt es eine bevorzugte einzusetzende mittlere Strƶmungsgeschwindigkeit der thermischen Konvektion und damit beispielsweise auch vorzugsweise einzusetzende StrahlungsintensitƤten bzw. Konfigurationen fĆ¼r die Einstrahlung der Strahlung. Aufgrund des erfindungsgemƤĆen sehr flexiblen und gut variierbaren und vorzugsweise rein optischen Aufbaus kann die Konvektionsstrƶmung und damit die Vermischung bevorzugt auf die zu untersuchenden Partikel eingestellt werden, ohne dass ein neuer Aufbau speziell fĆ¼r jeden Partikel gebaut werden muss.Preferably, the movement / displacement / mixing of the particles due to the convection flow is adapted to the movement of the particles (Brownian motion) due to their diffusion (diffusion constant D). Depending on the diffusion constant of the particles to be examined, there is a preferred average flow velocity of the thermal convection to be used, and thus, for example, preferably also radiation intensities or configurations for the irradiation of the radiation to be used. Due to the very flexible and easily variable and preferably purely optical construction according to the invention, the convection flow and thus the mixing can preferably be adjusted to the particles to be examined, without a new structure having to be built specifically for each particle.
Das erfindungsgemƤĆe Verfahren zur Durchmischung von FlĆ¼ssigkeiten kann besonders vorteilhaft in der Analytik angewendet werden, insbesondere in Analytikverfahren bei denen die Bindungskinetik von BiomolekĆ¼len (beispielsweise Assoziations- und Dissoziationsratenkonstanten; kon, koff, auch Raten fĆ¼r die Hin (kon)- und RĆ¼ckreaktion (koff) genannt) und die BindungsaffinitƤt, beschrieben beispielsweise durch die Dissoziationskonstante Kd=koff/kon, von Bedeutung sein kƶnnen. Diese Ratenkonstanten kƶnnen beispielhaft wie folgt beschrieben werden. Angenommen sei eine chemische Reaktion von MolekĆ¼l A der Konzentration [A] mit MolekĆ¼l B der Konzentration/OberflƤchendichte [B] zum Komplex D der Konzentration [D]. Die Kinetik dieser Reaktion, also die Kinetik der Komplexbildung, kann mit folgender Gleichung beschrieben werden, die somit auch die Bedeutung der Ratenkonstanten zeigt:
Weitere Beispiele fĆ¼r die Anwendung des erfindungsgemƤĆen Durchmischens ist die "Diagnostik" (Durchmischen auch bei ELISA wichtig), der Bereich der Elektrochemie, der Bereich der Katalysatoren, oder der Bereich der QualitƤtskontrolle ("Kleben" an OberflƤchen detektieren um es zu vermeiden). Zudem kƶnnen Raten von "Kleben" von Partikeln bzw. Messen der StƤrke des "Klebens" ("Kleben", Physorption, Chemsorption, Adsorption, Absorption) gemessen werden.Further examples for the application of the mixing according to the invention are "diagnostics" (mixing also important in ELISA), the field of electrochemistry, the range of catalysts, or the area of quality control ("sticking" to surfaces to avoid it). In addition, rates of "sticking" of particles or measuring the strength of "sticking"("sticking", physorption, chemsorption, adsorption, absorption) can be measured.
Auch bei Multiwellplatten (Einsatzort: ELISA) ist das Durchmischen mittels optisch erzeugter thermischer Konvektion vorteilshaft. Bei 384 Well Platten und/oder 1536 Well Platten sind die HaftkrƤfte der FlĆ¼ssigkeit an den OberflƤchen der Wells (MikrokavitƤten) so groĆ, dass die FlĆ¼ssigkeit in den Wells auf einem SchĆ¼ttler/RĆ¼ttler nicht mehr richtig durchgemischt wird. Durchmischen mittels optisch erzeugter thermischer Konvektion kann auch bei 96 Well Platten oder auch anderen ReaktionsgefƤĆen vorteilshaft sein, beispielsweise wenn mechanische SchĆ¼ttler oder andere Mischvorrichtungen wie z.B. magnetische RĆ¼hrfische aus GrĆ¼nden wie z.B. der Vermeidung von Kontaminationen nicht verwendet werden kƶnnen. Mittels IR-Laser der fĆ¼r z.B. auch nur fĆ¼r jeweils einige Sekunden in jedem Well eingesetzt wird, kann eine bessere Durchmischung im Well (Volumen < 200 Āµl) erreicht werden. ErfindungsgemĆ¤Ć ist auch, speziell bei dieser Anwendung, die thermische Konvektion zur Durchmischung mittels IR-LEDs zu erzeugen. IR-LEDs sind gĆ¼nstig; man kann z.B. 384 LEDs oder 96, oder 24 oder 16 einsetzen, um viele Wells gleichzeitig zu durchmischen. IR-LEDs haben typischerweise weniger Lichtleistung als IR-Laser, da die Schichtdicke der wƤssrigen Lƶsung in den Wells aber sehr groĆ ist (typischerweise > 1 mm) wird die IR-Strahlung sehr gut absorbiert (Gesetz von Beer-Lambert) und damit sind auch IR-LEDs leistungsstark genug.Even with multiwell plates (place of use: ELISA) mixing by optically generated thermal convection is advantageous. For 384 well plates and / or 1536 well plates, the adhesion of the fluid to the surfaces of the wells (microcavities) is so great that the fluid in the wells on a shaker / vibrator is no longer properly mixed. Mixing by means of optically generated thermal convection can also be advantageous in the case of 96-well plates or other reaction vessels, for example if mechanical shakers or other mixing devices, such as e.g. magnetic stirring fish for reasons such as e.g. avoid contamination can not be used. By means of an IR laser for e.g. Even if only every few seconds in each well is used, a better mixing in the well (volume <200 ul) can be achieved. Also according to the invention, especially in this application, thermal convection is to be generated for mixing by means of IR LEDs. IR LEDs are cheap; one can e.g. Insert 384 LEDs or 96, or 24 or 16 to mix many wells simultaneously. IR LEDs typically have less light output than IR lasers, but since the layer thickness of the aqueous solution in the wells is very large (typically> 1 mm), the IR radiation is very well absorbed (Beer-Lambert's Law) and so are IR LEDs powerful enough.
Allgemein ist das erfindungsgemƤĆe Verfahren vorteilhaft fĆ¼r Reaktionskinetik Messungen bzw. BiomolekĆ¼l Analytik. Insbesondere kann das Verfahren mit NanoTemperĀ® Kapillaren (beispielsweise Glaskapillaren mit Innendurchmesser von 0,05mm bis 0,8mm) eingesetzt werden, vorzugsweise mit Innendurchmessern von 0,2 mm, 0,35 mm, 0,5 mm und 0,8 mm und AuĆendurchmessern kleiner gleich 1,0 mm.. Vorzugsweise sind keine Flusszellen nƶtig und eine BefĆ¼llung der Kapillaren kann rein passiv durch KapillarkrƤfte erfolgen. Die innere OberflƤche der Glaskapillare kann unbehandelt oder zumindest teilweise spezifisch beschichtet/modifiziert sein (z.B. mit Antikƶrper, Antigen, DNA, RNA, PNA, TNA, Proteinen, Peptiden, Zellen, Polymere etc.) oder auch nicht.In general, the method according to the invention is advantageous for reaction kinetics measurements or biomolecule analysis. In particular, the method can be used with NanoTemperĀ® capillaries (for example, glass capillaries with inner diameter of 0.05 mm to 0.8 mm), preferably with inner diameters of 0.2 mm, 0.35 mm, 0.5 mm and 0.8 mm and outer diameters less than or equal to 1.0 mm. Preferably, no flow cells are necessary and filling of the capillaries can be carried out purely passively by capillary forces. The inner surface of the glass capillary may be untreated or at least partially specifically coated / modified (e.g., with antibody, antigen, DNA, RNA, PNA, TNA, proteins, peptides, cells, polymers, etc.) or not.
Das offenbarte Verfahren kann allgemein mit Probenkammern bzw. ObjekttrƤgern durchgefĆ¼hrt werden, die zumindest einen Bereich aufweisen, der transparent ist. Transparenz ist in der Physik die FƤhigkeit von Materie, elektromagnetische Wellen hindurch zulassen (Transmission). Im Alltag wird der Begriff meist auf Licht, also auf den fĆ¼r den Menschen sichtbare Spektralbereich elektromagnetischer Strahlung, bezogen. ErfindungsgemĆ¤Ć ist das transparente Material vorzugsweise in einem WellenlƤngenbereich zwischen 200 nm bis 2000 nm durchlƤssig, d.h. vorzugsweise auch fĆ¼r infrarotes Licht und/oder UV Licht. Vorzugsweise ist das transparente Material fĆ¼r Licht im Bereich von 200 nm bis 900 nm, vorzugsweise 250 nm bis 900 nm, vorzugsweise 275 nm bis 850 nm transparent. Vorzugsweise ist das transparente Material auch fĆ¼r Licht der folgenden WellenlƤnge transparent: 940 nm bis 1040 nm (vorzugsweise 980 nm +/- 10 nm), 1150 nm bis 1210nm, 1380 nm bis 1600 nm (vorzugsweise 1450 nm +/- 10 nm and/or 1480 nm +/- 10 nm und/oder 1550 nm +/- 10 nm), 1900 nm bis 2000 nm (vorzugsweise 1930 nm +/- 10 nm). Zudem kann es bereits ausreichen, wenn lediglich 10% des eingestrahlten Lichts durch das transparente Material durchgelassen werden, vorzugsweise mindestens 20%, 30%, 40%, 50%, 60%, 70%, 80% oder mindestens 90% oder mehr.The disclosed method can generally be carried out with sample compartments having at least one region which is transparent. Transparency in physics is the ability of matter to transmit electromagnetic waves (transmission). In everyday life, the term is usually related to light, that is, to the spectral range of electromagnetic radiation visible to humans. According to the invention, the transparent material is preferably in a wavelength range between 200 nm to 2000 nm permeable, ie preferably also for infrared light and / or UV light. Preferably, the transparent material is transparent to light in the range of 200 nm to 900 nm, preferably 250 nm to 900 nm, preferably 275 nm to 850 nm. Preferably, the transparent material is also transparent to light of the following wavelength: 940 nm to 1040 nm (preferably 980 nm +/- 10 nm), 1150 nm to 1210 nm, 1380 nm to 1600 nm (preferably 1450 nm +/- 10 nm and / or 1480 nm +/- 10 nm and / or 1550 nm +/- 10 nm), 1900 nm to 2000 nm (preferably 1930 nm +/- 10 nm). In addition, it may already be sufficient if only 10% of the incident light is transmitted through the transparent material, preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80% or at least 90% or more.
Das transparente Material kann beispielsweise Glas und/oder eine Polymer aufweisen. Mƶgliche Materialien sind auch Borosilikate bzw. Borosilikatglas wie Brosilikatglas 3.3 (beispielsweise DURAN-Glas), Quarz Glas, wie Suprasil, Infrasil, Synthetisches Quarzglas bzw. Kieselglas, Kalk-Natron Glas, Bk-7, ASTM Type 1 Class A Glas, ASTM Type 1 Class B Glas. Das Polymer kann PTFE, PMMA, Zeonorā¢, Zeonexā¢, Teflon AF, PC, PE, PET, PP (Polypropylen), PPS, PVDF, PFA, FEP, und/oder Acrylglas aufweisen].The transparent material may comprise, for example, glass and / or a polymer. Possible materials are borosilicate or borosilicate glass such as Brosilikatglas 3.3 (for example DURAN glass), quartz glass, such as Suprasil, Infrasil, Synthetic quartz glass or silica glass, soda lime glass, Bk-7,
Das offenbarte Verfahren kann auch mit Pipettenspitzen, insbesondere mit zumindest teilweise transparenten Pipettenspitzen, beispielsweise aus Polypropylen, eingesetzt werden. Das erfindungsgemƤĆe Verfahren kann auch mit ReaktionsgefƤĆen, z.B. ReaktionsgefƤĆen aus Glas oder Kunststoff ("Eppis"), vorzugsweise transparentem Glas und Kunststoff, eingesetzt werden. Beispielsweise mit ReaktionsgefƤĆen fĆ¼r die "Realtime PCR (Polymerase Kettenreaktion)". Das erfindungsgemƤĆe Verfahren kann auch mit Kammern/Kapillaren fĆ¼r die Elektrophorese, vorzugesweise der Kapillarelektrophorese eingesetzt werden. Das erfindungsgemƤĆe Verfahren kann auch im Detektionsbereich einer HPLC/UHPLC (HochleistungsflĆ¼ssigkeitschromatographie (engl. high performance liquid chromatography, HPLC) eingesetzt werden. Das offenbarte Verfahren kann auch mit Mikrofluidikkammern/Mikrofluidikchips eingesetzt werden. Das erfindungsgemƤĆe Verfahren kann mit verschlossenen/versiegelten Multititerplatten (Multiwellplatten) die einen transparenten Boden und/oder Deckel haben eingesetzt werden. Das offenbarte Verfahren kann in verschweissten/versiegelten Ampullen, beispielsweise Glasampullen oder Kunststoffampullen, vorzugsweise transparenten Ampullen, eingesetzt werden. In den Ampullen kƶnnen beispielsweise Stoffe fĆ¼r forensische oder diagnostische Tests eingeschlossen sein, die nicht verunreinigt werden dĆ¼rfen und deshalb vorzugsweise nicht geƶffnet werden sollen.The disclosed method can also be used with pipette tips, in particular with at least partially transparent pipette tips, for example made of polypropylene. The process according to the invention can also be used with reaction vessels, for example reaction vessels made of glass or plastic ("Eppis"), preferably transparent glass and plastic. For example, with reaction vessels for the "Realtime PCR (Polymerase Chain Reaction)". The method according to the invention can also be used with chambers / capillaries for electrophoresis, preferably capillary electrophoresis. The method according to the invention can also be used in the detection range of HPLC / UHPLC (High Performance Liquid Chromatography (HPLC).) The disclosed method can also be used with microfluidic chambers / microfluidic chips The method according to the invention can be used with sealed / sealed multititre plates (multiwell plates). The disclosed method can be used in sealed / sealed ampoules, for example glass ampoules or plastic ampoules, preferably transparent ampoules, for example substances in the ampoules for forensic or diagnostic tests be enclosed, which must not be contaminated and therefore preferably should not be opened.
Das erfindungsgemƤĆe Verfahren kann auch mit Multititerplatten (Multiwellplatten) die einen nicht-transparenten Boden haben erfolgen. Vorzugsweise sind Multititerplatten (Multiwellplatten) zum BefĆ¼llen mit Pipetten bzw. Pipetierrobotern jedoch offen, vorzugsweise oben offen.The inventive method can also be done with multi-well plates (multiwell plates) which have a non-transparent bottom. Preferably, however, multititer plates (multiwell plates) for filling with pipettes or pipetting robots are open, preferably open at the top.
Das erfindungsgemƤĆe Verfahren kann beispielsweise auch Ć¼beralldort eingesetzt werden, wo ein Durchmischen / eine Strƶmungserzeugung mittels externem Fluss (Pumpen) und/oder mechanischem RĆ¼tteln nicht mƶglich (beispielsweise alle abgeschlossenen ReaktionsgefaĆe/MikrokavitƤten) oder sinnvoll ist, aber die wƤssrige Lƶsung optisch zugƤnglich ist.The process according to the invention can also be used everywhere, for example, where mixing / flow generation by means of external flow (pumping) and / or mechanical shaking is not possible (for example all closed reaction vessels / microcavities) or useful, but the aqueous solution is optically accessible.
Das erfindungsgemƤĆe Verfahren kann in der Diagnostik, auch zur Durchmischung bei ELISA Platten angewendet werden. Ein weiteres beispielhaftes Anwendungsgebiet ist die QualitƤtskontrolle.The method according to the invention can be used in diagnostics, also for mixing in ELISA plates. Another exemplary application is quality control.
Das erfindungsgemƤĆe Verfahren zum Durchmischen kann mit einer Vielzahl verschiedener bekannter Mess- und Auslesetechniken kombiniert werden, insbesondere zur Messung spezifischer und unspezifischer Interaktionen von Partikeln an OberflƤchen/GrenzflƤchen. Folgende typische OberflƤchentechniken seien beispielhaft erwƤhnt: Zur Messung werden Methoden wie die Reflektometrische Interferenzspektroskopie (RlfS), Bio-Layer Interferometry (BLI), die OberflƤchen Plasmonen Resonanz (englisch Surface Plasmone Resonance, SPR), die Quarzkristall-Mikrowaagen (englisch Quartz Crystal Microbalance, QCM), akustische OberflƤchenwelle, kurz AOW, (engl. SAW fĆ¼r surface acoustic wave), Enzyme Linked Immunosorbent Assay (ELISA), oder auch Nanoporen oder Transistoren (Next Generation Sequencing) eingesetzt. Beispielsweise kƶnnen diese Messverfahren durch eine Kombination aus z.B. Glaskapillaren bestimmter Durchmessers als Probenkammer der wƤssrigen Lƶsung mit den Partikeln, IR-Laser/LED zur Erzeugung einer thermischen Konvektion in der wƤssrigen Lƶsung in der Glaskapillaren und einer entsprechenden Mess- bzw. Versuchsanordnung verbessert werden.The mixing method according to the invention can be combined with a multiplicity of different known measuring and reading techniques, in particular for measuring specific and unspecific interactions of particles at surfaces / interfaces. The following typical surface techniques are mentioned by way of example: For measurement, methods such as reflectometric interference spectroscopy (RlfS), Bio-Layer Interferometry (BLI), the surface plasmon resonance (English Surface Plasmon Resonance, SPR), the quartz crystal microbalances (English Quartz Crystal Microbalance, QCM), surface acoustic wave (SAW), enzyme-linked immunosorbent assay (ELISA) or nanopores or transistors (Next Generation Sequencing). For example, these measuring methods may be performed by a combination of e.g. Glass capillaries of certain diameter as a sample chamber of the aqueous solution with the particles, IR laser / LED for generating a thermal convection in the aqueous solution in the glass capillaries and a corresponding measurement or experimental arrangement can be improved.
Generell betrifft das offenbarte Verfahren zum Durchmischen von FlĆ¼ssigkeiten bzw. Partikeln mit einer FlĆ¼ssigkeit die Schritten: Bereitstellen eines FlĆ¼ssigkeitsvolumens und Erzeugen einer thermischen Konvektions-Strƶmung an zumindest einer OberflƤche/GrenzflƤche des FlĆ¼ssigkeitsvolumens durch Einstrahlen von elektromagnetischer Strahlung in das FlĆ¼ssigkeitsvolumen.In general, the disclosed method for mixing liquids or particles with a liquid relates to the steps of providing a volume of liquid and generating a thermal convection flow on at least one surface / interface of the liquid volume by irradiating electromagnetic radiation into the liquid volume.
Das FlĆ¼ssigkeitsvolumen kann beispielsweise in einer Probenkammer bereitgestellt wird, die offen oder geschlossen ist. Vorzugsweise kann als Probenkammer eine MikrokavitƤt dienen, weiter bevorzugt eine Kapillare oder eine Pipettenspitze. Bevorzugt sollte eine Probenkammer zumindest einen Bereich aufweisen, der zumindest teilweise transparent ist. Vorzugsweise hat die Probenkammer eine Dicke von 0,01 mm bis 25 mm, vorzugsweise 0,05 mm bis 12 mm, vorzugsweise 0,05 mm bis 1 mm. GemĆ¤Ć einer bevorzugten AusfĆ¼hrungsform haben Kapillare einem Innendurchmesser von 0,01 mm bis 3 mm, vorzugsweise 0,05 mm bis 0,8 mm wobei die Kapillare vorzugsweise zumindest teilweise aus Glas oder sonstigen zumindest teilweise transparenten Materialen hergestellt sind. Das FlĆ¼ssigkeitsvolumen kann auch als Tropfen auf einem ObjekttrƤger bereitgestellt werden.The liquid volume may be provided, for example, in a sample chamber that is open or closed. Preferably, a microcavity may serve as the sample chamber, more preferably a capillary or a pipette tip. Preferably, a sample chamber should have at least one region that is at least partially transparent. Preferably, the sample chamber has a thickness of 0.01 mm to 25 mm, preferably 0.05 mm to 12 mm, preferably 0.05 mm to 1 mm. According to a preferred embodiment, capillaries have an inner diameter of 0.01 mm to 3 mm, preferably 0.05 mm to 0.8 mm, wherein the capillaries are preferably at least partially made of glass or other at least partially transparent materials. The volume of liquid may also be provided as drops on a slide.
Vorzugsweise hat die Probenkammer ein Volumen von 0,001 Āµl bis 1000 Āµl, vorzugsweise von 0,1 Āµl bis 200Āµl, vorzugsweise von 1Āµl bis 10Āµl, vorzugsweise von 1Āµl bis 6Āµl.Preferably, the sample chamber has a volume of 0.001 Ī¼l to 1000 Ī¼l, preferably from 0.1 Ī¼l to 200 Ī¼l, preferably from 1 Ī¼l to 10 Ī¼l, preferably from 1 Ī¼l to 6 Ī¼l.
Die die OberflƤche des FlĆ¼ssigkeitsvolumens wird vorzugsweise durch die Grenzschicht zwischen FlĆ¼ssigkeitsvolumen und einer FlƤche der Probenkammer gebildet oder beispielsweise durch die Grenzschicht zwischen FlĆ¼ssigkeitsvolumen und einer FlƤche des ObjekttrƤgers.The surface of the liquid volume is preferably formed by the interface between liquid volume and a surface of the sample chamber or, for example, by the interface between liquid volume and a surface of the slide.
Bei der verwendeten FlĆ¼ssigkeit handelt es sich vorzugsweise um eine wƤssrige Lƶsung, ohne jedoch darauf beschrƤnkt zu sein.The liquid used is preferably an aqueous solution, but is not limited thereto.
Die elektromagnetische Strahlung weist vorzugsweise IR-Strahlung auf bzw. nur WellenlƤngen im IR Bereich und wird vorzugsweise von einem Laser und/oder einer LED erzeugt.The electromagnetic radiation preferably has IR radiation or only wavelengths in the IR range and is preferably generated by a laser and / or an LED.
Die eingestrahlte Strahlung kann parallel und/oder antiparallel zur Gravitation gerichtet sein und/oder eine Komponente enthalten die senkrecht zur Gravitation ausgerichtet ist.The incident radiation may be parallel and / or anti-parallel to gravity and / or may include a component oriented perpendicular to gravity.
Vorzugsweise erzeugt die eingestrahlten Strahlung ein Temperaturgradient von 0,001 K/Āµm (=1 K/mm) bis 5 K/Āµm (=5000 K/mm), vorzugsweise von 0,001 K/Āµm (=1 K/mm) bis 2 K/Āµm (=2000 K/mm).The irradiated radiation preferably generates a temperature gradient of 0.001 K / Ī¼m (= 1 K / mm) to 5 K / Ī¼m (= 5000 K / mm), preferably from 0.001 K / Ī¼m (= 1 K / mm) to 2 K / Ī¼m (= 2000 K / mm).
Weiter bevorzugt wird der Temperaturgradient in einem kleinen Bereich, vorzugsweise in einem Bereich von 0,00001 mm2 bis 1 cm2 erzeugt, vorzugsweise in einem Bereich von 0,0001 mm2 bis 12 mm2 erzeugt.More preferably, the temperature gradient is generated in a small range, preferably in a range of 0.00001 mm 2 to 1 cm 2 , preferably generated in a range of 0.0001 mm 2 to 12 mm 2 .
Ein Detektionsbereich zur Messung von Eigenschaften der FlĆ¼ssigkeit bzw. der Partikeln in der FlĆ¼ssigkeit kann von dem Bereich beabstandet sein, in dem die Strahlung eingestrahlt wird. Beispielsweise kann der Detektionsbereich mindestens 0.01 mm von dem eingestrahlten Strahl beabstandet sein, wobei der Abstand vorzugsweise senkrecht zur Einstrahlrichtung gemessen wird.A detection area for measuring properties of the liquid or particles in the liquid may be spaced from the area in which the radiation is irradiated. For example, the detection area may be spaced at least 0.01 mm from the incident beam, the distance preferably being measured perpendicular to the direction of irradiation.
GemĆ¤Ć einer weiteren AusfĆ¼hrungsform kƶnnen der Detektionsbereich und der Einstrahlbereich auch Ć¼berlappen. So ist die DetektionsflƤche oft grƶĆer als ein gut fokussierter Laserstrahl (beispielsweise sind 2Āµm Durchmesser bei IR erreichbar). Daher wird in dieser AusfĆ¼hrungsform vorzugsweise die gesamte DetektionsflƤche von der Konvektionsstrƶmung Ć¼berstrichen. Der Ćberlapp von Detektionsbereich und Einstrahlbereich ist beispielsweise in den Aufbauten aus
Bevorzugte Strƶmungsgeschwindigkeiten der der Konvektions-Strƶmung liegen im Bereich von 0,0001 mm/s bis 10mm/s, vorzugsweise 0,0005 mm/s bis 2mm/s.Preferred flow velocities of the convection flow are in the range of 0.0001 mm / s to 10 mm / s, preferably 0.0005 mm / s to 2 mm / s.
Das erfindungsgemƤĆe Verfahren zur Durchmischung ist insbesondere vorteilhaft, wenn es mit zusƤtzlichen Messverfahren kombiniert wird. Insbesondere betrifft die vorliegende Erfindung auch ein Verfahren zur Untersuchung molekularer Wechselwirkungen an und/oder in einer dĆ¼nnen Schicht in einem FlĆ¼ssigkeitsvolumen gemĆ¤Ć Anspruch 7. Vorzugsweise wird eine Probenkammer zur DurchfĆ¼hrung einer derartigen Messung in Form einer Kapillare, Pipettenspitze, Multiwellplatte bzw. eines Mikrofluidikchip bereitgestellt.The mixing method according to the invention is particularly advantageous when it is combined with additional measuring methods. In particular, the present invention also relates to a method for investigating molecular interactions on and / or in a thin layer in a liquid volume according to
Die Messung der Wechselwirkung erfolgt vorzugsweise mittels Reflektometrische Interferenzspektroskopie (RlfS), OberflƤchen Plasmonen Resonanz (englisch Surface Plasmone Resonance, SPR), Enzyme Linked Immunosorbent Assay (ELISA), Quarzkristall-Mikrowaagen (Quartz Crystal Microbalance; QCM), und/oder akustischer OberflƤchenwelle, (surface acoustic wave; SAW). GemĆ¤Ć weiteren bevorzugten AusfĆ¼hrungsformen kann die die Messung der Wechselwirkung mindestens ein Verfahren sein aus der Gruppe: Reflektometrische Interferenzspektroskopie (RlfS), Bio-Layer Interferometry (BLI), OberflƤchen Plasmonen Resonanz (Surface Plasmone Resonance; SPR), Quarzkristall-Mikrowaagen (Quartz Crystal Microbalance; QCM), akustische OberflƤchenwelle, kurz AOW, (surface acoustic wave; SAW), Enzyme Linked Immunosorbent Assay (ELISA), Nanoporen oder Transistoren (Next Generation Sequencing).The interaction is preferably measured by means of reflectometric interference spectroscopy (RlfS), surface plasmon resonance (SPR), enzyme-linked immunosorbent assay (ELISA), quartz crystal microbalances (QCM), and / or surface acoustic wave, (surface acoustic wave; SAW). According to further preferred embodiments, the measurement of the interaction may be at least one method from the group: Reflectometric Interference Spectroscopy (RlfS), Bio-Layer Interferometry (BLI), Surface Plasmon Resonance (SPR), Quartz Crystal Microbalance (QCM), Surface Acoustic Wave, SAW, Enzyme linked immunosorbent assay (ELISA), nanopores or transistors (Next Generation Sequencing).
Die vorliegende Erfindung bezieht sich auch auf eine Vorrichtung zum Durchmischen von FlĆ¼ssigkeiten bzw. Partikeln mit einer FlĆ¼ssigkeit, insbesondere zur DurchfĆ¼hrung eines oben beschriebenen Verfahrens, gemĆ¤Ć Anspruch 9. SchlieĆlich wird ein System mit einer Vorrichtung zur Durchmischung und einer Vorrichtung zur Messung offenbart, wobei die Messeinrichtung vorzugsweise zum Messen einer spezifischen oder unspezifischen Wechselwirkung der Partikel mit einer OberflƤche/GrenzflƤche einer Probenkammer bzw. eines ObjekttrƤgers dient.The present invention also relates to a device for mixing liquids or particles with a liquid, in particular for carrying out a method described above, according to
Im Folgenden werden bevorzugte AusfĆ¼hrungsformen unter Bezugnahme auf die Figuren ausfĆ¼hrlich beschrieben. Es zeigen:
- Fig. 1
- ein beispielhaftes IR-Absorptionsspektrum von Wasser bzw. einer wƤssrigen Lƶsung mit eingezeichneten Absorptionsmaxima;
- Fig. 2A & 2B
- schematisch den Einfluss der Orientierung eines eingestrahlten IR-Laserstrahls relativ zur Gravitation auf die erzeugten thermischen Konvektionen;
- Fig. 3
- eine schematische Darstellung des bevorzugten Detektionsbereichs zur Messungen der spezifischen und unspezifischen Wechselwirkung von Partikeln innerhalb einer Probenkammer;
- Fig. 4
- eine weitere AusfĆ¼hrungsform einer Anordnung fĆ¼r das offenbarte Verfahren bei der insbesondere der Strahlenverlauf beteiligter Lichtstrahlen schematisch eingezeichnet ist;
- Fig. 5
- eine schematische Darstellung einer Versuchsanordnung zur Messung von spezifischen bzw. unspezifischen Wechselwirkungen von Partikeln mit einer OberflƤche;
- Fig. 6
- eine Ƥhnliche schematische Darstellung wie in
Fig. 5 , jedoch mit einer weiter oben angeordneten Einrichtung zum Einkoppeln eines Laserstrahls zum Erzeugen der Konvektion in der Messzelle; - Fig. 7A & 7B
- zeigt schematische Darstellungen des Einstrahlens von IR-Strahlung in Multiwellplatten; and
- Fig. 8
- zeigt eine schematische Darstellung einer beispielhaften erfindungsgemƤĆen Versuchsanordnung zur Messung von mehrfarbiger (Multiplexing) Fluoreszenz in einer Multiwellplatte bei der sowohl Fluoreszenzanregung, Fluoreszenzdetektion als auch die Fokussierung der IR-Strahlung durch das gleiche Optische System erfolgt.
- Fig. 1
- an exemplary IR absorption spectrum of water or an aqueous solution with absorption maxima shown;
- Figs. 2A & 2B
- schematically the influence of the orientation of an irradiated IR laser beam relative to gravity on the thermal convections produced;
- Fig. 3
- a schematic representation of the preferred detection range for measuring the specific and unspecific interaction of particles within a sample chamber;
- Fig. 4
- a further embodiment of an arrangement for the disclosed method in which in particular the beam path involved light rays is schematically drawn;
- Fig. 5
- a schematic representation of an experimental arrangement for measuring specific or nonspecific interactions of particles with a surface;
- Fig. 6
- a similar schematic representation as in
Fig. 5 but with an upper arrangement for coupling a laser beam to generate convection in the measuring cell; - Figs. 7A & 7B
- shows schematic representations of the irradiation of IR radiation in multiwell plates; and
- Fig. 8
- shows a schematic representation of an exemplary experimental arrangement according to the invention for the measurement of multicolor (multiplexing) fluorescence in a multiwell plate in which both fluorescence excitation, fluorescence detection and the focusing of the IR radiation by the same optical system.
Der Detektionsbereich 80 befindet sich vorzugsweise an der OberflƤche/GrenzflƤche des Messvolumens innerhalb der Kapillare 45, d.h. an der Innenseite der Probenkammer 45. Der Detektionsbereich 80 kann beispielsweise so um den Bereich einer eingestrahlten IR-Strahlung 30 gewƤhlt werden, dass er kleiner, grƶĆer oder gleich groĆ wie die von der thermischen Konvektion 90 Ć¼berstrichene FlƤche ist.The
Der Detektionsbereich 80 kann beispielsweise eine dĆ¼nne Schicht sein und beispielsweise Antikƶrper zum spezifischen Nachweis von Antigenen enthalten. Mit anderen Worten, der Detektionsbereich befindet sich an der OberflƤche der FlĆ¼ssigkeit bzw. der OberflƤche der Kapillare 45. Der Detektionsbereich 80 kann beispielsweise auch aus mehreren unterschiedlichen dĆ¼nnen Schichten zusammengesetzt sein, die sich beispielsweise in ihrem Brechungsindex, Polarisierbarkeit oder ihrer Fluoreszenz unterscheiden. Die Konvektion wird vorzugsweise so eingestellt, dass es im Detektionsbereich nicht zum Aufbau einer Verarmungsschicht bzw. einer Anreicherungsschicht kommt. Beispielsweise kann die thermische Konvektion so eingestellt werden, dass sie Partikel von weit auĆerhalb des Detektionsbereichs, beispielsweise einige Millimeter entfernt, in den Detektionsbereich transportiert.The
Reihenfolge kann variiert werden, entscheidend ist, dass es einen bestimmten Abstand zwischen IR-Laser Fokus (bestimmt die "Konvektions-Walzen") und dem Ort gibt, an dem die Wechselwirkung an der OberflƤche detektiert wird. Der Abstand zwischen beiden ist wichtig, da der IR-Laser je nach Leistung und Kammerdicke und Kammergeometrie unterschiedliche thermische Konvektionsstrƶmungen erzeugt. Man muss das Ganze so einstellen, dass man am Beobachtungsort fĆ¼r die Wechselwirkung die richtigen thermischen Konvektionsstrƶmungen hat (um die Verarmungsschicht der MolekĆ¼le zu vermeiden).Order can be varied, but it is crucial that there is a certain distance between IR laser focus (determines the "convection rollers") and the place where the interaction is detected on the surface. The distance between them is important as the IR laser produces different thermal convection currents depending on the power and chamber thickness and chamber geometry. You have to set it all up so that you have the right thermal convection currents at the interaction site (to avoid the depletion layer of the molecules).
Kurz zusammengefasst handelt es sich bei RIfS um eine physikalische Methode, die auf der Interferenz von WeiĆlicht an dĆ¼nnen Schichten beruht. Diese Methode wird in der Praxis beispielsweise dazu eingesetzt, um molekulare Wechselwirkungen zu untersuchen. Das grundlegende Messprinzip entspricht dem Fabry-Perot-Interferometer. RIfS findet vor allem als Detektionsmethode in Chemo- und Biosensoren Anwendung. Als sensitive Schichten werden meist nicht selektiv messende Polymere verwendet, die Analyten entweder anhand ihrer GrƶĆe (sog. Molekularsiebeffekt bei mikroporƶsen Polymeren) oder auf Grund unterschiedlicher PolaritƤten (z. B. funktionalisierte Polydimethylsiloxane) sortieren. Im Bereich der Biosensoren werden beispielsweise Polymere wie Polyethylenglykole oder Dextrane auf das Schichtsystem aufgebracht und darauf Erkennungsstrukturen fĆ¼r BiomolekĆ¼le immobilisiert. Als Erkennungsstrukturen sind prinzipiell alle Stoffklassen verwendbar (Proteine wie z. B. Antikƶrper, DNA/RNA wie z. B. Aptamere, kleine organische MolekĆ¼le wie z. B. Estron, aber auch Lipide wie z. B. Phospholipid-Membranen).In short, RIfS is a physical method based on the interference of white light on thin layers. This method is used in practice, for example, to investigate molecular interactions. The basic measuring principle corresponds to the Fabry-Perot interferometer. RIfS is mainly used as a detection method in chemo- and biosensors. As sensitive layers mostly non-selective measuring polymers are used, which sort analytes either by their size (so-called molecular sieve effect in microporous polymers) or due to different polarities (eg functionalized polydimethylsiloxanes). In the field of biosensors, for example, polymers such as polyethylene glycols or dextranes are applied to the layer system and immobilized thereon recognition structures for biomolecules. In principle, all substance classes can be used as recognition structures (proteins such as antibodies, DNA / RNA such as aptamers, small organic molecules such as estrone, but also lipids such as phospholipid membranes).
In
An die funktional immobilisierten MolekĆ¼le/Partikel der Lage 103 kƶnnen Proben-Partikel 105 anbinden. In der Folge wƤchst die Dicke der dĆ¼nnen Schicht an, der Abstand ihrer oberen BegrenzungsflƤche 104 zur Phasengrenze zwischen dĆ¼nner Schicht und TrƤger (bzw. zur unteren BegrenzungsflƤche der dĆ¼nnen Schicht) wird grƶĆer. Von unten eingestrahltes Licht 31, das zur Messung dient, wir nach Anbindung der Proben-Partikel 105 nunmehr auch an der BegrenzungsflƤche 104 reflektiert. Die BegrenzungsflƤche 104 entsteht gegenĆ¼ber der Lƶsung mit Partikeln 50 beispielsweise, wenn die Partikel aus der wƤssrigen Lƶsung an die funktional immobilisierten MolekĆ¼le in der dĆ¼nnen Schicht 103 binden. Der reflektierte Strahl 113 an dieser BegrenzungsflƤche 104 ist schematisch eingezeichnet. Zudem sind auch noch die reflektierten Strahlen 112, 111a, 111b und 110 dargestellt, die an GrenzflƤchen reflektiert werden, die unter der BegrenzungsflƤche 104 liegen. Da das eingestrahlte Licht bis zur BegrenzungsflƤche 104 eine grƶĆere WeglƤnge zurĆ¼cklegen muss, resultiert eine Verschiebung des Interferogramms, das durch die Ćberlagerung der reflektieren elektromagnetischen Strahlung 110, 111a, 111b, 112 und 113 erzeugt wird. Diese Verschiebung kann zeitaufgelƶst gemessen werden, was genau RĆ¼ckschlĆ¼sse auf die SchichtdickenƤnderung und damit auf die Wechselwirkung der gelƶsten Partikel 105 mit den funktional immobilisierten Partikeln 103 zulƤsst.To the functionally immobilized molecules / particles of the
Beispielsweise handelt es sich bei den Partikeln 105 in der wƤssrigen Lƶsung um BiomolekĆ¼le wie DNA, RNA, Proteine, Antikƶrper, Antigene, etc. Small Molecules, Nanopartikel, Polymere, Peptide, PNA, etc. oder auch Zellen, Viren, Bakterien, Vesikel, Liposomen, Mikrobeads, Nanobeads, Nanodiscs, etc.For example, the
Der Strahlteiler 7 dient in der dargestellten AusfĆ¼hrungsform dazu, den Lichtstrahl in einen Messstrahl bzw. Messstrahlengang 9 und einen Referenz-Strahl bzw. Referenz-Strahlengang 11 aufzuteilen, wobei der Messstrahlengang nach unten dargestellt ist und der Referenz-Strahlengang 11 nach links zur Referenz-Detektoranordnung 19' dargestellt ist. Der Strahlenteiler 7 hat vorzugsweise eine polarisierende Eigenschaft. Der Strahlenteiler 7 kann in bestimmten AusfĆ¼hrungsformen jedoch auch weggelassen werden. Dann entfƤllt auch der Referenz-Strahlengang 11, bzw. der ganze Referenzzweig aus Referenz-Strahlengang 11, Referenz-Linsensystem 17', Referenz-Detektorfilter 23' und Referenz-Detektor 19'.In the illustrated embodiment, the
In der dargestellten AusfĆ¼hrungsform mit Referenz-Zweig kann die Referenz-Detektoranordnung 19' beispielsweise eine Photodiode, ein Photomultiplier (Photoelektronenvervielfacher, kurz Photovervielfacher, engl. photomultiplier tube, PMT), eine CCD Kamera (Charge-Coupled Device), eine CMOS (Complementary Metal Oxide Semiconductor; komplementƤrer Metall-Oxid-Halbleiter), ein Diodenarray oder eine Avalanche-Photodiode sein. Der Referenz-Zweig kann vor der Referenz-Detektoranordnung 19' ein Referenz-Linsensystem 17' fĆ¼r die Abbildung/Fokussierung auf die Referenz-Detektoranordnung 19' aufweisen und/oder einen Referenz-Detektorfilter 23', beispielsweise ein Bandpassfilter, oder ein Langpassfilter oder ein Kurzpassfilter.In the illustrated embodiment with reference branch, the reference detector array 19 'may be, for example, a photodiode, a photomultiplier (photomultiplier, photomultiplier tube, PMT), a charge coupled device (CCD) camera, a complementary metal (CMOS) CMOS Oxide Semiconductor; complementary metal oxide semiconductor), a diode array, or an avalanche photodiode. The reference branch may have a reference lens system 17 'in front of the reference detector arrangement 19' for imaging / focusing on the reference detector arrangement 19 'and / or a reference detector filter 23', for example a bandpass filter, or a longpass filter or a short-pass filter.
Der Messstrahlengang 9 kann, bevor er auf die Probe 50 trifft, mit zusƤtzlichen optischen Mitteln, die nach dem Strahlenteiler 7 angeordnet sind, verƤndert werden. Dargestellt ist beispielhaft ein Spotfilter 21 sowie ein (erstes) optisches Korrekturelement 35, um beispielsweise die Phasenverschiebung, PolarisationsƤnderung und/oder StrahlengangsƤnderung die durch den zweiten Strahlteiler 34 zum Einkoppeln der infraroten Laserstrahlung mƶglicherweise erzeugt wird, zu kompensieren/korrigieren. Zudem ist auch ein zweites optisches Korrekturelement 36 dargestellt, das optional mit einer Linse oder einem Linse/Linsensystem erweitert werden kann, um beispielsweise die Phasenverschiebung, PolarisationsƤnderung und/oder StrahlengangsƤnderung die durch den (zweiten) Strahlteiler 34 zum Einkoppeln der infraroten Laserstrahlung einhergehen kƶnnen, zu kompensieren/korrigieren. Das zweites optisches Korrekturelement 36 und oder die optionale Linse bzw. das optionale Linsensystem kann auch dazu dienen, die StrahlengƤnge auf die Probe 50 zu fokussieren.The
Die Probe 50 kann auf einem TrƤger 46 als Tropfen bzw. in einer Probenkammer 45, wie in den
Der TrƤger 46 ist vorzugsweise zumindest teilweise transparent, wobei der dargestellte TrƤger 46 ein aus einem Glas geformtes ObjekttrƤgerglas ist, auf dem eine dĆ¼nne Schicht 103 ausgebildet ist. Die zu untersuchende dĆ¼nne Schicht 103 umfasst beispielsweise eine Lage aus funktional immobilisierten MolekĆ¼len.The
Die dĆ¼nne Schicht 103 wird durch die zu untersuchende Probe 50 beeinflusst. Beispielsweise fĆ¼hrt eine Wechselwirkung der MolekĆ¼le auf der dĆ¼nnen Schicht 103 mit den entsprechenden Partikeln 105 in der Probe zu einer SchichtdickenƤnderung (siehe
Wie bereits in Bezug auf die
Um in der dĆ¼nnen Schicht 103 eine gute Durchmischung zu gewƤhrleisten und eine Verarmungsschicht zu vermeiden wird erfindungsgemĆ¤Ć Licht eines Laser 32 in die Probe 50 eingestrahlt. Zur Einstrahlung des Laserlichts wird in
Auch wird hier explizit betont, dass die oben beschriebene Versuchsanordnung nur eines vieler erfindungsgemƤĆen Beispiele ist und die Erfindung keinesfalls auf eine spezielle Anordnung der oben beschrieben optischen Mittel beschrƤnkt ist. Insbesondere ist die Versuchsanordnung nicht auf die dargestellte Ausrichtung beschrƤnkt. So kann das Licht anstelle von oben auch von unten links oder rechts kommen und die entsprechenden optischen Mittel entsprechend verschoben bzw. rotiert werden. Zudem ist die Reihenfolge der optischen Mittel nicht auf die dargestellte AusfĆ¼hrungsform beschrƤnkt und kann entsprechend den gewĆ¼nschten Eigenschaften zur Einstrahlung und Messung verƤndert werden. Anstelle der dargestellten Reflexion kann erfindungsgemĆ¤Ć auch eine Transmission gemessen werden. Ein Fachmann wird jedoch leicht erkennen, dass das erfindungsgemƤĆe Verfahren zur Erzeugung von Konvektionen auch in einer solchen Transmissionsversuchsanordnung leicht implementiert werden kann. Auch wird in diesem Zusammenhang auf die
Ist die Laserstrahlung wie in
Ist die Laserstrahlung wie in
In der
In der
Das Licht der beiden Anregungslichtquellen wird vorzugsweise kombiniert, beispielsweise mittels des Dichroidischen Spiegels 28 und anschlieĆend vorzugsweise von einem weiteren Dichroidischen Spiegel 29 in Richtung Objektlinsensystem 38 reflektiert. Der Dichroidische Spiegel 29 wird vorzugsweise auch dazu verwendet das Anregungslicht vom Detektionslicht zu trennen. Nach der Reflektion am Dichroidischen Spiegel 29 passiert das Anregungslicht vorzugsweise einen weiteren Dichroidischen Spiegel 34 ("Hot Mirror") und wird anschlieĆend vorzugsweise vom Objektlinsensystem 38 durch den transparenten Boden 47 der Multiwellplatte in die wƤssrige Lƶsung 50, in der Probenkammer 45, vorzugsweise ein "Well" einer Multiwellplatte, fokussiert. Dort regt das Anregungslicht die Fluoreszenz von fluoreszierenden Partikeln 105, beispielsweise Proteine mit intrinsischer Fluoreszenz und/oder fluoreszenzmarkierte BiomolekĆ¼le oder andere fluoreszierende Substanzen, an. Das Fluoreszenzlicht wird durch das Objektlinsensystem 38, vorzugsweise eine Linse, eine Kombination aus Linsen oder ein Mikroskopobjektiv, eingesammelt, passiert anschlieĆend die Dichroidischen Spiegel 34 und 29, dann den Detektionsfilter 23, vorzugsweise eine Emissionsfilter, beispielweise eine Bandpassfilter, Dualpassfilter oder Multipassfilter, und wird dann von einer Linse 17, beispielsweise eine AsphƤre, auf den Detektor 19, , beispielsweise eine Photodiode, ein PMT, eine CCD Kamera, eine CMOS Kamera, ein Diodenarray, eine Avalanche-Photodiode, fokussiert.The light of the two excitation light sources is preferably combined, for example, reflected by the
Mittels dieses Detektors kƶnnen IntensitƤt und/oder Phase und/oder zeitlicher Ablauf der FluoreszenzintensitƤt gemessen und dann elektronisch verarbeitet und abgespeichert werde.By means of this detector intensity and / or phase and / or timing of the fluorescence intensity can be measured and then processed and stored electronically.
Die infrarote Strahlung zur Erzeugung der thermischen Konvektion wird vorzugsweise mittels eine fasergekoppelten Infrarot-Lasers 32 erzeugt. Die Faser des Lasers wird beispielsweise mittels einer Fasereinkopplung 27, vorzugsweise mit kollimierender FunktionalitƤt, in die Optik bzw. das Optische System eingekoppelt. Die infrarote Strahlung kann mittels bekannter optischer Mittel verƤndert werden, beispielsweise mittels einer Linse 26 und/oder eines (nicht dargestellten) Linsensystems oder einer (nicht dargestellten) Apertur oder eines Polarisationsfilters. Beispielsweise kann es durch die Linse 26, beispielsweise eine AsphƤre, parallelisiert oder fokussiert werden. AnschlieĆend wird die infrarote Strahlung durch den Dichroidischen Spiegel 34 ("Hot Mirror") in das Objektlinsensystem 38 gespiegelt. Das Objektlinsensystem 38 fokussiert dann die infrarote Strahlung 30 durch den transparenten Boden 47 der Multiwellplatte in die wƤssrige Lƶsung 50 der Probenkammer 45, vorzugsweise ein "Well" einer Multiwellplatte. Die Multiwellplatte ist vorzugsweise eine 96 Well Platte oder 384 Well Platte oder 1536 Well Platte. Dort erzeugt die infrarote Strahlung 30 je nach Fokussierung eine definierte thermische Konvektion 90 zur Durchmischung der Partikel 105 in der wƤssrigen Lƶsung 50.The infrared radiation for generating the thermal convection is preferably generated by means of a fiber-coupled
Die Partikel sind beispielsweise BiomolekĆ¼le wie DNA, RNA, PNA, Proteine, Antikƶrper, Antigene, oder Small Molecules, Zellen, Viren, Bakterien, Mikrobeads, Nanobeads, Nanopartikel, Polymere, Peptide. Beispielsweise kann die Vorrichtung auch zur Detektion und Quantifizierung von BiomolekĆ¼laggregation beispielsweise der Aggregation von Proteinen oder therapeutischen Antikƶprern eingesetzt werden.The particles are, for example, biomolecules such as DNA, RNA, PNA, proteins, antibodies, antigens or small molecules, cells, viruses, bacteria, microbeads, nanobeads, nanoparticles, polymers, peptides. For example, the device can also be used for the detection and quantification of biomolecule aggregation, for example, the aggregation of proteins or therapeutic Antikƶprern.
Claims (9)
- A method for mixing liquids (50) or particles with a liquid (50), comprising the steps of:(a) providing a volume of liquid (50) in a microcavity of a 384-microwell plate or a 1536-microwell plate;(b) providing a plurality of IR LEDs;(c) generating a thermal convection flow at at least one boundary surface between the volume of liquid and the microcavity by simultaneously irradiating IR radiation (30) of the plurality of LEDs into a plurality of the cavities;wherein a depletion layer at the boundary surface is reduced or a concentration layer at the boundary surface is increased by the convection flow so that measurement methods based on the boundary surface are improved.
- The method according to claim 1, wherein the liquid (50) is an aqueous solution.
- The method according to any one of the preceding claims, wherein the radiation (30) is directed parallel and/or antiparallel to gravitation and/or comprises a component that is oriented vertical to gravitation.
- The method according to any one of the preceding claims, wherein a temperature gradient of from 0.001 K/Āµm (= 1 K/mm) to 2 K/um (= 2,000 K/mm) is generated with the irradiated radiation (30).
- The method according to claim 4, wherein a detection region (80) for measuring properties of the liquid or of the particles in the liquid is spaced apart from the area into which the radiation (30) is irradiated.
- The method according to any one of the preceding claims, wherein flow rates of from 0.0005 mm/s to 2 mm/s are generated within the convection flow.
- A method for analyzing molecular interactions at and/or in a thin film (80) in a volume of liquid by means of a measuring method based on a boundary surface, comprising the steps of:- providing, in a microcavity of a 384-microwell plate or a 1536-microwell plate, at least one volume of liquid (50) with particles present therein,- providing a plurality of IR LEDs;- irradiating IR radiation of the plurality of IR LEDs into volumes of liquid (50) of the plurality of microcavities of the multi-well plate for generating the thermal convection flow,- measuring a specific or unspecific interaction of the particles with a boundary surface of the microcavity by means of the measuring method based on the boundary surface;- characterizing the interaction of the particles on the basis of the measurement.
- The method according to claim 7, wherein(i) the interaction is measured by means of reflectometric interference spectroscopy (RIfS);(ii) the interaction is measured by means of surface plasmone resonance (SPR);(iii) the interaction is measured by means of an enzyme linked immunosorbent assay (ELISA);(iv) the interaction is measured by means of a quartz crystal microbalance (QCM);(v) the interaction is measured by means of a surface acoustic wave (SAW); or(vi) the interaction is measured by at least one method from the group of: reflectometric interference spectroscopy (RIfS), bio-layer interferometry (BLI), surface plasmone resonance (SPR), quartz crystal microbalance (QCM), surface acoustic wave (SAW), enzyme linked immunosorbent assay (ELISA), nanopores or transistors (next generation sequencing).
- An apparatus for the mixing of liquids (50) or of particles with a liquid (50), for performing a method according any one of claims 1 to 8, comprising:(a) a 384-microwell plate or a 1536-microwell plate for receiving a volume of liquid (50); and(b) a plurality of IR LEDs for emitting IR radiation (30);(c) a means for irradiating the IR radiation (30) into a plurality of volumes of liquid of the microwell plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14162100.3A EP2783747B1 (en) | 2013-03-27 | 2014-03-27 | Method and device for the contactless mixing of liquids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13161448 | 2013-03-27 | ||
EP14162100.3A EP2783747B1 (en) | 2013-03-27 | 2014-03-27 | Method and device for the contactless mixing of liquids |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2783747A1 EP2783747A1 (en) | 2014-10-01 |
EP2783747B1 true EP2783747B1 (en) | 2018-05-02 |
Family
ID=48013818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14162100.3A Active EP2783747B1 (en) | 2013-03-27 | 2014-03-27 | Method and device for the contactless mixing of liquids |
Country Status (3)
Country | Link |
---|---|
US (1) | US9987604B2 (en) |
EP (1) | EP2783747B1 (en) |
ES (1) | ES2677975T3 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110579435B (en) | 2012-10-15 | 2023-09-26 | ēŗ³čÆŗčµč±å ē¹ēē©å»čÆč”份ęéå ¬åø | System, apparatus and method for particle sorting |
DE102017117734A1 (en) * | 2017-08-04 | 2019-02-07 | Fresenius Medical Care Deutschland Gmbh | Dialysis machine and arrangement and method for heating a dialysis solution |
US11185830B2 (en) | 2017-09-06 | 2021-11-30 | Waters Technologies Corporation | Fluid mixer |
FR3090401B1 (en) * | 2018-12-21 | 2023-04-28 | Seb Sa | Manufacturing apparatus, mixing machine and/or receiving device for manufacturing a composition from a mixture of formulations |
US11555805B2 (en) | 2019-08-12 | 2023-01-17 | Waters Technologies Corporation | Mixer for chromatography system |
EP4179310A1 (en) | 2020-07-07 | 2023-05-17 | Waters Technologies Corporation | Mixer for liquid chromatography |
EP4179311A1 (en) | 2020-07-07 | 2023-05-17 | Waters Technologies Corporation | Combination mixer arrangement for noise reduction in fluid chromatography |
US11821882B2 (en) | 2020-09-22 | 2023-11-21 | Waters Technologies Corporation | Continuous flow mixer |
JP7515940B2 (en) | 2021-05-07 | 2024-07-16 | å ¬ē«å¤§å¦ę³äŗŗ大éŖ | Method for detecting target substance, detection kit and detection system, and method for manufacturing detection kit |
WO2022234830A1 (en) * | 2021-05-07 | 2022-11-10 | å ¬ē«å¤§å¦ę³äŗŗ大éŖ | Method for accumulating minute object, and method for detecting minute object using same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5150705A (en) * | 1989-07-12 | 1992-09-29 | Stinson Randy L | Apparatus and method for irradiating cells |
US7968117B1 (en) | 1994-12-02 | 2011-06-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Externally triggered microcapsules |
US5823676A (en) * | 1997-04-18 | 1998-10-20 | Technology Sg, L.P. | Apparatus and method of gradient convection vortex fluid mixing and pumping |
DE10325307B3 (en) | 2003-02-27 | 2004-07-15 | Advalytix Ag | For the mixture of fluids in micro-cavities, in a micro-titration plate, at least one piezo electric sound converter generates an ultrasonic wave to give a wave-induced flow to the fluids |
JP2008513772A (en) * | 2004-09-15 | 2008-05-01 | ćØć¤ćøć§ć³ć·ć¼ ćć©ć¼ ćµć¤ćØć³ć¹ļ¼ ććÆćććøć¼ ć¢ć³ć ćŖćµć¼ć | Surface plasmon resonance and quartz crystal microbalance sensor |
DE102005015030A1 (en) | 2004-10-19 | 2006-04-20 | UniversitƤt TĆ¼bingen | Method for the investigation of physical, chemical and biochemical interactions |
ES2611996T3 (en) * | 2006-11-20 | 2017-05-11 | Nanotemper Technologies Gmbh | Rapid thermo-optical particle characterization |
DE102007038797A1 (en) | 2007-08-09 | 2009-02-19 | Biametrics Marken Und Rechte Gmbh | Investigation of molecular interactions on and / or in thin layers |
WO2009141390A1 (en) * | 2008-05-20 | 2009-11-26 | Ludwig-Maximilians-UniversitƤt MĆ¼nchen | Method and device for particle analysis using thermophoresis |
WO2011005487A2 (en) * | 2009-06-22 | 2011-01-13 | California Institute Of Technology | Optical devices and methods for measuring samples |
JP2014508921A (en) | 2011-01-31 | 2014-04-10 | ćć¢ć”ććŖćÆć¹ ć²ć¼ć«ć·ć£ćć ććć ćć·ć„ć¬ć³ćÆćć« ćććć³ć° | Method and apparatus for determining optical properties by simultaneously measuring intensities in thin film layers using light of multiple wavelengths |
WO2012167221A1 (en) * | 2011-06-03 | 2012-12-06 | Wayne State University | Optofluidic tweezers |
-
2014
- 2014-03-27 EP EP14162100.3A patent/EP2783747B1/en active Active
- 2014-03-27 US US14/227,521 patent/US9987604B2/en active Active
- 2014-03-27 ES ES14162100.3T patent/ES2677975T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2677975T3 (en) | 2018-08-07 |
US9987604B2 (en) | 2018-06-05 |
US20140293731A1 (en) | 2014-10-02 |
EP2783747A1 (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2783747B1 (en) | Method and device for the contactless mixing of liquids | |
US20220143617A1 (en) | Manipulation of microfluidic droplets | |
Ghazal et al. | Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences | |
US7258837B2 (en) | Microfluidic device and surface decoration process for solid phase affinity binding assays | |
AU2007323301B2 (en) | Fast thermo-optical particle characterisation | |
EP1237654B9 (en) | Arrangement of containers for samples and use thereof for multianalyte determination | |
US9995684B2 (en) | Thermophoresis measurements in nanoliterdroplets | |
DE102009016712A1 (en) | Disposable microfluidic test cassette for bioassay of analytes | |
CN108169194B (en) | Microfluid chip based on big blue flash butterfly and manufacturing method thereof | |
Evstrapov et al. | Porous glasses as a substrate for sensor elements | |
Ebara et al. | A photoinduced nanoparticle separation in microchannels via ph-sensitive surface traps | |
AT502549A1 (en) | DEVICE FOR THE ANALYSIS OF LIQUID SAMPLES | |
EP3629020B1 (en) | Microfluidic droplet-based assay process and apparatus | |
DE202008001277U1 (en) | Mobile microarray meter with automatic reagent supply and chemiluminescence readout unit | |
Nelson | Probing the phase behavior of complex fluids using microliter droplet reactors | |
Chandrasekaran et al. | Enhanced bio-molecular interactions through recirculating microflows | |
Cohen et al. | In Honor of WE Moerner: Confining Molecules for SingleāMolecule Spectroscopy | |
Sepaniak et al. | Chemical and biochemical analysis using microfluidic-localized field platforms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140327 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17Q | First examination report despatched |
Effective date: 20151007 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171012 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 994611 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014008118 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2677975 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180807 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180802 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180803 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014008118 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180903 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 994611 Country of ref document: AT Kind code of ref document: T Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140327 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502014008118 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B01F0013000000 Ipc: B01F0033000000 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180502 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240325 Year of fee payment: 11 Ref country code: GB Payment date: 20240328 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240304 Year of fee payment: 11 Ref country code: FR Payment date: 20240307 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240408 Year of fee payment: 11 |