EP2779420B1 - Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers - Google Patents

Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers Download PDF

Info

Publication number
EP2779420B1
EP2779420B1 EP14159224.6A EP14159224A EP2779420B1 EP 2779420 B1 EP2779420 B1 EP 2779420B1 EP 14159224 A EP14159224 A EP 14159224A EP 2779420 B1 EP2779420 B1 EP 2779420B1
Authority
EP
European Patent Office
Prior art keywords
exciter
generator
current
control signal
main field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14159224.6A
Other languages
English (en)
French (fr)
Other versions
EP2779420A2 (de
EP2779420A3 (de
Inventor
Gregory I. Rozman
Steven J. Moss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of EP2779420A2 publication Critical patent/EP2779420A2/de
Publication of EP2779420A3 publication Critical patent/EP2779420A3/de
Application granted granted Critical
Publication of EP2779420B1 publication Critical patent/EP2779420B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage

Definitions

  • the present inventive concept is related to generator architectures and in particular to generator architectures utilizing main field rotating power converters.
  • generators convert mechanical energy to electrical energy via the interaction of rotating magnetic fields and coils of wire.
  • a multitude of generator architectures have been developed with various means of providing interaction between magnetic fields and coils of wire.
  • PMG permanent magnet generator
  • Another type of generator supplies current through a coil to generate the desired magnetic field, which is rotated via the mechanical energy supplied by a prime mover, such that a rotating magnetic field is created that interacts with stator coils to provide an output voltage.
  • the output voltage supplied by the PMG depends only on the magnitude of the mechanical energy supplied by the prime mover.
  • the output voltage of the generator can be regulated by varying the current supplied to the field coil.
  • the latter example known as a wound field synchronous machine, is widely utilized.
  • a PMG is sometimes utilized in conjunction with the wound field synchronous machine to source the current supplied to an exciter field winding to regulate the output of the brushless wound field synchronous machine.
  • a typical variable frequency generator includes a permanent magnet section, an exciter section, and a main generator section.
  • the permanent magnet portion includes permanent magnets employed on the rotating portion, which generate an alternating current voltage on the stator portion.
  • the AC voltage provided by the permanent magnet portion is rectified and selectively applied to the exciter field winding on the stationary portion of the exciter.
  • the exciter field current interacts with the rotating exciter armature windings to provide an AC voltage.
  • a rotating rectifier rectifies the AC voltage and supplies the DC voltage to a main field winding on the rotating portion of the main generator section. Rotation of the motive power shaft and the main field winding induces three-phase AC output voltage on the main generator armature windings.
  • the magnitude of the AC generator output voltage is regulated by controlling the current supplied to the exciter field coil on the stationary portion of the exciter.
  • the output of the generator may be a function of the rotational speed of the generator and load. In cases with a belt-type interface between prime mover shaft and the generator shaft sudden load changes may also result in sudden changes in generator speed. As a result, sudden variations of the generator output voltage, such as sudden voltage increases, may occur.
  • a VFG is disclosed in US 5,764,036 and US 3,671,850 .
  • a method of controlling a generator according to the invention is defined in claim 9 with preferred embodiments in claims 10 to 12.
  • FIG. 1 is a circuit diagram of electric power generation and distribution system 100 according to an embodiment of the present inventive concept.
  • System 100 includes generator 102 and a generator control unit (GCU) 104.
  • the GCU 104 includes an exciter converter module 106.
  • the system 100 may further include a current sensor 108, a voltage sensor 110, an output rectifier 112, and load including a constant power load 114.
  • the output rectifier 112 may rectify the AC voltage at the main armature winding 122 to deliver a rectified DC voltage to the load including a constant power load 114.
  • the current sensor 108 and the voltage sensor 110 may provide current and voltage feedback signals to the GCU.
  • Generator 102 includes stationary portion 116 and rotating portion 118.
  • the stationary portion 116 includes exciter field winding 120 and main armature winding 122.
  • Rotating portion 118 includes, demodulator 124, rotating power source 126, exciter armature winding 128, high-side/low-side gate driver 130, rotating rectifier 132, rotating DC bus 134, main field rotating power converter 136, and main field winding 138.
  • Main field rotating power converter 136 includes high-side switch T1r, low-side switch T2r, and diodes D1r and D2r.
  • GCU Generator control unit
  • the exciter converter module 106 are configured to electrically regulate and protect of generator 102. Regulation refers to maintaining the output voltage generator 102 provided by main armature winding 122 at a desired level. Protection refers, at least in part, to preventing faults such as overvoltage faults from damaging generator 102 or attached loads 114. As discussed in more detail below, the output voltage is regulated by either regulating the current supplied to exciter field winding 120 (as is normally done in brushless wound field synchronous machines) or regulating the current supplied to main field winding 138 located on the rotating portion 118 of generator 102.
  • main field rotating power converter 136 selectively applies voltage to main field winding 138.
  • GCU 104 is in electrical communication with the generator 102 to monitor the output voltage provided by the main armature winding 122.
  • the GCU 104 includes the exciter converter module 106, which may generate the exciter signal (i.e., current) to exciter field winding 120.
  • Excitation supplied to exciter field winding 120 induces an AC voltage in exciter armature winding 128 located on rotating portion 116.
  • the AC voltage generated on exciter armature winding 128 is rectified by the rotating rectifier 132 to generate a DC voltage that is supplied to main field rotating power converter 136 via DC bus link 134.
  • the rotating rectifier 132 may include a 6-pulse passive rectifier comprised of a plurality of bridge-connected diodes.
  • the rotating rectifier 132 may be an active rectifier in which the diodes are connected in parallel with a plurality of solid-state switches selectively controlled to provide a DC output to main field rotating power converter 136.
  • main field rotating power converter 136 selectively applies voltage from rotating DC bus 134 to main field winding 138, allowing current to build up in main field winding 138.
  • main field winding 138 When high-side switch T1r and low-side switch T2r are switched Off, current in main field winding 138 flows through diodes D1r and D2r and voltage across main field winding becomes negative. This causes the main field current to decrease rapidly to zero.
  • the inductive energy is fed back to the rotating dc power supply that includes an exciter armature windings, a 6-pulse rectifier, and a dc bus capacitor CdcR.
  • Current through main field winding 138 induces an AC voltage in main armature winding 122 that is monitored by GCU 104 and supplied to load 114.
  • the state of the high-side switch T1r and low-side switch T2r included with the main field rotating power converter 136 is based on frequency modulated feedback/commands received by the exciter armature winding 128.
  • the frequency modulated feedback/commands are superimposed on the exciter signal applied to the exciter field winding 120 via the 106, and are communicated across the air gap to the exciter armature winding 128, as discussed in greater detail below.
  • the frequency demodulator 124 is electrically coupled to the exciter armature winding 128 and extracts the frequency modulated feedback/commands therefrom.
  • the frequency demodulator 124 modulates, i.e., decodes the extracted frequency modulated feedback/commands and provides the demodulated commands to the high-side/low-wide gate driver 130.
  • the selectively high-side/low-wide gate driver 130 controls the state of switches T1r and T2r, i.e., turns switches T1r/Tr2 On and Off accordingly.
  • switches T1r and T2r i.e., turns switches T1r/Tr2 On and Off accordingly.
  • low-side switch T2r remains in the On state, and only high-side switch T1r is modulated On and Off.
  • low-side switch T2r may be commanded to the Off position (along with high-side switch T1r) to prevent voltage from being supplied to main field winding 138 and to quickly reduce current in main field winding 138.
  • the main field rotating power converter 136 may provide overvoltage protection to generator 102.
  • the typical response to an overvoltage condition is to remove the excitation, i.e., excitation current, from exciter field winding 120.
  • the lag between the time in which excitation is removed from exciter field winding 120 and when excitation is removed from main field winding 138 may result in voltages that are damaging to generator 102 and/or load 114.
  • the main field rotating power converter 136 may be utilized to provide protection, while the GCU 104 selectively controls the supply of current provided to exciter field winding 120 to regulate the output voltage provided by main armature winding 122.
  • the voltage induced in response to the exciter field winding current is provided without regulation by main field rotating power converter 136 to main field winding 138, allowing current to build up in main field winding 138.
  • a command is superimposed on the exciter current and communicated to the exciter armature winding, and ultimately received by the hi/low driver 130 to switch off the high-side switch T1r and the low-side switch T2r and remove excitation from main field winding 138.
  • the system 100 may also allow for both protection and regulation of the main field winding current.
  • the high-side switch T1r, low-side switch T2r of the main field rotating power converter 136 is configured to allow the current through main field winding 138 to be regulated, as opposed to simply being selective switched On or Off for protection purposes.
  • switches T1r and T2r, as well as diodes D1r and D2r are configured as an asymmetric H-bridge circuit in which voltage supplied by rotating rectifier 132 is provided to main field winding 138 when both switches T1r and T2r are On and prevented from being supplied to main field winding 138 when both switches T1r and T2r are Off.
  • the current through main field winding 138 is regulated by maintaining switch T2r in an On state and pulse width modulating switch T1r.
  • a voltage regulator 140 may be included with the GCU 104, which communicates with the exciter converter module 106 to enable regulation of current through main field winding 138.
  • the voltage regulator 104 outputs reference and controls signals to be utilized by the exciter converter module 106. More specifically, the output current is monitored via current sensor 108.
  • the current sensor 108 outputs a feedback current signal ( idc_fdbk ) to the voltage regulator 140.
  • voltage sensor 110 outputs a feedback voltage signal ( vdc_fdbk ).
  • the vdc_fdbk is indicative of the DC output voltage across the output rectifier 112, which is received by the voltage regulator 140.
  • the voltage regulator 140 determines a reference DC reference voltage ( vdc_ref ) and outputs a reference exciter current ( iexc_ref ) that indicates the desired current through main field winding 138.
  • the voltage regulator 140 further generates an enable signal ( enable ) used to initiate the operation of superimposing the frequency modulated control signal on the exciter field winding current.
  • the exciter converter module 106 includes an exciter current generator circuit 142 and an exciter driver circuit 144.
  • the exciter current generator circuit 142 includes a current regulator 146, a medium frequency signal generator 148, a summer 150, and a pulse width modulator (PWM) 152.
  • the exciter driver circuit 144 includes an exciter high/low driver 154, a first exciter switch T1e, a second exciter switch T2e, and an exciter current sensor 156.
  • An independent power source (IPS) 158 such as a DC power supply, may also be included to provide an operating voltage to the exciter switches T1e, T2e.
  • the current sensor is electrically connected to the exciter field winding and outputs an exciter current feedback signal ( iexc_fdbk ) to the current regulator 146, which may be used to regulate the exciter current applied to the exciter field winding.
  • the exciter converter module 106 may regulate the current supplied to exciter field winding 120 based on the iexc_fdbk to maintain a constant current. More specifically, the exciter converter 106 includes first and second switches T1e, T2e, and diodes D1e, D2e, connected in an asymmetric H-bridge configuration. The PWM 152 modulates switch T1e to regulate the current supplied to exciter field winding 120. As discussed above, in an asymmetric H-bridge converter, switch T2e remains On while switch T1e is modulated On and Off to regulate the current supplied to exciter field winding 120.
  • exciter converter circuit 106 regulates the exciter field current to provide a constant DC power supply provided by exciter armature winding 128 that is independent of generator speed.
  • the voltage regulator 104 detects an overvoltage event based on a comparison between the vdc_ref and vdc_fdbk , the voltage regulator 104 outputs enable to the medium frequency signal generator 148.
  • the medium frequency signal generator 148 In response to enable , the medium frequency signal generator 148 generates a frequency modulated control signal commanding the switches to turn off.
  • the frequency modulated control signal is added to the iexc_ref signal, which is pulse width modulated via the PWM 152 to the exciter high/low driver 154.
  • the exciter high/low driver 154 applies to the combined exciter signal i_combined (i.e., the exciter current superimposed with the frequency modulated control signal) to the exciter field winding 120.
  • the frequency demodulator 124 extracts the frequency modulated feedback/commands from the exciter armature winding 128, and modulates, i.e ., decodes the extracted frequency modulated feedback/commands to obtain the demodulated commands.
  • the main field rotating power converter 136 turns Off, thereby cutting off the rectified DC voltage to the main field winding 138.
  • main field rotating power converter 136 may be configured to quickly reduce current to zero in main field winding 138.
  • the monitored current does not have to be communicated across the air gap to the GCU, and command instructions may subsequently be provided by the GCU in response to the monitored current, while the numerous components required to construct conventional transformers for communicating command instructions across the air gap to the main field winding 138 may be eliminated.
  • a flow diagram illustrates a method of controlling a generator according to an embodiment of the disclosure.
  • a frequency modulated control signal is superimposed on an exciter current to generate a combined exciter signal.
  • the combined exciter current signal is transmitted across an air gap to the generator.
  • the frequency modulated control signal is extracted from the combined exciter signal.
  • the frequency modulated control signal is demodulated to generate a demodulated control signal at operation 306.
  • the generator is controlled based on the demodulated control signal, and the method ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Claims (12)

  1. Generatorsystem, umfassend:
    einen Generator (102), der einen feststehenden Abschnitt (116) und einen sich drehenden Abschnitt (118) aufweist, der Generator ferner umfassend:
    eine Erregerfeldwicklung (120) und eine Hauptankerwicklung (122), die am feststehenden Abschnitt angeordnet ist;
    eine Erregerankerwicklung (128) und eine Hauptfeldwicklung (138), die an dem sich drehenden Abschnitt angeordnet ist;
    einen Frequenzdemodulator (124) in elektrischer Verbindung mit der Erregerankerwicklung, wobei der Frequenzdemodulator dazu konfiguriert ist, ein frequenzmoduliertes Steuersignal von der Erregerankerwicklung zu extrahieren und das frequenzmodulierte Steuersignal zu demodulieren, um ein demoduliertes Steuersignal zu erzeugen; und
    einen sich drehenden Hauptfeldleistungsumsetzer (136), der am sich drehenden Abschnitt des Generators angeordnet ist, wobei der sich drehende Hauptfeldleistungsumsetzer dazu konfiguriert ist, selektiv Strom in der Hauptfeldwicklung als Reaktion auf das demodulierte Befehlssignal zu steuern; und
    eine Generatorsteuereinheit (104) in elektrischer Verbindung mit dem Generator, um die Ausgangsspannung der Hauptankerwicklung zu überwachen und einen Erregerstrom an die Erregerfeldwicklung auf Grundlage der Ausgangsspannung auszugeben, der das frequenzmodulierte Steuersignal beinhaltet.
  2. Generatorsystem nach Anspruch 1, wobei die Generatorsteuereinheit Folgendes umfasst:
    einen Spannungsregler (140), um ein Überspannungsereignis auf Grundlage eines Vergleichs zwischen der Ausgangspannung und einem vorbestimmten Referenzspannungsschwellenwert zu erfassen; und
    ein Erregerumsetzungsmodul (106), welches das frequenzmodulierte Steuersignal am Erregerstrom als Reaktion auf das Erfassen des Überspannungsereignisses überlagert.
  3. Generatorsystem nach Anspruch 2, wobei das Erregerumsetzungsmodul Folgendes umfasst:
    eine Erregerstromgeneratorschaltung (142) in elektrischer Verbindung mit dem Spannungsregler, wobei die Erregerstromgeneratorschaltung dazu konfiguriert ist, den Erregerstrom und ein Aktivierungssignal auszugeben, um die Erzeugung eines frequenzmodulierten Steuersignals zu starten; und
    eine Erregerantriebsschaltung (144) in elektrischer Verbindung mit dem Erregerstromgenerator, um das frequenzmodulierte Steuersignal als Reaktion auf das Empfangen des Aktivierungssignals zu erzeugen und das frequenzmodulierte Steuersignal am Erregerstrom zu überlagern.
  4. Generatorsystem nach Anspruch 3, wobei die Erregerantriebsschaltung ferner einen Erregerstromsensor beinhaltet, der an die Erregerfeldwicklung gekoppelt ist, um ein Erregerstromrückkopplungssignal auszugeben, wobei der Erregerstromgenerator den Erregerstrom auf Grundlage des Erregerstromrückkopplungssignals steuert.
  5. Generatorsystem nach Anspruch 4, wobei der sich drehende Hauptfeldleistungsumsetzer ferner Folgendes umfasst:
    einen Highside-Schalter (T1r), der mit einer positiven Gleichspannung eines sich drehenden Gleichstrom-Busses und einer Highside der Hauptfeldwicklung verbunden ist;
    einen Lowside-Schalter (T2r), der mit einer negativen Gleichspannung des sich drehenden Gleichstrom-Busses und einer Lowside der Hauptfeldwicklung verbunden ist;
    eine erste Diode (D1r), die mit der Highside der Hauptfeldwicklung und der negativen Gleichspannung verbunden ist; und
    eine zweite Diode (D2r), die mit der Lowside der Hauptfeldwicklung und der positiven Gleichspannung verbunden ist.
  6. Generatorsystem nach Anspruch 5, wobei der Highside-Schalter und der Lowside-Schalter Spannung über den sich drehenden Gleichstrom-Bus an die Hauptfeldwicklung als Reaktion darauf liefern, dass diese aktiviert wurde.
  7. Generatorsystem nach Anspruch 6, wobei die erste und zweite Diode einen Pfad für Strom bereitstellen, der in der Hauptfeldwicklung als Reaktion darauf gespeichert ist, dass der Highside-Schalter und der Lowside-Schalter für die sich drehende Stromzufuhr deaktiviert wurden.
  8. Generatorsystem nach Anspruch 7, wobei der sich drehende Hauptfeldleistungsumsetzer Strom durch die Hauptfeldwicklung durch das Aktivieren des Lowside-Schalters und das Deaktivieren des Highside-Schalters regelt.
  9. Verfahren zum Steuern eines Generatorsystems nach Anspruch 1, das Verfahren umfassend:
    das Drehen der Erregerankerwicklung zusammen mit der Hauptfeldwicklung;
    das selektive Überlagern eines frequenzmodulierten Steuersignals an einem Erregerstrom, um ein kombiniertes Erregersignal zu erzeugen;
    das Übermitteln des kombinierten Erregerstromsignals über einen Luftspalt an die Erregerankerwicklung, die im Generator beinhaltet ist;
    das Extrahieren des frequenzmodulierten Steuersignals vom kombinierten Erregersignal und das Demodulieren des frequenzmodulierten Steuersignals, um ein demoduliertes Steuersignal zu erzeugen; und
    das Steuern von Strom, der durch die Hauptfeldwicklung fließt, die in dem Generator beinhaltet ist, auf Grundlage des demodulierten Steuersignals.
  10. Verfahren nach Anspruch 9, ferner umfassend das Regeln der Ausgabe des Generators auf Grundlage des Erregerstroms, während der Generator auf Grundlage des demodulierten Steuersignals gesteuert wird.
  11. Verfahren nach Anspruch 10, ferner umfassend das Aktivieren von mindestens einem Schalter über das demodulierte Steuersignal, um Spannung vom Generator auf Grundlage des demodulierten Steuersignals auszugeben.
  12. Verfahren nach Anspruch 11, ferner umfassend das Deaktivieren von mindestens einem Schalter über das demodulierte Steuersignal, um Strom zu zerstreuen, der im Generator gespeichert ist.
EP14159224.6A 2013-03-15 2014-03-12 Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers Active EP2779420B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/836,255 US8975876B2 (en) 2013-03-15 2013-03-15 Method of controlling rotating main field converter

Publications (3)

Publication Number Publication Date
EP2779420A2 EP2779420A2 (de) 2014-09-17
EP2779420A3 EP2779420A3 (de) 2017-01-04
EP2779420B1 true EP2779420B1 (de) 2019-07-03

Family

ID=50272422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14159224.6A Active EP2779420B1 (de) 2013-03-15 2014-03-12 Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers

Country Status (2)

Country Link
US (1) US8975876B2 (de)
EP (1) EP2779420B1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8773080B2 (en) * 2010-12-16 2014-07-08 Kohler Co. Resonant commutation system for exciting a three-phase alternator
US8928166B2 (en) * 2011-08-31 2015-01-06 Hamilton Sundstrand Corporation Mixed mode power generation architecture
US20150249417A1 (en) * 2013-12-30 2015-09-03 Rolls-Royce Corporation Synchronous generator controller based on flux optimizer
US9525376B2 (en) * 2014-05-13 2016-12-20 Gbox, Llc Wound field synchronous machine with resonant field exciter
US9564845B2 (en) * 2014-11-17 2017-02-07 The Boeing Company System and method for generator main field energy extraction
US10256758B2 (en) 2014-11-26 2019-04-09 Kohler Co. Printed circuit board based exciter
CN104638650B (zh) * 2015-01-14 2016-08-31 国家电网公司 一种利用原动机输出转矩控制发电机频率的方法
US20160268942A1 (en) * 2015-03-12 2016-09-15 Hamilton Sundstrand Corporation Control of Hybrid Permanent Magnet Machine With Rotating Power Converter and Energy Source
US10075106B2 (en) 2015-04-10 2018-09-11 Hamilton Sundstrand Corporation DC synchronous machine
US10033252B2 (en) 2015-04-14 2018-07-24 Hamilton Sundstrand Corporation Sensorless control of a DC synchronous machine
US9660563B2 (en) 2015-06-19 2017-05-23 Hamilton Sundstrand Corporation High voltage direct current system with improved generator excitation
US9548691B1 (en) * 2015-06-24 2017-01-17 Hamilton Sundstrand Corporation Variable speed constant frequency power generator including permanent magnet exciter
US10644513B2 (en) * 2016-06-08 2020-05-05 Hamilton Sundstrand Corporation High voltage power generating system
US9941827B2 (en) * 2016-06-08 2018-04-10 Hamilton Sundstrand Corporation High voltage DC power generating system including selectively removable neutral node
WO2018047866A1 (ja) * 2016-09-12 2018-03-15 株式会社デンソー 回転電機の制御装置
DE102017201687A1 (de) * 2017-02-02 2018-08-02 Siemens Aktiengesellschaft Regelbare Spannungserzeugungsvorrichtung und Verfahren zum Betreiben einer regelbaren Spannungserzeugungsvorrichtung
US10128785B1 (en) * 2017-05-22 2018-11-13 General Electric Company Systems and methods for mitigating transient events in a power generation system
CN107659224B (zh) * 2017-08-18 2020-03-06 天津大学 基于方波激励信号的旋转变压器轴角转换的装置及方法
US10727769B2 (en) * 2017-09-22 2020-07-28 Hamilton Sundstrand Corporation Voltage regulation of permanent magnet generator with extended speed range
US10601338B2 (en) 2017-09-25 2020-03-24 Hamilton Sundstrand Corporation Electric system architecture for a vehicle with multiple load characteristics
US10177698B1 (en) 2017-11-06 2019-01-08 The Boeing Company Counter-field winding in electrical generator
US10651770B2 (en) 2018-08-29 2020-05-12 Hamilton Sundstrand Corporation Direct current voltage regulation of a six-phase permanent magnet generator
US10778127B2 (en) * 2018-09-10 2020-09-15 Hamilton Sundstrand Corporation Direct current voltage regulation of permanent magnet generator
US10855216B2 (en) 2018-09-10 2020-12-01 Hamilton Sundstrand Corporation Voltage regulation of multi-phase permanent magnet generator
GB202117427D0 (en) * 2021-12-02 2022-01-19 Brush Elec Machines An exciter circuit for a synchronous machine
US11711036B1 (en) 2022-05-06 2023-07-25 Hamilton Sundstrand Corporation Electric power generation system (EPGS) controller excitation system architecture for variable frequency generators

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671850A (en) * 1970-11-19 1972-06-20 Walter E Mehnert Electric generator control system with radio feedback loop
US3858109A (en) * 1973-03-23 1974-12-31 Sperry Rand Corp Brushless tachometer
US4723106A (en) * 1986-08-29 1988-02-02 General Electric Company Brushless generator exciter using hybrid rectifier
JPS6430500A (en) 1987-07-24 1989-02-01 Shinko Electric Co Ltd Brushless starting generator exciter
US5029263A (en) 1989-10-19 1991-07-02 Sundstrand Corporation Electric start control of a VSCF system
US5153498A (en) 1989-11-07 1992-10-06 Sundstrand Corporation Generic control unit
US5055765A (en) 1990-09-04 1991-10-08 Sundstrand Corporation Voltage regulator for direct current aircraft power bus
US5233286A (en) 1991-07-29 1993-08-03 Sundstrand Corporation Hybrid 270 volt DC system
US5363032A (en) 1993-05-12 1994-11-08 Sundstrand Corporation Sensorless start of synchronous machine
US5488286A (en) 1993-05-12 1996-01-30 Sundstrand Corporation Method and apparatus for starting a synchronous machine
JP3531771B2 (ja) * 1994-12-28 2004-05-31 株式会社デンソー 車両用充電装置
US5796240A (en) * 1995-02-22 1998-08-18 Seiko Instruments Inc. Power unit and electronic apparatus equipped with power unit
US5764036A (en) 1995-03-08 1998-06-09 Sundstrand Corporation Multiple output decoupled synchronous generator and electrical system employing same
US6281664B1 (en) 1999-01-13 2001-08-28 Honda Giken Kogyo Kabushiki Kaisha Generator and generator apparatus
US6420842B1 (en) 2000-01-11 2002-07-16 American Superconductor Corporation Exciter and electronic regulator for rotating machinery
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
US7053590B2 (en) 2004-08-24 2006-05-30 Elliott Energy Systems, Inc. Power generating system including a high-frequency alternator, a rectifier module, and an auxiliary power supply
US7196498B2 (en) 2004-09-08 2007-03-27 Honeywell International Inc. Method and apparatus for generator control
US7064524B2 (en) 2004-09-08 2006-06-20 Honeywell International Inc. Method and apparatus for generator control
US7439713B2 (en) 2006-09-20 2008-10-21 Pratt & Whitney Canada Corp. Modulation control of power generation system
US8237416B2 (en) 2008-12-09 2012-08-07 Hamilton Sundstrand Corporation More electric engine with regulated permanent magnet machines
US8299762B2 (en) 2009-06-05 2012-10-30 Hamilton Sundstrand Corporation Starting/generating system with multi-functional circuit breaker
US8358111B2 (en) 2009-12-03 2013-01-22 Hamilton Sundstrand Corporation Architecture for dual source electric power generating system
GB201006392D0 (en) * 2010-04-16 2010-06-02 Dyson Technology Ltd Controller for a brushless motor
US8699251B2 (en) 2012-04-24 2014-04-15 Hamilton Sundstrand Corporation Direct current generating, management and distribution system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2779420A2 (de) 2014-09-17
EP2779420A3 (de) 2017-01-04
US8975876B2 (en) 2015-03-10
US20140266079A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
EP2779420B1 (de) Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers
US9054610B2 (en) Generator architecture with main field rotating power converter
US9325229B2 (en) Generator architecture with PMG exciter and main field rotating power converter
EP2779424B1 (de) EPGS-Architektur mit mehrkanaligem Synchrongenerator und gemeinsamem unreguliertem PMG-Erreger
EP2782226B1 (de) Flussgeregelte PM-Läufer eines elektrische Maschine
US8970183B2 (en) Overvoltage limiter in an aircraft electrical power generation system
EP2779425B1 (de) Egps-architektur mit mehrkanaligem synchrongenerator und reguliertem erreger mit gemeinsamem feld
EP2779421B1 (de) Integrierter Startergenerator
EP3255780B1 (de) Hochspannungs-gleichspannungsenergieerzeugungssystem mit einem wahlweise abnehmbaren neutralen knoten
EP2139099A2 (de) Regulierter Permanentmagnet-Hybridgenerator
US9270219B2 (en) Voltage-controlled DC link for variable frequency generator excitation
CA3026901A1 (fr) Demarreur generateur sans balais
EP2045910B1 (de) Starter/Generatorsystem mit Steuerung zur Adressierung eines Spannungsanstiegs
JP6466575B2 (ja) 同期機への励磁電流の供給
EP3255779B1 (de) Rekonfigurierbares, auf multi-permanentmagnetgenerator basierendes energieerzeugungssystem
US9325269B1 (en) Two stage flux switching machine for an electrical power generation system
US10044305B2 (en) Controlling aircraft VFG over voltage under fault or load-shed
CN113383490A (zh) 混合式永磁和绕线转子起动器发电机
KR20100095063A (ko) 동기발전기의 과도응답 개선회로

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140312

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H02P 9/00 20060101AFI20161130BHEP

Ipc: H02P 9/30 20060101ALI20161130BHEP

Ipc: H02P 9/02 20060101ALI20161130BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20170630

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190124

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAMILTON SUNDSTRAND CORPORATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1152193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014049352

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1152193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014049352

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200312

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240221

Year of fee payment: 11