EP2779420B1 - Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers - Google Patents
Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers Download PDFInfo
- Publication number
- EP2779420B1 EP2779420B1 EP14159224.6A EP14159224A EP2779420B1 EP 2779420 B1 EP2779420 B1 EP 2779420B1 EP 14159224 A EP14159224 A EP 14159224A EP 2779420 B1 EP2779420 B1 EP 2779420B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exciter
- generator
- current
- control signal
- main field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004804 winding Methods 0.000 claims description 86
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 230000001276 controlling effect Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 6
- 230000005284 excitation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/02—Details of the control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/26—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
- H02P9/30—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
- H02P9/305—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
Definitions
- the present inventive concept is related to generator architectures and in particular to generator architectures utilizing main field rotating power converters.
- generators convert mechanical energy to electrical energy via the interaction of rotating magnetic fields and coils of wire.
- a multitude of generator architectures have been developed with various means of providing interaction between magnetic fields and coils of wire.
- PMG permanent magnet generator
- Another type of generator supplies current through a coil to generate the desired magnetic field, which is rotated via the mechanical energy supplied by a prime mover, such that a rotating magnetic field is created that interacts with stator coils to provide an output voltage.
- the output voltage supplied by the PMG depends only on the magnitude of the mechanical energy supplied by the prime mover.
- the output voltage of the generator can be regulated by varying the current supplied to the field coil.
- the latter example known as a wound field synchronous machine, is widely utilized.
- a PMG is sometimes utilized in conjunction with the wound field synchronous machine to source the current supplied to an exciter field winding to regulate the output of the brushless wound field synchronous machine.
- a typical variable frequency generator includes a permanent magnet section, an exciter section, and a main generator section.
- the permanent magnet portion includes permanent magnets employed on the rotating portion, which generate an alternating current voltage on the stator portion.
- the AC voltage provided by the permanent magnet portion is rectified and selectively applied to the exciter field winding on the stationary portion of the exciter.
- the exciter field current interacts with the rotating exciter armature windings to provide an AC voltage.
- a rotating rectifier rectifies the AC voltage and supplies the DC voltage to a main field winding on the rotating portion of the main generator section. Rotation of the motive power shaft and the main field winding induces three-phase AC output voltage on the main generator armature windings.
- the magnitude of the AC generator output voltage is regulated by controlling the current supplied to the exciter field coil on the stationary portion of the exciter.
- the output of the generator may be a function of the rotational speed of the generator and load. In cases with a belt-type interface between prime mover shaft and the generator shaft sudden load changes may also result in sudden changes in generator speed. As a result, sudden variations of the generator output voltage, such as sudden voltage increases, may occur.
- a VFG is disclosed in US 5,764,036 and US 3,671,850 .
- a method of controlling a generator according to the invention is defined in claim 9 with preferred embodiments in claims 10 to 12.
- FIG. 1 is a circuit diagram of electric power generation and distribution system 100 according to an embodiment of the present inventive concept.
- System 100 includes generator 102 and a generator control unit (GCU) 104.
- the GCU 104 includes an exciter converter module 106.
- the system 100 may further include a current sensor 108, a voltage sensor 110, an output rectifier 112, and load including a constant power load 114.
- the output rectifier 112 may rectify the AC voltage at the main armature winding 122 to deliver a rectified DC voltage to the load including a constant power load 114.
- the current sensor 108 and the voltage sensor 110 may provide current and voltage feedback signals to the GCU.
- Generator 102 includes stationary portion 116 and rotating portion 118.
- the stationary portion 116 includes exciter field winding 120 and main armature winding 122.
- Rotating portion 118 includes, demodulator 124, rotating power source 126, exciter armature winding 128, high-side/low-side gate driver 130, rotating rectifier 132, rotating DC bus 134, main field rotating power converter 136, and main field winding 138.
- Main field rotating power converter 136 includes high-side switch T1r, low-side switch T2r, and diodes D1r and D2r.
- GCU Generator control unit
- the exciter converter module 106 are configured to electrically regulate and protect of generator 102. Regulation refers to maintaining the output voltage generator 102 provided by main armature winding 122 at a desired level. Protection refers, at least in part, to preventing faults such as overvoltage faults from damaging generator 102 or attached loads 114. As discussed in more detail below, the output voltage is regulated by either regulating the current supplied to exciter field winding 120 (as is normally done in brushless wound field synchronous machines) or regulating the current supplied to main field winding 138 located on the rotating portion 118 of generator 102.
- main field rotating power converter 136 selectively applies voltage to main field winding 138.
- GCU 104 is in electrical communication with the generator 102 to monitor the output voltage provided by the main armature winding 122.
- the GCU 104 includes the exciter converter module 106, which may generate the exciter signal (i.e., current) to exciter field winding 120.
- Excitation supplied to exciter field winding 120 induces an AC voltage in exciter armature winding 128 located on rotating portion 116.
- the AC voltage generated on exciter armature winding 128 is rectified by the rotating rectifier 132 to generate a DC voltage that is supplied to main field rotating power converter 136 via DC bus link 134.
- the rotating rectifier 132 may include a 6-pulse passive rectifier comprised of a plurality of bridge-connected diodes.
- the rotating rectifier 132 may be an active rectifier in which the diodes are connected in parallel with a plurality of solid-state switches selectively controlled to provide a DC output to main field rotating power converter 136.
- main field rotating power converter 136 selectively applies voltage from rotating DC bus 134 to main field winding 138, allowing current to build up in main field winding 138.
- main field winding 138 When high-side switch T1r and low-side switch T2r are switched Off, current in main field winding 138 flows through diodes D1r and D2r and voltage across main field winding becomes negative. This causes the main field current to decrease rapidly to zero.
- the inductive energy is fed back to the rotating dc power supply that includes an exciter armature windings, a 6-pulse rectifier, and a dc bus capacitor CdcR.
- Current through main field winding 138 induces an AC voltage in main armature winding 122 that is monitored by GCU 104 and supplied to load 114.
- the state of the high-side switch T1r and low-side switch T2r included with the main field rotating power converter 136 is based on frequency modulated feedback/commands received by the exciter armature winding 128.
- the frequency modulated feedback/commands are superimposed on the exciter signal applied to the exciter field winding 120 via the 106, and are communicated across the air gap to the exciter armature winding 128, as discussed in greater detail below.
- the frequency demodulator 124 is electrically coupled to the exciter armature winding 128 and extracts the frequency modulated feedback/commands therefrom.
- the frequency demodulator 124 modulates, i.e., decodes the extracted frequency modulated feedback/commands and provides the demodulated commands to the high-side/low-wide gate driver 130.
- the selectively high-side/low-wide gate driver 130 controls the state of switches T1r and T2r, i.e., turns switches T1r/Tr2 On and Off accordingly.
- switches T1r and T2r i.e., turns switches T1r/Tr2 On and Off accordingly.
- low-side switch T2r remains in the On state, and only high-side switch T1r is modulated On and Off.
- low-side switch T2r may be commanded to the Off position (along with high-side switch T1r) to prevent voltage from being supplied to main field winding 138 and to quickly reduce current in main field winding 138.
- the main field rotating power converter 136 may provide overvoltage protection to generator 102.
- the typical response to an overvoltage condition is to remove the excitation, i.e., excitation current, from exciter field winding 120.
- the lag between the time in which excitation is removed from exciter field winding 120 and when excitation is removed from main field winding 138 may result in voltages that are damaging to generator 102 and/or load 114.
- the main field rotating power converter 136 may be utilized to provide protection, while the GCU 104 selectively controls the supply of current provided to exciter field winding 120 to regulate the output voltage provided by main armature winding 122.
- the voltage induced in response to the exciter field winding current is provided without regulation by main field rotating power converter 136 to main field winding 138, allowing current to build up in main field winding 138.
- a command is superimposed on the exciter current and communicated to the exciter armature winding, and ultimately received by the hi/low driver 130 to switch off the high-side switch T1r and the low-side switch T2r and remove excitation from main field winding 138.
- the system 100 may also allow for both protection and regulation of the main field winding current.
- the high-side switch T1r, low-side switch T2r of the main field rotating power converter 136 is configured to allow the current through main field winding 138 to be regulated, as opposed to simply being selective switched On or Off for protection purposes.
- switches T1r and T2r, as well as diodes D1r and D2r are configured as an asymmetric H-bridge circuit in which voltage supplied by rotating rectifier 132 is provided to main field winding 138 when both switches T1r and T2r are On and prevented from being supplied to main field winding 138 when both switches T1r and T2r are Off.
- the current through main field winding 138 is regulated by maintaining switch T2r in an On state and pulse width modulating switch T1r.
- a voltage regulator 140 may be included with the GCU 104, which communicates with the exciter converter module 106 to enable regulation of current through main field winding 138.
- the voltage regulator 104 outputs reference and controls signals to be utilized by the exciter converter module 106. More specifically, the output current is monitored via current sensor 108.
- the current sensor 108 outputs a feedback current signal ( idc_fdbk ) to the voltage regulator 140.
- voltage sensor 110 outputs a feedback voltage signal ( vdc_fdbk ).
- the vdc_fdbk is indicative of the DC output voltage across the output rectifier 112, which is received by the voltage regulator 140.
- the voltage regulator 140 determines a reference DC reference voltage ( vdc_ref ) and outputs a reference exciter current ( iexc_ref ) that indicates the desired current through main field winding 138.
- the voltage regulator 140 further generates an enable signal ( enable ) used to initiate the operation of superimposing the frequency modulated control signal on the exciter field winding current.
- the exciter converter module 106 includes an exciter current generator circuit 142 and an exciter driver circuit 144.
- the exciter current generator circuit 142 includes a current regulator 146, a medium frequency signal generator 148, a summer 150, and a pulse width modulator (PWM) 152.
- the exciter driver circuit 144 includes an exciter high/low driver 154, a first exciter switch T1e, a second exciter switch T2e, and an exciter current sensor 156.
- An independent power source (IPS) 158 such as a DC power supply, may also be included to provide an operating voltage to the exciter switches T1e, T2e.
- the current sensor is electrically connected to the exciter field winding and outputs an exciter current feedback signal ( iexc_fdbk ) to the current regulator 146, which may be used to regulate the exciter current applied to the exciter field winding.
- the exciter converter module 106 may regulate the current supplied to exciter field winding 120 based on the iexc_fdbk to maintain a constant current. More specifically, the exciter converter 106 includes first and second switches T1e, T2e, and diodes D1e, D2e, connected in an asymmetric H-bridge configuration. The PWM 152 modulates switch T1e to regulate the current supplied to exciter field winding 120. As discussed above, in an asymmetric H-bridge converter, switch T2e remains On while switch T1e is modulated On and Off to regulate the current supplied to exciter field winding 120.
- exciter converter circuit 106 regulates the exciter field current to provide a constant DC power supply provided by exciter armature winding 128 that is independent of generator speed.
- the voltage regulator 104 detects an overvoltage event based on a comparison between the vdc_ref and vdc_fdbk , the voltage regulator 104 outputs enable to the medium frequency signal generator 148.
- the medium frequency signal generator 148 In response to enable , the medium frequency signal generator 148 generates a frequency modulated control signal commanding the switches to turn off.
- the frequency modulated control signal is added to the iexc_ref signal, which is pulse width modulated via the PWM 152 to the exciter high/low driver 154.
- the exciter high/low driver 154 applies to the combined exciter signal i_combined (i.e., the exciter current superimposed with the frequency modulated control signal) to the exciter field winding 120.
- the frequency demodulator 124 extracts the frequency modulated feedback/commands from the exciter armature winding 128, and modulates, i.e ., decodes the extracted frequency modulated feedback/commands to obtain the demodulated commands.
- the main field rotating power converter 136 turns Off, thereby cutting off the rectified DC voltage to the main field winding 138.
- main field rotating power converter 136 may be configured to quickly reduce current to zero in main field winding 138.
- the monitored current does not have to be communicated across the air gap to the GCU, and command instructions may subsequently be provided by the GCU in response to the monitored current, while the numerous components required to construct conventional transformers for communicating command instructions across the air gap to the main field winding 138 may be eliminated.
- a flow diagram illustrates a method of controlling a generator according to an embodiment of the disclosure.
- a frequency modulated control signal is superimposed on an exciter current to generate a combined exciter signal.
- the combined exciter current signal is transmitted across an air gap to the generator.
- the frequency modulated control signal is extracted from the combined exciter signal.
- the frequency modulated control signal is demodulated to generate a demodulated control signal at operation 306.
- the generator is controlled based on the demodulated control signal, and the method ends.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
Claims (12)
- Generatorsystem, umfassend:
einen Generator (102), der einen feststehenden Abschnitt (116) und einen sich drehenden Abschnitt (118) aufweist, der Generator ferner umfassend:eine Erregerfeldwicklung (120) und eine Hauptankerwicklung (122), die am feststehenden Abschnitt angeordnet ist;eine Erregerankerwicklung (128) und eine Hauptfeldwicklung (138), die an dem sich drehenden Abschnitt angeordnet ist;einen Frequenzdemodulator (124) in elektrischer Verbindung mit der Erregerankerwicklung, wobei der Frequenzdemodulator dazu konfiguriert ist, ein frequenzmoduliertes Steuersignal von der Erregerankerwicklung zu extrahieren und das frequenzmodulierte Steuersignal zu demodulieren, um ein demoduliertes Steuersignal zu erzeugen; undeinen sich drehenden Hauptfeldleistungsumsetzer (136), der am sich drehenden Abschnitt des Generators angeordnet ist, wobei der sich drehende Hauptfeldleistungsumsetzer dazu konfiguriert ist, selektiv Strom in der Hauptfeldwicklung als Reaktion auf das demodulierte Befehlssignal zu steuern; undeine Generatorsteuereinheit (104) in elektrischer Verbindung mit dem Generator, um die Ausgangsspannung der Hauptankerwicklung zu überwachen und einen Erregerstrom an die Erregerfeldwicklung auf Grundlage der Ausgangsspannung auszugeben, der das frequenzmodulierte Steuersignal beinhaltet. - Generatorsystem nach Anspruch 1, wobei die Generatorsteuereinheit Folgendes umfasst:einen Spannungsregler (140), um ein Überspannungsereignis auf Grundlage eines Vergleichs zwischen der Ausgangspannung und einem vorbestimmten Referenzspannungsschwellenwert zu erfassen; undein Erregerumsetzungsmodul (106), welches das frequenzmodulierte Steuersignal am Erregerstrom als Reaktion auf das Erfassen des Überspannungsereignisses überlagert.
- Generatorsystem nach Anspruch 2, wobei das Erregerumsetzungsmodul Folgendes umfasst:eine Erregerstromgeneratorschaltung (142) in elektrischer Verbindung mit dem Spannungsregler, wobei die Erregerstromgeneratorschaltung dazu konfiguriert ist, den Erregerstrom und ein Aktivierungssignal auszugeben, um die Erzeugung eines frequenzmodulierten Steuersignals zu starten; undeine Erregerantriebsschaltung (144) in elektrischer Verbindung mit dem Erregerstromgenerator, um das frequenzmodulierte Steuersignal als Reaktion auf das Empfangen des Aktivierungssignals zu erzeugen und das frequenzmodulierte Steuersignal am Erregerstrom zu überlagern.
- Generatorsystem nach Anspruch 3, wobei die Erregerantriebsschaltung ferner einen Erregerstromsensor beinhaltet, der an die Erregerfeldwicklung gekoppelt ist, um ein Erregerstromrückkopplungssignal auszugeben, wobei der Erregerstromgenerator den Erregerstrom auf Grundlage des Erregerstromrückkopplungssignals steuert.
- Generatorsystem nach Anspruch 4, wobei der sich drehende Hauptfeldleistungsumsetzer ferner Folgendes umfasst:einen Highside-Schalter (T1r), der mit einer positiven Gleichspannung eines sich drehenden Gleichstrom-Busses und einer Highside der Hauptfeldwicklung verbunden ist;einen Lowside-Schalter (T2r), der mit einer negativen Gleichspannung des sich drehenden Gleichstrom-Busses und einer Lowside der Hauptfeldwicklung verbunden ist;eine erste Diode (D1r), die mit der Highside der Hauptfeldwicklung und der negativen Gleichspannung verbunden ist; undeine zweite Diode (D2r), die mit der Lowside der Hauptfeldwicklung und der positiven Gleichspannung verbunden ist.
- Generatorsystem nach Anspruch 5, wobei der Highside-Schalter und der Lowside-Schalter Spannung über den sich drehenden Gleichstrom-Bus an die Hauptfeldwicklung als Reaktion darauf liefern, dass diese aktiviert wurde.
- Generatorsystem nach Anspruch 6, wobei die erste und zweite Diode einen Pfad für Strom bereitstellen, der in der Hauptfeldwicklung als Reaktion darauf gespeichert ist, dass der Highside-Schalter und der Lowside-Schalter für die sich drehende Stromzufuhr deaktiviert wurden.
- Generatorsystem nach Anspruch 7, wobei der sich drehende Hauptfeldleistungsumsetzer Strom durch die Hauptfeldwicklung durch das Aktivieren des Lowside-Schalters und das Deaktivieren des Highside-Schalters regelt.
- Verfahren zum Steuern eines Generatorsystems nach Anspruch 1, das Verfahren umfassend:das Drehen der Erregerankerwicklung zusammen mit der Hauptfeldwicklung;das selektive Überlagern eines frequenzmodulierten Steuersignals an einem Erregerstrom, um ein kombiniertes Erregersignal zu erzeugen;das Übermitteln des kombinierten Erregerstromsignals über einen Luftspalt an die Erregerankerwicklung, die im Generator beinhaltet ist;das Extrahieren des frequenzmodulierten Steuersignals vom kombinierten Erregersignal und das Demodulieren des frequenzmodulierten Steuersignals, um ein demoduliertes Steuersignal zu erzeugen; unddas Steuern von Strom, der durch die Hauptfeldwicklung fließt, die in dem Generator beinhaltet ist, auf Grundlage des demodulierten Steuersignals.
- Verfahren nach Anspruch 9, ferner umfassend das Regeln der Ausgabe des Generators auf Grundlage des Erregerstroms, während der Generator auf Grundlage des demodulierten Steuersignals gesteuert wird.
- Verfahren nach Anspruch 10, ferner umfassend das Aktivieren von mindestens einem Schalter über das demodulierte Steuersignal, um Spannung vom Generator auf Grundlage des demodulierten Steuersignals auszugeben.
- Verfahren nach Anspruch 11, ferner umfassend das Deaktivieren von mindestens einem Schalter über das demodulierte Steuersignal, um Strom zu zerstreuen, der im Generator gespeichert ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/836,255 US8975876B2 (en) | 2013-03-15 | 2013-03-15 | Method of controlling rotating main field converter |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2779420A2 EP2779420A2 (de) | 2014-09-17 |
EP2779420A3 EP2779420A3 (de) | 2017-01-04 |
EP2779420B1 true EP2779420B1 (de) | 2019-07-03 |
Family
ID=50272422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14159224.6A Active EP2779420B1 (de) | 2013-03-15 | 2014-03-12 | Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers |
Country Status (2)
Country | Link |
---|---|
US (1) | US8975876B2 (de) |
EP (1) | EP2779420B1 (de) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8773080B2 (en) * | 2010-12-16 | 2014-07-08 | Kohler Co. | Resonant commutation system for exciting a three-phase alternator |
US8928166B2 (en) * | 2011-08-31 | 2015-01-06 | Hamilton Sundstrand Corporation | Mixed mode power generation architecture |
US20150249417A1 (en) * | 2013-12-30 | 2015-09-03 | Rolls-Royce Corporation | Synchronous generator controller based on flux optimizer |
US9525376B2 (en) * | 2014-05-13 | 2016-12-20 | Gbox, Llc | Wound field synchronous machine with resonant field exciter |
US9564845B2 (en) * | 2014-11-17 | 2017-02-07 | The Boeing Company | System and method for generator main field energy extraction |
US10256758B2 (en) | 2014-11-26 | 2019-04-09 | Kohler Co. | Printed circuit board based exciter |
CN104638650B (zh) * | 2015-01-14 | 2016-08-31 | 国家电网公司 | 一种利用原动机输出转矩控制发电机频率的方法 |
US20160268942A1 (en) * | 2015-03-12 | 2016-09-15 | Hamilton Sundstrand Corporation | Control of Hybrid Permanent Magnet Machine With Rotating Power Converter and Energy Source |
US10075106B2 (en) | 2015-04-10 | 2018-09-11 | Hamilton Sundstrand Corporation | DC synchronous machine |
US10033252B2 (en) | 2015-04-14 | 2018-07-24 | Hamilton Sundstrand Corporation | Sensorless control of a DC synchronous machine |
US9660563B2 (en) | 2015-06-19 | 2017-05-23 | Hamilton Sundstrand Corporation | High voltage direct current system with improved generator excitation |
US9548691B1 (en) * | 2015-06-24 | 2017-01-17 | Hamilton Sundstrand Corporation | Variable speed constant frequency power generator including permanent magnet exciter |
US9941827B2 (en) * | 2016-06-08 | 2018-04-10 | Hamilton Sundstrand Corporation | High voltage DC power generating system including selectively removable neutral node |
US10644513B2 (en) * | 2016-06-08 | 2020-05-05 | Hamilton Sundstrand Corporation | High voltage power generating system |
WO2018047866A1 (ja) * | 2016-09-12 | 2018-03-15 | 株式会社デンソー | 回転電機の制御装置 |
DE102017201687A1 (de) * | 2017-02-02 | 2018-08-02 | Siemens Aktiengesellschaft | Regelbare Spannungserzeugungsvorrichtung und Verfahren zum Betreiben einer regelbaren Spannungserzeugungsvorrichtung |
US10128785B1 (en) * | 2017-05-22 | 2018-11-13 | General Electric Company | Systems and methods for mitigating transient events in a power generation system |
CN107659224B (zh) * | 2017-08-18 | 2020-03-06 | 天津大学 | 基于方波激励信号的旋转变压器轴角转换的装置及方法 |
US10727769B2 (en) * | 2017-09-22 | 2020-07-28 | Hamilton Sundstrand Corporation | Voltage regulation of permanent magnet generator with extended speed range |
US10601338B2 (en) | 2017-09-25 | 2020-03-24 | Hamilton Sundstrand Corporation | Electric system architecture for a vehicle with multiple load characteristics |
US10177698B1 (en) | 2017-11-06 | 2019-01-08 | The Boeing Company | Counter-field winding in electrical generator |
US10651770B2 (en) | 2018-08-29 | 2020-05-12 | Hamilton Sundstrand Corporation | Direct current voltage regulation of a six-phase permanent magnet generator |
US10778127B2 (en) * | 2018-09-10 | 2020-09-15 | Hamilton Sundstrand Corporation | Direct current voltage regulation of permanent magnet generator |
US10855216B2 (en) | 2018-09-10 | 2020-12-01 | Hamilton Sundstrand Corporation | Voltage regulation of multi-phase permanent magnet generator |
GB202117427D0 (en) * | 2021-12-02 | 2022-01-19 | Brush Elec Machines | An exciter circuit for a synchronous machine |
US11711036B1 (en) | 2022-05-06 | 2023-07-25 | Hamilton Sundstrand Corporation | Electric power generation system (EPGS) controller excitation system architecture for variable frequency generators |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3671850A (en) * | 1970-11-19 | 1972-06-20 | Walter E Mehnert | Electric generator control system with radio feedback loop |
US3858109A (en) * | 1973-03-23 | 1974-12-31 | Sperry Rand Corp | Brushless tachometer |
US4723106A (en) * | 1986-08-29 | 1988-02-02 | General Electric Company | Brushless generator exciter using hybrid rectifier |
JPS6430500A (en) | 1987-07-24 | 1989-02-01 | Shinko Electric Co Ltd | Brushless starting generator exciter |
US5029263A (en) | 1989-10-19 | 1991-07-02 | Sundstrand Corporation | Electric start control of a VSCF system |
US5153498A (en) | 1989-11-07 | 1992-10-06 | Sundstrand Corporation | Generic control unit |
US5055765A (en) | 1990-09-04 | 1991-10-08 | Sundstrand Corporation | Voltage regulator for direct current aircraft power bus |
US5233286A (en) | 1991-07-29 | 1993-08-03 | Sundstrand Corporation | Hybrid 270 volt DC system |
US5363032A (en) | 1993-05-12 | 1994-11-08 | Sundstrand Corporation | Sensorless start of synchronous machine |
US5488286A (en) | 1993-05-12 | 1996-01-30 | Sundstrand Corporation | Method and apparatus for starting a synchronous machine |
JP3531771B2 (ja) * | 1994-12-28 | 2004-05-31 | 株式会社デンソー | 車両用充電装置 |
US5796240A (en) * | 1995-02-22 | 1998-08-18 | Seiko Instruments Inc. | Power unit and electronic apparatus equipped with power unit |
US5764036A (en) | 1995-03-08 | 1998-06-09 | Sundstrand Corporation | Multiple output decoupled synchronous generator and electrical system employing same |
US6281664B1 (en) | 1999-01-13 | 2001-08-28 | Honda Giken Kogyo Kabushiki Kaisha | Generator and generator apparatus |
US6420842B1 (en) | 2000-01-11 | 2002-07-16 | American Superconductor Corporation | Exciter and electronic regulator for rotating machinery |
JP2005151662A (ja) * | 2003-11-13 | 2005-06-09 | Sharp Corp | インバータ装置および分散電源システム |
US7053590B2 (en) | 2004-08-24 | 2006-05-30 | Elliott Energy Systems, Inc. | Power generating system including a high-frequency alternator, a rectifier module, and an auxiliary power supply |
US7064524B2 (en) | 2004-09-08 | 2006-06-20 | Honeywell International Inc. | Method and apparatus for generator control |
US7196498B2 (en) | 2004-09-08 | 2007-03-27 | Honeywell International Inc. | Method and apparatus for generator control |
US7439713B2 (en) | 2006-09-20 | 2008-10-21 | Pratt & Whitney Canada Corp. | Modulation control of power generation system |
US8237416B2 (en) | 2008-12-09 | 2012-08-07 | Hamilton Sundstrand Corporation | More electric engine with regulated permanent magnet machines |
US8299762B2 (en) | 2009-06-05 | 2012-10-30 | Hamilton Sundstrand Corporation | Starting/generating system with multi-functional circuit breaker |
US8358111B2 (en) | 2009-12-03 | 2013-01-22 | Hamilton Sundstrand Corporation | Architecture for dual source electric power generating system |
GB201006392D0 (en) * | 2010-04-16 | 2010-06-02 | Dyson Technology Ltd | Controller for a brushless motor |
US8699251B2 (en) | 2012-04-24 | 2014-04-15 | Hamilton Sundstrand Corporation | Direct current generating, management and distribution system |
-
2013
- 2013-03-15 US US13/836,255 patent/US8975876B2/en active Active
-
2014
- 2014-03-12 EP EP14159224.6A patent/EP2779420B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US8975876B2 (en) | 2015-03-10 |
US20140266079A1 (en) | 2014-09-18 |
EP2779420A3 (de) | 2017-01-04 |
EP2779420A2 (de) | 2014-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2779420B1 (de) | Verfahren zur Regelung der Drehung eines Hauptfeldumsetzers | |
US9054610B2 (en) | Generator architecture with main field rotating power converter | |
US9325229B2 (en) | Generator architecture with PMG exciter and main field rotating power converter | |
EP2779424B1 (de) | EPGS-Architektur mit mehrkanaligem Synchrongenerator und gemeinsamem unreguliertem PMG-Erreger | |
EP2782226B1 (de) | Flussgeregelte PM-Läufer eines elektrische Maschine | |
EP2779425B1 (de) | Egps-architektur mit mehrkanaligem synchrongenerator und reguliertem erreger mit gemeinsamem feld | |
US8970183B2 (en) | Overvoltage limiter in an aircraft electrical power generation system | |
EP2779421B1 (de) | Integrierter Startergenerator | |
EP2139099A2 (de) | Regulierter Permanentmagnet-Hybridgenerator | |
US9270219B2 (en) | Voltage-controlled DC link for variable frequency generator excitation | |
EP2045910B1 (de) | Starter/Generatorsystem mit Steuerung zur Adressierung eines Spannungsanstiegs | |
JP6466575B2 (ja) | 同期機への励磁電流の供給 | |
EP3255779B1 (de) | Rekonfigurierbares, auf multi-permanentmagnetgenerator basierendes energieerzeugungssystem | |
US9325269B1 (en) | Two stage flux switching machine for an electrical power generation system | |
US10044305B2 (en) | Controlling aircraft VFG over voltage under fault or load-shed | |
CN113383490A (zh) | 混合式永磁和绕线转子起动器发电机 | |
KR20100095063A (ko) | 동기발전기의 과도응답 개선회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140312 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02P 9/00 20060101AFI20161130BHEP Ipc: H02P 9/30 20060101ALI20161130BHEP Ipc: H02P 9/02 20060101ALI20161130BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
R17P | Request for examination filed (corrected) |
Effective date: 20170630 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190124 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HAMILTON SUNDSTRAND CORPORATION |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1152193 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014049352 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1152193 Country of ref document: AT Kind code of ref document: T Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191104 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014049352 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200312 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190703 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 11 Ref country code: GB Payment date: 20240221 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240221 Year of fee payment: 11 |