EP2776599B1 - PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE - Google Patents

PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE Download PDF

Info

Publication number
EP2776599B1
EP2776599B1 EP12795506.0A EP12795506A EP2776599B1 EP 2776599 B1 EP2776599 B1 EP 2776599B1 EP 12795506 A EP12795506 A EP 12795506A EP 2776599 B1 EP2776599 B1 EP 2776599B1
Authority
EP
European Patent Office
Prior art keywords
cooling
heat treatment
fabrication method
thermomechanical
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12795506.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2776599A1 (fr
Inventor
Marion DERRIEN
Philippe ROCHETTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2776599A1 publication Critical patent/EP2776599A1/fr
Application granted granted Critical
Publication of EP2776599B1 publication Critical patent/EP2776599B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl

Definitions

  • the invention relates to a thermomechanical method for manufacturing a part made of a titanium alloy TA6Zr4DE, and a part resulting from this process.
  • the invention is particularly, but not exclusively, applicable to rotating parts of turbomachines, such as discs, journals and wheels, and in particular to high-pressure compressor discs.
  • the high pressure compressor discs are obtained by forging comprising a forging stage of the blank in the alpha / beta domain and a hot stamping step in the beta domain of the invention.
  • titanium alloy This stamping is performed at about 1030 ° C.
  • This press stamping step is followed by a heat treatment cycle comprising a solution step in the alpha / beta domain of the alloy at a temperature of 970 ° C, corresponding to the beta-30 ° beta transus temperature. C, for an hour.
  • This dissolution step is followed by a quenching step in oil or in a water-polymer mixture.
  • an alloy having areas of coarse microstructure which are not favorable to good strength of the titanium alloy is obtained, in particular according to a test of imposed-pressure olygocyclic fatigue maintained for a certain holding time compared to the same type of fatigue test without holding time, in particular for a temperature range of use between -50 ° C and +200 ° C.
  • the loss of life observed during this fatigue test following the introduction of a holding time at the maximum load leads to the phenomenon called "dwell effect". More precisely, it is a creep at low temperature (below 200 ° C.) which coupled with the oligocyclic fatigue, causes an internal damage of the material until the premature failure of the part.
  • non-entangled needles having the same orientation are located on either side of a grain seal 10.
  • the needles are parallel to each other.
  • FR2936172 discloses a method of forging a thermomechanical titanium alloy part and FR2899241 discloses a heat treatment process of a thermomechanical titanium alloy part.
  • the present invention aims to provide a method of manufacturing a thermomechanical part made of a titanium alloy TA6Zr4DE which can be used industrially and to overcome the disadvantages of the prior art and in particular to provide the possibility of limiting the extent of the "dwell effect" phenomenon.
  • the present invention aims to improve the thermomechanical manufacturing process to obtain parts whose life time to the phenomenon of "dwell effect" is increased, despite the cyclic stresses undergone at low temperatures.
  • the present invention relates to a method of manufacturing a thermomechanical part made of a TA6Zr4DE titanium alloy comprising a forging step of a blank in the alpha / beta domain to form a preform, a stamping step to heat of the preform to form a blank, in the beta domain of the titanium alloy, and a heat treatment, characterized in that during the stamping step, the blank undergoes at all points a local deformation ⁇ superior or equal to 1.2, this mastering step ending in an immediate cooling at an initial cooling rate of greater than 85 ° C / min, and preferably greater than 100 ° C / min.
  • the idea underlying the present invention corresponds to the fact that it has been found that there exist within the material of parallel needle zones or colonies, conducive to the phenomenon of "dwell effect". Such colonies are found to consist of elongated primary alpha phase needles which are relatively coarse and contiguous with each other. Such colonies may have a length of up to several millimeters over a thickness of the order of 0.1 to 1.5 mm.
  • Such colonies constitute locations at which, when the material is under stress, a large concentration of dislocations occurs which, when activated, without any particular thermal effect, can cause slips between the needles, which can lead to breaks.
  • the present invention proposes to implement a manufacturing method making it possible to limit the size of grains and "colony-like” structures, in particular by aiming at obtaining "entangled” type structures, in order to minimize the effects of dwell effect ", and this by decreasing the range of free movement dislocations, to minimize their accumulation and the risk of breakage of the room.
  • the cooling ending the stamping is performed by quenching with water, especially with a water whose temperature does not exceed 60 ° C.
  • said heat treatment comprises a solution in the alpha / beta domain of the alloy immediately followed by cooling at a cooling rate greater than 100 ° C / min throughout the entire process. room.
  • the cooling ending solution dissolution is carried out by a quenching step of the room at a cooling rate greater than 150 ° C / min, and in particular between 200 and 450 ° C / min.
  • the cooling ending solution dissolution is carried out by quenching with oil or in a water / polymer mixture.
  • the manufacturing method according to the invention further comprises, between the stamping step (followed by cooling with water) and the solution step, a machining step, and in the pre-machining occurrence, aimed at reducing the massiveness of the part.
  • a machining step and in the pre-machining occurrence, aimed at reducing the massiveness of the part.
  • Other machining operations will follow to rectify the dimensions of the part and reach the final geometry.
  • the cooling rate should preferably be greater than 350 ° C / min if the pre-machining step is added.
  • the present invention relates to a thermomechanical part made of a titanium alloy TA6Zr4DE with the manufacturing method which has just been presented.
  • this titanium thermomechanical part forms a rotating part of a turbomachine, and in particular a compressor disk, especially a high-pressure compressor.
  • the present invention also relates to a turbomachine equipped with a thermomechanical part according to one of the definitions given above.
  • a blank or billet of material is forged in the alpha / beta domain for example at 950 ° C and followed by air cooling to form a preform.
  • This preform then undergoes a hot stamping step in the beta domain of the titanium alloy at a temperature of 1030 ° C., corresponding to the temperature of beta transus +30 ° C., followed by cooling with water after forging. hence the obtaining of a blank (also called "milled stock") intended to form a disk.
  • This mastering step is followed by a heat treatment comprising a solution step in the alpha / beta domain of the alloy at a temperature of 970 ° C., corresponding to the temperature of beta-trans-30 ° C., during a hour.
  • This dissolution step is followed by an oil quenching step or in a water-polymer mixture (minimum initial cooling rate of the order of 200 ° C./min and between 200 and 450 ° C. min).
  • a material having the microstructure visible on the figure 1 having at certain sites colonies consisting of alpha phase needles parallel to each other and located on either side of a grain boundary. These needles have an elongate section visible in the figure often extending over several hundred micrometers.
  • parallel needle colonies are fewer in number and smaller in size.
  • the majority of the needles are entangled and are, moreover, dissimilar in size. Indeed, as is apparent from the figure 2 , the needles are all smaller in section, their length remaining less than 100 micrometers, and generally of the order of 20 to 50 micrometers.
  • the decrease in the size of the needles is accompanied by a decrease in their volume and contiguous surfaces between needles, which hampers the ability to move defects such as dislocations or gaps, which travel distances weaker and have fewer possibilities to accumulate.
  • local deformation means the equivalent generalized deformation in the sense of Von Mises calculated by simulation software Forge 2005.
  • CAD computer-aided design
  • the material resulting from the entire manufacturing process has thermomechanical characteristics, and in particular the fatigue properties of olygocyclic fatigue under imposed deformation, which are no less than those of the materials resulting from the manufacturing process of the invention. prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP12795506.0A 2011-11-08 2012-11-08 PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE Active EP2776599B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160145A FR2982279B1 (fr) 2011-11-08 2011-11-08 Procede de fabrication d'une piece realisee dans un alliage de titane ta6zr4de
PCT/FR2012/052581 WO2013068699A1 (fr) 2011-11-08 2012-11-08 PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE

Publications (2)

Publication Number Publication Date
EP2776599A1 EP2776599A1 (fr) 2014-09-17
EP2776599B1 true EP2776599B1 (fr) 2017-10-11

Family

ID=47291101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12795506.0A Active EP2776599B1 (fr) 2011-11-08 2012-11-08 PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE

Country Status (9)

Country Link
US (1) US20140286783A1 (ja)
EP (1) EP2776599B1 (ja)
JP (1) JP6189314B2 (ja)
CN (1) CN103906851B (ja)
BR (1) BR112014010218B1 (ja)
CA (1) CA2853183A1 (ja)
FR (1) FR2982279B1 (ja)
RU (1) RU2616691C2 (ja)
WO (1) WO2013068699A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201713483D0 (en) * 2017-08-22 2017-10-04 Imp Innovations Ltd A method for forming sheet material components
US11725516B2 (en) * 2019-10-18 2023-08-15 Raytheon Technologies Corporation Method of servicing a gas turbine engine or components
CN113118349B (zh) * 2019-12-30 2022-09-20 西北工业大学 一种Ti6242钛合金大厚度饼坯的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309226A (en) * 1978-10-10 1982-01-05 Chen Charlie C Process for preparation of near-alpha titanium alloys
JPS63130755A (ja) * 1986-11-21 1988-06-02 Sumitomo Metal Ind Ltd α+β型チタン合金の加工熱処理方法
US6401537B1 (en) * 1999-07-02 2002-06-11 General Electric Company Titanium-based alloys having improved inspection characteristics for ultrasonic examination, and related processes
FR2836640B1 (fr) * 2002-03-01 2004-09-10 Snecma Moteurs Produits minces en alliages de titane beta ou quasi beta fabrication par forgeage
US7008491B2 (en) * 2002-11-12 2006-03-07 General Electric Company Method for fabricating an article of an alpha-beta titanium alloy by forging
US7449075B2 (en) * 2004-06-28 2008-11-11 General Electric Company Method for producing a beta-processed alpha-beta titanium-alloy article
FR2899241B1 (fr) * 2006-03-30 2008-12-05 Snecma Sa Procedes de traitement thermiques et de fabrication d'une piece thermomecanique realisee dans un alliage de titane, et piece thermomecanique resultant de ces procedes
FR2936173B1 (fr) * 2008-09-22 2012-09-21 Snecma Procede pour la fabrication d'une piece en titane avec forgeage initial dans le domaine beta
FR2936172B1 (fr) * 2008-09-22 2012-07-06 Snecma Procede de forgeage d'une piece thermomecanique en alliage de titane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140286783A1 (en) 2014-09-25
CN103906851A (zh) 2014-07-02
WO2013068699A1 (fr) 2013-05-16
BR112014010218B1 (pt) 2022-09-20
RU2616691C2 (ru) 2017-04-18
CN103906851B (zh) 2016-10-26
BR112014010218A8 (pt) 2017-06-20
EP2776599A1 (fr) 2014-09-17
JP2015501878A (ja) 2015-01-19
BR112014010218A2 (pt) 2017-06-13
RU2014123323A (ru) 2015-12-20
CA2853183A1 (fr) 2013-05-16
FR2982279B1 (fr) 2013-12-13
FR2982279A1 (fr) 2013-05-10
JP6189314B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
EP2002026B1 (fr) Procedes de traitement thermique et de fabrication d'une piece thermomecanique realisee dans un alliage de titane
US10384311B2 (en) Spinning roller surface laser reinforced processing forming method
EP2776599B1 (fr) PROCEDE DE FABRICATION D'UNE PIECE REALISEE DANS UN ALLIAGE DE TITANE TA6Zr4DE
FR2640285A1 (fr) Article et alliage a base de nickel resistant a la croissance des fendillements par fatigue et leur procede de fabrication
EP2344290B1 (fr) Procede de forgeage d'une piece thermomecanique en alliage de titane.
WO2010072972A1 (fr) Procédé de traitement thermique d'un alliage de titane, et pièce ainsi obtenue
EP1340832A1 (fr) Produits minces en alliages de titane bêta ou quasi bêta, fabrication par forgeage
WO2010031985A1 (fr) PROCEDE POUR LA FABRICATION D'UNE PIECE EN TITANE AVEC FORGEAGE INITIAL DANS LE DOMAINE β
WO2011048334A2 (fr) Traitement thermique de relaxation.
EP2573195B1 (en) Method for increasing the fatigue resistance of a steel roller bearing
EP2510131B1 (fr) Procede de fabrication de superalliages de nickel de type inconel 718
JP6289504B2 (ja) 内燃機関用に耐疲労性を高めたピストンリング及びその製造方法
WO2013034851A1 (fr) Procédé de préparation d'éprouvettes de caractérisation mécanique d'un alliage de titane
FR2745588A1 (fr) Procede de traitement thermique d'un superalliage a base de nickel
FR2947597A1 (fr) Procede de freinage d'un ecrou en materiau a faible capacite de deformation plastique
EP4031689B1 (fr) Elément de fixation en alliage de titane et procédé de fabrication
EP1488021B1 (fr) Procédé de traitement thermique d'une pièce de fonderie en alliage a base d'aluminium et pièce de fonderie
FR2998932A1 (fr) Ecrou a bague auto-freinante et procede de fabrication d'un tel ecrou
WO2023198995A1 (fr) Procede de fabrication d'une piece en alliage base nickel du type y/y' avec outillage de forgeage a chaud
Lorenzo‐Martin et al. Frictional response of ceramics in scuffing
BE363274A (ja)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012038463

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 936078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Free format text: FORMER OWNER: SNECMA, FR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012038463

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231020

Year of fee payment: 12

Ref country code: IT

Payment date: 20231019

Year of fee payment: 12

Ref country code: FR

Payment date: 20231020

Year of fee payment: 12

Ref country code: DE

Payment date: 20231019

Year of fee payment: 12