EP2771546A1 - Oberfläche mit speziell ausgeformten vertiefungen und bauteil - Google Patents

Oberfläche mit speziell ausgeformten vertiefungen und bauteil

Info

Publication number
EP2771546A1
EP2771546A1 EP12748448.3A EP12748448A EP2771546A1 EP 2771546 A1 EP2771546 A1 EP 2771546A1 EP 12748448 A EP12748448 A EP 12748448A EP 2771546 A1 EP2771546 A1 EP 2771546A1
Authority
EP
European Patent Office
Prior art keywords
depression
component
layer
surface according
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12748448.3A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Christian Menke
Uwe Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12748448.3A priority Critical patent/EP2771546A1/de
Publication of EP2771546A1 publication Critical patent/EP2771546A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/185Two-dimensional patterned serpentine-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00019Repairing or maintaining combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the invention relates to the special configuration of oblong recesses loan within a surface and a construction ⁇ part.
  • ceramic materials In contrast to metals, ceramic materials have lower ductility and tensions can cause cracks. Especially with ceramic coated components, such as gas turbine components, flaking may occur in the ceramic layer. This happens especially in areas of cooling-air-borne outlets in the form of shaped holes on the surface of the ceramic layer, where a hollow-cast and cooled turbine blade generates high thermal stresses, leading to premature cracking of the ceramic layer and then chipping , as in WO 2009/126194 AI, inserted.
  • FIG. 1 shows a component with a depression
  • FIG. 4 shows a turbine blade
  • FIG. 5 shows a combustion chamber
  • Figure 6 is a gas turbine
  • Figure 7 is a list of superalloys.
  • the description and the figures represent only—sbe games of the invention.
  • the invention relates generally to surfaces of solid components, layers, in particular ceramic surfaces, but also metals which may have a certain brittleness, such as NiCoCrAlY alloys in a certain temperature range.
  • FIG. 1 shows an example of a high-temperature component
  • Elongated recesses 4 are not parallel to a flow direction over ⁇ 10 is disposed over the surface 19, but a significantly different from 0 °, preferably at an angle of 90 ° +/- 20 ° to the transmission direction 10th
  • the depressions 4 have a longitudinal direction 11.
  • the recesses 4 are introduced in particular where highest thermo-mechanical loads are to be expected. This is e.g. for the gas turbine blades 120, 130 the area around the leading edge 409 (FIG. 4) and the area around the cooling air bores.
  • FIG. 2 shows a cross section through a depression 4 which has a front edge 25 and trailing edge 28 on the surface 19.
  • the widening 26 is preferably formed at the trailing edge 28, ie the flow-side end.
  • the depression 4 in a substrate or layer, in particular a ceramic layer 13, widens starting from the bottom 16 to the surface 19, preferably continuously (FIG. 2) or only above a certain height 22 (FIG. 3), ie up to the height 22 the cross section is constant transversely to the longitudinal direction 11 of the recess 4.
  • the recess 4 preferably does not extend over the entire thickness of the layer 13 (not shown).
  • the leading edge 25 preferably runs perpendicular to the surface of a substrate of the layer 13 (or to the surface 19).
  • the shape of the recess 4 the aerodynamics of a flowing cooling air flowing from the cooling air holes is improved compared to conventional wells. Also, the surface temperature is reduced here compared to conventional wells.
  • the geometries of the recesses proposed herein may be e.g. be subsequently introduced by a laser in the protective layer 13. It is also possible to already produce the depressions 4 during coating.
  • the turbine blade 120, 130 preferably has a substrate made of a nickel- or cobalt-based superalloy, in particular a material according to FIG. 7.
  • FIG. 4 shows a perspective view of a rotor 120 or guide vane 130 of a turbomachine that extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for electricity generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an thereto adjacent blade platform 403 and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip ⁇ 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is, for example, as a hammerhead out staltet ⁇ .
  • Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406, a leading edge 409 and a trailing edge 412.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Stem-crystal structures which probably have longitudinally extending grain boundaries, but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX; M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
  • M is at least one element of the group consisting of iron (Fe), cobalt (Co), Ni ⁇ ckel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element the rare earth, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical log ⁇ te.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially ⁇ or fully stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulating layer can ⁇ ner to have better thermal shock resistance porous, micro- or macro-cracked pERSonal.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 5 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as so-called an annular combustion chamber, in which a plurality of in the circumferential direction about an axis of rotation 102 arranged burners 107 open into a common combustion chamber space 154 and generate flames 156th
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • a relatively long service life loan to enable the combustion chamber wall 153 is provided on its side facing the working medium M facing side with a formed from heat shield elements 155. liner.
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or Si ⁇ lizium and / or at least one element of rare earth, or hafnium (Hf).
  • Y yttrium
  • Si Si ⁇ lizium
  • Hf hafnium
  • a ceramic Wär ⁇ medämm Anlagen be present and consists for example of ZrÜ2, Y203 ⁇ Zr02, ie it is not, partially or completely stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may be replaced after use by heat shielding elements 155
  • Protective layers must be freed (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 6 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example. There, for example, form four successive turbine stages 112, the turbine 108th
  • Each turbine stage 112 is formed, for example, from two blade rings . As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 135 is sucked by the compressor 105 through the intake housing and ver ⁇ seals.
  • the 105 ⁇ be compressed air provided at the turbine end of the compressor is ge ⁇ leads to the burners 107, where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • MCrAlX may still be present a thermal barrier coating, and consists for example of Zr02, Y203-Zr02, ie it is not, partially or completely stabilized by Ytt ⁇ riumoxid and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the guide blade 130 has a guide blade root facing the inner housing 138 of the turbine 108 (not shown here) and a guide blade foot opposite
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Abstract

Durch die besondere asymmetrische Gestaltung in einer Vertiefung (4) einer keramischen Oberfläche (19) können thermomechanisch induzierte Spannungen in der Keramik während des Betriebs einer Komponente besser abgebaut werden und damit der Rißfortschritt und die darauffolgende Abplatzung der Keramikschicht von der Komponente reduziert und sogar verhindert werden. Ebenfalls verbessert sich die Aerodynamik des Kühlluftstroms im Bereich dieser hier vorgeschlagenen Geometrien der Vertiefungen.

Description

Oberfläche mit speziell ausgeformten Vertiefungen und Bauteil
Die Erfindung betrifft die spezielle Ausgestaltung von läng- liehen Vertiefungen innerhalb einer Oberfläche und ein Bau¬ teil.
Keramische Materialien weisen im Gegensatz zu Metallen eine geringere Duktilität auf und durch Spannungen können Risse entstehen. Insbesondere bei mit Keramik beschichteten Bauteilen, wie Gasturbinenbauteile, kann es in der keramischen Schicht zu Abplatzungen kommen. Dies passiert vor allem in Bereichen von Kühlluftbohrungsaustritten in Form von sogenannten „Shaped Holes" an der Oberfläche der Keramikschicht. Hier entstehen im Betrieb einer hohlgegossenen und gekühlten Turbinenschaufel hohe Wärmespannungen, die zum vorzeitigen Einriss der Keramikschicht und dann zum Abplatzen führen. Deswegen werden oft Vertiefungen, wie in der WO 2009/126194 AI, eingefügt.
Es ist daher Aufgabe der Erfindung, dieses Problem zu lösen. Die Aufgabe wird gelöst durch eine Oberfläche gemäß Anspruch 1 und ein Bauteil gemäß Anspruch 12. In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön¬ nen, um weitere Vorteile zu erzielen.
Es zeigen:
Figur 1 ein Bauteil mit einer Vertiefung,
Figur 2, 3 eine spezielle Form der Vertiefung,
Figur 4 eine Turbinenschaufel,
Figur 5 eine Brennkammer,
Figur 6 eine Gasturbine und
Figur 7 eine Liste von Superlegierungen .
Die Beschreibung und die Figuren stellen nur Ausführungsbe spiele der Erfindung dar. Die Erfindung betrifft generell Oberflächen von massiven Komponenten, Schichten, insbesondere keramische Oberflächen, aber auch Metalle, die eine gewisse Sprödigkeit aufweisen können, wie NiCoCrAlY Legierungen in einem bestimmten Temperaturbereich .
Figur 1 zeigt ein nur beispielhaftes Hochtemperaturbauteil
120, 130, 155 (Fig. 4, 5) mit einer Oberfläche 19, das in ei¬ ner Überströmungsrichtung 10 umströmt wird.
Längliche Vertiefungen 4 sind nicht parallel zu einer Über¬ strömungsrichtung 10 über die Oberfläche 19, sondern um einen deutlich von 0° verschiedenen Winkel, vorzugsweise unter einem Winkel 90° +/- 20° zur Übertragungsrichtung 10 angeordnet .
Die Vertiefungen 4 weisen eine Längsrichtung 11 auf. Die Vertiefungen 4 werden insbesondere dort eingebracht, wo höchste thermo-mechanische Belastungen zu erwarten sind. Das ist z.B. für die Gasturbinenschaufel 120, 130 der Bereich um die Anströmkante 409 (Fig. 4) und der Bereich um die Kühl- luftbohrungen .
Figur 2 zeigt einen Querschnitt durch eine Vertiefung 4, die an der Oberfläche 19 eine Vorderkante 25 und Hinterkante 28 aufweist .
Die Verbreiterung 26 ist vorzugsweise an der Hinterkante 28, also dem strömungsseitigen Ende ausgebildet.
Die Vertiefung 4 in einem Substrat oder Schicht, insbesondere keramischen Schicht 13, verbreitert sich ausgehend von dem Boden 16 bis zur Oberfläche 19, vorzugsweise stetig (Fig. 2) oder erst ab einer bestimmten Höhe 22 (Figur 3), d.h. bis zur Höhe 22 ist der Querschnitt quer zur Längsrichtung 11 der Vertiefung 4 konstant. Die Vertiefung 4 erstreckt sich vorzugsweise nicht über die gesamte Dicke der Schicht 13 (nicht dargestellt) .
Die Vorderkante 25 verläuft vorzugsweise senkrecht zur Ober- fläche eines Substrats der Schicht 13 (oder zur Oberfläche 19) .
Wenn die Vorderkante 25 geneigt ist, dann in Überströmungs¬ richtung .
Dadurch wird das Abplatzverhalten verbessert, d.h. das Risswachstum in der Keramikschutzschicht wird gestoppt. Ebenso wird durch die Form der Vertiefung 4 die Aerodynamik einer umströmenden Kühlluft, die aus den Kühlluftlöchern strömt gegenüber herkömmlichen Vertiefungen verbessert. Auch die Oberflächentemperatur wird hier gegenüber herkömmlichen Vertiefungen reduziert. Die hier vorgeschlagenen Geometrien der Vertiefungen können z.B. durch einen Laser in die Schutz- schicht 13 nachträglich eingebracht werden. Ebenso ist es möglich, die Vertiefungen 4 beim Beschichten schon zu erzeugen .
Die Turbinenschaufel 120, 130 weist vorzugsweise ein Substrat aus einer nickel- oder kobaltbasierten Superlegierung auf, insbesondere ein Material gemäß Figur 7.
Die Figur 4 zeigt in perspektivischer Ansicht eine Laufschau- fei 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampf- turbine oder ein Kompressor sein.
Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel¬ spitze 415 eine weitere Plattform aufweisen (nicht darge- stellt) .
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge¬ staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau¬ felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab- strömkante 412 auf.
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas¬ sive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Werkstücke mit einkristalliner Struktur oder Strukturen wer- den als Bauteile für Maschinen eingesetzt, die im Betrieb ho¬ hen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt. Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprach- gebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be¬ steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwen- digerweise transversale und longitudinale Korngrenzen ausbil¬ den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch
Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) .
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Ni¬ ckel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dich¬ te .
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) . Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re .
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil¬ weise oder vollständig stabilisiert durch Yttriumoxid
und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht .
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör- ner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die
MCrAlX-Schicht .
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie- derbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf. Die Figur 5 zeigt eine Brennkammer 110 einer Gasturbine.
Die Brennkammer 110 ist beispielsweise als so genannte Ring¬ brennkammer ausgestaltet, bei der eine Vielzahl von in Um- fangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist. Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermög- liehen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsme¬ dium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
Jedes Hitzeschildelement 155 aus einer Legierung ist arbeits- mediumsseitig mit einer besonders hitzebeständigen Schutz- schicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Si¬ lizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Auf der MCrAlX kann noch eine beispielsweise keramische Wär¬ medämmschicht vorhanden sein und besteht beispielsweise aus ZrÜ2, Y203~Zr02, d.h. sie ist nicht, teilweise oder vollstän- dig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid. Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphäri- sches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör¬ ner zur besseren Thermoschockbeständigkeit aufweisen.
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Hitze- schildelemente 155 nach ihrem Einsatz gegebenenfalls von
Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in dem Hitzeschildelement 155 repariert. Da- nach erfolgt eine Wiederbeschichtung der Hitzeschildelemente 155 und ein erneuter Einsatz der Hitzeschildelemente 155.
Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
Die Figur 6 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt .
Die Gasturbine 100 weist im Inneren einen um eine Rotations¬ achse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufel¬ ringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) . Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver¬ dichtet. Die am turbinenseitigen Ende des Verdichters 105 be¬ reitgestellte verdichtete Luft wird zu den Brennern 107 ge¬ führt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet .
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden. Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin ( SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) .
Als Material für die Bauteile, insbesondere für die Turbinen- schaufei 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superle- gierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI. Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus Zr02, Y203-Zr02, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Ytt¬ riumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht darge- stellt) und einen dem Leitschaufelfuß gegenüberliegenden
Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt .

Claims

Patentansprüche
1. Oberfläche (19),
insbesondere keramische Oberfläche,
mit länglichen Vertiefungen (4),
die (4) eine Längsrichtung (11) aufweisen,
wobei die Vertiefungen (4) unter einem deutlich von 0° verschiedenen Winkel,
insbesondere 90° +/- 20°,
zu einer Überströmungsrichtung (10) über die Oberfläche (19) angeordnet sind und
im Bereich der Oberfläche (19) gegenüber dem Boden (16) der Vertiefung (4) quer zu ihrer Längsrichtung (11) zumindest teilweise verbreitert sind,
bei dem die Verbreiterung der Vertiefung (4) ausgehend vom Boden (16) erst ab einer gewissen Höhe (22) innerhalb der Vertiefung (4) stattfindet,
und insbesondere vorher konstant breit ist.
2. Oberfläche nach Anspruch 1,
bei dem die Vertiefung (4) eine Vorderkante (25) und Hin¬ terkante (28) aufweist,
bei dem die Verbreiterung (26) an der Hinterkante (28), insbesondere am abströmungsseitigen Ende ausgebildet ist.
3. Oberfläche nach einem oder beiden der Ansprüche 1 oder 2,
bei dem die Vertiefung (4) im Querschnitt quer zur Längsrichtung (11) bis zur Verbreiterung (26) zumindest stellenweise, insbesondere vollständig rechteckig ausgebildet ist.
Oberfläche nach einem oder mehreren der Ansprüche 1 bis
3,
wobei die Vertiefungen (4) unter einem Winkel von 90° +/- 20° zu einer Überströmungsrichtung (10) über die Oberfläche (19) angeordnet sind.
5. Oberfläche nach einem oder mehreren der Ansprüche 1, 2, 3 oder 4,
bei dem die Vertiefung (4) entlang der Längsrichtung (11) gewellt ausgebildet ist,
insbesondere s-förmig.
6. Oberfläche nach einem oder mehreren der vorherigen Ansprüche,
bei dem die Verbreiterung (26) einen mindestens 10% größe¬ ren Querschnitt gegenüber dem Boden (16) aufweist.
7. Oberfläche nach einem oder mehreren der Ansprüche 1 bis 6,
als Oberfläche eines Massivbauteils (120, 130, 155).
8. Oberfläche nach einem oder mehreren der Ansprüche 1 bis 6,
die als keramische Schicht (13) ausgebildet ist.
Oberfläche nach einem oder mehreren der Ansprüche 1 bis
8,
bei dem die Vorderkante (25) sich nahezu senkrecht zur Oberfläche (19) erstreckt.
10. Bauteil (120, 130, 155) mit Oberfläche (19) nach einem oder mehreren der Ansprüche 1 bis 9.
11. Bauteil mit Schicht (13) nach einem oder mehreren der Ansprüche 1 bis 10,
bei dem sich die Vertiefung (4) nicht durch die gesamte Dicke der Schicht (13) erstreckt.
EP12748448.3A 2011-10-25 2012-08-17 Oberfläche mit speziell ausgeformten vertiefungen und bauteil Withdrawn EP2771546A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12748448.3A EP2771546A1 (de) 2011-10-25 2012-08-17 Oberfläche mit speziell ausgeformten vertiefungen und bauteil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11186464.1A EP2586985A1 (de) 2011-10-25 2011-10-25 Oberfläche mit speziell ausgeformten Vertiefungen und Bauteil
PCT/EP2012/066062 WO2013060499A1 (de) 2011-10-25 2012-08-17 Oberfläche mit speziell ausgeformten vertiefungen und bauteil
EP12748448.3A EP2771546A1 (de) 2011-10-25 2012-08-17 Oberfläche mit speziell ausgeformten vertiefungen und bauteil

Publications (1)

Publication Number Publication Date
EP2771546A1 true EP2771546A1 (de) 2014-09-03

Family

ID=46704634

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11186464.1A Withdrawn EP2586985A1 (de) 2011-10-25 2011-10-25 Oberfläche mit speziell ausgeformten Vertiefungen und Bauteil
EP12748448.3A Withdrawn EP2771546A1 (de) 2011-10-25 2012-08-17 Oberfläche mit speziell ausgeformten vertiefungen und bauteil

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11186464.1A Withdrawn EP2586985A1 (de) 2011-10-25 2011-10-25 Oberfläche mit speziell ausgeformten Vertiefungen und Bauteil

Country Status (3)

Country Link
US (1) US20140255652A1 (de)
EP (2) EP2586985A1 (de)
WO (1) WO2013060499A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733310A1 (de) * 2012-11-16 2014-05-21 Siemens Aktiengesellschaft Modifizierte Oberfläche um ein Loch
DE102016222401A1 (de) * 2016-11-15 2018-05-17 Siemens Aktiengesellschaft Erzeugung eines Formlochs in einer Wand

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002108A1 (de) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
DE59505454D1 (de) 1994-10-14 1999-04-29 Siemens Ag Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
US5558922A (en) * 1994-12-28 1996-09-24 General Electric Company Thick thermal barrier coating having grooves for enhanced strain tolerance
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
JP2003529677A (ja) 1999-07-29 2003-10-07 シーメンス アクチエンゲゼルシヤフト 耐熱性の構造部材及びその製造方法
US8357454B2 (en) 2001-08-02 2013-01-22 Siemens Energy, Inc. Segmented thermal barrier coating
EP1319729B1 (de) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1712739A1 (de) * 2005-04-12 2006-10-18 Siemens Aktiengesellschaft Bauteil mit Filmkühlloch
EP1942250A1 (de) * 2007-01-05 2008-07-09 Siemens Aktiengesellschaft Bauteil mit schräg verlaufenden Vertiefungen in der Oberfläche und Verfahren zum Betreiben einer Turbine
US8061978B2 (en) * 2007-10-16 2011-11-22 United Technologies Corp. Systems and methods involving abradable air seals
US8079806B2 (en) * 2007-11-28 2011-12-20 United Technologies Corporation Segmented ceramic layer for member of gas turbine engine
EP2128306B1 (de) * 2008-05-26 2015-04-29 Siemens Aktiengesellschaft Keramisches wärmedämmendes Beschichtungssystem mit zwei Keramikschichten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013060499A1 *

Also Published As

Publication number Publication date
US20140255652A1 (en) 2014-09-11
EP2586985A1 (de) 2013-05-01
WO2013060499A1 (de) 2013-05-02

Similar Documents

Publication Publication Date Title
EP2593582B1 (de) Poröses keramisches schichtsystem
WO2014075947A1 (de) Modifizierte oberfläche um ein loch
EP2450465A1 (de) Poröses Schichtsystem mit poröserer Innenschicht
EP3068921A1 (de) Verdichterschaufel mit erosionsbeständiger hartstoffbeschichtung
EP2373824B1 (de) Verfahren zum beschichten eines bauteils mit filmkühllöchern, und bauteil
WO2009138299A1 (de) Verfahren zur herstellung einer optimierten haftvermittlerschicht durch teilweise verdampfung der haftvermittlerschicht und ein schichtsystem
EP2742171B1 (de) Keramische doppelschicht auf zirkonoxidbasis
EP2584067A1 (de) Bauteil mit Graphen und Verfahren zur Herstellung von Bauteilen mit Graphen
WO2011107167A1 (de) Keramisches wärmedämmschichtsystem mit modifizierter anbindungsschicht
EP2771546A1 (de) Oberfläche mit speziell ausgeformten vertiefungen und bauteil
WO2013075858A1 (de) Modifizierte oberfläche um ein loch
EP2733236A1 (de) Zweilagiges keramisches Schichtsystem mit äußerer poröser Schicht und Vertiefungen darin
EP2082076A1 (de) Beschichtungsoptimierungsverfahren mit einem coupon und bauteil mit einem coupon
EP2102379B1 (de) Verfahren zur betreibung einer turbine mit einem oxid auf einer metallischen schicht und eine turbine
EP2247763A1 (de) Legierung, schutzschicht gegen hochtemperaturkorrosion und schichtsystem
EP2761057A1 (de) Schichtsystem mit strukturierter substratoberfläche und verfahren zur herstellung
WO2011057661A1 (de) Bauteil mit bereichen unterschiedlicher duktilität und verfahren zur herstellung eines bauteils
EP2589681A1 (de) Kombination von kolumnaren und globularen Strukturen
WO2012065851A1 (de) Verkürztes bohrverfahren eines lochs
EP2177643A1 (de) Verfahren zum Reparieren einer Superlegierung mit dem gleichen Superlegierungspulver und Keramik
EP2322683A1 (de) Beschichtungsverfahren eines Bauteils mit teilweise verschlossenen Löchern und Verfahren zum Öffnen der Löcher
EP2599890A1 (de) Abplatzungssichere keramische Schicht und Schichtsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150709

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170301