EP2599890A1 - Abplatzungssichere keramische Schicht und Schichtsystem - Google Patents

Abplatzungssichere keramische Schicht und Schichtsystem Download PDF

Info

Publication number
EP2599890A1
EP2599890A1 EP11191553.4A EP11191553A EP2599890A1 EP 2599890 A1 EP2599890 A1 EP 2599890A1 EP 11191553 A EP11191553 A EP 11191553A EP 2599890 A1 EP2599890 A1 EP 2599890A1
Authority
EP
European Patent Office
Prior art keywords
coating
layer
tracks
coating layer
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11191553.4A
Other languages
English (en)
French (fr)
Inventor
Christian Amann
Reiner Anton
Björn Beckmann
Winfried Esser
Thomas Hille
Rudolf Küperkoch
Uwe Paul
Eckart Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11191553.4A priority Critical patent/EP2599890A1/de
Publication of EP2599890A1 publication Critical patent/EP2599890A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/601Fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/601Fabrics
    • F05D2300/6012Woven fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts

Definitions

  • the invention relates to a ceramic layer and layer system, which is resistant to chipping due to their structure.
  • High temperature components such as turbine blades often have ceramic protective layers for thermal insulation, wherein the ceramic coating is applied directly to the substrate or a metallic bonding layer.
  • ceramic protective layer it may e.g. by impact, local overheating or other situations lead to spalling of areas of the ceramic layer, so that the thermal insulation is omitted in this area and the substrate can be damaged and, if necessary, would no longer be available for further use.
  • the object is achieved by a ceramic layer according to claim 1 and by a layer system according to claim 17.
  • FIG. 1 shows a first example of a ceramic layer 17.
  • the ceramic layer 17 has different phases and / or different materials.
  • This may be non-stabilized, partially stabilized, fully stabilized zirconium oxide, in particular with yttrium oxide and / or a pyrochlore, such as gadolinium zirconate, gadolinium hafnate ( Fig. 1-5 ).
  • a combination of zirconium oxide with pyrochlore, in particular gadolinium zirconate is used ( Fig. 1-5 ).
  • the dark areas 4 ', 44', ... present a first phase and the bright areas 7 ', 77', ... a second, different phase or a significantly different composition.
  • the bar-shaped representations which represent the coating tracks 7 ', 4',....
  • the cross section of the coating tracks is only an example.
  • the coating tracks 4 ', 7', ... may also have other cross sections.
  • Each coating track 4 ', 7', 44 ', 77', ... preferably has a different phase.
  • Such structures are usually best prepared by spray methods such as plasma spraying, HVOF or other methods using nozzles.
  • two coating lanes for the phases / materials may be coated side by side to form a coating lane widening the width of the coating lanes FIGS. 1 to 5 ).
  • a first coating track 4 'with the first phase is laid in a running direction of the longitudinal direction 11. Thereafter, the next directly adjacent track 7 'of a second phase is applied. This is repeated transversely to the longitudinal direction 11 in the transverse direction 14.
  • Such a ceramic layer 17 is applied in layers, that is to say it has a plurality of coating layers 22 ', 22 "in the vertical direction 20.
  • next coating layer 22 "can only be displaced by a fraction of a coating track width.
  • the structure of the previous coating layer is repeated so that a checkerboard pattern results in the plan view.
  • FIG. 2 shows a further embodiment of the invention.
  • the first coating layer 22 ' is here as FIG. 1 manufactured.
  • the course direction of the coating tracks 44 ', 77', ... is changed, preferably perpendicular to the longitudinal direction 11 in the transverse direction 14.
  • alternating side by side coating tracks with different phases or materials are placed next to each other "is almost a 90 ° twisted first coating layer 22 '.
  • the sequence of the first layer is quasi repeated, ie the running direction of the coating tracks 444', 777 ', ... coating layer 22"' again runs in the longitudinal direction 11, wherein the coating traces of the third coating layer 222 '' ' also by a coating track width to the left or right ie in the transverse direction 14, i.e., the phase 444 'of the coating track 22 "is arranged over a coating track 4' of the coating track 22 '.
  • FIG. 3 Another embodiment is in FIG. 3 shown.
  • the first coating layer 22 ' is as in FIG. 1 formed, then for the second coating layer 22 "only a single, different phase / material is used.
  • the third coating layer 22 " 14 different materials for the coating tracks are alternately used side by side in the transverse direction, wherein a coating track 777 'of the coating layer 22"' in the first coating layer 22 'has a different phase 4' along the height 20.
  • the first phase 4 can be reused or the second phase 7, so that every second coating layer has only a single phase.
  • FIG. 4 shows a further embodiment of the invention. Similar to in FIG. 1 14 different phases are used for the first coating layer side by side in a transverse direction. However, the cross section of the coating tracks is inclined (parallelogram). The longitudinal direction 25 of the coating track 4 ', 7', ... extends obliquely to the surface 30.
  • a coating track 77 'with the second phase is applied to a coating track 4' of the first coating layer 22 'with the first phase, wherein the coating tracks 44', 77 'are tilted to the other side, ie the longitudinal direction 27 of FIGS Coating traces 44 ', 77' of the subsequent coating layer 22 "also run obliquely to the surface 30.
  • the coating tracks in the second coating layer 22 are displaced to the left or to the right by one half of the thickness of a coating track, ie a coating track 44 'overtakes two coating tracks 4', 7 'of the preceding coating layer 22' and can also be shifted by an entire coating track width his.
  • coating layers can be used alternately oblique and not oblique employed coating traces.
  • FIG. 6 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i. the whole workpiece consists of a single crystal.
  • a columnar grain structure columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure i. the whole workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10A1-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11Al-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -2rO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAlX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAlX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 7 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is designed, for example, as a so-called annular combustion chamber, in which a plurality of burners 107 arranged around a rotation axis 102 in the circumferential direction open into a common combustion chamber space 154, which generate flames 156.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working medium side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 is known from the EP 0 486 489 B1 .
  • a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired. This is followed by a recoating of the heat shield elements 155 and a renewed use of the heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 8 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example. There, for example, form four successive turbine stages 112, the turbine 108th
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Durch die Verwendung von Beschichtungsspuren, die verschiedene Phasen mit zumindest einer Beschichtungslage aufweisen, wird das Spallationsverhalten deutlich verbessert.

Description

  • Die Erfindung betrifft eine keramische Schicht und Schichtsystem, die aufgrund ihrer Struktur widerstandsfähig ist gegen Abplatzungen.
  • Hochtemperaturbauteile wie Turbinenschaufeln weisen oft keramische Schutzschichten zur Wärmedämmung auf, wobei die keramische Beschichtung direkt auf dem Substrat oder einer metallischen Haftvermittlungsschicht aufgebracht ist. Während des Betriebes dieser Turbinenschaufeln mit keramischer Schutzschicht kann es z.B. durch Einschlag, lokale Überhitzung oder sonstige Situationen zum Abplatzen von Bereichen der keramischen Schicht führen, so dass die Wärmedämmung in diesem Bereich entfällt und das Substrat geschädigt werden kann und für einen weiteren Einsatz ggf. nicht mehr zur Verfügung stände.
  • Es ist daher Aufgabe der Erfindung eine keramische Schicht aufzuzeigen, die einen höheren Widerstand gegen Abplatzungen aufweist.
  • Die Aufgabe wird gelöst durch eine keramische Schicht gemäß Anspruch 1 und durch ein Schichtsystem nach Anspruch 17.
  • In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.
  • Es zeigen:
  • Figur 1 bis 5
    Ausführungsbeispiele der Erfindung,
    Figur 6
    eine Turbinenschaufel,
    Figur 7
    eine Brennkammer,
    Figur 8
    eine Gasturbine,
    Figur 9
    eine Liste von Superlegierungen.
  • Die Figuren und die Beschreibung stellen nur Ausführungsbeispiele der Erfindung dar.
  • Figur 1 zeigt ein erstes Beispiel für eine keramische Schicht 17.
  • Erfindungsgemäß weist die keramische Schicht 17 verschiedene Phasen und/oder verschiedene Materialien auf. Das kann nichtstabilisiertes, teilstabilisiertes, vollstabilisiertes Zirkonoxid, insbesondere mit Yttriumoxid und/oder ein Pyrochlor, wie Gadoliniumzirkonat, Gadoliniumhafnat sein (Fig. 1 - 5). Vorzugsweise wird eine Kombination von Zirkonoxid mit Pyrochlor, insbesondere Gadoliniumzirkonat verwendet (Fig. 1 - 5).
  • Die dunklen Bereiche 4', 44', ... stellen eine erste Phase und die hellen Bereiche 7', 77', ... eine zweite, verschiedene Phase oder eine deutlich verschiedene Zusammensetzung auf.
  • Ebenso erkennbar sind die balkenförmigen Darstellungen, die die Beschichtungsspuren 7', 4', ... darstellen. Der Querschnitt der Beschichtungsspuren ist nur beispielhaft. Die Beschichtungsspuren 4', 7', ... können auch andere Querschnitte aufweisen.
  • Jede Beschichtungsspur 4', 7', 44', 77', ... weist vorzugsweise eine andere Phase auf.
  • Somit sind solche Strukturen (Fig. 1 - 5) in der Regel am besten durch Sprühverfahren, wie Plasmaspritzen, HVOF oder sonstige Verfahren bei denen Düsen verwendet werden, herzustellen.
  • Aber auch andere Auftragsverfahren können angewendet werden.
  • Ebenso können zwei Beschichtungsbahnen für die Phasen/Materialien nebeneinander beschichtet werden, um eine Beschichtungsspur zu bilden, wodurch die Breite der Beschichtungsspuren verbreitert wird (gilt für Figuren 1 bis 5).
  • Auf ein Substrat oder auf eine Oberfläche (nicht dargestellt) wird in einer Verlaufrichtung der Längsrichtung 11 eine erste Beschichtungsspur 4' mit der ersten Phase gelegt. Danach wird die nächste direkt benachbarte Spur 7' einer zweiten Phase aufgebracht. Dies wiederholt sich quer zur Längsrichtung 11 in Querrichtung 14.
  • Eine solche keramische Schicht 17 wird lagenweise aufgetragen, d.h., sie weist in der Hochrichtung 20 mehrere Beschichtungslagen 22', 22" auf.
  • Auf die erste Beschichtungsspur 4' mit der ersten Phase in der Beschichtungslage 22' wird eine weitere Beschichtungsspur 77' in der folgenden Beschichtungslage 22" mit der zweiten Phase belegt und benachbart davon wieder eine Beschichtungsspur mit einer anderen Phase. Quasi wird die Struktur der ersten Beschichtungslage 22' für die zweite Beschichtungslage 22" in Querrichtung 14 um eine Beschichtungsspurbreite verschoben.
  • Ebenso kann ein die nächste Beschichtungslage 22" nur um ein Bruchteil einer Beschichtungsspurbreite verschoben werden.
  • Für die dritte Beschichtungslage 22''' und die ggf. folgenden wiederholt sich die Struktur der vorherigen Beschichtungslage, so dass in der Draufsicht sich ein Schachbrettmuster ergibt.
  • Figur 2 zeigt ein weiteres Ausführungsbeispiel der Erfindung. Die erste Beschichtungslage 22' wird hier wie Figur 1 hergestellt.
  • Jedoch wird für die zweite Beschichtungslage 22" die Verlaufrichtung der Beschichtungsspuren 44', 77', ... geändert, vorzugsweise senkrecht zur Längsrichtung 11 in Querrichtung 14. Dort werden wiederum abwechselnd nebeneinander Beschichtungsspuren mit verschiedenen Phasen oder Materialien nebeneinander gelegt. Die zweite Beschichtungslage 22" ist quasi eine um 90° verdrehte erste Beschichtungslage 22'.
  • In der dritten Beschichtungslage 22"' wird quasi die Folge der ersten Lage wiederholt, d.h. die Verlaufrichtung der Beschichtungsspuren 444', 777', ... Beschichtungslage 22"' verläuft wieder in Längsrichtung 11, wobei die Beschichtungsspuren der dritten Beschichtungslage 222''' auch um eine Beschichtungsspurbreite nach links oder rechts d.h. in Querrichtung 14 verschoben sein könnten, d.h., die Phase 444' der Beschichtungsspur 22" ist über eine Beschichtungsspur 4' der Beschichtungsspur 22' angeordnet.
  • Ein weiteres Ausführungsbeispiel ist in Figur 3 gezeigt.
  • Die erste Beschichtungslage 22' ist wie in Figur 1 ausgebildet, wobei dann für die zweite Beschichtungslage 22" nur eine einzige, andere Phase/Material verwendet wird.
  • Für die dritte Beschichtungslage 22"' werden wiederum abwechselnd nebeneinander in Querrichtung 14 verschiedene Materialien für die Beschichtungsspuren verwendet, wobei entlang der Höhe 20 eine Beschichtungsspur 777' der Beschichtungslage 22"' in der ersten Beschichtungslage 22' eine andere Phase 4' gegenüber liegen hat.
  • Für die vierte Beschichtungslage mit nur einer Phase kann die der erste Phase 4 wiederverwendet werden oder die zweite Phase 7, so dass jede zweite Beschichtungslage nur eine einzige Phase aufweist.
  • Figur 4 zeigt ein weiteres Ausführungsbeispiel der Erfindung. Ähnlich wie in Figur 1 werden für die erste Beschichtungslage nebeneinander in einer Querrichtung 14 verschiedene Phasen verwendet. Jedoch ist der Querschnitt der Beschichtungsspuren schräg angestellt (Parallelogramm). Die Längsrichtung 25 der Beschichtungsspur 4', 7', ... verläuft schräg zur Oberfläche 30.
  • Für die zweite Beschichtungslage 22" wird auf eine Beschichtungsspur 4' der ersten Beschichtungslage 22' mit der ersten Phase eine Beschichtungsspur 77' mit der zweiten Phase aufgebracht, wobei die Beschichtungsspuren 44', 77' zur anderen Seite verkippt sind, d.h. die Längsrichtung 27 der Beschichtungsspuren 44', 77' der nachfolgenden Beschichtungslage 22" verläuft ebenfalls schräg zur Oberfläche 30.
  • Im Gegensatz zu Figur 4 sind in Figur 5 die Beschichtungsspuren in der zweiten Beschichtungslage 22" bis zu einer Hälfte der Dicke einer Beschichtungsspur nach links oder nach rechts verschoben, d. h. eine Beschichtungsspur 44' überholt zwei Beschichtungsspuren 4', 7' der vorhergehenden Beschichtungslage 22'. Ebenso können diese um eine ganze Beschichtungsspurbreite verschoben sein.
  • Ebenso können in den Beschichtungslagen abwechselnd schräg und nicht schräge angestellte Beschichtungsspuren verwendet werden.
  • In den Figuren 1 bis 5 wird durch diese Vielzahl von Korngrenzen mit erhöhter Phasenenergie, die durch das Nebeneinander von verschiedenen Phasen gegeben ist, das Risswachstum deutlich verringert und dadurch verbessert, dass der Risswiderstand deutlich steigt.
  • Die Figur 6 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
  • Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
  • Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
  • Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
  • Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
  • Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
  • Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
  • Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
  • Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.
  • Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
  • Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
  • Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
  • Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
  • Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
  • Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
  • Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).
  • Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10A1-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al-0,6Y-3Re oder Ni-12Co-21Cr-11Al-0, 4Y-2Re oder Ni-25Co-17Cr-10A1-0, 4Y-1, 5Re.
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-2rO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
  • Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
  • Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.
  • Die Figur 7 zeigt eine Brennkammer 110 einer Gasturbine.
  • Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um eine Rotationsachse 102 herum angeordneten Brennern 107 in einen gemeinsamen Brennkammerraum 154 münden, die Flammen 156 erzeugen. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Rotationsachse 102 herum positioniert ist.
  • Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 gebildeten Innenauskleidung versehen.
  • Jedes Hitzeschildelement 155 aus einer Legierung ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht (MCrAlX-Schicht und/oder keramische Beschichtung) ausgestattet oder ist aus hochtemperaturbeständigem Material (massive keramische Steine) gefertigt.
  • Diese Schutzschichten können ähnlich der Turbinenschaufeln sein, also bedeutet beispielsweise MCrAlX: M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Auf der MCrAlX kann noch eine beispielsweise keramische Wärmedämmschicht vorhanden sein und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
  • Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen.
  • Wiederaufarbeitung (Refurbishment) bedeutet, dass Hitzeschildelemente 155 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse in dem Hitzeschildelement 155 repariert. Danach erfolgt eine Wiederbeschichtung der Hitzeschildelemente 155 und ein erneuter Einsatz der Hitzeschildelemente 155.
  • Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 kann zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen sein. Die Hitzeschildelemente 155 sind dann beispielsweise hohl und weisen ggf. noch in den Brennkammerraum 154 mündende Kühllöcher (nicht dargestellt) auf.
  • Die Figur 8 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
  • Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
  • Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
  • Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
  • Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
  • An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
  • Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
  • Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
  • Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
  • Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
  • Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.

Claims (17)

  1. Keramische Schicht (17),
    die längsgerichtete Beschichtungsspuren (4', 7', 4", 7", ..., 44', 77', 44", 77", ...) aufweist,
    die jeweils eine Beschichtungslage (22', 22", ...) bilden, wobei mehrere Beschichtungslagen (22', 22", ...) vorhanden sind,
    wobei in zumindest einer Beschichtungslage (22', 22", ...) verschiedene Phasen verwendet werden,
    wobei zumindest zwei verschiedene,
    insbesondere nur zwei,
    verschiedene Phasen,
    ganz insbesondere verschiedene Materialien,
    vorhanden sind.
  2. Keramische Schicht nach Anspruch 1,
    bei der jede Beschichtungslage (22', 22", ...) verschiedene Phasen aufweist.
  3. Keramische Schicht nach Anspruch 1,
    bei der jede zweite Beschichtungslage (22") nur eine Phase oder ein Material aufweist.
  4. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der die Phasen verschiedene Materialien darstellen.
  5. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der alle Beschichtungsspuren (4', 7', 4", 7", ..., 44', 77', ...) in eine Längsrichtung (11) verlaufen.
  6. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der die Beschichtungsspuren (4', 7', 4", 7", ... 44', 77', 44", 77", ...) einer Beschichtungslage (22', 22", ...) alle in eine Richtung (11, 14) verlaufen.
  7. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der benachbarte Beschichtungsspuren (4', 7', ... 44', 77', ...) einer Beschichtungslage (22', 22") immer eine andere Phase aufweisen
  8. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der die Beschichtungsspuren (44', 77') einer Beschichtungslage (22") eine andere Phase aufweisen als die direkt unterliegenden und kontaktierten Beschichtungsspuren (7', 4', ...) der unterliegenden Beschichtungslage (22') auf der (7', 4', ...) die jeweiligen Beschichtungsspuren (44', 77', ...) aufliegen.
  9. Keramische Schicht nach Anspruch 8,
    bei der eine nachfolgende Beschichtungslage (22"') mit ihren Beschichtungsspuren (444', 777', ...) der vorvorhergehenden Beschichtungslage (22') mit dem Beschichtungsspuren (4', 7', ...) entspricht.
  10. Keramische Schicht nach einem oder mehreren der Ansprüche 1 bis 4, 6 oder 7,
    bei der die Beschichtungsspuren (44', 77', ...) einer nachfolgenden Beschichtungslage (22") quer (14) zur Längsrichtung (11) der Beschichtungsspuren (4', 7', ...) der unterliegenden Beschichtungslage (22') verlaufen,
    ganz insbesondere um 90°,
    insbesondere dass die Verlaufrichtung in den Beschichtungsspuren sich von Beschichtungslage (22', ...) zu Beschichtungslage (22", ...) immer wieder ändert,
    ganz insbesondere um 90°.
  11. Keramische Schicht nach Anspruch 10,
    bei der eine nachfolgende Beschichtungslage (22"') mit ihren Beschichtungsspuren (444', 777', ...) der vorvorhergehenden Beschichtungslage (22') entspricht.
  12. Keramische Schicht nach Anspruch 10 oder 11,
    bei der eine nachfolgende Beschichtungslage (22"') mit ihren Beschichtungsspuren (444', 777', ...) nicht der vorvorhergehenden Beschichtungslage (22') in Richtung (20) entspricht.
  13. Keramische Schicht nach einem oder mehreren der Ansprüche 1, 2, 3, 4, 5, 6, 9, 10 oder 11,
    bei der in zumindest einer Beschichtungslage (22") nur eine Phase vorhanden ist.
  14. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der Beschichtungsspuren (4', 7', 44', 77', ...) mit ihrer Längsrichtung (25, 27) schräg zur Oberfläche (30) verlaufen,
    insbesondere um 10° Verkippt sind.
  15. Keramische Schicht nach Anspruch 14,
    bei der die Längsrichtung (27) der Beschichtungsspuren (4', 7', ...) einer nachfolgenden Beschichtungslage (22") im Vergleich zu der Längsrichtung (25) der Beschichtungsspuren (44', 77', ...) der vorhergehenden Beschichtungslage (22') in die andere Richtung verkippt ist.
  16. Keramische Schicht nach einem oder mehreren der vorherigen Ansprüche,
    bei der die verschiedenen Beschichtungsspuren (44', 77', ...) nachfolgenden Beschichtungslage (22") zwei Beschichtungsspuren (4', 7') der vorhergehenden Beschichtungslage (22') überdecken.
  17. Schichtsystem,
    das eine keramische Schicht (17) nach einer oder mehrerer der vorherigen Ansprüche aufweist.
EP11191553.4A 2011-12-01 2011-12-01 Abplatzungssichere keramische Schicht und Schichtsystem Withdrawn EP2599890A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11191553.4A EP2599890A1 (de) 2011-12-01 2011-12-01 Abplatzungssichere keramische Schicht und Schichtsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11191553.4A EP2599890A1 (de) 2011-12-01 2011-12-01 Abplatzungssichere keramische Schicht und Schichtsystem

Publications (1)

Publication Number Publication Date
EP2599890A1 true EP2599890A1 (de) 2013-06-05

Family

ID=45346272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11191553.4A Withdrawn EP2599890A1 (de) 2011-12-01 2011-12-01 Abplatzungssichere keramische Schicht und Schichtsystem

Country Status (1)

Country Link
EP (1) EP2599890A1 (de)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
EP0719594A1 (de) * 1994-12-27 1996-07-03 Stefan Hort Verfahren zum Aufbringen einer Beschichtung auf einem Gegenstand, insbesondere einem Küchengegenstand, sowie derart beschichteter Gegenstand
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0892090A1 (de) 1997-02-24 1999-01-20 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP1669545A1 (de) * 2004-12-08 2006-06-14 Siemens Aktiengesellschaft Schichtsystem, Verwendung und Verfahren zur Herstellung eines Schichtsystems
DE102006061652A1 (de) * 2006-12-27 2008-07-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Beschichten eines Hohlkörpers
WO2009144109A1 (de) * 2008-05-29 2009-12-03 Siemens Aktiengesellschaft Verfahren zum hochgeschwindigkeits-flammspritzen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
EP0719594A1 (de) * 1994-12-27 1996-07-03 Stefan Hort Verfahren zum Aufbringen einer Beschichtung auf einem Gegenstand, insbesondere einem Küchengegenstand, sowie derart beschichteter Gegenstand
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (de) 1997-02-24 1999-01-20 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1669545A1 (de) * 2004-12-08 2006-06-14 Siemens Aktiengesellschaft Schichtsystem, Verwendung und Verfahren zur Herstellung eines Schichtsystems
DE102006061652A1 (de) * 2006-12-27 2008-07-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Beschichten eines Hohlkörpers
WO2009144109A1 (de) * 2008-05-29 2009-12-03 Siemens Aktiengesellschaft Verfahren zum hochgeschwindigkeits-flammspritzen

Similar Documents

Publication Publication Date Title
EP2436798B1 (de) Maskierungsmaterial, Maskierungsschicht und Verfahren zum Maskieren eines Substrats
EP2593582B1 (de) Poröses keramisches schichtsystem
EP1952931A1 (de) Mechtrode mit Pulverzufuhr und Verfahren zur Benutzung dieser Mechtrode
EP2450465A1 (de) Poröses Schichtsystem mit poröserer Innenschicht
EP2907888A1 (de) Verdichterschaufel mit erosionsbeständiger Hartstoffbeschichtung
WO2014075947A1 (de) Modifizierte oberfläche um ein loch
EP2119805A1 (de) Verfahren zur Herstellung einer optimierten Haftvermittlerschicht durch teilweise Verdampfung der Haftvermittlerschicht
EP2373824B1 (de) Verfahren zum beschichten eines bauteils mit filmkühllöchern, und bauteil
WO2009118313A2 (de) Bauteil mit sich überlappenden schweissnähten und ein verfahren zur herstellung
EP2742171B1 (de) Keramische doppelschicht auf zirkonoxidbasis
DE102008019636A1 (de) Bauteil mit Schweißnaht und Verfahren zur Herstellung einer Schweißnaht
EP2476776B1 (de) Verfahren zur Einstellung des Kühlmittelverbrauchs innerhalb aktiv gekühlter Bauteile
EP2224039A1 (de) Beschichtung mit thermischen und nicht-thermischen Beschichtungsverfahren
EP2584067A1 (de) Bauteil mit Graphen und Verfahren zur Herstellung von Bauteilen mit Graphen
EP2365106A1 (de) Keramische Wärmedämmschichtsystem mit modifizierter Anbindungsschicht
EP2053145A1 (de) Verfahren zur Entfernung einer metallischen Schicht mittels FIC in einem Zwischenschritt
EP2116319B1 (de) Gerichtet erstarrtes längliches Bauteil mit verschieden breiten Längskörnern
EP2733236A1 (de) Zweilagiges keramisches Schichtsystem mit äußerer poröser Schicht und Vertiefungen darin
EP2597259A1 (de) Modifizierte Oberfläche um ein Loch
EP2586985A1 (de) Oberfläche mit speziell ausgeformten Vertiefungen und Bauteil
EP2322683B1 (de) Beschichtungsverfahren eines bauteils mit teilweise verschlossenen löchern und verfahren zum öffnen der löcher
EP2539476B1 (de) Verfahren zur einstellung des kühlmittelverbrauchs innerhalb aktiv gekühlter bauteile
EP2599890A1 (de) Abplatzungssichere keramische Schicht und Schichtsystem
WO2009109199A1 (de) Legierung, schutzschicht gegen hochtemperaturkorrosion und schichtsystem
EP2589681A1 (de) Kombination von kolumnaren und globularen Strukturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/00 20060101AFI20131112BHEP

Ipc: F23R 3/00 20060101ALI20131112BHEP

Ipc: F01D 5/28 20060101ALI20131112BHEP

Ipc: F23M 5/04 20060101ALI20131112BHEP

Ipc: C04B 41/00 20060101ALI20131112BHEP

Ipc: C23C 28/00 20060101ALI20131112BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140527