EP2766945A1 - Electrode for electrochemical cell and method of manufacturing such an electrode - Google Patents

Electrode for electrochemical cell and method of manufacturing such an electrode

Info

Publication number
EP2766945A1
EP2766945A1 EP12769672.2A EP12769672A EP2766945A1 EP 2766945 A1 EP2766945 A1 EP 2766945A1 EP 12769672 A EP12769672 A EP 12769672A EP 2766945 A1 EP2766945 A1 EP 2766945A1
Authority
EP
European Patent Office
Prior art keywords
additional compound
electrode
perovskite
powder
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12769672.2A
Other languages
German (de)
French (fr)
Inventor
Béatrice Sala
Frédéric GRASSET
Elodie TETARD
Kamal Rahmouni
Dominique GOEURIOT
Bendjeriou BAROUDI
Hisasi Takenouti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Centre National de la Recherche Scientifique CNRS
Areva SA
Original Assignee
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Centre National de la Recherche Scientifique CNRS
Areva SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Association pour la Recherche et le Developpement des Methodes et Processus Industriels, Centre National de la Recherche Scientifique CNRS, Areva SA filed Critical Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Publication of EP2766945A1 publication Critical patent/EP2766945A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode for an electrochemical cell, an electrochemical cell comprising such an electrode, and a method of manufacturing such an electrode.
  • An electrochemical cell used in particular for electrolysers or medium and high temperature fuel cells generally comprises two electrodes between which there is a solid electrolyte.
  • a solid electrolyte is generally formed by a doped ceramic oxide which, at the temperature of use, is in the form of a crystal lattice having oxide ion gaps.
  • the associated electrodes are generally made of cermets, which comprise ceramic and metal. More specifically, the cermets used in the electrodes consist, for example, of a perovskite mixed with a metal. Perovskites are materials with a crystal structure of the type AB0 3 or AA'BB'Oe with A and A 'which are lanthanides or actinides and B and B' which are transition metals based on the structure of natural perovskite. CaTi0 3 .
  • the aim of the invention is to propose an electrode which has a mixed electronic and protonic conduction, the electronic conduction being improved with respect to the electrodes of the prior art.
  • an electrode for electrochemical cell with mixed conduction electronics and proton comprising a ceramic, said ceramic being a perovskite doped with a lanthanide with one or more oxidation degree said ceramic being doped with a complementary doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
  • the ceramic Boosting the ceramic with niobium, tantalum, vanadium, phosphorus, arsenic, antimony or bismuth makes the ceramic conductive electrons.
  • the ceramic is then conducting both electrons and protons while in the absence of these doping elements, the perovskite doped with a lanthanide with a single oxidation state is not electrons conductive.
  • the invention therefore makes it possible to have an electrode made of a material of the same nature as the solid electrolyte which has good conductivity of both protons and electrons, even when the ceramic is not mixed with a metal. .
  • the electrode according to the invention may also have one or more of the characteristics below taken individually or in any technically possible combination.
  • the lanthanide is preferably chosen from lanthanides with one or more of the following oxidation states: ytterbium, thulium, dysprosium, terbium, europium, samarium, neodymium, praseodyme, cerium, promethium , gadolinium, holmium.
  • the electrode further comprises a metal; the metal and the ceramic then form a cermet. The presence of this metal makes it possible to further increase the electronic conductivity of the electrode.
  • the perovskite used is a zirconate.
  • the lanthanide used is preferably erbium for its size and its monovalence 3.
  • a second aspect of the invention also relates to an electrochemical cell comprising two electrodes according to the first aspect of the invention and a solid electrolyte disposed between the two electrodes.
  • the perovskite used in the solid electrolyte is of the same nature as that used in the electrodes, which allows a better cohesion between the electrodes and the electrolyte.
  • the perovskite of the electrolyte will be doped with a lanthanide element having a single degree of oxidation, while in the electrodes the lanthanide (s) may have one or more oxidation states.
  • the electrochemical cell is advantageously an electrochemical cell of an electrolysis device such as high temperature electrolysers comprising an ionically conductive membrane.
  • the invention is also applicable to fuel cells, typically of the SOFC or PCEC type, to which the technological developments of high temperature electrolysers are directly applicable.
  • a third aspect of the invention relates to a method of manufacturing an electrode based on the first aspect of the invention, the method comprising the following steps: - (a) Synthesis of a perovskite powder doped with a lanthanide at a or several degrees of oxidation;
  • the additional compound being such that the degree of oxidation of the doping element can decrease during sintering.
  • the lanthanide which dopes the perovskite has a single degree of oxidation when the electrolyte is manufactured, and one or more oxidation states when the electrodes are manufactured.
  • This process is particularly advantageous because the additional compound brings oxygen to the powder mixture during sintering because of the reduction of the oxidation state of the doping element during sintering, which makes it possible to sinter in atmospheres not or slightly oxidizing (ie a substantially non-oxidizing atmosphere) at a lower temperature than in the processes of the prior art.
  • non-oxidizing atmosphere means an atmosphere with a dew point or "dew point” (dew point) according to the English terminology of less than -56 ° C and preferably a dew point temperature substantially equal to -70 ° C.
  • a dew point of -70 ° C corresponds substantially to a pressure PH 2 O in H 2 O of 2.6x10 "6 atm and a pressure PO 2 in O 2 of 2.3x10 " 20 atm corresponding to equilibrium at a temperature of sintering at 1540 ° C.
  • the perovskite powder and the powder of the additional compound are also mixed with a metal powder or a metal phase precursor, so as to produce a cermet, which makes it possible to have an electrode which has a very good electronic conductivity.
  • the sintering takes place in a non-oxidizing atmosphere.
  • the process therefore makes it possible to sinter in a non-oxidizing atmosphere at temperatures lower than those described in the methods of the prior art.
  • the hydrogenated argon sintering temperature of an erbium doped strontium zirconate can be lowered by 100 ° C. by the addition of 0.4 wt% of ZnNb 2 O 6 .
  • the method further comprises a step (d) of compaction of the mixture between the steps (c) of mixing and (e) sintering.
  • the invention also relates to a method for producing an electrochemical cell.
  • the method according to the third aspect of the invention further comprises, between steps (c) and (e), and preferably between steps (c) and (d), a step of producing a stack comprising at least two layers formed of the mixture of the doped perovskite powder and the additional compound, between which there is an intermediate layer comprising a layer of perovskite powder.
  • the stack may further comprise two intermediate layers, each intermediate layer being disposed between the interlayer and one of two formed layers of the mixture of the doped perovskite powder and the additional compound.
  • These intermediate layers will serve either as a protective layer of the electrolyte to prevent the diffusion of species between the electrodes and the electrolyte, or as accommodation layers in the case where there are differences in coefficient of thermal expansion between the layers of electrodes and electrolyte due in particular to the presence of the metal in the electrodes.
  • a fourth aspect of the invention relates to a method of manufacturing an electrode based on the first aspect of the invention, the method comprising the following steps:
  • FIG. 1 a schematic representation of an electrochemical cell according to one embodiment of the invention
  • FIG. 2 a schematic representation of the steps of a method according to the invention.
  • FIG. 1 represents an electrochemical cell according to one embodiment of the invention.
  • This electrochemical cell comprises two electrodes 1, 3 between which is a solid electrolyte 2.
  • Each electrode 1, 3 is an electrode according to the first aspect of the invention.
  • Each electrode 1, 3 is made of a ceramic material which is a perovskite doped with a lanthanide.
  • perovskite is a zirconate of formula AZrO 3 .
  • Zirconate is doped with a lanthanide which is here erbium.
  • the lanthanide-doped perovskite is doped with a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
  • the doping element is preferably niobium or tantalum.
  • Each electrode may also comprise a metal mixed with the ceramic so as to form a cermet.
  • the ceramic comprises between 0.1% and 0.5% by weight of niobium, between 4 and 4.5% by weight of erbium and the remainder of zirconate.
  • the electrochemical cell of FIG. 1 is manufactured according to the method described with reference to FIG. 2.
  • a lanthanide doped perovskite powder is first synthesized during a step 101.
  • the ceramic thus obtained is in the form of large aggregates consisting of nanometric grains.
  • This ceramic is then formulated to reduce the size of its grains so as to obtain a grain size distribution that will be favorable to the compaction of the powder.
  • a powder of an additional compound containing a doping element taken from the following group is also synthesized: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth, the additional compound being such that the doping element has a degree of oxidation greater than or equal to 5 in this additional compound.
  • This additional compound is for example a niobiate, that is to say a compound comprising niobium, or a tantalate, that is to say a compound comprising tantalum.
  • the niobiate used may for example be zinc niobiate of formula ZnNb 2 O 6 .
  • the doped perovskite powder obtained during step 101 and that of the additional compound obtained during step 102 are mixed.
  • This mixture may for example comprise between 0.1% and 0.5% by weight. of zinc niobiate.
  • the mixture thus obtained is then obtained and can then be mixed with a powder of a metal so as to form a cermet, during a step 104.
  • a stack which will subsequently form the electrochemical cell and which comprises two layers formed of the mixture of the doped perovskite powder and the additional compound, between which there is a spacer layer comprising a layer of perovskite powder.
  • the two formed layers of the mixture of the doped perovskite powder and the additional compound will each form the electrodes of the electrochemical cell, while the interlayer will form the solid electrolyte.
  • the stack may also comprise two intermediate layers, each intermediate layer being disposed between the intermediate layer and one of the two formed layers of the mixture of the doped perovskite powder and the additional compound.
  • These intermediate layers will serve either as a protective layer of the electrolyte to prevent the diffusion of species between the electrodes and the electrolyte, or as accommodation layers in the case where there are differences in coefficient of thermal expansion between the layers of electrodes and electrolyte due in particular to the presence of the metal in the electrodes.
  • the stack thus obtained can then be compacted during a step 106, and then sintered during a step 107.
  • the manufacturing process is particularly advantageous because during sintering the doping element sees its oxidation state decrease, generally from +5 to +3, so that the additional compound releases oxygen.
  • the sintering can take place at 1415 ° C.
  • the sintering is carried out under a reducing atmosphere, that is to say under an atmosphere of hydrogen (H 2 ) and argon (Ar).
  • the electrode thus obtained has good cohesion with the electrolyte.
  • the electrode thus obtained has an improved electronic conductivity, as well as a good protonic conductivity.
  • the electrode thus obtained has an electron conductivity ratio on proton conductivity substantially equal to 100.

Abstract

The invention relates to an electrode for an electrochemical cell which exhibits good electron conductivity and good chemical conductivity, as well as good cohesion with the solid electrolyte of the electrochemical cell. To do this, this electrode is made from a ceramic, which is a perovskite doped with a lanthanide having one or more degrees of oxidation and with a complementary doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.

Description

ELECTRODE POUR CELLULE ELECTROCHIMIQUE ET PROCEDE DE  ELECTRODE FOR ELECTROCHEMICAL CELL AND PROCESS FOR
FABRICATION D'UNE TELLE ELECTRODE  MANUFACTURING SUCH AN ELECTRODE
DOMAINE TECHNIQUE La présente invention concerne une électrode pour cellule électrochimique, une cellule électrochimique comportant une telle électrode, ainsi qu'un procédé de fabrication d'une telle électrode. TECHNICAL FIELD The present invention relates to an electrode for an electrochemical cell, an electrochemical cell comprising such an electrode, and a method of manufacturing such an electrode.
ETAT DE LA TECHNIQUE ANTERIEUR STATE OF THE PRIOR ART
Une cellule électrochimique utilisée notamment pour les électrolyseurs ou les piles à combustible à moyennes et hautes températures comporte généralement deux électrodes entre lesquelles se trouve un électrolyte solide. An electrochemical cell used in particular for electrolysers or medium and high temperature fuel cells generally comprises two electrodes between which there is a solid electrolyte.
Un électrolyte solide est généralement formé par un oxyde céramique dopé qui, à la température d'utilisation, se présente sous forme d'un réseau cristallin possédant des lacunes en ions oxydes. Les électrodes associées sont généralement réalisés dans des cermets, qui comportent de la céramique et du métal. Plus précisément, les cermets utilisés dans les électrodes sont par exemple constitués d'une perovskite mélangée à un métal. Les perovskites sont des matériaux possédant une structure cristalline de type AB03 ou AA'BB'Oe avec A et A' qui sont des lanthanides ou des actinides et B et B' qui sont des métaux de transition fondée sur la structure de la perovskite naturelle CaTi03. A solid electrolyte is generally formed by a doped ceramic oxide which, at the temperature of use, is in the form of a crystal lattice having oxide ion gaps. The associated electrodes are generally made of cermets, which comprise ceramic and metal. More specifically, the cermets used in the electrodes consist, for example, of a perovskite mixed with a metal. Perovskites are materials with a crystal structure of the type AB0 3 or AA'BB'Oe with A and A 'which are lanthanides or actinides and B and B' which are transition metals based on the structure of natural perovskite. CaTi0 3 .
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
L'invention vise à proposer une électrode qui présente une conduction mixte électronique et protonique, la conduction électronique étant améliorée par rapport aux électrodes de l'art antérieur. The aim of the invention is to propose an electrode which has a mixed electronic and protonic conduction, the electronic conduction being improved with respect to the electrodes of the prior art.
Un autre objet de l'invention est de proposer une électrode qui présente une bonne adhésion à l'électrolyte solide. Un autre objet de l'invention est de proposer une électrode qui peut être fabriquée à plus basse température que les électrodes de l'art antérieur. Another object of the invention is to provide an electrode which has good adhesion to the solid electrolyte. Another object of the invention is to provide an electrode which can be manufactured at a lower temperature than the electrodes of the prior art.
Pour ce faire, est proposé selon un premier aspect de l'invention, une électrode pour cellule électrochimique à conduction mixte électronique et protonique, ladite électrode comportant une céramique, ladite céramique étant une perovskite dopée par un lanthanide à un ou plusieurs degré d'oxydation , ladite céramique étant dopée par un élément dopant complémentaire pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth. To do this, is proposed according to a first aspect of the invention, an electrode for electrochemical cell with mixed conduction electronics and proton, said electrode comprising a ceramic, said ceramic being a perovskite doped with a lanthanide with one or more oxidation degree said ceramic being doped with a complementary doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
Le fait de doper la céramique avec du niobium, du tantale, du vanadium, du phosphore, de l'arsenic, de l'antimoine ou du bismuth permet de rendre la céramique conductrice des électrons. La céramique est alors conductrice à la fois des électrons et des protons tandis qu'en l'absence de ces éléments dopants, la perovskite dopée avec un lanthanide à un seul degré d'oxydation n'est pas conductrice des électrons. Boosting the ceramic with niobium, tantalum, vanadium, phosphorus, arsenic, antimony or bismuth makes the ceramic conductive electrons. The ceramic is then conducting both electrons and protons while in the absence of these doping elements, the perovskite doped with a lanthanide with a single oxidation state is not electrons conductive.
L'invention permet donc d'avoir une électrode réalisée dans un matériau de même nature que l'électrolyte solide qui présente une bonne conductivité à la fois des protons et des électrons, et ce même lorsque la céramique n'est pas mélangée à un métal. The invention therefore makes it possible to have an electrode made of a material of the same nature as the solid electrolyte which has good conductivity of both protons and electrons, even when the ceramic is not mixed with a metal. .
L'électrode selon l'invention peut également présenter une ou plusieurs des caractéristiques ci-dessous prises individuellement ou selon toutes les combinaisons techniquement possibles. The electrode according to the invention may also have one or more of the characteristics below taken individually or in any technically possible combination.
Le lanthanide est de préférence choisi parmi les lanthanides à un ou plusieurs degré d'oxydation suivants : l'ytterbium, le thulium, le dysprosium, le terbium, l'europium, le samarium, le néodyme, le praseodyme, le cérium, le prométhéum, le gadolinium, le holmium. Selon un mode de réalisation, l'électrode comporte en outre un métal ; le métal et la céramique forment alors un cermet. La présence de ce métal permet d'augmenter encore la conductivité électronique de l'électrode. The lanthanide is preferably chosen from lanthanides with one or more of the following oxidation states: ytterbium, thulium, dysprosium, terbium, europium, samarium, neodymium, praseodyme, cerium, promethium , gadolinium, holmium. According to one embodiment, the electrode further comprises a metal; the metal and the ceramic then form a cermet. The presence of this metal makes it possible to further increase the electronic conductivity of the electrode.
Avantageusement, la perovskite utilisée est un zirconate. Le lanthanide utilisé est de préférence de l'erbium pour sa taille et sa monovalence 3. Advantageously, the perovskite used is a zirconate. The lanthanide used is preferably erbium for its size and its monovalence 3.
Un deuxième aspect de l'invention concerne également une cellule électrochimique comportant deux électrodes selon le premier aspect de l'invention et un électrolyte solide disposé entre les deux électrodes. A second aspect of the invention also relates to an electrochemical cell comprising two electrodes according to the first aspect of the invention and a solid electrolyte disposed between the two electrodes.
Avantageusement, la perovskite utilisée dans l'électrolyte solide est de même nature que celle utilisée dans les électrodes, ce qui permet une meilleure cohésion entre les électrodes et l'électrolyte. Cependant, la perovskite de l'électrolyte sera dopée avec un élément lanthanide ayant un seul degré d'oxydation, alors que dans les électrodes le(s) lanthanide(s) peu(ven)t avoir un ou plusieurs degrés d'oxydation. Advantageously, the perovskite used in the solid electrolyte is of the same nature as that used in the electrodes, which allows a better cohesion between the electrodes and the electrolyte. However, the perovskite of the electrolyte will be doped with a lanthanide element having a single degree of oxidation, while in the electrodes the lanthanide (s) may have one or more oxidation states.
La cellule électrochimique est avantageusement une cellule électrochimique d'un dispositif d'électrolyse tel que les électrolyseurs à haute température comportant une membrane à conduction ionique. L'invention est applicable également aux piles à combustible, typiquement de type SOFC ou PCEC, auxquels sont directement applicables les développements technologiques des électrolyseurs à haute température. The electrochemical cell is advantageously an electrochemical cell of an electrolysis device such as high temperature electrolysers comprising an ionically conductive membrane. The invention is also applicable to fuel cells, typically of the SOFC or PCEC type, to which the technological developments of high temperature electrolysers are directly applicable.
Un troisième aspect de l'invention concerne un procédé de fabrication d'une électrode basé sur le premier aspect de l'invention, le procédé comportant les étapes suivantes : - (a) Synthèse d'une poudre de perovskite dopée par un lanthanide à un ou plusieurs degrés d'oxydation; A third aspect of the invention relates to a method of manufacturing an electrode based on the first aspect of the invention, the method comprising the following steps: - (a) Synthesis of a perovskite powder doped with a lanthanide at a or several degrees of oxidation;
(b) Synthèse d'une poudre d'un composé additionnel comportant un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth, le composé additionnel étant tel que l'élément dopant présente un degré d'oxydation supérieur ou égal à 5 dans ce composé additionnel; (b) Synthesis of a powder of an additional compound comprising a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth, the additional compound being such that the doping element has a degree oxidation greater than or equal to 5 in this additional compound;
(c) Mélange de la poudre de perovskite dopée et du composé additionnel (c) Mixing of the doped perovskite powder and the additional compound
(e) Frittage de ce mélange, le composé additionnel étant tel que le degré d'oxydation de l'élément dopant peut diminuer lors du frittage. Avantageusement, le lanthanide qui dope la perovskite présente un seul degré d'oxydation lorsque l'on fabrique l'électrolyte, et un ou plusieurs degrés d'oxydation lorsque l'on fabrique les électrodes. (e) Sintering of this mixture, the additional compound being such that the degree of oxidation of the doping element can decrease during sintering. Advantageously, the lanthanide which dopes the perovskite has a single degree of oxidation when the electrolyte is manufactured, and one or more oxidation states when the electrodes are manufactured.
Ce procédé est particulièrement avantageux car le composé additionnel apporte de l'oxygène au mélange de poudres lors du frittage du fait de la diminution du degré d'oxydation de l'élément dopant lors du frittage, ce qui permet de pouvoir fritter dans des atmosphères pas ou peu oxydantes (i.e. une atmosphère sensiblement non oxydante) à plus basse température que dans les procédés de l'art antérieur. This process is particularly advantageous because the additional compound brings oxygen to the powder mixture during sintering because of the reduction of the oxidation state of the doping element during sintering, which makes it possible to sinter in atmospheres not or slightly oxidizing (ie a substantially non-oxidizing atmosphere) at a lower temperature than in the processes of the prior art.
On entend par atmosphère pas ou peu oxydante une atmosphère avec un point de rosée ou température de rosée (« dew point » selon la terminologie anglaise) inférieure à -56 °C et préférentiellement une température de rosée sensiblement égale à - 70 °C. Un point de rosée de -70 °C correspond sensiblement à une pression PH2O en H2O de 2.6x10"6 atm et une pression PO2 en O2 de 2.3x10"20 atm correspondant à l'équilibre à une température de frittage de 1540°C. Avantageusement, on mélange en outre la poudre de perovskite et la poudre du composé additionnel avec une poudre métallique ou un précurseur de phase métallique, de façon à réaliser un cermet, ce qui permet d'avoir une électrode qui présente une très bonne conductivité électronique. The term "non-oxidizing atmosphere" means an atmosphere with a dew point or "dew point" (dew point) according to the English terminology of less than -56 ° C and preferably a dew point temperature substantially equal to -70 ° C. A dew point of -70 ° C corresponds substantially to a pressure PH 2 O in H 2 O of 2.6x10 "6 atm and a pressure PO 2 in O 2 of 2.3x10 " 20 atm corresponding to equilibrium at a temperature of sintering at 1540 ° C. Advantageously, the perovskite powder and the powder of the additional compound are also mixed with a metal powder or a metal phase precursor, so as to produce a cermet, which makes it possible to have an electrode which has a very good electronic conductivity.
Si l'électrode comporte une phase métallique, le frittage a lieu sous atmosphère non oxydante. If the electrode has a metal phase, the sintering takes place in a non-oxidizing atmosphere.
Le procédé permet donc de fritter sous atmosphère non oxydante à des températures inférieures à celles décrites dans les procédés de l'art antérieur. A titre d'exemple, la température de frittage sous argon hydrogéné d'un zirconate de strontium dopé à l'erbium peut être abaissée de 100°C par l'addition de 0.4wt% de ZnNb2O6. The process therefore makes it possible to sinter in a non-oxidizing atmosphere at temperatures lower than those described in the methods of the prior art. By way of example, the hydrogenated argon sintering temperature of an erbium doped strontium zirconate can be lowered by 100 ° C. by the addition of 0.4 wt% of ZnNb 2 O 6 .
Avantageusement, le procédé comporte en outre une étape (d) de compaction du mélange entre les étapes (c) de mélange et (e) de frittage. Advantageously, the method further comprises a step (d) of compaction of the mixture between the steps (c) of mixing and (e) sintering.
L'invention concerne également un procédé de réalisation d'une cellule électrochimique. Dans ce cas, le procédé selon le troisième aspect de l'invention comporte en outre, entre les étapes (c) et (e), et de préférence entre les étapes (c) et (d), une étape de réalisation d'un empilement comportant au moins deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel, entre lesquelles se trouve une couche intercalaire comportant une couche de poudre de perovskite. L'empilement peut en outre comporter deux couches intermédiaires, chaque couche intermédiaire étant disposée entre la couche intercalaire et une des deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel. Ces couches intermédiaires serviront soit de couche protectrice de l'électrolyte pour éviter la diffusion des espèces entre les électrodes et l'électrolyte, soit de couches d'accommodation dans le cas où il existe des différences de coefficient d'expansion thermique entre les couches d'électrodes et d'électrolyte du fait notamment de la présence du métal dans les électrodes. The invention also relates to a method for producing an electrochemical cell. In this case, the method according to the third aspect of the invention further comprises, between steps (c) and (e), and preferably between steps (c) and (d), a step of producing a stack comprising at least two layers formed of the mixture of the doped perovskite powder and the additional compound, between which there is an intermediate layer comprising a layer of perovskite powder. The stack may further comprise two intermediate layers, each intermediate layer being disposed between the interlayer and one of two formed layers of the mixture of the doped perovskite powder and the additional compound. These intermediate layers will serve either as a protective layer of the electrolyte to prevent the diffusion of species between the electrodes and the electrolyte, or as accommodation layers in the case where there are differences in coefficient of thermal expansion between the layers of electrodes and electrolyte due in particular to the presence of the metal in the electrodes.
Un quatrième aspect de l'invention concerne un procédé de fabrication d'une électrode basé sur le premier aspect de l'invention, le procédé comportant les étapes suivantes : A fourth aspect of the invention relates to a method of manufacturing an electrode based on the first aspect of the invention, the method comprising the following steps:
(a) Synthèse directe d'une poudre de perovskite dopée par un lanthanide à un ou plusieurs degrés d'oxydation contenant un composé additionnel comportant un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth, le composé additionnel étant tel que l'élément dopant présente un degré d'oxydation supérieur ou égal à 5 dans ce composé additionnel; (a) Direct synthesis of a lanthanide doped perovskite powder at one or more oxidation levels containing an additional compound having a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth the additional compound being such that the doping element has a degree of oxidation greater than or equal to 5 in this additional compound;
(b) Frittage de ladite poudre, le composé additionnel étant tel que le degré d'oxydation de l'élément dopant peut diminuer lors du frittage. (b) sintering said powder, the additional compound being such that the degree of oxidation of the doping element can decrease during sintering.
BREVES DESCRIPTION DES FIGURES D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description détaillée qui suit, en référence aux figures annexées, qui illustrent : BRIEF DESCRIPTION OF THE FIGURES Other features and advantages of the invention will emerge on reading the detailed description which follows, with reference to the appended figures, which illustrate:
- La figure 1 , une représentation schématique d'une cellule électrochimique selon un mode de réalisation de l'invention ; - La figure 2, une représentation schématique des étapes d'un procédé selon l'invention. - Figure 1, a schematic representation of an electrochemical cell according to one embodiment of the invention; FIG. 2, a schematic representation of the steps of a method according to the invention.
Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de références identiques sur l'ensemble des figures. For the sake of clarity, identical or similar elements are identified by identical reference signs throughout the figures.
DESCRIPTION DETAILLEE D'AU MOINS UN MODE DE REALISATION DETAILED DESCRIPTION OF AT LEAST ONE EMBODIMENT
La figure 1 représente une cellule électrochimique selon un mode de réalisation de l'invention. Cette cellule électrochimique comporte deux électrodes 1 , 3 entre lesquelles se trouve un électrolyte solide 2. Chaque électrode 1 , 3 est une électrode selon le premier aspect de l'invention. FIG. 1 represents an electrochemical cell according to one embodiment of the invention. This electrochemical cell comprises two electrodes 1, 3 between which is a solid electrolyte 2. Each electrode 1, 3 is an electrode according to the first aspect of the invention.
Chaque électrode 1 , 3 est réalisée dans un matériau céramique qui est une perovskite dopée par un lanthanide. Dans cet exemple, la perovskite est un zirconate de formule AZr03. Le zirconate est dopé par un lanthanide qui est ici de l'erbium. En outre, la perovskite dopée par le lanthanide est dopée par un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth. Ces éléments dopants sont choisis pour doper la céramique car ils peuvent passer d'un degré d'oxydation égal à 5 à un degré d'oxydation de 3, ce qui permet de libérer de l'oxygène lors du frittage, comme nous le verrons dans la suite. Plus précisément, l'élément dopant est de préférence du niobium ou du tantale. Chaque électrode peut également comporter un métal mélangé à la céramique de façon à former un cermet. Each electrode 1, 3 is made of a ceramic material which is a perovskite doped with a lanthanide. In this example, perovskite is a zirconate of formula AZrO 3 . Zirconate is doped with a lanthanide which is here erbium. In addition, the lanthanide-doped perovskite is doped with a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth. These doping elements are chosen to dope the ceramic because they can pass from an oxidation degree of 5 to an oxidation degree of 3, which allows to release oxygen during sintering, as we will see in the following. More specifically, the doping element is preferably niobium or tantalum. Each electrode may also comprise a metal mixed with the ceramic so as to form a cermet.
Dans cet exemple de réalisation, la céramique comporte entre 0.1 % et 0.5% en masse de niobium, entre 4 et 4.5% en masse d'erbium et le reste en zirconate. In this embodiment, the ceramic comprises between 0.1% and 0.5% by weight of niobium, between 4 and 4.5% by weight of erbium and the remainder of zirconate.
La cellule électrochimique de la figure 1 est fabriquée selon le procédé décrit en référence à la figure 2. On synthétise tout d'abord une poudre de perovskite dopée par un lanthanide lors d'une étape 101 . La céramique ainsi obtenue est sous forme de gros agrégats constitués de grains nanométriques. Cette céramique est alors formulée afin de réduire la taille de ses grains de façon à obtenir une répartition de la taille des grains qui sera favorable à la compaction de la poudre. On synthétise également, lors d'une étape 102, une poudre d'un composé additionnel comportant un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth, le composé additionnel étant tel que l'élément dopant présente un degré d'oxydation supérieur ou égal à 5 dans ce composé additionnel. Ce composé additionnel est par exemple un niobiate, c'est-à-dire un composé comportant du niobium, ou encore un tantalate, c'est-à-dire un composé comportant du tantale. Le niobiate utilisé peut par exemple être du niobiate de zinc de formule ZnNb2O6. The electrochemical cell of FIG. 1 is manufactured according to the method described with reference to FIG. 2. A lanthanide doped perovskite powder is first synthesized during a step 101. The ceramic thus obtained is in the form of large aggregates consisting of nanometric grains. This ceramic is then formulated to reduce the size of its grains so as to obtain a grain size distribution that will be favorable to the compaction of the powder. At step 102, a powder of an additional compound containing a doping element taken from the following group is also synthesized: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth, the additional compound being such that the doping element has a degree of oxidation greater than or equal to 5 in this additional compound. This additional compound is for example a niobiate, that is to say a compound comprising niobium, or a tantalate, that is to say a compound comprising tantalum. The niobiate used may for example be zinc niobiate of formula ZnNb 2 O 6 .
On mélange ensuite, lors d'une étape 103, la poudre de perovskite dopée obtenue lors de l'étape 101 et celle du composé additionnel obtenue lors de l'étape 102. Ce mélange peut par exemple comporter entre 0.1 % et 0.5% en masse de niobiate de zinc. Then, during a step 103, the doped perovskite powder obtained during step 101 and that of the additional compound obtained during step 102 are mixed. This mixture may for example comprise between 0.1% and 0.5% by weight. of zinc niobiate.
Le mélange ainsi obtenu est ensuite obtenu peut ensuite être mélangé avec un poudre d'un métal de façon à former un cermet, lors d'une étape 104. The mixture thus obtained is then obtained and can then be mixed with a powder of a metal so as to form a cermet, during a step 104.
On peut ensuite réaliser, lors d'une étape 105, un empilement qui formera par la suite la cellule électrochimique et qui comporte deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel, entre lesquelles se trouve une couche intercalaire comportant une couche de poudre de perovskite. Les deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel formeront chacune les électrodes de la cellule électrochimique, tandis que la couche intercalaire formera l'électrolyte solide. L'empilement peut également comporter deux couches intermédiaires, chaque couche intermédiaire étant disposée entre la couche intercalaire et une des deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel. Ces couches intermédiaires serviront soit de couche protectrice de l'électrolyte pour éviter la diffusion des espèces entre les électrodes et l'électrolyte, soit de couches d'accommodation dans le cas où il existe des différences de coefficient d'expansion thermique entre les couches d'électrodes et d'électrolyte du fait notamment de la présence du métal dans les électrodes. L'empilement ainsi obtenu peut ensuite être compacté lors d'une étape 106, puis fritté, lors d'une étape 107. Le procédé de fabrication est particulièrement avantageux car lors du frittage l'élément dopant voit son degré d'oxydation diminuer, généralement de +5 à +3, de sorte que le composé additionnel libère de l'oxygène. It is then possible to carry out, during a step 105, a stack which will subsequently form the electrochemical cell and which comprises two layers formed of the mixture of the doped perovskite powder and the additional compound, between which there is a spacer layer comprising a layer of perovskite powder. The two formed layers of the mixture of the doped perovskite powder and the additional compound will each form the electrodes of the electrochemical cell, while the interlayer will form the solid electrolyte. The stack may also comprise two intermediate layers, each intermediate layer being disposed between the intermediate layer and one of the two formed layers of the mixture of the doped perovskite powder and the additional compound. These intermediate layers will serve either as a protective layer of the electrolyte to prevent the diffusion of species between the electrodes and the electrolyte, or as accommodation layers in the case where there are differences in coefficient of thermal expansion between the layers of electrodes and electrolyte due in particular to the presence of the metal in the electrodes. The stack thus obtained can then be compacted during a step 106, and then sintered during a step 107. The manufacturing process is particularly advantageous because during sintering the doping element sees its oxidation state decrease, generally from +5 to +3, so that the additional compound releases oxygen.
On peut ainsi fritter à plus faible température, grâce à cet apport d'oxygène. Ainsi, à titre d'exemple, dans le cas où la perovskite utilisée est un zirconate, qu'il est dopé à l'erbium et mélangé à du niobiate de zinc, le frittage peut avoir lieu à 1415°C It can thus sinter at a lower temperature, thanks to this oxygen supply. Thus, by way of example, in the case where the perovskite used is a zirconate, that it is doped with erbium and mixed with zinc niobiate, the sintering can take place at 1415 ° C.
Avantageusement le frittage est réalisé sous atmosphère réductrice, c'est-à-dire sous une atmosphère d'hydrogène (H2) et d'Argon (Ar). Advantageously, the sintering is carried out under a reducing atmosphere, that is to say under an atmosphere of hydrogen (H 2 ) and argon (Ar).
L'électrode ainsi obtenue présente une bonne cohésion avec l'électrolyte. En outre, l'électrode ainsi obtenue présente une conductivité électronique améliorée, ainsi qu'une bonne conductivité protonique. En effet, l'électrode ainsi obtenue présente un rapport conductivité électronique sur conductivité protonique sensiblement égal à 100. The electrode thus obtained has good cohesion with the electrolyte. In addition, the electrode thus obtained has an improved electronic conductivity, as well as a good protonic conductivity. Indeed, the electrode thus obtained has an electron conductivity ratio on proton conductivity substantially equal to 100.
Naturellement, l'invention n'est pas limitée aux modes de réalisation décrits en référence aux figures, et des variantes pourraient être envisagées sans sortir du cadre de l'invention. Les proportions des différents matériaux ne sont notamment données qu'à titre d'illustration. En outre, la cellule électrochimique pourrait présenter d'autres géométries que celle présentée. Naturally, the invention is not limited to the embodiments described with reference to the figures, and variants could be envisaged without departing from the scope of the invention. The proportions of the different materials are only given for illustrative purposes. In addition, the electrochemical cell could have other geometries than the one presented.

Claims

REVENDICATIONS
1 . Electrode (1 , 3) pour cellule électrochimique à conduction mixte électronique et protonique, ladite électrode (1 , 3) comportant une céramique, ladite céramique étant une perovskite dopée par un lanthanide, à un ou plusieurs degrés d'oxydation caractérisé en ce que ladite céramique est dopée par un élément dopant complémentaire pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth. 1. Electrode (1, 3) for electrochemical cell with mixed electron and protonic conduction, said electrode (1, 3) comprising a ceramic, said ceramic being a perovskite doped with a lanthanide, at one or more oxidation levels, characterized in that said ceramic is doped by a complementary doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth.
2. Electrode (1 , 3) selon la revendication précédente, comportant en outre un métal, le métal et la céramique formant un cermet. 2. Electrode (1, 3) according to the preceding claim, further comprising a metal, metal and ceramics forming a cermet.
3. Electrode (1 , 3) selon l'une des revendications précédentes, dans laquelle la perovskite est un zirconate. 3. Electrode (1, 3) according to one of the preceding claims, wherein the perovskite is a zirconate.
4. Cellule électrochimique comportant deux électrodes (1 , 3) selon l'une des revendications précédentes et un électrolyte solide (2) disposé entre les deux électrodes (1 , 3). 4. Electrochemical cell comprising two electrodes (1, 3) according to one of the preceding claims and a solid electrolyte (2) disposed between the two electrodes (1, 3).
5. Cellule électrochimique selon la revendication précédente, dans laquelle l'électrolyte solide (2) est réalisé dans une perovskite dopée par un lanthanide présentant un degré d'oxydation, la perovskite utilisée dans l'électrolyte solide (2) étant de même nature que celle utilisée dans les électrodes (1 , 3). 5. Electrochemical cell according to the preceding claim, wherein the solid electrolyte (2) is made in a perovskite doped with a lanthanide having a degree of oxidation, the perovskite used in the solid electrolyte (2) being of the same nature as that used in the electrodes (1, 3).
6. Procédé de fabrication d'une électrode selon l'une des revendications 1 à 3, comportant les étapes suivantes : 6. A method of manufacturing an electrode according to one of claims 1 to 3, comprising the following steps:
- (a) Synthèse d'une poudre de perovskite dopée par un lanthanide (101 ) à un ou plusieurs degré d'oxydation; - (b) Synthèse d'une poudre d'un composé additionnel comportant un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth, le composé additionnel étant tel que l'élément dopant présente un degré d'oxydation supérieur ou égal à 5 dans ce composé additionnel (102); - (a) Synthesis of a perovskite powder doped with a lanthanide (101) at one or more oxidation states; (b) Synthesis of a powder of an additional compound comprising a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth, the additional compound being such that the doping element exhibits a oxidation state greater than or equal to 5 in this additional compound (102);
- (c) Mélange de la poudre de perovskite dopée et du composé additionnel (103) ;  (c) mixing the doped perovskite powder and the additional compound (103);
- (e) Frittage de ce mélange (107).  - (e) Sintering this mixture (107).
7. Procédé selon la revendication précédente, dans lequel le frittage a lieu sous atmosphère sensiblement non oxydante. 7. Process according to the preceding claim, in which the sintering takes place under a substantially non-oxidizing atmosphere.
8. Procédé selon l'une des revendications 6 ou 7, dans lequel on mélange en outre la poudre de perovskite et la poudre du composé additionnel avec une poudre métallique (104) ou un précurseur de phase métallique. 8. Method according to one of claims 6 or 7, wherein is further mixed perovskite powder and the powder of the additional compound with a metal powder (104) or a metal phase precursor.
9. Procédé selon l'une des revendications 6 à 8, comportant en outre, entre les étapes (c) et (e) une étape de réalisation d'un empilement comportant au moins deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel, entre lesquelles se trouve une couche intercalaire comportant une couche de poudre de perovskite (105). 9. Method according to one of claims 6 to 8, further comprising, between steps (c) and (e) a step of producing a stack comprising at least two layers formed of the mixture of the doped perovskite powder and additional compound, between which there is an intermediate layer comprising a layer of perovskite powder (105).
10. Procédé selon la revendication précédente, dans lequel l'empilement comporte en outre deux couches intermédiaires, chaque couche intermédiaire étant disposée entre la couche intercalaire et une des deux couches formées du mélange de la poudre de perovskite dopée et du composé additionnel. 10. Method according to the preceding claim, wherein the stack further comprises two intermediate layers, each intermediate layer being disposed between the intermediate layer and one of the two formed layers of the mixture of the doped perovskite powder and the additional compound.
1 1 . Procédé de fabrication d'une électrode selon l'une des revendications 1 à 3, le procédé comportant les étapes suivantes : - (a) Synthèse directe d'une poudre de perovskite dopée par un lanthanide à un ou plusieurs degrés d'oxydation contenant un composé additionnel comportant un élément dopant pris dans le groupe suivant : niobium, tantale, vanadium, phosphore, arsenic, antimoine, bismuth, le composé additionnel étant tel que l'élément dopant présente un degré d'oxydation supérieur ou égal à 5 dans ce composé additionnel; 1 1. A method of manufacturing an electrode according to one of claims 1 to 3, the method comprising the following steps: (a) direct synthesis of a lanthanide doped perovskite powder at one or more oxidation levels containing an additional compound comprising a doping element taken from the following group: niobium, tantalum, vanadium, phosphorus, arsenic, antimony, bismuth, the additional compound being such that the doping element has a degree of oxidation greater than or equal to 5 in this additional compound;
- (b) Frittage de ladite poudre, le composé additionnel étant tel que le degré d'oxydation de l'élément dopant peut diminuer lors du frittage. (b) sintering said powder, the additional compound being such that the degree of oxidation of the doping element can decrease during sintering.
EP12769672.2A 2011-10-12 2012-10-10 Electrode for electrochemical cell and method of manufacturing such an electrode Withdrawn EP2766945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159224A FR2981508B1 (en) 2011-10-12 2011-10-12 ELECTRODE FOR ELECTROCHEMICAL CELL AND METHOD FOR MANUFACTURING SUCH ELECTRODE
PCT/EP2012/070011 WO2013053727A1 (en) 2011-10-12 2012-10-10 Electrode for electrochemical cell and method of manufacturing such an electrode

Publications (1)

Publication Number Publication Date
EP2766945A1 true EP2766945A1 (en) 2014-08-20

Family

ID=47002882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12769672.2A Withdrawn EP2766945A1 (en) 2011-10-12 2012-10-10 Electrode for electrochemical cell and method of manufacturing such an electrode

Country Status (8)

Country Link
US (1) US20140302421A1 (en)
EP (1) EP2766945A1 (en)
JP (1) JP2014534339A (en)
CN (1) CN104040765A (en)
BR (1) BR112014008346A2 (en)
FR (1) FR2981508B1 (en)
RU (1) RU2014118115A (en)
WO (1) WO2013053727A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3045950B1 (en) * 2015-12-17 2020-02-28 Electricite De France PROTONIC CONDUCTION ELECTROCHEMICAL DEVICE WITH INTEGRATED REFORMING AND MANUFACTURING METHOD THEREOF
CN106099175B (en) * 2016-08-30 2019-02-26 深圳市美尼电子有限公司 A kind of lithium ion battery and preparation method thereof of high temperature resistant high-multiplying power discharge
CN116014159A (en) * 2023-02-24 2023-04-25 中国矿业大学 Oxygen electrode material of solid oxide battery, preparation method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000562A1 (en) * 1996-07-02 1998-01-08 Scientific Generics Limited Denaturation of double-stranded nucleic acid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479039B2 (en) * 2000-03-03 2010-06-09 パナソニック株式会社 Electrochemical devices
US20040089540A1 (en) * 2000-08-07 2004-05-13 Van Heuveln Frederik Henddrik Mixed oxide material, electrode and method of manufacturing the electrode and electrochemical cell comprising it
GB0217794D0 (en) * 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
FR2916653B1 (en) * 2007-06-01 2011-05-06 Areva Np METHOD FOR OPTIMIZING THE IONIC CONDUCTIVITY OF A CONDUCTIVE ION MEMBRANE
CN101948308B (en) * 2010-09-27 2013-01-02 内蒙古工业大学 Ceramic high-temperature insulation material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000562A1 (en) * 1996-07-02 1998-01-08 Scientific Generics Limited Denaturation of double-stranded nucleic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013053727A1 *

Also Published As

Publication number Publication date
RU2014118115A (en) 2015-11-20
WO2013053727A1 (en) 2013-04-18
FR2981508A1 (en) 2013-04-19
JP2014534339A (en) 2014-12-18
BR112014008346A2 (en) 2017-04-18
US20140302421A1 (en) 2014-10-09
CN104040765A (en) 2014-09-10
FR2981508B1 (en) 2013-11-15

Similar Documents

Publication Publication Date Title
Wang et al. Interfaces in garnet‐based all‐solid‐state lithium batteries
EP2356713B1 (en) Substrate made of a porous metal or metal alloy, its method of production and hte or sofc cells having a support metal comprising this substrate
KR101614016B1 (en) Silicon based negative electrode material for rechargeable battery and method of fabricating the same
EP2462644B1 (en) Electrochemical cell having a metal substrate, and method for manufacturing same
EP2191527B1 (en) Powder containing elongated grains and the use thereof for producing an electrode for a solid oxide fuel cell
EP1774061B1 (en) Method and device for water electrolysis comprising a special oxide electrode material
EP2110873B1 (en) Titanates with perovskite or derivative structure and applications thereof
EP2239055A1 (en) Catalyst, process for production of the same, and use of the same
EP2580797A1 (en) Method for manufacturing basic electrochemical cells for energy or hydrogen-producing electrochemical systems, in particular of the sofc and hte type
CN103460479A (en) Sintering additives for ceramic devices obtainable in a low pO2 atmosphere
FR2964664A1 (en) AQUEOUS INK FOR THE PRODUCTION OF HIGH TEMPERATURE ELECTROCHEMICAL CELL ELECTRODES
WO2010029242A1 (en) Electrolyte for an sofc battery, and method for making same
WO2013053727A1 (en) Electrode for electrochemical cell and method of manufacturing such an electrode
EP2684238B1 (en) Process for producing an air electrode, the electrode thus obtained and its uses
US20160156058A1 (en) Composite material for fuel cell, method for producing composite material for fuel cell, and fuel cell
EP2800825B1 (en) Porous electrode for proton exchange membrane
EP2097940B1 (en) Gas electrode, method for making the same and uses thereof
EP2870650B1 (en) Method of fabricating contact elements in an electrochemical device such as sofc or soec
CN111587299A (en) Oxygen permeable member and sputtering target material
Ma et al. Improvement of the Li-ion conductivity and air stability of the Ta-doped Li 7 La 3 Zr 2 O 12 electrolyte via Ga co-doping and its application in Li–S batteries
CN111200122A (en) Preparation method and application of lithium metal negative electrode with air stability
WO2023139327A1 (en) Component for fuel cell
EP2925911A1 (en) Electrolyser comprising an anionically conductive electrolytic membrane, and method for the electrolysis of water vapour
EP3963656A1 (en) Multilayer electrode-electrolyte components and their production methods
Tao et al. Optimisation of Perovskite Materials for Fuel Electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

Owner name: ARMINES

Owner name: AREVA

17Q First examination report despatched

Effective date: 20160310

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160921