EP2764215B1 - Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy - Google Patents
Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy Download PDFInfo
- Publication number
- EP2764215B1 EP2764215B1 EP12788178.7A EP12788178A EP2764215B1 EP 2764215 B1 EP2764215 B1 EP 2764215B1 EP 12788178 A EP12788178 A EP 12788178A EP 2764215 B1 EP2764215 B1 EP 2764215B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- line
- energy storage
- heat
- heat accumulator
- expansion turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004146 energy storage Methods 0.000 title claims description 26
- 239000003570 air Substances 0.000 claims description 12
- 239000012080 ambient air Substances 0.000 claims description 8
- 239000011232 storage material Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000004576 sand Substances 0.000 claims description 3
- 230000001932 seasonal effect Effects 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- -1 gravel Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 10
- 238000011144 upstream manufacturing Methods 0.000 claims 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000012266 salt solution Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 27
- 238000005338 heat storage Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D17/00—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
Definitions
- the need to store energy results in particular from the steadily increasing share of power plants from the renewable energy sector.
- the goal of energy storage is to make the power plants with renewable energy in the power transmission networks available in such a way that renewable energy can also be accessed with a time lag to save fossil fuels and thus CO 2 emissions.
- the US 2010/0257862 A1 describes a principle of a known energy storage device in which a piston engine is used. According to the US 5,436,508 Moreover, it is known that energy storage devices for storing thermal energy can also temporarily store overcapacities in the use of wind energy for producing electrical power.
- the US 2011/0100010 A1 discloses an energy storage device for storing thermal energy of a compressed working gas.
- Such energy storage convert when charging the memory electrical energy into thermal energy and store the thermal energy. When unloading the thermal energy is converted back into electrical energy.
- thermal energy stores Due to the time span which an energy store has to bridge, ie the time over which energy is stored in and out of the energy store and stored out, and the power which has to be stored, correspondingly high demands are placed on the dimensions of thermal energy stores. Alone due to the size of thermal energy storage can therefore be very expensive to buy. If the energy storage designed to consuming, or the actual heat storage medium expensive to purchase or consuming in operation, the acquisition and operating costs for a thermal energy storage quickly put the economics of energy storage in question.
- heat exchangers based on inexpensive materials have been designed mainly in the form of a direct exchange of the heat carrier, such as air, and the storage material, such as sand or rock, to replace large heat exchangers.
- the fluid bed technique known in the art has not been used to the extent that would be required for seasonal storage of renewable surplus energy.
- a direct heat exchange also brings a relatively complicated handling of the solid with it, which is not economical for a large storage.
- a working gas such as air
- the working gas can be performed either in a closed or an open charging circuit or additional circuit.
- An open circuit always uses ambient air as working gas. This is sucked from the environment and released at the end of the process also in this, so that the environment closes the open circuit.
- a closed circuit also allows the use of a different working gas than ambient air. This working gas is guided in the closed circuit. Since a relaxation in the environment with simultaneous adjustment of the ambient pressure and the ambient temperature is eliminated, the working gas in the case of a closed circuit must be passed through a heat exchanger, which provides a release of heat of the working gas allowed to the environment. Since dehumidified air or other working gases can be used in a closed circuit, can be dispensed with a multi-stage design of the compressor and a water separator. The disadvantage here, however, the additional cost of the purchase and operation of an additional heat exchanger after the expansion turbine, or before the compressor to heat the working gas to working temperature for the compressor. In operation, the energy storage device is thereby reduced in efficiency.
- the charging circuit for the storage of thermal energy in the heat accumulator is designed as an open circuit, and the compressor is constructed of two stages, wherein between the stages, a water separator is provided for the working gas.
- a water separator is provided for the working gas.
- a relaxation of the working gas in two steps makes it possible to separate condensed water in a water separator behind the first stage, for example at 5 ° C, so that it is already dehumidified in a further cooling of the working gas in the second turbine stage and prevents or at least reduces ice formation can be.
- the disadvantage here is the increased cost of purchasing a multi-stage compressor and a water separator. Also, such a system is reduced in efficiency in operation.
- the object of the inventions invention is to provide a low-cost energy storage device for storing thermal energy based on inexpensive storage materials, which has an improved efficiency. In particular, it applies to avoid the disadvantages of the prior art.
- the object of the invention is also to specify a method by which thermal energy can be stored in cost-effective storage materials under improved efficiency.
- an energy storage device for storing thermal energy comprises a charge cycle for a working gas, comprising a compressor, a heat accumulator and an expansion turbine, wherein the compressor and the expansion turbine are arranged on a common shaft, and wherein the compressor on the outlet side with the entry of the expansion turbine via a first Connected for the working gas, and the heat accumulator is connected in the first line, and the compressor on the inlet side connected to a line which is open to the atmosphere, and the expansion turbine on the outlet side connected to a line which is open to the atmosphere, so a relation to the ambient air open circuit is formed.
- the expansion turbine is now connected via a line for a hot gas with the heat storage, so that the working gas can be heated in the expansion turbine by heat from the heat storage.
- This line which is in particular not identical to the first line, ensures that a partial flow of hot air is passed to the heat storage to the expansion turbine.
- the core of the invention is that a partial flow of the hot air is passed to the heat storage to the expansion turbine to be performed analogously to gas turbines in the turbine blades to avoid icing problems at the cold end of the expansion turbine.
- recuperation of the compressor waste heat in the charging circuit and the release of cold expansion air to the environment you achieve a heat pump efficiency well above 100%.
- the recuperation of the compressor waste heat is made possible by the fact that in the thermal storage only high temperature heat, eg> 320 ° C is used. Heat at a lower temperature level is used to preheat the ambient air at the compressor inlet, thereby reducing the electrical energy requirements of quasi-adiabatic compression and enabling high heat pump efficiencies.
- the heat exchange during recuperation can take place either directly in an air-air heat exchanger or through an intermediate circuit with an efficient heat transfer medium (eg thermal oil).
- the circuit consists of compression and relaxation, as in a joule process.
- the air charging circuit is used to generate high temperature heat, which allows for efficient reconversion, but alternatively can be used directly, e.g. for district heating.
- a direct temperature exchange with the hot compressed air (when charging) and the water / steam (during unloading) with the storage material is preferred (direct admission).
- the expansion turbine also reduces the energy expenditure for compaction by being located on the same shaft as the compressor and significantly aids the compressor.
- the heat storage can be cheaper by not using recovery of the lower temperatures, since the heat exchanger can be made smaller.
- the energy storage device according to the invention is much cheaper to buy than a conventional energy storage device in which the working gas is largely completely cooled in the heat exchanger.
- a heat exchanger is provided, which is connected on the primary side in the first line for the working gas after the heat storage, and the secondary side is connected to the compressor supplying line, so that heat from the working gas to the sucked ambient air in the Compressor feeding line is transferable.
- a first auxiliary heater is provided, which is connected in the first line for the working gas, in front of the expansion turbine, so that the working gas can be heated before entering the expansion turbine.
- the additional heating can be done electrically.
- the additional heating a further increase in efficiency can be realized by raising the maximum storage temperature before the heat storage.
- a second additional heater is provided, which is connected in the first line before the heat storage, so that the working gas is heated before entering the heat storage.
- the thermal energy can be seasonal surplus energy of a power plant with renewable energies.
- a storage material for the heat storage of the heat exchanger process are particularly porous materials, sand, gravel, rock, concrete, water or saline.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
Die Notwendigkeit zur Speicherung von Energie ergibt sich insbesondere aus dem stetig anwachsenden Anteil an Kraftwerksanlage aus dem Sektor der erneuerbaren Energien. Ziel der Energiespeicherung ist es dabei, die Kraftwerke mit erneuerbaren Energien derart in den Stromübertragungsnetzen nutzbar zu machen, dass auf erneuerbar erzeugte Energie auch zeitversetzt zugegriffen werden kann, um so fossile Energieträger und somit CO2 Emissionen einzusparen.The need to store energy results in particular from the steadily increasing share of power plants from the renewable energy sector. The goal of energy storage is to make the power plants with renewable energy in the power transmission networks available in such a way that renewable energy can also be accessed with a time lag to save fossil fuels and thus CO 2 emissions.
Die
Die
Derartige Energiespeicher wandeln beim Laden des Speichers elektrische Energie in thermische Energie um und speichern die thermische Energie. Beim Entladen wird die thermische Energie wieder in elektrische Energie umgesetzt.Such energy storage convert when charging the memory electrical energy into thermal energy and store the thermal energy. When unloading the thermal energy is converted back into electrical energy.
Aufgrund der Zeitspanne die ein Energiespeicher zu überbrücken hat, also die Zeit, über die Energie in bzw. aus dem Energiespeicher ein- und ausgespeichert wird, und der Leistung die es zu speichern gilt, sind an die Dimensionen thermische Energiespeicher entsprechend hohe Anforderungen gestellt. Schon allein aufgrund der Baugröße können thermische Energiespeicher daher sehr teuer in der Anschaffung werden. Ist der Energiespeicher dazu aufwendig gestaltet, oder das eigentliche Wärmespeichermedium teuer in der Anschaffung oder aufwendig im Betrieb, können die Anschaffungs- und Betriebskosten für einen thermischen Energiespeicher schnell die Wirtschaftlichkeit der Energiespeicherung in Frage stellen.Due to the time span which an energy store has to bridge, ie the time over which energy is stored in and out of the energy store and stored out, and the power which has to be stored, correspondingly high demands are placed on the dimensions of thermal energy stores. Alone due to the size of thermal energy storage can therefore be very expensive to buy. If the energy storage designed to consuming, or the actual heat storage medium expensive to purchase or consuming in operation, the acquisition and operating costs for a thermal energy storage quickly put the economics of energy storage in question.
Aufgrund der oft geringen Wärmeleitfähigkeit der kostengünstigen Speichermaterialien sind oft die Wärmetauscherflächen sehr groß auszulegen. Die große Anzahl und Länge der Wärmetauscherrohre lassen dabei die Kosten des Wärmetauschers stark ansteigen, welche selbst durch ein kostengünstiges Speichermaterial nicht mehr kompensiert werden können.Due to the often low thermal conductivity of inexpensive storage materials often the heat exchanger surfaces are interpreted very large. The large number and length of the heat exchanger tubes can thereby greatly increase the cost of the heat exchanger, which can not be compensated even by a cost storage material.
Bisher wurden Wärmetauscher auf Basis kostengünstiger Materialien hauptsächlich in Form eines direkten Austausches des Wärmeträgers, wie beispielsweise Luft, und des Speichermaterials, wie beispielsweise Sand oder Gestein, ausgestaltet um große Wärmetauscher zu ersetzen. Die in der Technik prinzipiell bekannte Wirbelschichttechnik wurde bisher nicht in einer Größenordnung angewandt, die für eine saisonale Speicherung von erneuerbaren Überschussenergie erforderlich wären. Ein direkter Wärmeaustausch bringt zudem einen relativ komplizierten Umgang mit dem Feststoff mit sich, was für einen Großspeicher nicht wirtschaftlich ist.Heretofore, heat exchangers based on inexpensive materials have been designed mainly in the form of a direct exchange of the heat carrier, such as air, and the storage material, such as sand or rock, to replace large heat exchangers. The fluid bed technique known in the art has not been used to the extent that would be required for seasonal storage of renewable surplus energy. A direct heat exchange also brings a relatively complicated handling of the solid with it, which is not economical for a large storage.
Als Wärmeträgermedium kommt ein Arbeitsgas, wie beispielsweise Luft, zum Einsatz. Das Arbeitsgas kann dabei wahlweise in einem geschlossenen oder einem offenen Ladekreislauf oder Zusatzkreislauf geführt werden.As the heat transfer medium, a working gas, such as air, is used. The working gas can be performed either in a closed or an open charging circuit or additional circuit.
Ein offener Kreislauf verwendet als Arbeitsgas immer Umgebungsluft. Diese wird aus der Umgebung angesaugt und am Ende des Prozesses auch wieder in diese entlassen, so dass die Umgebung den offenen Kreislauf schließt. Ein geschlossener Kreislauf erlaubt auch die Verwendung eines anderen Arbeitsgases als Umgebungsluft. Dieses Arbeitsgas wird in dem geschlossenen Kreislauf geführt. Da eine Entspannung in die Umgebung bei gleichzeitiger Einstellung des Umgebungsdruckes und der Umgebungstemperatur entfällt, muss das Arbeitsgas im Falle eines geschlossenen Kreislaufes durch einen Wärmetauscher geführt werden, der eine Abgabe von Wärme des Arbeitsgases an die Umgebung erlaubt. Da in einem geschlossenen Kreislauf auch entfeuchtete Luft oder andere Arbeitsgase verwendet werden können, kann auf eine mehrstufige Ausgestaltung des Verdichters und einen Wasserabscheider verzichtet werden. Nachteilig ist hier jedoch der zusätzliche Kostenaufwand für die Anschaffung und den Betrieb eines zusätzlichen Wärmetauschers nach der Expansionsturbine, bzw. vor dem Verdichter, um das Arbeitsgas auf Arbeitstemperatur für den Verdichter zu erwärmen. Im Betrieb ist dadurch die Energiespeichervorrichtung im Wirkungsgrad geschmälert.An open circuit always uses ambient air as working gas. This is sucked from the environment and released at the end of the process also in this, so that the environment closes the open circuit. A closed circuit also allows the use of a different working gas than ambient air. This working gas is guided in the closed circuit. Since a relaxation in the environment with simultaneous adjustment of the ambient pressure and the ambient temperature is eliminated, the working gas in the case of a closed circuit must be passed through a heat exchanger, which provides a release of heat of the working gas allowed to the environment. Since dehumidified air or other working gases can be used in a closed circuit, can be dispensed with a multi-stage design of the compressor and a water separator. The disadvantage here, however, the additional cost of the purchase and operation of an additional heat exchanger after the expansion turbine, or before the compressor to heat the working gas to working temperature for the compressor. In operation, the energy storage device is thereby reduced in efficiency.
Alternativ kann vorgesehen werden, dass der Ladekreislauf für die Speicherung der thermischen Energie in dem Wärmespeicher als offener Kreislauf ausgebildet ist, und der Verdichter aus zwei Stufen aufgebaut ist, wobei zwischen den Stufen ein Wasserabscheider für das Arbeitsgas vorgesehen ist. Hierbei wird dem Umstand Rechnung getragen, dass in der Umgebungsluft Luftfeuchtigkeit enthalten ist. Durch eine Entspannung des Arbeitsgases in einer einzigen Stufe kann es dazu kommen, dass die Luftfeuchtigkeit aufgrund der starken Abkühlung des Arbeitsgases auf beispielsweise -100°C kondensiert und hierbei die Expansionsturbine beschädigt. Insbesondere können Turbinenschaufeln durch Vereisung nachhaltig beschädigt werden. Eine Entspannung des Arbeitsgases in zwei Schritten ermöglicht es jedoch, kondensiertes Wasser in einem Wasserabscheider hinter der ersten Stufe beispielsweise bei 5°C abzuscheiden, so dass dieses bei einer weiteren Abkühlung des Arbeitsgases in der zweiten Turbinenstufe bereits entfeuchtet ist und eine Eisbildung verhindert oder zumindest verringert werden kann. Nachteilig ist jedoch auch hier der erhöhte Kostenaufwand für die Anschaffung eines mehrstufigen Verdichters und eines Wasserabscheiders. Auch ist im Betrieb eine derartige Anlage im Wirkungsgrad geschmälert.Alternatively it can be provided that the charging circuit for the storage of thermal energy in the heat accumulator is designed as an open circuit, and the compressor is constructed of two stages, wherein between the stages, a water separator is provided for the working gas. This takes into account the fact that humidity is contained in the ambient air. By a relaxation of the working gas in a single stage, it may happen that the humidity condenses due to the strong cooling of the working gas, for example, -100 ° C and thereby damage the expansion turbine. In particular, turbine blades can be permanently damaged by icing. However, a relaxation of the working gas in two steps makes it possible to separate condensed water in a water separator behind the first stage, for example at 5 ° C, so that it is already dehumidified in a further cooling of the working gas in the second turbine stage and prevents or at least reduces ice formation can be. However, the disadvantage here is the increased cost of purchasing a multi-stage compressor and a water separator. Also, such a system is reduced in efficiency in operation.
Aufgabe der Erfindfindung ist es eine kostengünstige Energiespeichervorrichtung zur Speicherung thermischer Energie auf Basis von kostengünstigen Speichermaterialen anzugeben, die einen verbesserten Wirkungsgrad aufweist. Dabei gilt es insbesondere die Nachteile aus dem Stand der Technik zu vermeiden. Aufgabe der Erfindung ist zudem ein Verfahren anzugeben, durch welches sich unter einem verbesserten Wirkungsgrad thermische Energie in kostengünstigen Speichermaterialen speichern lässt.The object of the inventions invention is to provide a low-cost energy storage device for storing thermal energy based on inexpensive storage materials, which has an improved efficiency. In particular, it applies to avoid the disadvantages of the prior art. The object of the invention is also to specify a method by which thermal energy can be stored in cost-effective storage materials under improved efficiency.
Gelöst wird die auf eine Vorrichtung gerichtete Aufgabe der Erfindung durch die Merkmale des Anspruchs 1.The object of the invention directed to a device is solved by the features of claim 1.
Demnach umfasst eine Energiespeichervorrichtung zur Speicherung thermischer Energie einem Ladekreislauf für ein Arbeitsgas, umfassend einen Verdichter, einen Wärmespeicher und eine Expansionsturbine, wobei der Verdichter und die Expansionsturbine auf einer gemeinsamen Welle angeordnet sind, und wobei der Verdichter austrittsseitig mit dem Eintritt der Expansionsturbine über eine erste Leitung für das Arbeitsgas verbunden ist, und der Wärmespeicher in die erste Leitung geschaltet ist, und der Verdichter eintrittseitig mit einer Leitung verbunden, die gegenüber der Atmosphäre offen ist, und die Expansionsturbine austrittseitig mit einer Leitung verbunden, die gegenüber der Atmosphäre offen ist, sodass ein gegenüber der Umgebungsluft offener Kreislauf gebildet ist. Erfindungsgemäß ist nun die Expansionsturbine über eine Leitung für ein Heißgas mit dem Wärmespeicher verbunden, sodass das Arbeitsgas in der der Expansionsturbine durch Wärme aus dem Wärmespeicher erwärmbar ist. Diese Leitung, welche insbesondere nicht mit der ersten Leitung identisch ist, gewährleistet, dass ein Teilstrom der Warmluft nach dem Wärmespeicher zur Expansionsturbine geführt wird.Accordingly, an energy storage device for storing thermal energy comprises a charge cycle for a working gas, comprising a compressor, a heat accumulator and an expansion turbine, wherein the compressor and the expansion turbine are arranged on a common shaft, and wherein the compressor on the outlet side with the entry of the expansion turbine via a first Connected for the working gas, and the heat accumulator is connected in the first line, and the compressor on the inlet side connected to a line which is open to the atmosphere, and the expansion turbine on the outlet side connected to a line which is open to the atmosphere, so a relation to the ambient air open circuit is formed. According to the expansion turbine is now connected via a line for a hot gas with the heat storage, so that the working gas can be heated in the expansion turbine by heat from the heat storage. This line, which is in particular not identical to the first line, ensures that a partial flow of hot air is passed to the heat storage to the expansion turbine.
Das Ausspeichern der gespeicherten Energie erfolgt über einen Dampfkreislauf.The storage of the stored energy via a steam cycle.
Kern der Erfindung ist es, dass ein Teilstrom der Warmluft nach dem Wärmespeicher zur Expansionsturbine geführt wird, um analog wie bei Gasturbinen in die Turbinenschaufeln geführt zu werden, um Vereisungsprobleme am kalten Ende der Expansionsturbine zu vermeiden.The core of the invention is that a partial flow of the hot air is passed to the heat storage to the expansion turbine to be performed analogously to gas turbines in the turbine blades to avoid icing problems at the cold end of the expansion turbine.
Aufgrund der Rekuperation der Kompressor-Abwärme im Ladekreislauf und der Abgabe von kalter Expansionsluft an die Umgebung erzielt man eine Wärmepumpeneffizienz deutlich über 100%. Die Rekuperation der Kompressor-Abwärme wird dadurch möglich, dass im Thermospeicher lediglich Hochtemperaturwärme, z.B. >320°C genutzt wird. Wärme auf geringerem Temperaturniveau wird zur Vorwärmung der Umgebungsluft am Kompressoreintritt verwendet, wodurch sich der elektrische Energiebedarf der quasi-adiabaten Kompression verringert und hohe Wärmepumpeneffizienzen ermöglicht. Der Wärmeaustausch bei der Rekuperation kann entweder direkt in einem Luft-Luft-Wärmetauscher oder durch einen Zwischenkreislauf mit einem effizienten Wärmeträgermedium (z.B. Thermoöl) erfolgen.Due to the recuperation of the compressor waste heat in the charging circuit and the release of cold expansion air to the environment you achieve a heat pump efficiency well above 100%. The recuperation of the compressor waste heat is made possible by the fact that in the thermal storage only high temperature heat, eg> 320 ° C is used. Heat at a lower temperature level is used to preheat the ambient air at the compressor inlet, thereby reducing the electrical energy requirements of quasi-adiabatic compression and enabling high heat pump efficiencies. The heat exchange during recuperation can take place either directly in an air-air heat exchanger or through an intermediate circuit with an efficient heat transfer medium (eg thermal oil).
Im einfachsten Fall besteht der Kreislauf wie bei einem Joule-Prozess aus einer Kompression und Entspannung. Die genaue Anzahl der Kompressor- und Expanderstufen mit Zwischenkühlung der Luft ist jedoch frei wählbar und muss nach technoökonomischen Gesichtspunkten optimiert werden. Der Luft-Ladekreislauf dient zur Erzeugung von Hochtemperaturwärme, die eine effiziente Rückverstromung ermöglicht, aber alternativ auch direkt verwendet werden kann, z.B. für Fernwärmeerzeugung. Beim Thermo- oder Wärmespeicherspeicher wird aufgrund des höheren Effizienz-Potentials ein direkter Temperaturaustausch mit der heißen Druckluft (beim Laden) und dem Wasser/Dampf (beim Entladen) mit dem Speichermaterial bevorzugt (direkte Beaufschlagung).In the simplest case, the circuit consists of compression and relaxation, as in a joule process. However, the exact number of compressor and expander stages with intermediate cooling of the air is freely selectable and must be optimized according to techno-economic aspects. The air charging circuit is used to generate high temperature heat, which allows for efficient reconversion, but alternatively can be used directly, e.g. for district heating. In the case of thermal or heat accumulator storage, due to the higher efficiency potential, a direct temperature exchange with the hot compressed air (when charging) and the water / steam (during unloading) with the storage material is preferred (direct admission).
Die Expansionsturbine verringert zudem den Energieaufwand für die Verdichtung, indem sie auf der gleichen Welle wie der Verdichter angeordnet ist, und den Verdichter wesentlich mit unterstützt.The expansion turbine also reduces the energy expenditure for compaction by being located on the same shaft as the compressor and significantly aids the compressor.
Da die Abkühlung des Arbeitsgases bei niedrigen Temperaturen sehr große Wärmetauscherflächen erfordert, kann durch den Verzicht auf Verwertung der niedrigeren Temperaturen auch der Wärmespeicher günstiger ausfallen, da der Wärmetauscher kleiner dimensioniert werden kann.Since the cooling of the working gas at low temperatures requires very large heat exchanger surfaces, the heat storage can be cheaper by not using recovery of the lower temperatures, since the heat exchanger can be made smaller.
In Summe wird durch die erfindungsgemäße Maßnahme eine erhebliche Steigerung des Wirkungsgrades der Energiespeicherung erzielt. Zudem ist die erfindungsgemäße Energiespeichervorrichtung wesentlich günstiger in der Anschaffung, als eine herkömmliche Energiespeichervorrichtung, bei der das Arbeitsgas weitgehend vollständig im Wärmetauscher abgekühlt wird.In total, a considerable increase in the efficiency of the energy storage is achieved by the inventive measure. In addition, the energy storage device according to the invention is much cheaper to buy than a conventional energy storage device in which the working gas is largely completely cooled in the heat exchanger.
Bei einer vorteilhaften Weiterentwicklung der Erfindung ist ein Wärmetauscher vorgesehen ist, der primärseitig in die erste Leitung für das Arbeitsgas nach dem Wärmespeicher geschaltet ist, und sekundärseitig in die dem Verdichter zuführende Leitung geschaltet ist, sodass Wärme aus dem Arbeitsgas auf die angesaugte Umgebungsluft in der dem Verdichter zuführenden Leitung übertragbar ist.In an advantageous development of the invention, a heat exchanger is provided, which is connected on the primary side in the first line for the working gas after the heat storage, and the secondary side is connected to the compressor supplying line, so that heat from the working gas to the sucked ambient air in the Compressor feeding line is transferable.
Bei einer weiteren vorteilhaften Ausgestaltung der Erfindung ist eine erste Zusatzheizung vorgesehen, die in die erste Leitung für das Arbeitsgas, vor der Expansionsturbine geschaltet ist, sodass das Arbeitsgas vor Eintritt in die Expansionsturbine erwärmbar ist. Die Zusatzheizung kann elektrisch erfolgen. Durch die Zusatzheizung kann eine weitere Steigerung der Effizienz durch eine Anhebung der maximalen Speichertemperatur vor dem Wärmespeicher realisiert werden. Alternativ oder zusätzlich dazu ist bei einer weiteren Weiterentwicklung eine zweite Zusatzheizung vorgesehen, die in die erste Leitung vor dem Wärmespeicher geschaltet ist, sodass das Arbeitsgas vor Eintritt in den Wärmespeicher erwärmbar ist. Durch die zweite Zusatzheizung kann die Regelbarkeit und Verfügbarkeit weiter erhöht werden.In a further advantageous embodiment of the invention, a first auxiliary heater is provided, which is connected in the first line for the working gas, in front of the expansion turbine, so that the working gas can be heated before entering the expansion turbine. The additional heating can be done electrically. The additional heating, a further increase in efficiency can be realized by raising the maximum storage temperature before the heat storage. Alternatively or additionally, in a further development, a second additional heater is provided, which is connected in the first line before the heat storage, so that the working gas is heated before entering the heat storage. By the second additional heating controllability and availability can be further increased.
Die thermische Energie kann saisonal anfallende Überschussenergie eines Kraftwerks mit erneuerbaren Energien sein. Als Speichermaterial für den Wärmespeicher des Wärmetauscherprozesses eignen sich besonders poröse Materialien, Sand, Kies, Gestein, Beton, Wasser oder Salzlösung.The thermal energy can be seasonal surplus energy of a power plant with renewable energies. As a storage material for the heat storage of the heat exchanger process are particularly porous materials, sand, gravel, rock, concrete, water or saline.
Claims (9)
- Energy storage installation (1) for storing thermal energy, having a charging circuit (2) for a working gas (3), said charging circuit comprising a compressor (4), a heat accumulator (5) and an expansion turbine (6), wherein the compressor (4) and the expansion turbine (6) are arranged on a common shaft (14), and wherein the compressor (4) is connected at the outlet side to the inlet of the expansion turbine (6) via a first line (7) for the working gas (3), and the heat accumulator (5) is incorporated into the first line (7), and the compressor (4) is connected at the inlet side to a line (30) which is open to the atmosphere (A), and the expansion turbine (6) is connected at the outlet side to a line (31) which is open to the atmosphere (A), such that a circuit is formed which is open to the ambient air, wherein
the expansion turbine (6) is connected via a line (33) for a hot gas to the heat accumulator (5), such that the working gas (3) of the expansion turbine (6) can be heated by heat from the heat accumulator (5),
characterized in that,
furthermore, the energy storage installation comprises a discharging circuit (9) into which the heat accumulator (5) and furthermore a steam turbine plant (16) with a water-steam circuit (41) are connected, wherein steam for expansion in the steam turbine plant (16) can be generated by means of a heat exchanger. - Energy storage installation (1) according to Claim 1, characterized in that the line (33), which is in particular not identical to the first line (7), ensures that a partial stream of the hot air downstream of the heat accumulator is conducted to the expansion turbine.
- Energy storage installation (1) according to one of the preceding claims, characterized in that a heat exchanger (34) is provided which, at the primary side, is incorporated into the first line (7) downstream of the heat accumulator (5) and which, at the secondary side, is incorporated into the line (30), such that heat from the working gas (3) in the first line (7) can be transferred to the drawn-in ambient air in the line (30) .
- Energy storage installation (1) according to one of the preceding claims, characterized in that a first auxiliary heater (35) is provided which is incorporated into the first line (7) upstream of the expansion turbine (6), such that the working gas (3) can be heated before it enters the expansion turbine (6).
- Energy storage installation (1) according to one of the preceding claims, characterized in that a second auxiliary heater (36) is provided which is incorporated into the first line (7) upstream of the heat accumulator (5), such that the working gas (3) can be heated before it enters the heat accumulator (5).
- Energy storage installation (1) according to one of the preceding claims, characterized in that the heat exchanger is incorporated into the water-steam circuit (41) of the steam turbine plant (16), such that the steam can be generated directly in the heat exchanger (5).
- Energy storage installation (1) according to claim 1, characterized in that a heat recovery steam generator (40) is provided which, at the primary side, is connected via a circuit (45) for hot air to the heat accumulator (5), and which, at the secondary side, is connected to the water-steam circuit (41) of the steam turbine plant (16).
- Energy storage installation (1) according to one of the preceding claims, characterized in that the storage material of the heat accumulator (5) is porous material, sand, gravel, stone, concrete, water or salt solution.
- Energy storage installation (1) according to one of the preceding claims, characterized by the use thereof for storing seasonal excess electrical energy in a power plant that is operated with renewable energies.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12788178T PL2764215T3 (en) | 2011-12-13 | 2012-11-13 | Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011088380A DE102011088380A1 (en) | 2011-12-13 | 2011-12-13 | Energy storage device with open charging circuit for storing seasonal excess electrical energy |
PCT/EP2012/072450 WO2013087321A2 (en) | 2011-12-13 | 2012-11-13 | Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2764215A2 EP2764215A2 (en) | 2014-08-13 |
EP2764215B1 true EP2764215B1 (en) | 2016-10-19 |
Family
ID=47215537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12788178.7A Active EP2764215B1 (en) | 2011-12-13 | 2012-11-13 | Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy |
Country Status (7)
Country | Link |
---|---|
US (1) | US9322297B2 (en) |
EP (1) | EP2764215B1 (en) |
CN (1) | CN103987925B (en) |
DE (1) | DE102011088380A1 (en) |
ES (1) | ES2611357T3 (en) |
PL (1) | PL2764215T3 (en) |
WO (1) | WO2013087321A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202012103544U1 (en) * | 2012-09-18 | 2013-12-20 | Technische Universität Chemnitz | System for generating hot water and / or steam with high-temperature storage for use in a gas turbine power plant |
DE102013210430B4 (en) | 2013-06-05 | 2015-07-09 | Siemens Aktiengesellschaft | Energy storage device for preheating feedwater |
DE102013217607B4 (en) * | 2013-09-04 | 2023-12-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for providing steam, method for storing and later providing energy, steam provision device and use of a steam provision device |
DE102014017346A1 (en) * | 2014-10-17 | 2016-04-21 | Carbon-Clean Technologies Gmbh | Method and storage power plant to compensate for load peaks in energy production and / or for the generation of electrical energy |
EP3286412B1 (en) * | 2015-04-24 | 2019-04-03 | Peter Ortmann | Energy storage device and thermal energy storage method |
WO2017025466A1 (en) | 2015-08-09 | 2017-02-16 | Peter Ortmann | Device and method for converting electrical energy to heat and for storing said heat |
WO2017081186A1 (en) * | 2015-11-10 | 2017-05-18 | Peter Ortmann | Pumped-heat electricity storage device and method for the load control thereof |
EP3269948B1 (en) * | 2016-07-15 | 2022-03-30 | Carbon-Clean Technologies GmbH | Method for the adaptation of the performance of a steam turbine power plant installation and steam turbine power plant installation |
ES2833370T3 (en) | 2016-10-26 | 2021-06-15 | Peter Ortmann | Energy storage device, as well as procedure for storing energy |
PT3379040T (en) * | 2017-03-20 | 2021-04-15 | Lumenion Gmbh | Power plant for generating electric power and a method for operating a power plant |
CN109579176B (en) * | 2018-09-06 | 2023-06-06 | 中国科学院工程热物理研究所 | Cross-season cold accumulation annual cooling system and operation method thereof |
DE102022109705B4 (en) | 2022-04-21 | 2024-06-20 | Man Energy Solutions Se | Compressor-expander system and method of operating the same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD99415A2 (en) * | 1970-09-16 | 1973-08-05 | Air storage gas turbine plant | |
CH593423A5 (en) * | 1976-03-15 | 1977-11-30 | Bbc Brown Boveri & Cie | |
US4479353A (en) * | 1979-10-31 | 1984-10-30 | The Babcock & Wilcox Company | Moving bed heat storage and recovery system |
US4347706A (en) * | 1981-01-07 | 1982-09-07 | The United States Of America As Represented By The United States Department Of Energy | Electric power generating plant having direct coupled steam and compressed air cycles |
US4765142A (en) * | 1987-05-12 | 1988-08-23 | Gibbs & Hill, Inc. | Compressed air energy storage turbomachinery cycle with compression heat recovery, storage, steam generation and utilization during power generation |
DK23391D0 (en) | 1991-02-12 | 1991-02-12 | Soerensen Jens Richard | WINDOW FOR SELF-SUPPLY AND STORAGE OF ENERGY |
DE4121460A1 (en) * | 1991-06-28 | 1993-01-14 | Deutsche Forsch Luft Raumfahrt | HEAT STORAGE SYSTEM WITH COMBINED HEAT STORAGE |
JP2003193865A (en) | 2001-12-27 | 2003-07-09 | Kansai Tlo Kk | Gas turbine power generation system, gas turbine power system, and starting method therefor |
CN1231660C (en) | 2002-03-22 | 2005-12-14 | 中国科学院工程热物理研究所 | Gas turbine generating system and flow by cooling liquefied natural gas to separate carbon dioxide |
DE102006008600A1 (en) * | 2006-02-13 | 2007-08-16 | Helmut Nopper | Method for operating of heat-powered unit by means of fluid medium conveyed in pressurised unit |
US8261552B2 (en) | 2007-01-25 | 2012-09-11 | Dresser Rand Company | Advanced adiabatic compressed air energy storage system |
EP2331792A2 (en) * | 2007-06-06 | 2011-06-15 | Areva Solar, Inc | Combined cycle power plant |
DK2220343T3 (en) | 2007-10-03 | 2013-08-05 | Isentropic Ltd | Energy storage apparatus and method of energy storage |
US8136354B2 (en) | 2008-03-14 | 2012-03-20 | Energy Compression Inc. | Adsorption-enhanced compressed air energy storage |
EP2262993A4 (en) * | 2008-03-14 | 2013-12-18 | Energy Compression Llc | Adsorption-enhanced compressed air energy storage |
WO2010081883A2 (en) * | 2009-01-15 | 2010-07-22 | Sargas As | Improvements to fluidized bed combustion |
DE102009036167B4 (en) * | 2009-07-29 | 2019-05-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | A heat engine system and method of operating a heat engine |
US20110100010A1 (en) | 2009-10-30 | 2011-05-05 | Freund Sebastian W | Adiabatic compressed air energy storage system with liquid thermal energy storage |
US20110127004A1 (en) * | 2009-11-30 | 2011-06-02 | Freund Sebastian W | Regenerative thermal energy storage apparatus for an adiabatic compressed air energy storage system |
DE102010014833B4 (en) * | 2010-04-12 | 2012-08-30 | Dieter Lang | Device for the thermal coupling of steam power plants with compressed air storage power plants |
-
2011
- 2011-12-13 DE DE102011088380A patent/DE102011088380A1/en not_active Ceased
-
2012
- 2012-11-13 ES ES12788178.7T patent/ES2611357T3/en active Active
- 2012-11-13 US US14/364,380 patent/US9322297B2/en not_active Expired - Fee Related
- 2012-11-13 WO PCT/EP2012/072450 patent/WO2013087321A2/en active Application Filing
- 2012-11-13 CN CN201280061822.XA patent/CN103987925B/en not_active Expired - Fee Related
- 2012-11-13 EP EP12788178.7A patent/EP2764215B1/en active Active
- 2012-11-13 PL PL12788178T patent/PL2764215T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP2764215A2 (en) | 2014-08-13 |
WO2013087321A2 (en) | 2013-06-20 |
WO2013087321A3 (en) | 2014-02-13 |
DE102011088380A1 (en) | 2013-06-13 |
CN103987925A (en) | 2014-08-13 |
PL2764215T3 (en) | 2017-06-30 |
CN103987925B (en) | 2015-11-25 |
ES2611357T3 (en) | 2017-05-08 |
US9322297B2 (en) | 2016-04-26 |
US20140338330A1 (en) | 2014-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2764215B1 (en) | Energy storage device with open charging circuit for storing seasonally occurring excess electrical energy | |
EP2764216B1 (en) | High-temperature energy store having a recuperator | |
EP2748434B1 (en) | Assembly for storing thermal energy | |
EP2574865A1 (en) | Energy storage device and energy storage method | |
EP2808500A1 (en) | Heat pump cycle with a first thermal fluid energy machine and a second thermal fluid energy machine | |
EP2823156B1 (en) | System for storing and outputting thermal energy | |
EP2450549A2 (en) | Compression heat-storage power plant or energy storage method for temporarily storing energy in the form of pressure energy in a compressible medium in the form of heat energy | |
EP2574739A1 (en) | Assembly for storing thermal energy and method for its operation | |
DE202008002599U1 (en) | Solar thermal hybrid power plant | |
DE102009060089A1 (en) | Solar thermal power plant and method for operating a solar thermal power plant | |
DE202012103544U1 (en) | System for generating hot water and / or steam with high-temperature storage for use in a gas turbine power plant | |
EP2224104B1 (en) | Method for operating a power plant | |
DE102009035062A1 (en) | Method for operating steam turbine power station, involves utilizing energy of vapor resulting from drying process of brown coal for preliminary heating of combustion air, where energy is coupled into combustion air by heat exchanger | |
DE102013210430B4 (en) | Energy storage device for preheating feedwater | |
DE102014118466B4 (en) | Apparatus and method for temporarily storing gas and heat | |
EP2825737A1 (en) | System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof | |
WO2005056994A1 (en) | Air-storage plant | |
DE102012110579B4 (en) | Plant and process for generating process steam | |
DE102020131706A1 (en) | System and method for storing and delivering electrical energy with its storage as thermal energy | |
DE102010033571A1 (en) | High-temperature heat storage for solar thermal power plants | |
EP3080407A1 (en) | Steam accumulator comprising a latent heat accumulator and a steam thermocompressor | |
EP2708719A1 (en) | Enhanced gas power plant for storing energy | |
DE202004013299U1 (en) | Installation for generation of mechanical energy with utilization of the principle of organic Rankine cycle incorporates a condensate line which branches downstream the condensate pump | |
WO2016188671A1 (en) | Water/steam circuit of a gas and steam turbine system | |
DE102017223705A1 (en) | power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140509 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160404 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160509 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 838536 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012008594 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170119 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170120 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2611357 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170219 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170220 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012008594 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170119 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
26N | No opposition filed |
Effective date: 20170720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161113 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 838536 Country of ref document: AT Kind code of ref document: T Effective date: 20171113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161019 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012008594 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211119 Year of fee payment: 10 Ref country code: GB Payment date: 20211222 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20211105 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20220209 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220218 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220617 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012008594 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |