EP2759359A2 - Quasi self-destructive core for investment casting - Google Patents

Quasi self-destructive core for investment casting Download PDF

Info

Publication number
EP2759359A2
EP2759359A2 EP13194178.3A EP13194178A EP2759359A2 EP 2759359 A2 EP2759359 A2 EP 2759359A2 EP 13194178 A EP13194178 A EP 13194178A EP 2759359 A2 EP2759359 A2 EP 2759359A2
Authority
EP
European Patent Office
Prior art keywords
structural element
core
preform
composite core
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13194178.3A
Other languages
German (de)
French (fr)
Other versions
EP2759359B1 (en
EP2759359A3 (en
Inventor
Shihong G. Song
James S. Giampapa
John H. Meeson Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sikorsky Aircraft Corp
Original Assignee
Sikorsky Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sikorsky Aircraft Corp filed Critical Sikorsky Aircraft Corp
Publication of EP2759359A2 publication Critical patent/EP2759359A2/en
Publication of EP2759359A3 publication Critical patent/EP2759359A3/en
Application granted granted Critical
Publication of EP2759359B1 publication Critical patent/EP2759359B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • Exemplary embodiments of the invention generally relate to investment casting, and more particularly, to a core for forming a passage in an investment casting mold.
  • Investment casting is a commonly used technique for forming metallic components having complex shapes and geometries, especially hollow components such as those used in aerospace applications for example.
  • the production of an investment cast part generally involves producing a ceramic casting mold having an outer ceramic shell with an inside surface corresponding to the shape of the part, and one or more ceramic cores positioned within the outer ceramic shell, corresponding to interior passages to be formed within the part.
  • Molten alloy is introduced into the ceramic casting mold and is then allowed to cool and to harden.
  • the outer ceramic shell and ceramic core(s) are then removed to reveal a cast part having a desired external shape and hollow interior passages in the shape of the ceramic core(s).
  • CSIC controlled solidification investment casting
  • sand casting In comparison to other processes, for example sand casting or permanent mold casting, investment casting provides flexibility while maintaining tight tolerances.
  • controlled solidification investment casting CSIC
  • CSIC uses rapid directional cooling to enhance microstructure and mechanical properties.
  • CSIC therefore, may be useful for an expanded range of applications, particularly in the aerospace industry.
  • investment casting is limited by the design of passages within the mold. Unlike a sand core used in a sand casting process, the ceramic cores used in CSIC are difficult to remove or destroy without affecting the molded part. As a result, the process of designing passages severely restricts the use of CSIC for applications requiring complex cored passages.
  • a composite core for forming a passage in an investment casting mold including a generally hollow structural element.
  • the structural element is configured to deform when a force is applied to an end thereof.
  • a rigid shell element is formed about the structural element. The shell element extends beyond both an interior surface and an exterior surface of the structural element. The shell element is configured to shatter when the structural element deforms.
  • Particular embodiments may include any of the following optional features, alone or in combination:
  • a preform for making a composite core configured for use in an investment casting mold including a generally hollow structural element.
  • the structural element is configured to deform when a force is applied to an end thereof.
  • a core element having a shape is positioned adjacent an interior of the structural element.
  • the core element is configured to melt when heat is applied to the preform such that the structural element retains the shape of the core element.
  • Particular embodiments may include any of the following optional features, alone or in combination:
  • a method for manufacturing a composite core for forming a passage in an investment casting mold including arranging a core element adjacent an interior surface of a generally hollow structural element to form a preform. Slurry having particles of varying sizes is layered about the structural element. Heat is then applied to the preform.
  • Particular embodiments may include any of the following optional features, alone or in combination:
  • a method of forming a passage in a cast component including arranging a composite core into an interior of a mold. Material of the component is then poured into the mold. The material is cured to form the component. A force is then applied to an exposed portion of the composite core such that the composite core deforms inside the component.
  • Particular embodiments may include any of the following optional features, alone or in combination:
  • the composite core 20 When inserted into a mold (not shown), the composite core 20 includes a generally hollow structural element 40 and a shell element 60 arranged about the exterior 46 of the structural element 40.
  • the structural element 40 is configured to deform, and therefore break the shell element 60 coupled thereto, when a force is applied to an end 42 ( FIG. 2 ) of the structural element 40.
  • the composite core 20 is formed using a preform 30, illustrated in more detail in FIG. 2 .
  • the preform 30 includes the generally hollow structural element 40 as well as a core element 50 positioned adjacent the interior surface 44 of the structural element.
  • the structural element 40 may be pre-formed and the core element 50 inserted into the hollow center 47 of the structural element 40, or alternatively, the structural element 40 may be formed around the exterior of the core element 50.
  • An example of the structural element 40 is the general size of a passage being formed within an investment casting mold.
  • the material used to form the structural element 40 is selected based on the material of the component being cast.
  • the material of the structural element 40 may be the same alloy as the component being cast.
  • Exemplary metallic materials include, but are not limited to, steel, copper, and nickel for example.
  • the structural element 40 is fabricated from a coiled wire 48 such that the structural element 40 behaves in a manner similar to a tensile or compression spring.
  • the specifications of the wire 48 are selected to facilitate contact between the structural element 40 and the core element 50, as well as the ultimate breakdown of the composite core 20.
  • the cross-section of the wire 48 may be any of a variety of shapes, such as circular, square, triangular, or trapezoidal for example, and the coils of the wire 48 need not be evenly spaced as shown.
  • Considerations for the strength and ductility of the structural element 40 include the ability of the structural element 40 to support itself once coupled to the core element 50, the ability of the structural element 40 to support the composite core 20 once the shell element 60 is formed, and the ability of the structural element 40 to deform when a force is applied thereto.
  • the core element 50 acts as a base to support the outer shell element 60 as it is formed about the structural element 40.
  • the core element 50 is made from a material configured to melt during the formation of the composite core 20, prior to the casting process, or during the casting process.
  • the core element 50 is a wax core, the contour of which is substantially similar to a passage being formed in a mold.
  • the core element 50 is a metallic mesh or foil, for example made from the same material as the working metal to be poured into the investment casting mold.
  • the metallic mesh or foil 50 is bonded to the interior surface 44 of the structural element 40, such as through a brazing process for example.
  • the gauge of the foil or mesh 50 is selected to support the shell element 60 as it is formed about the structural element 40. Once the metallic mesh or foil 50 and the structural element 40 are coupled, the contour of the preform 30 may be altered to a desired shape.
  • the outer shell element 60 is formed, for example through a shelling process. As illustrated in FIG. 4 , the preform 30 is coated with a slurry 62 having particles of varying sizes.
  • the material of the slurry 62 used to form the outer shell 60 is substantially identical to the material used to form the investment casting mold, such as ceramic for example.
  • the material of the slurry 62 may be modified to facilitate breakdown of the outer shell 60 when a force is applied to the structural element 40.
  • the slurry 62 is arranged in a plurality of layers extending outwardly from the surface 52 of the core element 50 to at least the outer surface 46 of the structural element 40 such that the structural element 40 and the shell element 60 are integrally formed.
  • the surface 52 of the core element 50 may be dipped in the slurry 62 before being inserted into the structural element 40, to aid in the formation of an inner surface of the shell element 60.
  • slurry 62 is positioned about the structural element 40 such that when the composite core 20 is formed, the shell element 60 extends beyond both the inner diameter 44 and the outer diameter 46 of the structural element 40 (see FIG. 1 ).
  • the slurry 62 is hardened, such as by firing the preform 30 in an oven or kiln for example.
  • Heat causes the slurry 62 to strengthen and solidify into a cured, rigid, shell element 60.
  • the core element 50 is designed to melt, or otherwise degrade during the making of the composite core 20, or during the formation of the finished component. Therefore, application of heat transforms the preform 30 to a composite core 20, having a generally hollow cross section that allows the structural element 40 and the shell element 60 to be easily removed.
  • the outer surface 64 of the shell element 60 may be substantially uniform, or alternatively, may include slight variations, such as waves or grooves for example.
  • a component 80 formed using an investment casting mold and at least one composite core 20 is illustrated.
  • a portion of the shell element 60 is broken to reveal an end 42 of the structural element 40.
  • a force is then applied to the exposed end 42, causing the structural element to deform 40.
  • the shell element 60 is formed about the structural element 40, deformation thereof causes the brittle shell element 60 to shatter and break away from coiled wire 48 of the structural element 40.
  • the pieces of the shell element 60 and the structural element 40 may then be easily removed from the passage 82 of the component 80.
  • the composite core 20 may be constructed to create a complex cored passage within an investment casting mold, thereby expanding the range of applications to which controlled solidification investment casting (CSIC) may be applied. Further, by incorporating waves or grooves into the outer surface 64 of the shell element 60, the passage 82 can have specific patterns such as rifling. The rapid and directional solidification of the investment casting process will result in high quality castings having enhanced microstructures. Because a significant portion of the CSIC process is automated, more stringent quality control measures may be implemented to improve and stabilize the casting process. Forming parts that were previously too complex using a CSIC process will reduce both scrap rates and production cycle time.
  • CSIC controlled solidification investment casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A composite core for forming a passage in an investment casting mold is provided including a generally hollow structural element. The structural element is configured to deform when a force is applied to an end thereof. A rigid shell element is formed about the structural element. The shell element extends beyond both an interior surface and an exterior surface of the structural element. The shell element is configured to shatter when the structural element deforms.

Description

  • Exemplary embodiments of the invention generally relate to investment casting, and more particularly, to a core for forming a passage in an investment casting mold.
  • Investment casting is a commonly used technique for forming metallic components having complex shapes and geometries, especially hollow components such as those used in aerospace applications for example. The production of an investment cast part generally involves producing a ceramic casting mold having an outer ceramic shell with an inside surface corresponding to the shape of the part, and one or more ceramic cores positioned within the outer ceramic shell, corresponding to interior passages to be formed within the part. Molten alloy is introduced into the ceramic casting mold and is then allowed to cool and to harden. The outer ceramic shell and ceramic core(s) are then removed to reveal a cast part having a desired external shape and hollow interior passages in the shape of the ceramic core(s).
  • In comparison to other processes, for example sand casting or permanent mold casting, investment casting provides flexibility while maintaining tight tolerances. In particular, controlled solidification investment casting (CSIC) uses rapid directional cooling to enhance microstructure and mechanical properties. CSIC, therefore, may be useful for an expanded range of applications, particularly in the aerospace industry. However, investment casting is limited by the design of passages within the mold. Unlike a sand core used in a sand casting process, the ceramic cores used in CSIC are difficult to remove or destroy without affecting the molded part. As a result, the process of designing passages severely restricts the use of CSIC for applications requiring complex cored passages.
  • According to one embodiment of the invention, a composite core for forming a passage in an investment casting mold is provided including a generally hollow structural element. The structural element is configured to deform when a force is applied to an end thereof. A rigid shell element is formed about the structural element. The shell element extends beyond both an interior surface and an exterior surface of the structural element. The shell element is configured to shatter when the structural element deforms.
  • Particular embodiments may include any of the following optional features, alone or in combination:
    • The rigid shell element may be integrally formed with the structural element.
    • The structural element may comprise a coiled wire.
    • A material of the structural element may be substantially identical to a material of a component to be formed from the investment casting mold.
    • The structural element may be generally the same size as the passage being formed.
    • The shell element may be formed by arranging multiple layers of slurry having particles of varying sizes, and curing the layers of slurry to form the rigid shell element.
    • A material of the slurry may be substantially identical to a material of the investment casting mold.
    • The material of the slurry may be generally ceramic.
  • According to one embodiment of the invention, a preform for making a composite core configured for use in an investment casting mold is provided including a generally hollow structural element. The structural element is configured to deform when a force is applied to an end thereof. A core element having a shape is positioned adjacent an interior of the structural element. The core element is configured to melt when heat is applied to the preform such that the structural element retains the shape of the core element. Particular embodiments may include any of the following optional features, alone or in combination:
    • The structural element may be formed from coiled wire.
    • The core element may be a wax element.
    • The core element may be a metallic mesh or foil.
    • The core element may be coupled to the interior surface of the structural element.
    • The preform further may comprise multiple layers of slurry having particles of varying sizes arranged about the structural element.
    • The slurry may extend from a surface of the core element adjacent the interior surface to beyond an exterior surface of the structural element.
    • A material of the slurry may be substantially identical to a material of the investment casting mold.
  • According to yet another embodiment of the invention, a method for manufacturing a composite core for forming a passage in an investment casting mold is provided including arranging a core element adjacent an interior surface of a generally hollow structural element to form a preform. Slurry having particles of varying sizes is layered about the structural element. Heat is then applied to the preform.
  • Particular embodiments may include any of the following optional features, alone or in combination:
    • The slurry may cure into a rigid shell element during the firing of the preform.
    • The core element may melt away from the structural element during the firing of the preform.
    • The slurry may extend from adjacent a surface of the core element to beyond an outer surface of the structural element.
  • According to another embodiment, a method of forming a passage in a cast component is provided including arranging a composite core into an interior of a mold. Material of the component is then poured into the mold. The material is cured to form the component. A force is then applied to an exposed portion of the composite core such that the composite core deforms inside the component.
  • Particular embodiments may include any of the following optional features, alone or in combination:
    • The composite core may include a structural element and a rigid outer shell element formed about the structural element such that deformation of the structural element causes the shell element to break.
  • The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
    • FIG. 1 is a cross-sectional view of a composite core according to an embodiment of the invention;
    • FIG. 2 is a cross-sectional view of a preform according to an embodiment of the invention;
    • FIG. 3 is side view of a structural element of the preform according to an embodiment of the invention;
    • FIG. 4 is a perspective view of a preform including layers of slurry according to an embodiment of the invention; and
    • FIG. 5 is a cross-sectional view of a component formed from an investment casting mold having a passage formed by a composite core according to an embodiment of the invention.
  • The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
  • With reference now to FIG. 1, a cross-section of a composite core 20 for forming a passage in an investment casting mold is illustrated. When inserted into a mold (not shown), the composite core 20 includes a generally hollow structural element 40 and a shell element 60 arranged about the exterior 46 of the structural element 40. The structural element 40 is configured to deform, and therefore break the shell element 60 coupled thereto, when a force is applied to an end 42 (FIG. 2) of the structural element 40.
  • The composite core 20 is formed using a preform 30, illustrated in more detail in FIG. 2. The preform 30 includes the generally hollow structural element 40 as well as a core element 50 positioned adjacent the interior surface 44 of the structural element. The structural element 40 may be pre-formed and the core element 50 inserted into the hollow center 47 of the structural element 40, or alternatively, the structural element 40 may be formed around the exterior of the core element 50.
  • An example of the structural element 40, shown in FIG. 3, is the general size of a passage being formed within an investment casting mold. The material used to form the structural element 40 is selected based on the material of the component being cast. For example, the material of the structural element 40 may be the same alloy as the component being cast. Exemplary metallic materials include, but are not limited to, steel, copper, and nickel for example. In the illustrated embodiment, the structural element 40 is fabricated from a coiled wire 48 such that the structural element 40 behaves in a manner similar to a tensile or compression spring. The specifications of the wire 48 are selected to facilitate contact between the structural element 40 and the core element 50, as well as the ultimate breakdown of the composite core 20. As a result, the cross-section of the wire 48 may be any of a variety of shapes, such as circular, square, triangular, or trapezoidal for example, and the coils of the wire 48 need not be evenly spaced as shown. Considerations for the strength and ductility of the structural element 40 include the ability of the structural element 40 to support itself once coupled to the core element 50, the ability of the structural element 40 to support the composite core 20 once the shell element 60 is formed, and the ability of the structural element 40 to deform when a force is applied thereto.
  • The core element 50 acts as a base to support the outer shell element 60 as it is formed about the structural element 40. The core element 50 is made from a material configured to melt during the formation of the composite core 20, prior to the casting process, or during the casting process. In one embodiment, the core element 50 is a wax core, the contour of which is substantially similar to a passage being formed in a mold. In another embodiment, the core element 50 is a metallic mesh or foil, for example made from the same material as the working metal to be poured into the investment casting mold. The metallic mesh or foil 50 is bonded to the interior surface 44 of the structural element 40, such as through a brazing process for example. The gauge of the foil or mesh 50 is selected to support the shell element 60 as it is formed about the structural element 40. Once the metallic mesh or foil 50 and the structural element 40 are coupled, the contour of the preform 30 may be altered to a desired shape.
  • After the preform 30 is assembled, the outer shell element 60 is formed, for example through a shelling process. As illustrated in FIG. 4, the preform 30 is coated with a slurry 62 having particles of varying sizes. In one embodiment, the material of the slurry 62 used to form the outer shell 60 is substantially identical to the material used to form the investment casting mold, such as ceramic for example. Alternatively, the material of the slurry 62 may be modified to facilitate breakdown of the outer shell 60 when a force is applied to the structural element 40. The slurry 62 is arranged in a plurality of layers extending outwardly from the surface 52 of the core element 50 to at least the outer surface 46 of the structural element 40 such that the structural element 40 and the shell element 60 are integrally formed. In one embodiment, for example where the core element 50 is a wax core, the surface 52 of the core element 50 may be dipped in the slurry 62 before being inserted into the structural element 40, to aid in the formation of an inner surface of the shell element 60. As a result, slurry 62 is positioned about the structural element 40 such that when the composite core 20 is formed, the shell element 60 extends beyond both the inner diameter 44 and the outer diameter 46 of the structural element 40 (see FIG. 1).
  • After layering the slurry 62 about the structural element 40, the slurry 62 is hardened, such as by firing the preform 30 in an oven or kiln for example. Heat causes the slurry 62 to strengthen and solidify into a cured, rigid, shell element 60. The core element 50 is designed to melt, or otherwise degrade during the making of the composite core 20, or during the formation of the finished component. Therefore, application of heat transforms the preform 30 to a composite core 20, having a generally hollow cross section that allows the structural element 40 and the shell element 60 to be easily removed. When the composite core 20 is formed, the outer surface 64 of the shell element 60 may be substantially uniform, or alternatively, may include slight variations, such as waves or grooves for example.
  • Referring now to FIG. 5, a component 80 formed using an investment casting mold and at least one composite core 20 is illustrated. To remove the composite core 20 from a passage 82 of the component 80, a portion of the shell element 60 is broken to reveal an end 42 of the structural element 40. A force is then applied to the exposed end 42, causing the structural element to deform 40. Because the shell element 60 is formed about the structural element 40, deformation thereof causes the brittle shell element 60 to shatter and break away from coiled wire 48 of the structural element 40. The pieces of the shell element 60 and the structural element 40 may then be easily removed from the passage 82 of the component 80.
  • The composite core 20 may be constructed to create a complex cored passage within an investment casting mold, thereby expanding the range of applications to which controlled solidification investment casting (CSIC) may be applied. Further, by incorporating waves or grooves into the outer surface 64 of the shell element 60, the passage 82 can have specific patterns such as rifling. The rapid and directional solidification of the investment casting process will result in high quality castings having enhanced microstructures. Because a significant portion of the CSIC process is automated, more stringent quality control measures may be implemented to improve and stabilize the casting process. Forming parts that were previously too complex using a CSIC process will reduce both scrap rates and production cycle time.
  • While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
  • This invention was made with Government support under N00019-06-C-0081 awarded by the Department of the Navy. The Government has certain rights in this invention

Claims (15)

  1. A composite core (20) for making a passage in an investment casting mold comprising:
    a generally hollow structural element (40) configured to deform when a force is applied to an end thereof; and
    a rigid shell element (60) formed about the structural element (40), the shell element (60) extending beyond an interior surface (44) and an exterior surface (46) of the structural element (40), the shell element (60) being configured to shatter when the structural element (40) deforms.
  2. The composite core (20) according to claim 1, wherein the rigid shell element (60) is integrally formed with the structural element (40).
  3. The composite core (20) according to claim 1 or 2, wherein the structural element (40) comprises a coiled wire (48).
  4. The composite core (20) according to any of claims 1 to 3, wherein a material of the structural element (40) is substantially identical to a material of a component to be formed from the investment casting mold.
  5. The composite core (20) according to any of claims 1 to 4, wherein the structural element (40) is generally the same size as the passage being formed.
  6. The composite core (20) according to any of claims 1 to 5, wherein the shell element (60) is formed by arranging multiple layers of slurry (62) having particles of varying sizes, and curing the layers of slurry to form the rigid shell element (60).
  7. The composite core (20) according to claim 6, wherein a material of the slurry (62) is substantially identical to a material of the investment casting mold.
  8. The composite core (209 according to claim 6 or 7, wherein the material of the slurry (62) is generally ceramic.
  9. A preform (30) for making a composite core (20) according to any of the previous claims, the composite core (20) configured for use in an investment casting mold, the preform (30) comprising:
    a generally hollow structural element (40) configured to deform when a force is applied to an end thereof; and
    a core element (50) having a shape and positioned adjacent an interior surface (44) of the structural element (40), the core element (50) being configured to melt when heat is applied to the preform (30) such that the structural element (40) retains the general shape of the core element (50).
  10. The preform (30) according to claim 9, wherein the structural element (40) is formed from coiled wire (48); and/or the core element (50) is a wax element; and/or the core element (50) is a metallic mesh or foil.
  11. The preform (30) according to claim 9 or 10, wherein the core element (50) is coupled to the interior surface (44) of the structural element (50).
  12. The preform (30) according to any of claims 9 to 11, further comprising:
    multiple layers of slurry (62) having particles of varying sizes arranged about the structural element (40); the slurry (62) particularly extending from a surface (52) of the core element (50) adjacent the interior surface (44) to beyond an exterior surface (46) of the structural element (40); a material of the slurry (62) particularly being substantially identical to a material of the investment casting mold.
  13. A method for manufacturing a composite core (20) for forming a passage in an investment casting mold, comprising:
    arranging a core element (50) adjacent an interior surface (44) of a generally hollow structural element to form a preform;
    layering slurry (62) having particles of varying sizes about the structural element (40) of the preform (30); and
    applying heat to the preform (30).
  14. The method according to claim 13, wherein the slurry (62) cures into a rigid shell element (60) during the firing of the preform (30); and/or the core element melts (50) away from the structural element (40) during the firing of the preform (30); the slurry (62) particularly extending from adjacent a surface (52) of the core element (50) to beyond an exterior surface (46) of the structural element (40).
  15. A method for forming a passage in a cast component comprising:
    manufacturing a composite core (20) according to claim 14;
    arranging the composite core (20) into an interior of a mold;
    pouring material of the component into the mold;
    curing the material to form the component;
    applying a force to an exposed portion of the composite core (20) such that the composite core (20) deforms inside the component.
EP13194178.3A 2013-01-23 2013-11-23 Quasi self-destructive core for investment casting Active EP2759359B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/747,653 US20140202650A1 (en) 2013-01-23 2013-01-23 Quasi self-destructive core for investment casting

Publications (3)

Publication Number Publication Date
EP2759359A2 true EP2759359A2 (en) 2014-07-30
EP2759359A3 EP2759359A3 (en) 2018-01-03
EP2759359B1 EP2759359B1 (en) 2020-06-17

Family

ID=49709475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13194178.3A Active EP2759359B1 (en) 2013-01-23 2013-11-23 Quasi self-destructive core for investment casting

Country Status (2)

Country Link
US (2) US20140202650A1 (en)
EP (1) EP2759359B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184196A1 (en) * 2015-12-17 2017-06-28 General Electric Company Method and assembly for forming components having internal passages using a jacketed core

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118217B2 (en) 2015-12-17 2018-11-06 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US10099276B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10137499B2 (en) 2015-12-17 2018-11-27 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10150158B2 (en) 2015-12-17 2018-12-11 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9579714B1 (en) 2015-12-17 2017-02-28 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10099283B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having an internal passage defined therein
US10099284B2 (en) 2015-12-17 2018-10-16 General Electric Company Method and assembly for forming components having a catalyzed internal passage defined therein
US10046389B2 (en) * 2015-12-17 2018-08-14 General Electric Company Method and assembly for forming components having internal passages using a jacketed core
US9968991B2 (en) 2015-12-17 2018-05-15 General Electric Company Method and assembly for forming components having internal passages using a lattice structure
US10286450B2 (en) 2016-04-27 2019-05-14 General Electric Company Method and assembly for forming components using a jacketed core
US10335853B2 (en) 2016-04-27 2019-07-02 General Electric Company Method and assembly for forming components using a jacketed core

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2045556A (en) * 1934-01-08 1936-06-23 Gen Motors Corp Collapsible molding core
US2991520A (en) * 1956-01-13 1961-07-11 Howard Foundry Company Cored passageway formation
GB847033A (en) * 1958-06-04 1960-09-07 Foundry Services Int Ltd Improvements in or relating to moulding processes and materials
US3066365A (en) * 1958-07-02 1962-12-04 Pittsburgh Plate Glass Co Destructible reinforced sand core for metal casting
US3020615A (en) * 1958-11-26 1962-02-13 Alfred H Peters Conduit molding form
US3032842A (en) * 1958-12-15 1962-05-08 Dow Chemical Co Method of making a fusible metallic core with woven fiber sleeve
GB2006069A (en) * 1977-10-15 1979-05-02 Sterling Metals Ltd Metal casting cores
JPS591496B2 (en) * 1980-11-13 1984-01-12 三協オイルレス工業株式会社 Method for casting a casting having a hollow tubular part
US4530722A (en) * 1983-03-24 1985-07-23 Harborchem, Inc. Binder and refractory compositions and methods
FR2625455B1 (en) * 1987-12-30 1993-10-08 Zenith Fonderie Sa PROCESS AND DEVICE FOR PRODUCING MOLDED PARTS
US4905750A (en) * 1988-08-30 1990-03-06 Amcast Industrial Corporation Reinforced ceramic passageway forming member
US5201357A (en) * 1992-01-16 1993-04-13 Cmi International, Inc. Method for forming cored passageways within cast metal articles
US8196640B1 (en) * 2010-07-02 2012-06-12 Mikro Systems, Inc. Self supporting core-in-a-core for casting
US8393381B2 (en) * 2011-05-18 2013-03-12 Pcc Airfoils, Inc. Method of forming a cast metal article
FR2975613B1 (en) * 2011-05-25 2013-06-21 Filtrauto PROCESS FOR MANUFACTURING METAL FOAM PROVIDED WITH CONDUITS AND METALLIC FOAM THUS OBTAINED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184196A1 (en) * 2015-12-17 2017-06-28 General Electric Company Method and assembly for forming components having internal passages using a jacketed core

Also Published As

Publication number Publication date
EP2759359B1 (en) 2020-06-17
EP2759359A3 (en) 2018-01-03
US20160243609A1 (en) 2016-08-25
US20140202650A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US20160243609A1 (en) Quasi self-destructive core for investment casting
JP5518208B2 (en) Investment casting with flexible wax pattern tool
EP1808241B1 (en) Method for producing open pored construction elements made of metal, plastic or ceramic
JP6277178B2 (en) Method for producing hollow metal member by casting method
JP2017013091A (en) Wax molding die and lost wax casting method
JP2014208373A (en) Casting-in/cooling structure for turbine airfoil
EP3033189B1 (en) Hip can manufacture process
CA2958128A1 (en) Casting with metal components and metal skin layers
CN110573279A (en) Poppet valve and method of manufacturing the same
US9962763B2 (en) Casting method for obtaining a part including a tapering portion
JP6918507B2 (en) Casting using a second metal part formed around the first metal part by the hot isostatic pressing method
US9192985B2 (en) Removable passage mandrel
WO2012140508A1 (en) Casting core and production method of the casting core
US20210367490A1 (en) Method for producing a helical electrically conducting body
US20120285652A1 (en) Liner for a Die Body
EP3737515B1 (en) Casting device and method for using same
CN107848021B (en) Method for producing a casting core and casting core
EP3274114B1 (en) A method of production of light-alloy castings, zone-reinforced with metal components in the form of inserts, especially in sand and permanent moulds
JP6668333B2 (en) Method of manufacturing ceramic core
EP3059030A2 (en) Bondcasting process using investment and sand casting
DE102018003125A1 (en) Method for producing a ceramic casting mold by thermal destruction of the positive and cast turbine blade
JP7441215B2 (en) Methods and tools for manufacturing coils and manufactured coils
US20240091849A1 (en) Additively manufactured channels for mold die castings
JPH0237937A (en) Precision casting method for casting having narrow mouth hollow part
JP2024019583A (en) Spiral-shaped metallic body creation method and device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 9/10 20060101AFI20171128BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20180703

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013069887

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1280698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1280698

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013069887

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231127

Year of fee payment: 11

Ref country code: DE

Payment date: 20231129

Year of fee payment: 11