EP2757352B1 - Control system and management method of a sensor - Google Patents

Control system and management method of a sensor Download PDF

Info

Publication number
EP2757352B1
EP2757352B1 EP13151668.4A EP13151668A EP2757352B1 EP 2757352 B1 EP2757352 B1 EP 2757352B1 EP 13151668 A EP13151668 A EP 13151668A EP 2757352 B1 EP2757352 B1 EP 2757352B1
Authority
EP
European Patent Office
Prior art keywords
block
counting
frequency
signal
measuring circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13151668.4A
Other languages
German (de)
French (fr)
Other versions
EP2757352A1 (en
Inventor
Pinchas Novac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM Microelectronic Marin SA
Original Assignee
EM Microelectronic Marin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EM Microelectronic Marin SA filed Critical EM Microelectronic Marin SA
Priority to EP13151668.4A priority Critical patent/EP2757352B1/en
Priority to TW103101434A priority patent/TWI589844B/en
Priority to US14/155,630 priority patent/US9494542B2/en
Priority to KR1020140005728A priority patent/KR101615800B1/en
Priority to CN201410071512.7A priority patent/CN103941602B/en
Publication of EP2757352A1 publication Critical patent/EP2757352A1/en
Priority to HK15100662.0A priority patent/HK1200223A1/en
Application granted granted Critical
Publication of EP2757352B1 publication Critical patent/EP2757352B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/243Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of ac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/028Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/228Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Definitions

  • the present invention relates to a measuring circuit comprising a control block for controlling said circuit, a time base for providing a clock signal for clocking said circuit, a sensor block arranged to provide an output signal, said measuring circuit comprising in in addition to a first counter block clocked at the clock frequency and a second counter block clocked by the frequency of the output signal of the sensor block.
  • the humidity sensors consist of two armatures each provided with a plurality of arms.
  • the two armatures are arranged to be nested one inside the other and have a dielectric between them. These armatures are supplied with voltage so that their nesting leads to the creation of a capacitance.
  • the humidity sensor works so that when the moisture content in the air increases, water molecules seep between the two plates in the dielectric. This water infiltration causes a modification of the capacity which makes it possible to quantify the humidity rate during a measurement by applying a tension.
  • the humidity sensor may be a structure connected to an integrated circuit or be directly included in the integrated circuit.
  • a first method consists in connecting the output of the humidity sensor, a charge amplifier to obtain a voltage signal representative of the humidity level. This signal is sent in a signal conditioner preparing the signal to be sent into an analog digital converter so as to provide a numerical value N. This numerical value N is then sent in a circuit which linearizes it because the curve of the capacitance in function humidity is not linear. This gives a numerical value N which is a function of the capacitance C of the sensor.
  • a second method consists in connecting the output of the humidity sensor, a circuit for obtaining a frequency signal representative of the humidity level. Indeed, this variable capacitance is inserted into a resonator so as to make an RC oscillator. Consequently, the output frequency of said resonator is dependent on the value of the capacitance and therefore of the humidity level.
  • This frequency is sent into a signal conditioner preparing the signal to be sent into an analog digital converter so as to provide a digital number N.
  • This signal conditioner may be a digital frequency demodulator or a set of a circuit for converting this frequency signal into voltage and converting it to a digital value N which will be processed to obtain the value of the physical quantity.
  • a disadvantage of these two methods is that they require a circuit which comprises a large number of components, that is to say a circuit whose manufacturing cost is high but also which requires a larger silicon surface when the integration into an integrated circuit. As a result, the number of measuring circuits per board is smaller.
  • the document JP S58 182502 A describes a measuring circuit according to the state of the art.
  • the object of the invention is to overcome the drawbacks of the prior art by proposing to provide a measurement circuit that is accurate for all the components used and that is inexpensive, particularly when implemented in an integrated circuit.
  • the invention relates to a measuring circuit comprising a control block for controlling said circuit, a time base for providing a clock signal for clocking said circuit, a sensor block arranged to provide an output signal, said circuit measuring device further comprising a first counter clocked at the clock frequency and a second counter clock clocked by the frequency of the output signal of the sensor unit, characterized in that the sensor unit is arranged to provide an output signal, a first signal whose frequency is representative of the measured physical quantity or a second signal whose frequency is a reference frequency and in that the control block controls the measuring circuit so that the first and second counter blocks operate according to a first phase in which the first and second counter blocks count and a second phase in which the first counter block counts and the second counting counter block and in that the clocking frequency of the second counter block in the first phase is different from that in the second phase.
  • the second counter block is clocked by the frequency of the second signal during the first phase and by the frequency of the first signal during the second phase.
  • control block comprises a control circuit and a sequencer block.
  • the second counter block comprises a zero detector connected to the sequencer block.
  • the sensor block comprises an oscillator, a first variable-value electronic component and a second fixed-value electronic component, the first and second electronic components being connected in parallel to the oscillator via switching means and in that the first electronic component provides the first signal and in that the second electronic component provides the second signal.
  • the first component and the second component each comprise a first terminal and a second terminal and in that the switching means comprise a first and a second controllable switch connected in series between the first terminal of the first component. and the first terminal of the second component and a third and a fourth controllable switch connected in series between the second terminal of the first component and the second terminal of the second component, the connection point between the first and second controllable switch and the connection point. between the third and fourth controllable switches being connected to the oscillator unit.
  • the first component and the second component are capacitors.
  • the first component and the second component are resistors.
  • the first component and the second component are inductance coils.
  • the sensor unit is able to measure the humidity level.
  • it further comprises a linearization circuit.
  • the second predefined number is zero.
  • the first predefined number is dependent on the resolution of the counter.
  • it further comprises a final step for linearizing the value counted by the first counter block as a function of the measured physical quantity, this step of squaring said value counted by the first counter block.
  • the invention further relates to an electronic portable object comprising the measuring circuit according to the invention.
  • the Figures 1 and 2 represent the measuring circuit 100 according to the invention.
  • This measuring circuit 100 can be integrated in a portable object such as a watch or a telephone or communication device or a portable measuring device.
  • This measuring circuit 100 comprises a control block 102 comprising a control circuit 103 used to control the measuring circuit 100.
  • the measuring circuit 100 is clocked by a time base 104 which may be for example an RC oscillator or an oscillator quartz and which provides a signal Fclk.
  • This measuring circuit 100 further comprises a sensor block 106 to provide an indication of a physical quantity.
  • the sensor block 106 is used to measure the humidity level.
  • the sensor unit 106 comprises a humidity sensor or humidity measurement unit 109.
  • This humidity sensor 109 is in the form of a micro-mechanism of the MEMS type composed of two electrically powered plates. As moisture increases, water molecules seep between the plates so that the capacity between them varies.
  • the humidity sensor 109 will be represented by a variable capacitor Cs comprising a first contact terminal and a second contact terminal.
  • the sensor unit 106 further comprises the sensor 109, an oscillator unit 107 comprising a reference capacitor C 0 and an oscillator RC 107a.
  • the reference capacitor C 0 comprises a first contact terminal and a second contact terminal.
  • the first contact terminal of the capacitor C 0 is connected to the first contact terminal of the humidity sensor via switching means 120 such as a first T1 and a second controllable T2 switch.
  • the second contact terminal of the capacitor C 0 is connected to the second contact terminal of the humidity sensor via switching means such as a third T3 and a fourth T4 controllable switch.
  • the controllable switches may be transistors.
  • This configuration makes it possible to connect the reference capacitor C 0 or the variable capacitor C s acting as a humidity sensor to the oscillator RC 107a.
  • the with gm which is the transconductance of MOS transistors N3 and N4 and C L an internal charge capacity.
  • the oscillator unit RC 107 comprises three elements, that is to say a relaxation oscillator 1070 connected to a polarization block 1072 and to a clock extractor block 1071 as visible in FIG. figure 4 .
  • the relaxation oscillator comprises two pairs of transistors, a first pair of transistors N1 and N2 each having their source connected to the ground of the circuit and the drain connected to the source of a transistor.
  • the drain of the transistor N1 is connected to the source of the transistor N3 and the drain of the transistor N2 is connected to the source of the transistor N4.
  • the drains of transistors N3 and N4 are each connected to a terminal of a resistor having its other terminal connected to a supply voltage via the extractor module.
  • the gates of the transistors N1 and N2 are connected to the polarization block while the gate of the transistor N3 is connected to the drain of the transistor N4, the gate of the transistor N4 being connected to the drain of the transistor N3.
  • the relaxation oscillator also comprises four switching transistors (T1, T2, T3 and T4) which are the switching means 120.
  • the transistors T1 and T3 are arranged so that the drain of T1 is connected to the drain of N1 and that the source of T3 is connected to the drain of N2, the capacitor C 0 being connected between the source of T1 and the drain of T3.
  • Transistors T2 and T4 are connected so that the source of T2 is connected to the drain of N1 and the source of T4 is connected to the drain of N2.
  • the gates of T1 and T3 are connected to a first terminal IN1 and the gates of T2 and T4 are connected to a second terminal IN2 so that they can be switched.
  • the frequency supplied at the output of the sensor unit 106 will be dependent on the capacitance of the variable capacitor C s to give a first frequency signal F s representative of the measured physical quantity or of the reference capacitor C 0 to give a second signal of frequency F ref which is a reference signal.
  • the measuring circuit 100 includes a first counter block 108 connected to the time base 104 and a second counter block 110 connected to the output of the sensor block 106.
  • the first counter block 108 and the second counter block 110 are synchronous with each other. that is, they are controlled simultaneously.
  • the control circuit 103 is used to control the first 108 and the second counter block 110.
  • the control block 102 includes a counter synchronization unit.
  • the control block 102 further comprises a sequencer block 112. This sequencer block 112 is used to act on both the first 108 and second 110 counter blocks but also on the sensor block 106.
  • This configuration makes it possible to use a method of calculating the physical quantity according to the invention. This method is called a double ramp method. This method takes place in two phases, a diagram of which is visible at figure 3 .
  • control circuit 103 and the sequencer block 112 control the measuring circuit 100.
  • the sequencer block 112 controls the sensor block so that the output frequency of the block sensor 106 is the reference frequency F ref that is to say that the sequencer block 112 makes the second T2 and fourth T4 switches are open while the first T1 and third T3 switches are closed.
  • control circuit 103 and the sequencer block 112 control the measuring circuit 100 so that the first counter block 108 and the second counter block 110 start counting.
  • the first counter block 108 counts by being clocked by the frequency of the time base F clk while the second counter block 110 counts by being clocked by the output frequency of the sensor block is the reference frequency F ref .
  • the first counter block 108 is configured to count to a first predefined number N clk .
  • the second counter block 110 is synchronous with the first counter block, ie the first counter block 108 and the second counter block 110 begin to count or start simultaneously. When the first counter reaches the predefined number N clk , it stops counting and the second counter block 110 also stops counting.
  • the second phase can begin. This zero crossing is detected by the control circuit 103.
  • This control circuit 103 and the sequencer block 112 act on the second counter block 110 so that it switches from a counting mode to a countdown mode.
  • This phase consists firstly in switching the output frequency of the sensor block 106.
  • the sequencer block 112 acts so that the second T2 and fourth T4 switches are closed while the first T1 and third T3 switches are open.
  • the output frequency is then dependent on the physical quantity measured by the sensor.
  • the first counter block 108 starts counting again while the second counter block 110 begins counting down.
  • the second counter block 110 starts to count down from the number N ref saved.
  • the counting is then done by being clocked by the output frequency of the sensor block 106 that is to say the frequency representative of the measured physical quantity F s .
  • Each counter block is provided with a zero detector so that when the second counter block 110 reaches a second predefined number that is zero, the first counter 108 also stops counting. The number N s counted by said first counter 108 is then saved.
  • N ref , N clk and the values of the different frequencies make it possible to calculate the value of the physical quantity. These values are transmitted to the control circuit 103 or to a calculation circuit not shown in the figures, which is responsible for supplying the value of the measured physical quantity.
  • This linearization circuit 114 outputs S NOUT . the number N sl ready to be used by a processor for example.
  • the number N clk is dependent on the resolution of the circuit. Indeed, the data provided by the counter blocks 108, 110 are transmitted over a given number of bits, given that the higher the number of bits, the greater the accuracy. This means that the number N clk is equal to 2 resolution with the resolution which is equal to the number of bits used.
  • the number N sl making it possible to obtain the value of the measured physical quantity is independent of the frequency of the measuring circuit 100 but also independent of the resistance R of the oscillator RC 107a of the sensor block 106 or of the transconductance g m transistors of the oscillator 107a and the internal capacitance C L of the oscillator 107a.
  • the capacitance C s for a moisture content of 0% is defined and that the capacitance C s for a humidity level of 100% is defined. Therefore, it is defined that the number N clk squared corresponds to the maximum moisture content and by a quick calculation, the moisture content can be determined as a function of the number N sl measured.
  • this method is used piecemeal.
  • the first and second phases can be performed at regular intervals so as to have a measure of the physical magnitude at regular intervals.
  • This measurement frequency can be set or parameterized.
  • this measurement of the physical quantity using the method and the circuit according to the invention is made on demand. We understand that the user activates a command when he wants to know the value of the physical quantity.
  • the measurement circuit 100 will not be limited to a sensor unit 106 for measuring the humidity level and will be extended to other measurable physical quantities with a capacitive sensor.
  • the sensor block 106 will not be capacitive but inductive.
  • the sensor will comprise a variable inductance structure which will be connected to an oscillator of the LC type for example.
  • a sensor using a variable resistor could be used, said variable resistor being connected to an RC oscillator.

Description

La présente invention concerne un circuit de mesure comprenant un bloc de contrôle pour contrôler ledit circuit, une base de temps pour fournir un signal d'horloge pour cadencer ledit circuit, un bloc capteur agencé pour fournir signal de sortie, ledit circuit de mesure comprenant en outre un premier bloc compteur cadencé à la fréquence d'horloge et un second bloc compteur cadencé par la fréquence du signal de sortie du bloc capteur.The present invention relates to a measuring circuit comprising a control block for controlling said circuit, a time base for providing a clock signal for clocking said circuit, a sensor block arranged to provide an output signal, said measuring circuit comprising in in addition to a first counter block clocked at the clock frequency and a second counter block clocked by the frequency of the output signal of the sensor block.

ARRIERE PLAN TECHNOLOGIQUEBACKGROUND TECHNOLOGY

Les capteurs d'humidité sont constitués de deux armatures munies chacune d'une pluralité de bras. Les deux armatures sont agencées pour être imbriquées l'une dans l'autre et présentent un diélectrique entre elles. Ces armatures sont alimentées en tension de sorte que leur imbrication entraîne la création d'une capacité.The humidity sensors consist of two armatures each provided with a plurality of arms. The two armatures are arranged to be nested one inside the other and have a dielectric between them. These armatures are supplied with voltage so that their nesting leads to the creation of a capacitance.

Ce capteur d'humidité fonctionne de sorte que lorsque le taux d'humidité dans l'air augmente, des molécules d'eau s'infiltrent entre les deux armatures dans le diélectrique. Cette infiltration d'eau entraîne une modification de la capacité ce qui permet de quantifier le taux d'humidité lors d'une mesure en appliquant une tension. Le capteur d'humidité peut être une structure connectée à un circuit intégré ou être directement compris dans le circuit intégré.This moisture sensor works so that when the moisture content in the air increases, water molecules seep between the two plates in the dielectric. This water infiltration causes a modification of the capacity which makes it possible to quantify the humidity rate during a measurement by applying a tension. The humidity sensor may be a structure connected to an integrated circuit or be directly included in the integrated circuit.

Pour déterminer une valeur d'humidité à partir de cette capacité, il est connu plusieurs méthodes.To determine a humidity value from this capacity, several methods are known.

Une première méthode consiste à connecter en sortie du capteur d'humidité, un amplificateur de charge pour obtenir un signal de tension représentatif du taux d'humidité. Ce signal est envoyé dans un conditionneur de signal préparant le signal pour être envoyé dans un convertisseur analogique numérique de sorte à fournir une valeur numérique N. Cette valeur numérique N est ensuite envoyée dans un circuit qui le linéarise car la courbe de la capacité en fonction du taux d'humidité n'est pas linéaire. On obtient alors une valeur numérique N qui est fonction de la capacité C du capteur.A first method consists in connecting the output of the humidity sensor, a charge amplifier to obtain a voltage signal representative of the humidity level. This signal is sent in a signal conditioner preparing the signal to be sent into an analog digital converter so as to provide a numerical value N. This numerical value N is then sent in a circuit which linearizes it because the curve of the capacitance in function humidity is not linear. This gives a numerical value N which is a function of the capacitance C of the sensor.

Une seconde méthode consiste à connecter en sortie du capteur d'humidité, un circuit pour obtenir un signal de fréquence représentatif du taux d'humidité. En effet, cette capacité variable est inséré dans un résonateur de sorte à réaliser un oscillateur RC. Par conséquent, la fréquence sortant dudit résonateur est dépendante de la valeur de la capacité et donc du taux d'humidité. Cette fréquence est envoyée dans un conditionneur de signal préparant le signal pour être envoyé dans un convertisseur analogique numérique de sorte à fournir un nombre N numérique. Ce conditionneur de signal peut être un démodulateur de fréquence numérique ou un ensemble formé d'un circuit permettant de convertir ce signal de fréquence en tension puis de la convertir en une valeur numérique N qui sera traiter pour obtenir la valeur de la grandeur physique.A second method consists in connecting the output of the humidity sensor, a circuit for obtaining a frequency signal representative of the humidity level. Indeed, this variable capacitance is inserted into a resonator so as to make an RC oscillator. Consequently, the output frequency of said resonator is dependent on the value of the capacitance and therefore of the humidity level. This frequency is sent into a signal conditioner preparing the signal to be sent into an analog digital converter so as to provide a digital number N. This signal conditioner may be a digital frequency demodulator or a set of a circuit for converting this frequency signal into voltage and converting it to a digital value N which will be processed to obtain the value of the physical quantity.

Un inconvénient de ces deux méthodes est qu'elles nécessitent un circuit qui comprend un grand nombre de composant c'est-à-dire un circuit dont le coût de fabrication est élevé mais aussi qui nécessite une surface de silicium plus importante lors de l'intégration dans un circuit intégré. De ce fait, le nombre de circuits de mesure par plaquette est moins important.A disadvantage of these two methods is that they require a circuit which comprises a large number of components, that is to say a circuit whose manufacturing cost is high but also which requires a larger silicon surface when the integration into an integrated circuit. As a result, the number of measuring circuits per board is smaller.

Le document JP S58 182502 A décrit un circuit de mesure selon l'état de la technique.The document JP S58 182502 A describes a measuring circuit according to the state of the art.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention a pour but de pallier les inconvénients de l'art antérieur en proposant de fournir un circuit de mesure qui est précis quelques soit les composants utilisés et qui est peu coûteux particulièrement lors de l'implémentation dans un circuit intégré.The object of the invention is to overcome the drawbacks of the prior art by proposing to provide a measurement circuit that is accurate for all the components used and that is inexpensive, particularly when implemented in an integrated circuit.

A cet effet, l'invention concerne un circuit de mesure comprenant un bloc de contrôle pour contrôler ledit circuit, une base de temps pour fournir un signal d'horloge pour cadencer ledit circuit, un bloc capteur agencé pour fournir signal de sortie, ledit circuit de mesure comprenant en outre un premier bloc compteur cadencé à la fréquence d'horloge et un second bloc compteur cadencé par la fréquence du signal de sortie du bloc capteur, caractérisé en ce que le bloc capteur est agencé pour fournir comme signal de sortie, un premier signal dont la fréquence est représentative de la grandeur physique mesurée ou un second signal dont la fréquence est une fréquence de référence et en ce que le bloc de contrôle commande le circuit de mesure de sorte que les premiers et seconds blocs compteurs fonctionnent selon une première phase dans laquelle les premiers et seconds blocs compteurs comptent et une seconde phase dans laquelle le premier bloc compteur compte et le second bloc compteur décompte et en ce que la fréquence de cadencement du second bloc compteur lors de la première phase est différente de celle lors de la seconde phase.For this purpose, the invention relates to a measuring circuit comprising a control block for controlling said circuit, a time base for providing a clock signal for clocking said circuit, a sensor block arranged to provide an output signal, said circuit measuring device further comprising a first counter clocked at the clock frequency and a second counter clock clocked by the frequency of the output signal of the sensor unit, characterized in that the sensor unit is arranged to provide an output signal, a first signal whose frequency is representative of the measured physical quantity or a second signal whose frequency is a reference frequency and in that the control block controls the measuring circuit so that the first and second counter blocks operate according to a first phase in which the first and second counter blocks count and a second phase in which the first counter block counts and the second counting counter block and in that the clocking frequency of the second counter block in the first phase is different from that in the second phase.

Dans un premier mode de réalisation avantageux, le second bloc compteur est cadencé par la fréquence du second signal lors de la première phase et par la fréquence du premier signal lors de la seconde phase.In a first advantageous embodiment, the second counter block is clocked by the frequency of the second signal during the first phase and by the frequency of the first signal during the second phase.

Dans un second mode de réalisation avantageux, le bloc de contrôle comprend un circuit de contrôle et un bloc séquenceur.In a second advantageous embodiment, the control block comprises a control circuit and a sequencer block.

Dans un troisième mode de réalisation avantageux, le second bloc compteur comprend un détecteur de zéro connecté au bloc séquenceur.In a third advantageous embodiment, the second counter block comprises a zero detector connected to the sequencer block.

Dans un autre mode de réalisation avantageux, le bloc capteur comprend un oscillateur, un premier composant électronique à valeur variable et un second composant électronique à valeur fixe, le premier et le second composant électronique étant connectés en parallèle à l'oscillateur par l'intermédiaire de moyens de commutation et en ce que le premier composant électronique permet de fournir le premier signal et en ce que le second composant électronique permet de fournir le second signal.In another advantageous embodiment, the sensor block comprises an oscillator, a first variable-value electronic component and a second fixed-value electronic component, the first and second electronic components being connected in parallel to the oscillator via switching means and in that the first electronic component provides the first signal and in that the second electronic component provides the second signal.

Dans un autre mode de réalisation avantageux, le premier composant et le second composant comprennent chacun une premier borne et une seconde borne et en ce que les moyens de commutation comprennent un premier et un second interrupteur commandable connectés en série entre la première borne du premier composant et la première borne du second composant et un troisième et un quatrième interrupteur commandable connectés en série entre la seconde borne du premier composant et la seconde borne du second composant, le point de connexion entre le premier et le second interrupteur commandable et le point de connexion entre le troisième et le quatrième interrupteur commandable étant connectés à l'unité oscillateur.In another advantageous embodiment, the first component and the second component each comprise a first terminal and a second terminal and in that the switching means comprise a first and a second controllable switch connected in series between the first terminal of the first component. and the first terminal of the second component and a third and a fourth controllable switch connected in series between the second terminal of the first component and the second terminal of the second component, the connection point between the first and second controllable switch and the connection point. between the third and fourth controllable switches being connected to the oscillator unit.

Dans un autre mode de réalisation avantageux, le premier composant et le second composant sont des condensateurs.In another advantageous embodiment, the first component and the second component are capacitors.

Dans un autre mode de réalisation avantageux, le premier composant et le second composant sont des résistances.In another advantageous embodiment, the first component and the second component are resistors.

Dans un autre mode de réalisation avantageux, le premier composant et le second composant sont des bobines à inductances.In another advantageous embodiment, the first component and the second component are inductance coils.

Dans un autre mode de réalisation avantageux, le bloc capteur est apte à mesurer le taux d'humidité.In another advantageous embodiment, the sensor unit is able to measure the humidity level.

Dans un autre mode de réalisation avantageux, il comprend en outre un circuit de linéarisation.In another advantageous embodiment, it further comprises a linearization circuit.

L'invention concerne également un procédé de gestion d'un circuit de mesure comprenant un bloc de contrôle pour contrôler ledit circuit, un résonateur pour fournir un signal d'horloge pour cadencer ledit circuit, un bloc capteur agencé pour fournir signal de sortie, ledit circuit de mesure comprenant en outre un premier bloc compteur cadencé à la fréquence d'horloge et un second bloc compteur cadencé par la fréquence du signal de sortie du bloc capteur, caractérisé en ce que le bloc capteur est agencé pour fournir comme signal de sortie, un premier signal dont la fréquence est représentative de la grandeur physique mesurée ou un second signal dont la fréquence est une fréquence de référence et ce que ledit procédé comprend les étapes suivantes :

  1. 1) sélectionner le second signal dont la fréquence est une fréquence de référence comme signal de sortie du bloc capteur
  2. 2) démarrer le comptage du premier bloc compteur cadencé par le signal d'horloge et du second bloc compteur cadencé par le signal de sortie du bloc capteur ;
  3. 3) lorsque le premier bloc compteur atteint un premier nombre prédéfini, il se remet à zéro et le second bloc compteur s'arrête de compter
  4. 4) sélectionner le premier signal dont la fréquence est représentative de la grandeur physique mesurée comme signal de sortie du bloc capteur ;
  5. 5) démarrer le comptage du premier bloc compteur cadencé par le signal d'horloge et le décomptage du second bloc compteur à partir de la valeur comptée lors l'étape 3), ledit second bloc compteur étant cadencé par le signal de sortie du bloc capteur ;
  6. 6) lorsque le second bloc compteur atteint un second nombre prédéfini :
    • arrêter le comptage du premier bloc compteur et le décomptage du second bloc compteur et
    • sauvegarder la valeur comptée par le premier bloc compteur ;
  7. 7) déterminer, à partir de la valeur comptée par le premier bloc compteur, la valeur de la grandeur physique mesurée par le bloc capteur.
The invention also relates to a method for managing a measuring circuit comprising a control block for controlling said circuit, a resonator for supplying a clock signal for clocking said circuit, a sensor block arranged to provide an output signal, said measuring circuit further comprising a first counter clocked at the clock frequency and a second counter clock clocked by the frequency of the output signal of the sensor unit, characterized in that the sensor unit is arranged to supply as an output signal, a first signal whose frequency is representative of the measured physical quantity or a second signal whose frequency is a reference frequency and that said method comprises the following steps:
  1. 1) select the second signal whose frequency is a reference frequency as the output signal of the sensor block
  2. 2) starting the counting of the first counter block clocked by the clock signal and the second counter block clocked by the output signal of the sensor unit;
  3. 3) When the first counter block reaches a first predefined number, it resets to zero and the second counter block stops counting
  4. 4) selecting the first signal whose frequency is representative of the physical quantity measured as the output signal of the sensor unit;
  5. 5) starting the counting of the first counter block clocked by the clock signal and the counting down of the second counter block from the value counted in step 3), said second counter block being clocked by the output signal of the sensor block ;
  6. 6) when the second counter block reaches a second predefined number:
    • stop the counting of the first counter block and the countdown of the second counter block and
    • save the value counted by the first counter block;
  7. 7) determining, from the value counted by the first counter block, the value of the physical quantity measured by the sensor block.

Dans un autre mode de réalisation avantageux, le second nombre prédéfini est zéro.In another advantageous embodiment, the second predefined number is zero.

Dans un autre mode de réalisation avantageux, le premier nombre prédéfini est dépendant de la résolution du compteur.In another advantageous embodiment, the first predefined number is dependent on the resolution of the counter.

Dans un autre mode de réalisation avantageux, il comprend en outre une étape finale visant à linéariser la valeur comptée par le premier bloc compteur en fonction de la grandeur physique mesurée, cette étape consistant à mettre au carré ladite valeur comptée par le premier bloc compteur.In another advantageous embodiment, it further comprises a final step for linearizing the value counted by the first counter block as a function of the measured physical quantity, this step of squaring said value counted by the first counter block.

L'invention concerne en outre un objet portable électronique comprenant le circuit de mesure selon l'invention.The invention further relates to an electronic portable object comprising the measuring circuit according to the invention.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

Les buts, avantages et caractéristiques du circuit de mesure selon la présente invention apparaîtront plus clairement dans la description détaillée suivante d'au moins une forme de réalisation de l'invention donnée uniquement à titre d'exemple non limitatif et illustrée par les dessins annexés sur lesquels :

  • les figures 1 et 2 représentent de manière schématique exemple de circuit de mesure selon la présente invention ;
  • la figure 3 représente un diagramme de fonctionnement du procédé selon l'invention ; et
  • la figure 4 représente de façon schématique l'unité oscillateur selon l'invention.
The aims, advantages and characteristics of the measuring circuit according to the present invention will appear more clearly in the following detailed description of at least one embodiment of the invention given solely by way of nonlimiting example and illustrated by the accompanying drawings on which :
  • the Figures 1 and 2 show schematically an example measuring circuit according to the present invention;
  • the figure 3 represents an operating diagram of the method according to the invention; and
  • the figure 4 schematically represents the oscillator unit according to the invention.

DESCRIPTION DETAILLEEDETAILED DESCRIPTION

Les figures 1 et 2 représentent le circuit de mesure 100 selon l'invention. Ce circuit de mesure 100 peut être intégré dans un objet portable tel qu'une montre ou un appareil de téléphonie ou de communication ou un appareil de mesure portatif. Ce circuit de mesure 100 comprend un bloc de contrôle 102 comprenant un circuit de commande 103 utilisé pour commander le circuit de mesure 100. Le circuit de mesure 100 est cadencé par une base de temps 104 qui peut être par exemple un oscillateur RC ou un oscillateur à quartz et qui fournit un signal Fclk.The Figures 1 and 2 represent the measuring circuit 100 according to the invention. This measuring circuit 100 can be integrated in a portable object such as a watch or a telephone or communication device or a portable measuring device. This measuring circuit 100 comprises a control block 102 comprising a control circuit 103 used to control the measuring circuit 100. The measuring circuit 100 is clocked by a time base 104 which may be for example an RC oscillator or an oscillator quartz and which provides a signal Fclk.

Ce circuit de mesure 100 comprend en outre un bloc capteur 106 pour fournir une indication d'une grandeur physique. Dans le cas présent, le bloc capteur 106 est utilisé pour mesurer le taux d'humidité. Le bloc capteur 106 comprend un capteur d'humidité ou unité de mesure de l'humidité 109. Ce capteur d'humidité 109 se présente sous la forme d'un micro-mécanisme de type MEMS composé de deux armatures alimentées électriquement. Lorsque l'humidité augmente, des molécules d'eau s'infiltrent entre les armatures de sorte que la capacité entre celles-ci varie. Le capteur d'humidité 109 sera représenté par un condensateur variable Cs comprenant une premier borne de contact et une seconde borne de contact.This measuring circuit 100 further comprises a sensor block 106 to provide an indication of a physical quantity. In this case, the sensor block 106 is used to measure the humidity level. The sensor unit 106 comprises a humidity sensor or humidity measurement unit 109. This humidity sensor 109 is in the form of a micro-mechanism of the MEMS type composed of two electrically powered plates. As moisture increases, water molecules seep between the plates so that the capacity between them varies. The humidity sensor 109 will be represented by a variable capacitor Cs comprising a first contact terminal and a second contact terminal.

Avantageusement selon l'invention, le bloc capteur 106 comprend en plus du capteur 109, une unité oscillateur 107 comprenant un condensateur de référence C0 et un oscillateur RC 107a. Le condensateur de référence C0 comprend une première borne de contact et une seconde borne de contact. La première borne de contact du condensateur C0 est reliée à la première borne de contact du capteur d'humidité via des moyens de commutation 120 comme un premier T1 et un second T2 interrupteur commandable. La seconde borne de contact du condensateur C0 est reliée à la seconde borne de contact du capteur d'humidité via des moyens de commutation comme un troisième T3 et un quatrième T4 interrupteur commandable. Les interrupteurs commandables peuvent être des transistors. Cette configuration permet de connecter le condensateur de référence C0 ou le condensateur variable Cs faisant office de capteur d'humidité à l' oscillateur RC 107a. Cet oscillateur RC 107a fonctionne sur le principe d'un circuit RC mis en oscillation, la fréquence étant dépendante de la valeur de la résistance R et de la valeur de capacité du condensateur C de sorte que la fréquence d'un oscillateur RC vaut : f = 1 4 π g m R . C s * C L

Figure imgb0001
avec gm qui est la transconductance des transistors MOS N3 et N4 et CL une capacité de charge interne.Advantageously according to the invention, the sensor unit 106 further comprises the sensor 109, an oscillator unit 107 comprising a reference capacitor C 0 and an oscillator RC 107a. The reference capacitor C 0 comprises a first contact terminal and a second contact terminal. The first contact terminal of the capacitor C 0 is connected to the first contact terminal of the humidity sensor via switching means 120 such as a first T1 and a second controllable T2 switch. The second contact terminal of the capacitor C 0 is connected to the second contact terminal of the humidity sensor via switching means such as a third T3 and a fourth T4 controllable switch. The controllable switches may be transistors. This configuration makes it possible to connect the reference capacitor C 0 or the variable capacitor C s acting as a humidity sensor to the oscillator RC 107a. This RC oscillator 107a operates on the principle of an RC circuit oscillating, the frequency being dependent on the value of the resistor R and the capacitance value of the capacitor C so that the frequency of an RC oscillator is: f = 1 4 π boy Wut m R . VS s * VS The
Figure imgb0001
with gm which is the transconductance of MOS transistors N3 and N4 and C L an internal charge capacity.

Dans le cas de la présente invention, l'unité oscillateur RC 107 comprend trois éléments c'est-à-dire un oscillateur à relaxation 1070 connecté à un bloc de polarisation 1072 et à un bloc extracteur d'horloge 1071 comme visible à la figure 4. L'oscillateur à relaxation comprend deux paires de transistors, une première paire de transistors N1 et N2 ayant chacun leur source connectée à la masse du circuit et le drain connecté à la source d'un transistor. Le drain du transistor N1 est connecté à la source du transistor N3 et le drain du transistor N2 est connecté à la source du transistor N4. Les drains des transistors N3 et N4 sont connectés chacun à une borne d'une résistance ayant son autre borne connectée à une tension d'alimentation via le module extracteur. Les grilles des transistors N1 et N2 sont connectées au bloc de polarisation alors que la grille du transistor N3 est connectée au drain du transistor N4, la grille du transistor N4 étant connectée au drain du transistor N3.In the case of the present invention, the oscillator unit RC 107 comprises three elements, that is to say a relaxation oscillator 1070 connected to a polarization block 1072 and to a clock extractor block 1071 as visible in FIG. figure 4 . The relaxation oscillator comprises two pairs of transistors, a first pair of transistors N1 and N2 each having their source connected to the ground of the circuit and the drain connected to the source of a transistor. The drain of the transistor N1 is connected to the source of the transistor N3 and the drain of the transistor N2 is connected to the source of the transistor N4. The drains of transistors N3 and N4 are each connected to a terminal of a resistor having its other terminal connected to a supply voltage via the extractor module. The gates of the transistors N1 and N2 are connected to the polarization block while the gate of the transistor N3 is connected to the drain of the transistor N4, the gate of the transistor N4 being connected to the drain of the transistor N3.

L'oscillateur à relaxation comprend également quatre transistors (T1, T2,T3 et T4) de commutation qui sont les moyens de commutation 120. Les transistors T1 et T3 sont agencés de sorte que le drain de T1 est connecté au drain de N1 et que la source de T3 est connectée au drain de N2, la capacité C0 étant connectée entre la source de T1 et le drain de T3. Les transistors T2 et T4 sont connectés de sorte que la source de T2 soit connectée au drain de N1 et que la source de T4 est connectée au drain de N2. Les grilles de T1 et T3 sont reliées à une première borne IN1 et les grilles de T2 et T4 sont reliées à une seconde borne IN2 de sorte à pouvoir être commutées. La structure du capteur, c'est-à-dire la capacité variable Cs est connectée entre les drains de T2 et T4. Il est constaté que l'oscillateur à relaxation présente une capacité interne CL entre la borne de la résistance R1 relié au transistor N3 et la borne de la résistance R2 relié au transistor N4. On obtient une fréquence : f = 1 4 π g m R . C s * C L

Figure imgb0002
The relaxation oscillator also comprises four switching transistors (T1, T2, T3 and T4) which are the switching means 120. The transistors T1 and T3 are arranged so that the drain of T1 is connected to the drain of N1 and that the source of T3 is connected to the drain of N2, the capacitor C 0 being connected between the source of T1 and the drain of T3. Transistors T2 and T4 are connected so that the source of T2 is connected to the drain of N1 and the source of T4 is connected to the drain of N2. The gates of T1 and T3 are connected to a first terminal IN1 and the gates of T2 and T4 are connected to a second terminal IN2 so that they can be switched. The structure of the sensor, ie the variable capacitance Cs is connected between the drains of T2 and T4. It is found that the relaxation oscillator has an internal capacitance C L between the terminal of the resistor R1 connected to the transistor N3 and the terminal of the resistor R2 connected to the transistor N4. We obtain a frequency: f = 1 4 π boy Wut m R . VS s * VS The
Figure imgb0002

De ce fait, la fréquence fournie en sortie du bloc capteur 106 sera dépendante de la capacité du condensateur variable Cs pour donner un premier signal de fréquence Fs représentatif de la grandeur physique mesurée ou du condensateur de référence C0 pour donner un second signal de fréquence Fref qui est un signal de référence.As a result, the frequency supplied at the output of the sensor unit 106 will be dependent on the capacitance of the variable capacitor C s to give a first frequency signal F s representative of the measured physical quantity or of the reference capacitor C 0 to give a second signal of frequency F ref which is a reference signal.

Par ailleurs, le circuit de mesure 100 comprend un premier bloc compteur 108 connecté à la base de temps 104 et un second bloc compteur 110 connecté à la sortie du bloc capteur 106. Le premier bloc compteur 108 et le second bloc compteur 110 sont synchrones c'est-à-dire qu'ils sont commandés simultanément. Pour commander le premier 108 et le second 110 bloc compteur, le circuit de commande 103 est utilisé. Le bloc de contrôle 102 comprend une unité de synchronisation des compteurs. Le bloc de contrôle 102 comprend en outre un bloc séquenceur 112. Ce bloc séquenceur 112 est utilisé pour agir à la fois sur les premiers 108 et seconds 110 blocs compteurs mais aussi sur le bloc capteur 106. Cette configuration permet d'utiliser une méthode de calcul de la grandeur physique selon l'invention. Cette méthode est appelée méthode double rampe. Cette méthode se déroule en deux phases dont un diagramme est visible à la figure 3.In addition, the measuring circuit 100 includes a first counter block 108 connected to the time base 104 and a second counter block 110 connected to the output of the sensor block 106. The first counter block 108 and the second counter block 110 are synchronous with each other. that is, they are controlled simultaneously. To control the first 108 and the second counter block 110, the control circuit 103 is used. The control block 102 includes a counter synchronization unit. The control block 102 further comprises a sequencer block 112. This sequencer block 112 is used to act on both the first 108 and second 110 counter blocks but also on the sensor block 106. This configuration makes it possible to use a method of calculating the physical quantity according to the invention. This method is called a double ramp method. This method takes place in two phases, a diagram of which is visible at figure 3 .

Dans une première phase, le circuit de commande 103 et le bloc séquenceur 112 commande le circuit de mesure 100. Le bloc séquenceur 112 commande le bloc capteur de sorte que la fréquence de sortie du bloc capteur 106 est la fréquence de référence Fref c'est-à-dire que le bloc séquenceur 112 fait en sorte que les seconds T2 et quatrièmes T4 interrupteurs soient ouverts alors que les premiers T1 et troisièmes T3 interrupteurs sont fermés.In a first phase, the control circuit 103 and the sequencer block 112 control the measuring circuit 100. The sequencer block 112 controls the sensor block so that the output frequency of the block sensor 106 is the reference frequency F ref that is to say that the sequencer block 112 makes the second T2 and fourth T4 switches are open while the first T1 and third T3 switches are closed.

De plus, le circuit de commande 103 et le bloc séquenceur 112 commande le circuit de mesure 100 de sorte que le premier bloc compteur 108 et le second bloc compteur 110 se mettent à compter. Le premier bloc compteur 108 compte en étant cadencé par la fréquence de la base de temps Fclk alors que le second bloc compteur 110 compte en étant cadencé par la fréquence de sortie du bloc capteur soit la fréquence de référence Fref. Le premier bloc compteur 108 est configuré pour compter jusqu'à un premier nombre prédéfini Nclk. Le second bloc compteur 110 est synchrone au premier bloc compteur c'est-à-dire que le premier bloc compteur 108 et le second bloc compteur 110 se mettent à compter ou démarrent simultanément. Lorsque le premier compteur arrive au nombre prédéfini Nclk, il s'arrête de compter et le second bloc compteur 110 s'arrête également de compter.In addition, the control circuit 103 and the sequencer block 112 control the measuring circuit 100 so that the first counter block 108 and the second counter block 110 start counting. The first counter block 108 counts by being clocked by the frequency of the time base F clk while the second counter block 110 counts by being clocked by the output frequency of the sensor block is the reference frequency F ref . The first counter block 108 is configured to count to a first predefined number N clk . The second counter block 110 is synchronous with the first counter block, ie the first counter block 108 and the second counter block 110 begin to count or start simultaneously. When the first counter reaches the predefined number N clk , it stops counting and the second counter block 110 also stops counting.

Une fois que le premier bloc compteur 108 est arrivé au nombre prédéfini Nclk et qu'il passe à zéro, la second phase peut débuter. Ce passage à zéro est détecté par le circuit de commande 103. Ce circuit de commande 103 et le bloc séquenceur 112 agissent sur le second bloc compteur 110 de sorte que celui-ci passe d'un mode comptage à un mode décomptage.Once the first counter block 108 has arrived at the predefined number N clk and it goes to zero, the second phase can begin. This zero crossing is detected by the control circuit 103. This control circuit 103 and the sequencer block 112 act on the second counter block 110 so that it switches from a counting mode to a countdown mode.

Cette phase consiste premièrement à permuter la fréquence de sortie du bloc capteur 106. Le bloc séquenceur 112 agit de que les seconds T2 et quatrièmes T4 interrupteurs soient fermés alors que les premiers T1 et troisièmes T3 interrupteurs sont ouverts.This phase consists firstly in switching the output frequency of the sensor block 106. The sequencer block 112 acts so that the second T2 and fourth T4 switches are closed while the first T1 and third T3 switches are open.

La fréquence de sortie est alors dépendante de la grandeur physique mesurée par le capteur.The output frequency is then dependent on the physical quantity measured by the sensor.

Puis, dans cette seconde phase, le premier bloc compteur 108 recommence à compter tandis que le second bloc compteur 110 se met à décompter. Le second bloc compteur 110 se met à décompter à partir du nombre Nref sauvegardé. Le décompte se fait alors en étant cadencé par la fréquence de sortie du bloc capteur 106 c'est-à-dire la fréquence représentative de la grandeur physique mesurée Fs. Chaque bloc compteur est muni d'un détecteur de zéro de sorte que lorsque le second bloc compteur 110 arrive à un second nombre prédéfini qui est zéro, le premier compteur 108 s'arrête de compter également. Le nombre Ns compté par ledit premier compteur 108 est alors sauvegardé.Then, in this second phase, the first counter block 108 starts counting again while the second counter block 110 begins counting down. The second counter block 110 starts to count down from the number N ref saved. The counting is then done by being clocked by the output frequency of the sensor block 106 that is to say the frequency representative of the measured physical quantity F s . Each counter block is provided with a zero detector so that when the second counter block 110 reaches a second predefined number that is zero, the first counter 108 also stops counting. The number N s counted by said first counter 108 is then saved.

Les différentes valeurs de Nref, Nclk et les valeurs des différentes fréquences permettent de calculer la valeur de la grandeur physique. Ces valeurs sont transmises au circuit de commande 103 ou à un circuit de calcul non représenté sur les figures qui se charge de fournir la valeur de la grandeur physique mesurée.
En effet, de la première phase, on admet que N clk × 1 Fclk = N ref × 1 Fref

Figure imgb0003

De ce fait : N clk × Fref Fclk = N ref
Figure imgb0004

Ensuite, de la seconde phase, on admet que N s × 1 Fclk = N ref × 1 Fs
Figure imgb0005
En combinant les équations 1 et 2, on obtient alors : N s = N ref × Fclk Fs = N clk × Fref Fclk × Fclk Fs = N clk × Fref Fs
Figure imgb0006

En connaissant les formules des fréquences des oscillateurs RC pour les fréquences Fref et Fs, on peut introduire ces formules dans l'équations 4 ce qui donne : N s = N c l k × C s C 0
Figure imgb0007
The different values of N ref , N clk and the values of the different frequencies make it possible to calculate the value of the physical quantity. These values are transmitted to the control circuit 103 or to a calculation circuit not shown in the figures, which is responsible for supplying the value of the measured physical quantity.
Indeed, from the first phase, we admit that NOT clk × 1 Fclk = NOT ref × 1 Fref
Figure imgb0003

Thereby : NOT clk × Fref Fclk = NOT ref
Figure imgb0004

Then, from the second phase, we admit that NOT s × 1 Fclk = NOT ref × 1 fs
Figure imgb0005
By combining equations 1 and 2, we obtain: NOT s = NOT ref × Fclk fs = NOT clk × Fref Fclk × Fclk fs = NOT clk × Fref fs
Figure imgb0006

By knowing the formulas of the frequencies of the oscillators RC for the frequencies F ref and F s , one can introduce these formulas in the equations 4 which gives: NOT s = NOT vs l k × VS s VS 0
Figure imgb0007

On obtient donc un nombre Ns qui est indépendant de la fréquence de la base de temps. Cela entraîne l'avantage d'avoir un circuit dont la fréquence de la base de temps 104 n'a alors pas besoin d'être précise car elle n'influe pas sur la valeur mesurée.We obtain a number N s which is independent of the frequency of the time base. This has the advantage of having a circuit whose frequency of the time base 104 does not need to be precise because it does not affect the measured value.

Pour linéariser la relation entre la capacité mesurée par le capteur et le nombre Ns donné par le compteur 108, le nombre Ns est mis au carré par un circuit de linéarisation 114 pour obtenir le nombre Nsl ce qui donne : N s l = N s 2 = N c l k 2 × C s C 0 .

Figure imgb0008
Ce circuit de linéarisation 114 fournit en sortie SNOUT. le nombre Nsl prêt à être utilisé par un processeur par exemple.To linearize the relationship between the capacitance measured by the sensor and the number N s given by the counter 108, the number N s is squared by a linearization circuit 114 to obtain the number N sl which gives: NOT s l = NOT s 2 = NOT vs l k 2 × VS s VS 0 .
Figure imgb0008
This linearization circuit 114 outputs S NOUT . the number N sl ready to be used by a processor for example.

Or, le nombre Nclk est dépendant de la résolution du circuit. En effet, les données fournies par les blocs compteurs 108, 110 sont transmises sur un nombre de bit donné sachant que plus le nombre de bit est élevé et plus la précision est importante. Ce qui signifie que le nombre Nclk est égal à 2 résolution avec la résolution qui est égale au nombre de bit utilisé.However, the number N clk is dependent on the resolution of the circuit. Indeed, the data provided by the counter blocks 108, 110 are transmitted over a given number of bits, given that the higher the number of bits, the greater the accuracy. This means that the number N clk is equal to 2 resolution with the resolution which is equal to the number of bits used.

Par conséquent, N sl = N clk 2 × Cs C 0 = 2 2 × résolution × Cs C 0

Figure imgb0009
Therefore, NOT sl = NOT clk 2 × cs VS 0 = 2 2 × resolution × cs VS 0
Figure imgb0009

On constate donc que le nombre Nsl permettant d'obtenir la valeur de la grandeur physique mesurée est indépendant de la fréquence du circuit de mesure 100 mais aussi indépendant de la résistance R de l'oscillateur RC 107a du bloc capteur 106 ou de la transconductance gm des transistors de l'oscillateur 107a et de la capacité CL interne de l'oscillateur 107a.It can therefore be seen that the number N sl making it possible to obtain the value of the measured physical quantity is independent of the frequency of the measuring circuit 100 but also independent of the resistance R of the oscillator RC 107a of the sensor block 106 or of the transconductance g m transistors of the oscillator 107a and the internal capacitance C L of the oscillator 107a.

Or, par une étape préalable lors de la fabrication du bloc capteur 106, un étalonnage est effectué de sorte que la capacité Cs pour un taux d'humidité de 0% est définie et que la capacité Cs pour un taux d'humidité de 100% est définie. De ce fait, il est défini que le nombre Nclk au carré correspond au taux d'humidité maximum et par un rapide calcul, on peut déterminer le taux d'humidité en fonction du nombre Nsl mesuré.However, by a preliminary step during the manufacture of the sensor block 106, a calibration is performed so that the capacitance C s for a moisture content of 0% is defined and that the capacitance C s for a humidity level of 100% is defined. Therefore, it is defined that the number N clk squared corresponds to the maximum moisture content and by a quick calculation, the moisture content can be determined as a function of the number N sl measured.

Il est envisageable que cette méthode soit utilisé au coup par coup. On entend par là que les premieres et deuxièmes phases peuvent être effectués à intervalle régulier afin que d'avoir une mesure de la grandeur physique à intervalle régulier. Cette fréquence de mesure peut être définie ou paramétrée. De même, il est possible que cette mesure de la grandeur physique en utilisant la méthode et le circuit selon l'invention soit faite sur demande. On comprend que l'utilisateur actionne une commande lorsqu'il veut connaitre la valeur de la grandeur physique.It is conceivable that this method is used piecemeal. By this is meant that the first and second phases can be performed at regular intervals so as to have a measure of the physical magnitude at regular intervals. This measurement frequency can be set or parameterized. Similarly, it is possible that this measurement of the physical quantity using the method and the circuit according to the invention is made on demand. We understand that the user activates a command when he wants to know the value of the physical quantity.

Dans une variante, le circuit de mesure 100 ne sera pas limité à un bloc capteur 106 pour mesurer le taux d'humidité et sera étendue à d'autres grandeurs physiques mesurables avec un capteur capacitif.In a variant, the measurement circuit 100 will not be limited to a sensor unit 106 for measuring the humidity level and will be extended to other measurable physical quantities with a capacitive sensor.

Dans une alternative, le bloc capteur 106 ne sera pas capacitif mais inductif. De ce fait, le capteur comprendra une structure faisant office d'inductance variable qui sera relié à un oscillateur du type LC par exemple. De même, un capteur utilisant une résistance variable pourrait être utilisé, ladite résistance variable étant connecté à un oscillateur RC.In an alternative, the sensor block 106 will not be capacitive but inductive. As a result, the sensor will comprise a variable inductance structure which will be connected to an oscillator of the LC type for example. Similarly, a sensor using a variable resistor could be used, said variable resistor being connected to an RC oscillator.

Claims (16)

  1. Measuring circuit (100) comprising a control block (102) for controlling said circuit, a time base (104) for providing a clock signal (fclk) in order to time said circuit, a sensor block (106) which is designed to provide an output signal, said measuring circuit comprising in addition a first counting block (108) which is timed to the clock frequency and a second counting block (110) which is timed by the frequency of the output signal of the sensor block, characterised in that the sensor block is designed to provide, as output signal, a first signal, the frequency of which is representative of the measured physical quantity (Fs) or a second signal, the frequency of which is a reference frequency (Fref) and in that the control block controls the measuring circuit so that the first and second counting blocks function according to a first phase in which the first and second counting blocks count and a second phase in which the first counting block counts and the second counting block counts down and in that the timing frequency of the second counting block during the first phase is different from that during the second phase.
  2. Measuring circuit according to claim 1, characterised in that the second counting block (110) is timed by the frequency (Fref) of the second signal during the first phase and by the frequency (Fs) of the first signal during the second phase.
  3. Measuring circuit according to claims 1 or 2, characterised in that the control block (102) comprises a control circuit (103) and a sequencer block (112).
  4. Measuring circuit according to claim 3, characterised in that the second counting block (110) comprises a zero detector connected to the sequencer block (112).
  5. Measuring circuit according to one of the preceding claims, characterised in that the sensor block (106) comprises an oscillator (107a), a first variable-value electronic component (Cs) and a second fixed-value electronic component (C0), the first and the second electronic component being connected in parallel to the oscillator (107a) by means of commutation means (120) and in that the first electronic component makes it possible to provide the first signal and in that the second electronic component makes it possible to provide the second signal.
  6. Measuring circuit according to claim 5, characterised in that the first component (Cs) and the second component (C0) each comprise a first terminal and a second terminal and in that the commutation means comprise a first (T1) and a second (T2) controllable switch, which are connected in series between the first terminal of the first component and the first terminal of the second component, and a third (T3) and a fourth (T4) controllable switch which are connected in series between the second terminal of the first component and the second terminal of the second component, the connection point between the first and the second controllable switch and the connection point between the third and the fourth controllable switch being connected to the oscillator unit.
  7. Measuring circuit according to claims 5 or 6, characterised in that the first component and the second component are capacitors.
  8. Measuring circuit according to claims 5 or 6, characterised in that the first component and the second component are resistors.
  9. Measuring circuit according to claims 5 or 6, characterised in that the first component and the second component are inductance coils.
  10. Measuring circuit according to one of the preceding claims, characterised in that the sensor block (106) is able to measure the degree of moisture.
  11. Measuring circuit according to one of the preceding claims, characterised in that it comprises in addition a linearization circuit (114).
  12. Method for management of a measuring circuit (100) comprising a control block (102) for controlling said circuit, a time base (104) for providing a clock signal in order to time said circuit, a sensor block (106) which is designed to provide an output signal, said measuring circuit comprising in addition a first counting block (108) which is timed to the clock frequency and a second counting block (110) which is timed by the frequency of the output signal of the sensor block, characterised in that the sensor block is designed to provide, as output signal, a first signal, the frequency (Fs) of which is representative of the measured physical quantity or a second signal, the frequency (Fref) of which is a reference frequency and in that said method comprises the following steps:
    1) selecting the second signal, the frequency of which is a reference frequency as output signal of the sensor block;
    2) starting the counting of the first counting block which is timed by the clock signal and of the second counting block which is timed by the output signal of the sensor block;
    3) when the first counting block reaches a first predefined number (Nclk), it is reset at zero and the second counting block stops counting;
    4) selecting the first signal, the frequency of which is representative of the measured physical quantity as output signal of the sensor block;
    5) starting the counting of the first counting block which is timed by the clock signal and the counting down of the second counting block from the value (Nref) counted during step 3), said second counting block being timed by the output signal of the sensor block;
    6) when the second counting block reaches a second predefined number:
    - stopping the counting of the first counting block and the counting down of the second counting block and
    - saving the value (Ns) counted by the first counting block;
    7) determining, from the value (Ns) counted by the first counting block, the value of the physical quantity measured by the sensor block.
  13. Method for management according to claim 12, characterised in that the second predefined number (Ns) is zero.
  14. Method for management according to claim 12, characterised in that the first predefined number (Nclk) is dependent upon the resolution of the counter.
  15. Method for management according to claim 12, characterised in that it comprises in addition a final step which is intended to linearize the value counted by the first counting block as a function of the measured physical quantity, this step consisting of squaring said value counted by the first counting block.
  16. Wearable/portable electronic object, characterised in that it comprises the measuring circuit (100) according to one of the claims 1 to 11.
EP13151668.4A 2013-01-17 2013-01-17 Control system and management method of a sensor Active EP2757352B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13151668.4A EP2757352B1 (en) 2013-01-17 2013-01-17 Control system and management method of a sensor
TW103101434A TWI589844B (en) 2013-01-17 2014-01-15 Control system and method for sensor management
US14/155,630 US9494542B2 (en) 2013-01-17 2014-01-15 Control system and method for sensor management
KR1020140005728A KR101615800B1 (en) 2013-01-17 2014-01-16 Control system and method for sensor management
CN201410071512.7A CN103941602B (en) 2013-01-17 2014-01-17 The control system of sensor management and method
HK15100662.0A HK1200223A1 (en) 2013-01-17 2015-01-21 Control system and method for sensor management

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13151668.4A EP2757352B1 (en) 2013-01-17 2013-01-17 Control system and management method of a sensor

Publications (2)

Publication Number Publication Date
EP2757352A1 EP2757352A1 (en) 2014-07-23
EP2757352B1 true EP2757352B1 (en) 2015-11-18

Family

ID=47678579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13151668.4A Active EP2757352B1 (en) 2013-01-17 2013-01-17 Control system and management method of a sensor

Country Status (5)

Country Link
US (1) US9494542B2 (en)
EP (1) EP2757352B1 (en)
KR (1) KR101615800B1 (en)
HK (1) HK1200223A1 (en)
TW (1) TWI589844B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180024500A (en) * 2016-08-30 2018-03-08 삼성전자주식회사 Integrator circuit device and operating method for the same
KR102328796B1 (en) * 2018-11-25 2021-11-22 곽병재 Detection device and reader for measuring the amount of water content in building structures

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483437A (en) * 1965-10-23 1969-12-09 Robertshaw Controls Co Detecting switch means
US3636444A (en) * 1970-01-30 1972-01-18 Johnson Service Co Apparatus for measuring small changes in condition-sensitive capacitance transducers
US4282480A (en) * 1978-05-02 1981-08-04 Matsushita Electric Industrial Co., Ltd. Apparatus for humidity detection
US4319185A (en) * 1979-12-05 1982-03-09 Sentrol Systems Ltd. Delay line microwave moisture measuring apparatus
US4392382A (en) * 1981-03-09 1983-07-12 Motorola Inc. Linearized electronic capacitive pressure transducer
JPS58182502A (en) * 1982-04-20 1983-10-25 Toyota Central Res & Dev Lab Inc Detection circuit of inductance type sensor
US4517622A (en) * 1983-08-29 1985-05-14 United Technologies Corporation Capacitive pressure transducer signal conditioning circuit
FI70485C (en) * 1984-10-26 1986-09-19 Vaisala Oy MAETNINGSFOERFARANDE FOER IMPEDANSER SAERSKILT SMAO CAPACITANSER VID VILKET MAN ANVAENDER EN ELLER FLERA REFERENSER
US4743836A (en) * 1985-12-06 1988-05-10 United Technologies Corporation Capacitive circuit for measuring a parameter having a linear output voltage
DE3620399A1 (en) * 1986-06-18 1987-12-23 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR COMPENSATING TEMPERATURE AND NON-TEMPERATURE DRIFTING OF A CAPACITIVE SENSOR
CH680963A5 (en) * 1989-09-01 1992-12-15 Asulab Sa
US5291534A (en) * 1991-06-22 1994-03-01 Toyoda Koki Kabushiki Kaisha Capacitive sensing device
US5461321A (en) * 1993-09-17 1995-10-24 Penberthy, Inc. Apparatus and method for measuring capacitance from the duration of a charge-discharge charge cycle
JP3125562B2 (en) * 1994-03-10 2001-01-22 富士電機株式会社 Clock generation circuit
JP3715983B2 (en) * 1994-03-25 2005-11-16 キヤノン株式会社 Environmental measurement equipment
WO1997024795A1 (en) * 1995-12-29 1997-07-10 Em Microelectronic-Marin S.A. Active rectifier having minimal energy losses
TW526327B (en) * 1998-02-19 2003-04-01 Sumitomo Metal Ind Detection apparatus and method of physical variable
CA2327576C (en) * 1999-12-21 2008-09-30 Eta Sa Fabriques D'ebauches Low frequency quartz oscillator device with improved thermal characteristics
US6433524B1 (en) * 2001-03-15 2002-08-13 Rosemount Aerospace Inc. Resistive bridge interface circuit
EP1425757B1 (en) * 2001-08-13 2018-09-05 EM Microelectronic-Marin SA Programming an electronic device including a non-volatile memory, in particular for adjusting the features of an oscillator
EP1289121A1 (en) * 2001-08-13 2003-03-05 EM Microelectronic-Marin SA Low consumption inverter oscillator circiut
US6809507B2 (en) * 2001-10-23 2004-10-26 Medtronic Minimed, Inc. Implantable sensor electrodes and electronic circuitry
US7063270B2 (en) * 2003-10-27 2006-06-20 Bowers John R Moisture sensor sprinkler control systems
US7719371B2 (en) * 2004-03-22 2010-05-18 Integrated Device Technology, Inc. Spread spectrum clock and reference signal generator
EP1916762B1 (en) * 2006-10-27 2018-05-30 EM Microelectronic-Marin SA Quartz oscillator with amplitude control and an extended temperature range.
EP1962156A1 (en) * 2007-02-22 2008-08-27 EM Microelectronic-Marin SA Process for accessing a non-volatile memory for a watch
US7804307B1 (en) * 2007-06-29 2010-09-28 Cypress Semiconductor Corporation Capacitance measurement systems and methods
US20090322351A1 (en) * 2008-06-27 2009-12-31 Mcleod Scott C Adaptive Capacitive Sensing
US8330603B1 (en) * 2008-10-06 2012-12-11 Seewater, Inc. Method and apparatus for sensor calibration and adjustable pump time in a dewatering system
US8760302B1 (en) * 2008-10-06 2014-06-24 Seewater, Inc. Submersible water pump having self-contained control circuit
DE102008063527A1 (en) * 2008-12-18 2010-07-01 Micro-Epsilon Messtechnik Gmbh & Co. Kg Circuit arrangement and method for evaluating a sensor
US8134414B2 (en) * 2009-04-24 2012-03-13 Integrated Device Technology, Inc. Clock, frequency reference, and other reference signal generator with frequency stability over temperature variation
CN101949682B (en) * 2010-08-14 2012-10-24 桂林广陆数字测控股份有限公司 Displacement measuring method, sensor and operation method thereof for absolute position measuring capacitance
DE102013222252B4 (en) * 2013-10-31 2023-06-15 Renesas Electronics Germany GmbH Method and circuit for an analogue to digital capacitance converter
EP2873968B1 (en) * 2013-11-14 2016-08-10 Nxp B.V. Capacitive sensing system and method

Also Published As

Publication number Publication date
CN103941602A (en) 2014-07-23
US20140197849A1 (en) 2014-07-17
KR20140093192A (en) 2014-07-25
TWI589844B (en) 2017-07-01
US9494542B2 (en) 2016-11-15
HK1200223A1 (en) 2015-07-31
TW201447238A (en) 2014-12-16
EP2757352A1 (en) 2014-07-23
KR101615800B1 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
TWI576768B (en) Capacitive fingerprint sensing ststem, electronic device and method with demodulation circuitry in sensing element
EP1835263B1 (en) Electronic interface circuit of a capacitive sensor for measuring a physical parameter, and method of activation of the electronic circuit
EP2228628B1 (en) Electronic circuit with a capacitive sensor for measuring a physical parameter, and method for activating the electronic circuit
EP1962063B1 (en) Automatic test of an electronic circuit for a capacitive sensor, and electronic circuit for carrying out said test
EP2966454A1 (en) Method for measuring a physical parameter, and electronic circuit for implementing same
EP2933224B1 (en) Measurement circuit
EP2887014B1 (en) Electronic circuit for measuring the speed of rotation in a MEMS gyroscope and method for operating the same
EP2757352B1 (en) Control system and management method of a sensor
EP2618164A1 (en) Method for measuring a physical parameter and electronic circuit to interface with a capacitive sensor for implementing same
FR2726921A1 (en) METHOD OF ADJUSTING AN ELECTRICAL PARAMETER OF AN ELECTRONIC DEVICE, IN PARTICULAR OF A PACEMAKER OR A HEART DEFIBRILLATOR, AND DEVICE IMPLEMENTING IT
EP0033705B1 (en) Capacitance measuring device for a weighing apparatus
CH707472A2 (en) Measuring circuit for measuring physical size of e.g. watch, has control block controlling circuit, so that meter blocks operate according to phase in which meter blocks count and another phase in which one of meter blocks counts
WO2008068412A1 (en) Electronic device used for the measuring and detecting the variations of at least one input signal<0}
EP2327160A1 (en) Analog counter, and imager incorporating such a counter
FR2787950A1 (en) Operational transconductance amplifier in semiconductor integrated circuit includes capacitor that are connected to source terminal of respective MOS transistors
CN109387291A (en) Device and method for MEMS resonant sensor array
EP2250731B1 (en) Device and method for compensating for a resonator
EP0193421B1 (en) Capacitance-frequency transducer, especially for capacitance sensors
EP2618163A1 (en) Method for measuring a physical parameter and electronic circuit to interface with a capacitive sensor for implementing same
Hsu et al. Monolithic Integration of Digital MEMS Thermometer and temperature compensated RTC on 1P6M ASIC compatible CMOS MEMS process
TW200821595A (en) Method for measuring intrinsic capacitances of a MOS device
FR3033411A1 (en)
EP2936254A1 (en) Thermocompensated timepiece circuit
Rakshit et al. A novel closed-loop readout topology for monolithically integrated surface acoustic wave sensors
EP3339890B1 (en) Method for estimating a distance between an identifier and a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 27/22 20060101ALI20150721BHEP

Ipc: G01D 5/24 20060101AFI20150721BHEP

Ipc: G01D 5/243 20060101ALI20150721BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 761785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013003791

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 761785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013003791

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

26N No opposition filed

Effective date: 20160819

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230201

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221220

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 12