EP2756956B1 - Method for the generation of a printed image on a rotating, three-dimensional body - Google Patents

Method for the generation of a printed image on a rotating, three-dimensional body Download PDF

Info

Publication number
EP2756956B1
EP2756956B1 EP13195592.4A EP13195592A EP2756956B1 EP 2756956 B1 EP2756956 B1 EP 2756956B1 EP 13195592 A EP13195592 A EP 13195592A EP 2756956 B1 EP2756956 B1 EP 2756956B1
Authority
EP
European Patent Office
Prior art keywords
rotation
printing
distance
radius
printing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13195592.4A
Other languages
German (de)
French (fr)
Other versions
EP2756956A1 (en
Inventor
Jörg-Achim FISCHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Publication of EP2756956A1 publication Critical patent/EP2756956A1/en
Application granted granted Critical
Publication of EP2756956B1 publication Critical patent/EP2756956B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0095Detecting means for copy material, e.g. for detecting or sensing presence of copy material or its leading or trailing end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0082Digital printing on bodies of particular shapes
    • B41M5/0088Digital printing on bodies of particular shapes by ink-jet printing

Definitions

  • the present invention relates to a method for producing a printed image on a rotating, three-dimensional body having the features of the preamble of claim 1.
  • the DE 10 2009 003 810 A1 For example, describes a system for printing on containers. It addresses the problem that the centering of the holder or the container is critical for printing at conventional 600 dpi and high conveying speeds.
  • the solution to the problem is that the print head is automatically adjustable, using sensors that determine the location and angular position of the container and send these values to a controller. An adjustment of the timing for the inkjet printing unit is not described.
  • the DE 10 2009 014 663 A1 describes the non-contact (electro-optical or electromagnetic) determination of the rotational position of bottles by means of sensor unit and measuring marks.
  • paragraph 20 is explicitly described that the container longitudinal axis BA corresponds approximately to the axis of rotation DA: eccentrically rotating bottles are thus not recognized as a problem and accordingly offered no solution. An adaptation of the timing is not described.
  • bodies positioned eccentrically on a turntable constantly change their distance from a stationary printing unit, even at a constant angular speed of the turntable, whereby the surface portion of the body facing and facing the printing unit undergoes a constant change in web speed.
  • This can lead to noticeable and therefore undesirable errors in the printed image to be generated as a result of changing printing resolution.
  • Similar problems can occur when the body is centered on the turntable, but its outer surface in the section to be printed is not cylindrical or cylindrical section-shaped, or the angular velocity of the turntable changes.
  • a direct measurement of the belt speed or its change is not possible with simple means.
  • the method according to the invention advantageously makes it possible to use rotating, three-dimensional bodies, e.g. Bottles, or their (outer) surfaces or portions thereof having a desired printing resolution, e.g. with a constant dpi value, to print by the ink jet method even if the web speed of the surface portion to be printed and therefore facing an ink jet printing unit changes.
  • its radius change at a preferably fixed measuring point is determined during the rotation of the body. This change in radius at the measuring point may occur e.g. from an eccentric positioning of the body, from its non-cylindrical shape or from a change in the angular velocity of the rotation of the body.
  • the pressure cycle for the ink jet nozzles according to the invention is adapted to the radius change and the concomitant change in the web speed of the (outer) surface portion to be printed at the pressure point.
  • the measuring point and the pressure point are therefore preferably chosen so that they have at least one correlation. It may, for example, the measuring point in the direction of rotation of the body lie in front of the pressure point and the spatial distance converted into a time distance and taken into account in the control of the printing unit.
  • the measuring point can also be substantially identical to the pressure point or be offset parallel to the axis of rotation (the latter preferably in the case of a non-changing in the direction of the axis of rotation of the body).
  • the determination of the radius change preferably takes place substantially immediately prior to the printing. However, according to an alternative, it may also be provided that the determination of the radius change has already been made for a period of time, e.g. a few seconds or minutes, before printing and store the result in a cam and use this when printing for the frequency correction. If the problem of radius change is essentially caused solely by the (outer) shape of the body, its shape or radius change during a complete rotation can also be permanently stored and retrieved whenever such bodies are printed.
  • a preferred development of the method according to the invention can be distinguished by the fact that the determination of the radius change ⁇ R (t) takes place as non-contact measuring with a rangefinder, in particular with a triangulation measuring device.
  • a rangefinder in particular with a triangulation measuring device.
  • Triangulation measuring devices or sensors also have the advantage that essentially all materials can be detected and that these allow very fast measurements. Alternatively, it can also be provided to use capacitive or inductive working distance sensors.
  • this approach is advantageous because the device allows the distance to the surface, so the distance D (t) to measure directly. From this distance lets calculate the radius change.
  • R 0 are calculated according to the given formula.
  • a further preferred development of the method according to the invention can be distinguished by the fact that the calculation of the correction value k (t) takes place substantially continuously. It can e.g. be provided to determine the radius change continuously, at least continuously during a complete revolution of the body (or less, if only a peripheral portion to be printed) and from the value for ⁇ R (t) the value of k (t) and from there the value of f (t) to calculate for the control. If the measuring point substantially coincides with the pressure point or the time offset .DELTA.t between measuring and printing is known, a real-time correction of the control frequency f (t) can advantageously take place with the use of fast computers and data connections, possibly with a time offset of .DELTA.t ,
  • a device for carrying out the above-mentioned inventive method and its developments is to be seen.
  • Such a device has the components necessary for carrying out the method steps according to the invention: an inkjet printing unit with control, a motor with control, a rangefinder and a computer for the calculations of the correction value.
  • FIG. 1 shows a device 1 for printing, ie for generating a printed image of rotating, three-dimensional bodies 2.
  • a bottle to be printed is shown, wherein not the complete surface 3 of the bottle, but only a section 4, for example a label or a band, to be printed.
  • the bottle is essentially rotationally symmetrical, but it is not centered on a turntable 5, that is, its axis of symmetry does not coincide with the axis of rotation A of the turntable.
  • R (t) Due to the (usually unwanted) eccentric recording on the turntable occurs during the rotation of the turntable and thus the body at a time t changing distance D (t) between the surface of the body and an ink jet printing unit 6 and their ink jet nozzles 7 arranged substantially on a straight line G and at a time-varying radius R (t).
  • R (t) is determined as the distance of the surface of the body facing the ink-jet printing unit (the location of the surface at which the ink drops 8 are to hit the surface) to the axis of rotation.
  • the axis of rotation is aligned substantially parallel to the straight line G.
  • D 0 is the substantially constant distance between the ink jet nozzles and the axis of rotation and R 0 the mean radius of the body, in the example, the substantially constant radius of the bottle, designated.
  • ⁇ R (t) denotes the change in radius between the surface of the body facing the ink-jet printing unit and the surface of an imaginary center 2 'received on the turntable, directed toward the ink-jet printing unit.
  • the distance between the surface of the imaginary body facing the ink-jet printing unit and the Ink jet printing unit is denoted by D (t) M.
  • D (t) M can also be understood as a time average of the distance D (t) changing with time t.
  • the device 1 further comprises a rangefinder 8, in particular a triangulation measuring device, with which the determination of the radius change ⁇ R (t) takes place as non-contact measuring.
  • presetting the mean radius R 0 of the body eg, if this body is non-rotationally symmetric, flattened, or irregularly shaped
  • FIG. 1 a motor 11 for driving the rotation of the body 2, that is, in the example shown, for rotationally driving the turntable 5.
  • the motor is driven at a predetermined fundamental frequency f 0 (t).
  • the predetermined angular velocity is a constant ⁇ 0
  • a rotationally symmetrical body is for example 2 with kontantem radius R 0 ⁇ rotated at a constant angular speed 0, wherein the body rotates eccentrically.
  • the ink jet nozzles 7 require a printing stroke f (t) for printing, with which the ink droplets are ejected.
  • This pressure cycle is generated by the control unit 10 as a frequency and transmitted to a pressure control unit 13 and from this to the pressure unit 6.
  • the calculation of the correction value k (t) preferably takes place essentially continuously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ink Jet (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Erzeugen eines Druckbildes auf einem rotierenden, dreidimensionalen Körper mit den Merkmalen des Oberbegriffs von Anspruch 1.The present invention relates to a method for producing a printed image on a rotating, three-dimensional body having the features of the preamble of claim 1.

Aus der US 7,955,456 B2 ist bereits das Inkjet-Bedrucken von Blisterverpackungen bekannt. Diese weisen eine im Wesentlichen zweidimensionale zu bedruckende Siegelfolie auf und werden linear gefördert. Trotz hoher Produktionsgeschwindigkeiten ist das Bedrucken an sich daher problemlos möglich. Weitaus schwieriger ist das Bedrucken von dreidimensional ausgeformten Körpern mit im Raum gekrümmten Außenoberflächen, insbesondere da diese Körper für das Bedrucken zumeist rotiert werden müssen.From the US 7,955,456 B2 is already the inkjet printing of blister packs known. These have a substantially two-dimensional to be printed sealing film and are conveyed linearly. Despite high production speeds printing is therefore easily possible. Far more difficult is the printing of three-dimensionally shaped bodies with curved outer surfaces in space, especially since these bodies must be rotated for printing in most cases.

Es ist jedoch auch bereits bekannt, rotierende, dreidimensionale Körper, z.B. Flaschen in Abfüllanlagen, mittels einer Tintenstrahl- Druckeinheit zu bedrucken und es ist dabei auch bereits das Problem erkannt worden, dass die rotierenden Körper Abweichungen von ihrer Soll-Position aufweisen können und dadurch Störungen im zu erzeugenden Druckbild hervor gerufen werden können.However, it is also already known to use rotating, three-dimensional bodies, e.g. Bottles in bottling plants to print by means of an inkjet printing unit and it is also already been recognized the problem that the rotating body may have deviations from their desired position and thereby disturbances in the printed image to be generated can be called out.

Die DE 10 2009 003 810 A1 beschreibt z.B. eine Anlage zum Bedrucken von Behältern. Es wird darin das Problem angesprochen, dass die Zentrierung der Halterung bzw. des Behälters kritisch ist für das Bedrucken bei üblichen 600 dpi und hohen Fördergeschwindigkeiten. Die Lösung des Problems besteht nun darin, dass der Druckkopf selbsttätig verstellbar ist, wobei Sensoren zum Einsatz kommen, die den Ort und die Winkellage des Behälters bestimmen und diese Werte einer Steuereinrichtung zuleiten. Eine Anpassung der Taktung für die Tintenstrahl-Druckeinheit ist jedoch nicht beschrieben.The DE 10 2009 003 810 A1 For example, describes a system for printing on containers. It addresses the problem that the centering of the holder or the container is critical for printing at conventional 600 dpi and high conveying speeds. The solution to the problem is that the print head is automatically adjustable, using sensors that determine the location and angular position of the container and send these values to a controller. An adjustment of the timing for the inkjet printing unit is not described.

Die DE 10 2009 014 663 A1 beschreibt die berührungslose (elektrooptische o. elektromagnetische) Bestimmung der Drehposition von Flaschen mittels Sensoreinheit und Messmarken. In Absatz 20 ist dabei explizit beschrieben, dass die Behälterlängsachse BA näherungsweise der Drehachse DA entspricht: exzentrisch rotierende Flaschen werden somit nicht als Problem erkannt und entsprechend auch keine Lösung angeboten. Auch eine Anpassung der Taktung ist nicht beschrieben.The DE 10 2009 014 663 A1 describes the non-contact (electro-optical or electromagnetic) determination of the rotational position of bottles by means of sensor unit and measuring marks. In paragraph 20 is explicitly described that the container longitudinal axis BA corresponds approximately to the axis of rotation DA: eccentrically rotating bottles are thus not recognized as a problem and accordingly offered no solution. An adaptation of the timing is not described.

Exzentrisch auf einem Drehteller positionierte Körper ändern jedoch, selbst bei konstanter Winkelgeschwindigkeit des Drehtellers, ständig ihren Abstand zu einer ortsfesten Druckeinheit, wodurch der der Druckeinheit zugewandte und zu bedruckende Oberflächenabschnitt des Körpers eine ständige Änderung der Bahngeschwindigkeit erfährt. Hierdurch kann es zu merklichen und daher unerwünschten Fehlern im zu erzeugenden Druckbild infolge einer sich ändernden Druckauflösung kommen. Ähnliche Probleme können auftreten, wenn der Körper zwar zentriert auf dem Drehteller aufgenommen ist, seine Außenoberfläche im zu bedruckenden Abschnitt jedoch nicht zylinderförmig bzw. zylinderabschnittförmig ist oder sich die Winkelgeschwindigkeit des Drehtellers ändert. Eine direkte Messung der Bandgeschwindigkeit bzw. deren Änderung ist jedoch nicht mit einfachen Mitteln möglich.However, bodies positioned eccentrically on a turntable constantly change their distance from a stationary printing unit, even at a constant angular speed of the turntable, whereby the surface portion of the body facing and facing the printing unit undergoes a constant change in web speed. This can lead to noticeable and therefore undesirable errors in the printed image to be generated as a result of changing printing resolution. Similar problems can occur when the body is centered on the turntable, but its outer surface in the section to be printed is not cylindrical or cylindrical section-shaped, or the angular velocity of the turntable changes. However, a direct measurement of the belt speed or its change is not possible with simple means.

Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, ein gegenüber dem Stand der Technik verbessertes Verfahren zu schaffen, welches es ermöglicht, rotierende, dreidimensionale Körper mit einer gewünschten Druckauflösung zu bedrucken, selbst wenn sich die Bahngeschwindigkeit des zu bedruckenden und daher einer Druckeinheit zugewandten Oberflächenabschnitts ändert.Against this background, it is an object of the present invention to provide a comparison with the prior art improved method, which makes it possible to print rotating, three-dimensional body with a desired print resolution, even if the web speed of the printable and therefore a printing unit facing surface portion changes.

Diese Aufgaben werden erfindungsgemäß durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den zugehörigen Unteransprüchen sowie aus der Beschreibung und den zugehörigen Zeichnungen.These objects are achieved by a method having the features of claim 1. Advantageous developments of the invention will become apparent from the accompanying dependent claims and from the description and the accompanying drawings.

Ein erfindungsgemäßes Verfahren zum Erzeugen eines Druckbildes auf einem rotierenden, dreidimensionalen Körper, wobei eine Tintenstrahl-Druckeinheit mit mehreren, im Wesentlichen auf einer Geraden angeordneten Tintenstrahldüsen zum Drucken mit einem Drucktakt vorgesehen ist, der Körper um eine zur Geraden im Wesentlichen parallelen Rotationsachse rotiert, und ein Motor zum Antreiben der Rotation des Körpers vorgesehen ist, und mit den Verfahrensschritten: Vorgeben einer Grundfrequenz f0(t) für das Ansteuern des Motors, Ansteuern des Motors mit der Grundfrequenz f0(t), und Vorgeben eines mittleren Radius R0 des Körpers, zeichnet sich durch die weiteren Verfahrensschritte aus: Bestimmen der Radiusänderung ΔR(t) des Körpers während des Rotierens des Körpers, Berechnen eines Korrekturwertes k(t) für einen Drucktakt der Druckeinheit, wobei k(t) = 1 + ΔR(t) / R0, und Ansteuern der Druckeinheit mit einer Frequenz f(t) für den Drucktakt wobei f(t) = f0(t) · k(t).An inventive method for producing a printed image on a rotating, three-dimensional body, wherein an ink jet printing unit with a plurality of ink jet nozzles arranged substantially on a straight line for printing with a pressure tact, the body rotates about a rotational axis substantially parallel to the straight line, and a motor for driving the rotation of the body is provided, and comprising the steps of: setting a fundamental frequency f 0 (t) for driving the motor, driving the motor with the fundamental frequency f 0 (t), and specifying a mean radius R 0 of the body, characterized by the further steps of: determining the radius change ΔR (t) of the body during rotating the body, calculating a correction value k (t) for a printing stroke of the printing unit, where k (t) = 1 + ΔR (t) / R 0 , and driving the printing unit at a frequency f (t) for the printing clock, where f (t) = f 0 (t) * k (t).

Das erfindungsgemäße Verfahren ermöglicht es in vorteilhafter Weise, rotierende, dreidimensionale Körper, z.B. Flaschen, bzw. deren (Außen-) Oberflächen oder Abschnitte davon mit einer gewünschten Druckauflösung, z.B. mit einem konstanten dpi-Wert, im Tintenstrahlverfahren zu bedrucken, selbst wenn sich die Bahngeschwindigkeit des zu bedruckenden und daher einer Tintenstrahl-Druckeinheit zugewandten Oberflächenabschnitts ändert. Erfindungsgemäß wird während des Rotierens des Körpers dessen Radiusänderung an einer bevorzugt festen Messstelle bestimmt. Diese Radiusänderung an der Messstelle kann sich z.B. aus einer exzentrischen Positionierung des Körpers, aus dessen nicht zylindrischer Form oder aus einer Änderung der Winkelgeschwindigkeit der Rotation des Körpers ergeben.The method according to the invention advantageously makes it possible to use rotating, three-dimensional bodies, e.g. Bottles, or their (outer) surfaces or portions thereof having a desired printing resolution, e.g. with a constant dpi value, to print by the ink jet method even if the web speed of the surface portion to be printed and therefore facing an ink jet printing unit changes. According to the invention, its radius change at a preferably fixed measuring point is determined during the rotation of the body. This change in radius at the measuring point may occur e.g. from an eccentric positioning of the body, from its non-cylindrical shape or from a change in the angular velocity of the rotation of the body.

Aus der Radiusänderung wird erfindungsgemäß ein Korrekturwert berechnet und die Druckeinheit mit einer gegenüber der Grundfrequenz korrigierten Frequenz angesteuert. Somit wird der Drucktakt für die Tintenstrahldüsen erfindungsgemäß an die Radiusänderung und die damit einhergehende Änderung der Bahngeschwindigkeit des zu bedruckenden (Außen-) Oberflächenabschnitts an der Druckstelle angepasst.From the change in radius, a correction value is calculated according to the invention and the printing unit is driven with a frequency corrected relative to the fundamental frequency. Thus, the pressure cycle for the ink jet nozzles according to the invention is adapted to the radius change and the concomitant change in the web speed of the (outer) surface portion to be printed at the pressure point.

Die Messstelle und die Druckstelle sind daher bevorzugt so gewählt, dass diese zumindest eine Korrelation aufweisen. Es kann z.B. die Messstelle in Rotationsrichtung des Körpers vor der Druckstelle liegen und die räumliche Distanz in eine zeitliche Distanz umgerechnet und bei der Ansteuerung der Druckeinheit berücksichtigt werden. Die Messstelle kann auch im Wesentlichen identisch mit der Druckstelle sein oder parallel zur Rotationsachse versetzt sein (letzteres bevorzugt im Falle eines sich in Richtung der Rotationsachse nicht ändernden Radius des Körpers).The measuring point and the pressure point are therefore preferably chosen so that they have at least one correlation. It may, for example, the measuring point in the direction of rotation of the body lie in front of the pressure point and the spatial distance converted into a time distance and taken into account in the control of the printing unit. The measuring point can also be substantially identical to the pressure point or be offset parallel to the axis of rotation (the latter preferably in the case of a non-changing in the direction of the axis of rotation of the body).

In dieser Anmeldung sind gewisse Variablen als von der Zeit t abhängig angegeben, z.B. f0(t), ΔR(t), k(t) und f(t). Alternativ dazu können diese Variablen auch als vom Winkel α der Rotation abhängig angegeben werden, wobei α = ω(t) · t gilt, mit ω(t) als Winkelgeschwindigkeit der Rotation. Bei konstanter Winkelgeschwindigkeit ω0 ist es dabei ausreichend, die Variablen für die Werte α = 0 bis 360° anzugeben oder sogar in einem engeren Winkelbereich, falls nur in diesem gedruckt werden soll.In this application, certain variables are given as a function of time t, for example f 0 (t), .DELTA.R (t), k (t) and f (t). Alternatively, these variables may also be indicated as dependent on the angle α of the rotation, where α = ω (t) · t, where ω (t) is the angular velocity of the rotation. At constant angular velocity ω 0 , it is sufficient to specify the variables for the values α = 0 to 360 ° or even in a narrower angular range, if only in this is to be printed.

Das Bestimmen der Radiusänderung erfolgt bevorzugt im Wesentlichen zeitlich unmittelbar vor dem Bedrucken. Gemäß einer Alternative kann jedoch auch vorgesehen sein, das Bestimmen der Radiusänderung bereits eine Zeitspanne, z.B. einige Sekunden oder Minuten, vor dem Bedrucken durchzuführen und das Ergebnis in einer Steuerkurve abzulegen und diese beim Bedrucken für die Frequenz-Korrektur zu nutzen. Sofern das Problem der Radiusänderung im Wesentlichen allein durch die (Außen-) Form des Körpers hervorgerufen wird, kann dessen Form bzw. Radiusänderung bei einer vollständigen Rotation auch dauerhaft gespeichert werden und immer dann abgerufen werden, wenn solche Körper bedruckt werden.The determination of the radius change preferably takes place substantially immediately prior to the printing. However, according to an alternative, it may also be provided that the determination of the radius change has already been made for a period of time, e.g. a few seconds or minutes, before printing and store the result in a cam and use this when printing for the frequency correction. If the problem of radius change is essentially caused solely by the (outer) shape of the body, its shape or radius change during a complete rotation can also be permanently stored and retrieved whenever such bodies are printed.

Eine bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass das Bestimmen der Radiusänderung ΔR(t) als berührungsloses Messen mit einem Entfernungsmesser erfolgt, insbesondere mit einem Triangulations-Messgerät. Gegenüber nicht berührungslos arbeitenden Entfernungsmessern bzw. Sensoren ergibt sich der Vorteil, dass keine störenden Einflüsse auf die zu bedruckende oder bereits bedruckte Oberfläche, z.B. durch Verformung oder Abrieb, ausgeübt werden und dadurch Fehler im Druckbild in vorteilhafter weise vermieden werden können. Triangulations-Messgeräte bzw. -sensoren haben zudem den Vorteil, dass im Wesentlichen alle Materialien erfasst werden können und dass diese sehr schnelle Messungen erlauben. Alternativ kann auch vorgesehen sein, kapazitiv oder induktive arbeitende Abstandssensoren einzusetzen.A preferred development of the method according to the invention can be distinguished by the fact that the determination of the radius change ΔR (t) takes place as non-contact measuring with a rangefinder, in particular with a triangulation measuring device. Compared with non-contact rangefinders or sensors there is the advantage that no disturbing influences on the surface to be printed or already printed, for example, by deformation or abrasion, and thus errors in the printed image can be advantageously avoided. Triangulation measuring devices or sensors also have the advantage that essentially all materials can be detected and that these allow very fast measurements. Alternatively, it can also be provided to use capacitive or inductive working distance sensors.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass mit dem Entfernungsmesser der Abstand D(t) zwischen den Tintenstrahldüsen und der Oberfläche des Körpers an der Stelle gemessen wird, an der die Tintentropfen auf die Oberfläche treffen sollen, wobei ΔR(t) = D(t)M - D(t) gilt, mit D(t)M als zeitlicher Mittelwert von D(t). Insbesondere beim Einsatz eines Triangulations-Messgeräts ist diese Vorgehensweise von Vorteil, da das Gerät die Distanz zur Oberfläche, also den Abstand D(t) direkt zu messen erlaubt. Aus diesem Abstand lässt sind die Radiusänderung berechnen.A further preferred development of the method according to the invention can be distinguished in that the distance meter measures the distance D (t) between the inkjet nozzles and the surface of the body at the point at which the ink drops are to hit the surface, where ΔR (t ) = D (t) M - D (t), with D (t) M as the time average of D (t). In particular, when using a triangulation meter, this approach is advantageous because the device allows the distance to the surface, so the distance D (t) to measure directly. From this distance lets calculate the radius change.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass für den zeitlichen Mittelwert D(t)M = D0 - R0 gilt, mit D0 als Abstand zwischen den Tintenstrahldüsen und der Rotationsachse. Sofern also D0 und R0 bekannt sind, ist die Bestimmung von D(t) und damit auch von ΔR(t) sehr einfach, beispielsweise beim Bedrucken von Flaschen mit konstantem Radius R0 im zu bedruckenden Oberflächenabschnitt und beim Positionieren dieser Flaschen auf einem Drehteller mit Rotationsachse im konstanten Abstand D0 zu den Tintenstrahldüsen.A further preferred development of the method according to the invention can be distinguished by the fact that for the time average D (t) M = D 0 -R 0 , with D 0 as the distance between the inkjet nozzles and the axis of rotation. So if D 0 and R 0 are known, the determination of D (t) and thus of ΔR (t) is very simple, for example, when printing bottles with a constant radius R 0 in the surface to be printed and positioning these bottles on a Turntable with rotation axis at a constant distance D 0 to the inkjet nozzles.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass das Vorgeben eines mittleren Radius R0 des Körpers auf dem Bestimmen von R0 = D0 - D(t)M beruht, mit D0 als Abstand zwischen den Tintenstrahldüsen und der Rotationsachse und mit D(t)M als zeitlicher Mittelwert von D(t). Sofern also z.B. der Körper eine unregelmäßige (Außen-) Form aufweist, im Gegensatz z.B. zu einer Flasche mit bekanntem und konstantem R0, kann in vorteilhafter Weise über eine Mittelwertbildung über einen Zeitraum, der einer Drehung um 360° entspricht (oder weniger, wenn nur ein Umfangsabschnitt bedruckt werden soll), R0 nach der angegebenen Formel berechnet werden.A further preferred development of the method according to the invention can be characterized in that the specification of a mean radius R 0 of the body is based on the determination of R 0 = D 0 -D (t) M , with D 0 as the distance between the inkjet nozzles and the axis of rotation and with D (t) M as the time average of D (t). Thus, for example, if the body has an irregular (outer) shape, in contrast, for example, to a bottle of known and constant R 0 , can advantageously by averaging over a period corresponding to a rotation of 360 ° (or less, if only one peripheral section is to be printed), R 0 are calculated according to the given formula.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich durch den weiteren Verfahrensschritt auszeichnen: Vorgeben einer Winkelgeschwindigkeit ω(t) der Rotation des Körpers, wobei für die Grundfrequenz f0(t) = ω(t) · R0 /a gilt, mit a als Auflösung des Druckbildes. Aufgrund der Proportionalität zwischen der Winkelgeschwindigkeit und der Grundfrequenz, kann letztere bei Kenntnis der beim Drucken zu erzielenden Auflösung (z.B. als kleinster gewünschter Abstand der Druckpunkte in Umfangsrichtung) auf einfache Weise berechnet werden.A further preferred development of the method according to the invention can be characterized by the further step of: setting an angular velocity ω (t) of the rotation of the body, wherein for the fundamental frequency f 0 (t) = ω (t) · R 0 / a valid with a as a resolution of the printed image. Due to the proportionality between the Angular velocity and the fundamental frequency, the latter can be easily calculated with knowledge of the resolution to be achieved during printing (eg as the smallest desired distance of the pressure points in the circumferential direction).

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass die Winkelgeschwindigkeit eine Konstante ω0 ist und somit auch die Grundfrequenz eine Konstante fo ist, wobei fo = ω0 · R0 / a.A further preferred embodiment of the method according to the invention can be characterized in that the angular velocity is a constant ω 0 and thus also the fundamental frequency is a constant fo, where fo = ω 0 · R 0 / a.

Eine weitere bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens kann sich dadurch auszeichnen, dass das Berechnen des Korrekturwertes k(t) im Wesentlichen kontinuierlich erfolgt. Es kann z.B. vorgesehen sein, die Radiusänderung kontinuierlich zu bestimmen, zumindest kontinuierlich während einer vollständigen Umdrehung des Körpers (oder weniger, wenn nur ein Umfangsabschnitt bedruckt werden soll) und aus dem Wert für ΔR(t) den Wert von k(t) und daraus den Wert von f(t) für die Ansteuerung zu berechnen. Wenn die Messstelle mit der Druckstelle im Wesentlichen zusammenfällt oder der zeitliche Versatz Δt zwischen Messen und Drucken bekannt ist, kann in vorteilhafter Weise bei Einsatz schneller Rechner und Datenverbindungen im Wesentlichen eine Echtzeitkorrektur der Steuerfrequenz f(t) erfolgen, ggf. mit einem Zeitversatz um Δt.A further preferred development of the method according to the invention can be distinguished by the fact that the calculation of the correction value k (t) takes place substantially continuously. It can e.g. be provided to determine the radius change continuously, at least continuously during a complete revolution of the body (or less, if only a peripheral portion to be printed) and from the value for ΔR (t) the value of k (t) and from there the value of f (t) to calculate for the control. If the measuring point substantially coincides with the pressure point or the time offset .DELTA.t between measuring and printing is known, a real-time correction of the control frequency f (t) can advantageously take place with the use of fast computers and data connections, possibly with a time offset of .DELTA.t ,

Im Rahmen der Erfindung ist auch eine Vorrichtung zur Durchführung des oben genannten erfindungsgemäßen Verfahrens und dessen Weiterbildungen zu sehen. Eine solche Vorrichtung weißt die für die Durchführung der erfindungsgemäßen Verfahrensschritte erforderlichen Komponenten auf: eine Tintenstrahl-Druckeinheit mit Steuerung, einen Motor mit Steuerung, einen Entfernungsmesser und einen Rechner für die Berechnungen des Korrekturwertes.In the context of the invention, a device for carrying out the above-mentioned inventive method and its developments is to be seen. Such a device has the components necessary for carrying out the method steps according to the invention: an inkjet printing unit with control, a motor with control, a rangefinder and a computer for the calculations of the correction value.

Die beschriebene Erfindung und die beschriebenen, vorteilhaften Weiterbildungen der Erfindung stellen auch in Kombination miteinander vorteilhafte Weiterbildungen der Erfindung dar.The described invention and the described, advantageous developments of the invention are also in combination with each other advantageous developments of the invention.

Die Erfindung als solche sowie konstruktiv und/oder funktionell vorteilhafte Weiterbildungen der Erfindung werden nachfolgend unter Bezug auf die zugehörige Zeichnung anhand eines bevorzugten Ausführungsbeispiels näher beschrieben.The invention as such and structurally and / or functionally advantageous developments of the invention will be described below with reference to the accompanying drawings with reference to a preferred embodiment.

Die Zeichnung zeigt:

Fig. 1
Eine schematische Darstellung eines bevorzugten Ausführungsbeispiels des erfindungsgemäßen Verfahrens anhand der Abläufe beim Betrieb einer Vorrichtung zum Bedrucken von rotierenden Körpern.
The drawing shows:
Fig. 1
A schematic representation of a preferred embodiment of the method according to the invention with reference to the procedures during operation of a device for printing of rotating bodies.

Figur 1 zeigt eine Vorrichtung 1 zum Bedrucken, d.h. zum Erzeugen eines Druckbildes, von rotierenden, dreidimensionalen Körpern 2. Beispielhaft ist eine zu bedruckende Flasche gezeigt, wobei nicht die komplette Oberfläche 3 der Flasche, sondern nur ein Abschnitt 4, z.B. ein Etikett oder eine Banderole, bedruckt werden soll. Die Flasche ist im Wesentlichen rotationssymmetrisch, jedoch ist sie nicht zentriert auf einem Drehteller 5 aufgenommen, d.h. ihre Symmetrieachse fällt nicht mit der Rotationsachse A des Drehtellers zusammen. Durch die (in der Regel unerwünschte) exzentrische Aufnahme auf dem Drehteller kommt es während der Rotation des Drehtellers und damit des Körpers zu einem sich mit der Zeit t ändernden Abstand D(t) zwischen der Oberfläche des Körpers und einer Tintenstrahl-Druckeinheit 6 bzw. deren im Wesentlichen auf einer Geraden G angeordneten Tintenstrahldüsen 7 und zu einem sich zeitlich ändernden Radius R(t). R(t) wird dabei als Abstand der zur Tintenstrahl-Druckeinheit gerichteten Oberfläche des Körpers (die Stelle der Oberfläche, an der die Tintentropfen 8 auf die Oberfläche treffen sollen) zur Rotationsachse bestimmt. Die Rotationsachse ist im Wesentlichen parallel zur Geraden G ausgerichtet. Mit D0 ist der im Wesentlichen konstante Abstand zwischen den Tintenstrahldüsen und der Rotationsachse und mit R0 der mittlere Radius des Körpers, im Beispiel der im Wesentlichen konstante Radius der Flasche, bezeichnet. ΔR(t) bezeichnet die Radiusänderung zwischen der zur Tintenstrahl-Druckeinheit gerichteten Oberfläche des Körpers und der zur Tintenstrahl-Druckeinheit gerichteten Oberfläche eines imaginären, zentriert auf dem Drehteller aufgenommenen Körpers 2'. Der Abstand zwischen der zur Tintenstrahl-Druckeinheit gerichteten Oberfläche des imaginären Körpers und der Tintenstrahl-Druckeinheit wird mit D(t)M bezeichnet. D(t)M kann auch als ein zeitlicher Mittelwert des sich mit der Zeit t ändernden Abstands D(t) aufgefasst werden. FIG. 1 shows a device 1 for printing, ie for generating a printed image of rotating, three-dimensional bodies 2. By way of example, a bottle to be printed is shown, wherein not the complete surface 3 of the bottle, but only a section 4, for example a label or a band, to be printed. The bottle is essentially rotationally symmetrical, but it is not centered on a turntable 5, that is, its axis of symmetry does not coincide with the axis of rotation A of the turntable. Due to the (usually unwanted) eccentric recording on the turntable occurs during the rotation of the turntable and thus the body at a time t changing distance D (t) between the surface of the body and an ink jet printing unit 6 and their ink jet nozzles 7 arranged substantially on a straight line G and at a time-varying radius R (t). R (t) is determined as the distance of the surface of the body facing the ink-jet printing unit (the location of the surface at which the ink drops 8 are to hit the surface) to the axis of rotation. The axis of rotation is aligned substantially parallel to the straight line G. D 0 is the substantially constant distance between the ink jet nozzles and the axis of rotation and R 0 the mean radius of the body, in the example, the substantially constant radius of the bottle, designated. ΔR (t) denotes the change in radius between the surface of the body facing the ink-jet printing unit and the surface of an imaginary center 2 'received on the turntable, directed toward the ink-jet printing unit. The distance between the surface of the imaginary body facing the ink-jet printing unit and the Ink jet printing unit is denoted by D (t) M. D (t) M can also be understood as a time average of the distance D (t) changing with time t.

Die Vorrichtung 1 weist ferner einen Entfernungsmesser 8, insbesondere ein Triangulations-Messgerät, auf, mit dem das Bestimmen der Radiusänderung ΔR(t) als berührungsloses Messen erfolgt. Der Entfernungsmesser misst dabei zunächst den Wert von D(t). Aus diesem Wert und seinem Mittelwert D(t)M kann ΔR(t) nach der Formel ΔR(t) = D(t)M - D(t) berechnet werden. Diese Berechnung kann in einer Steuereinheit 10 erfolgen, der das Messergebnis D(t) zur Verfügung gestellt wird. Im einfachen Fall des Beispiels der Flasche mit konstantem und bekanntem Radius R0 kann D(t)M einfach nach der Formel D(t)M = D0 - R0 bestimmt werden, woraus sich ΔR(t) = D0 - R0 - D(t) ergibt. Andererseits kann das Vorgeben des mittleren Radius R0 des Körpers (z.B. wenn dieser Körper nicht-rotationssymmetrisch, abgeflacht oder unregelmäßig geformt ist) auf dem Bestimmen von R0 = D0 - D(t)M beruhen.The device 1 further comprises a rangefinder 8, in particular a triangulation measuring device, with which the determination of the radius change ΔR (t) takes place as non-contact measuring. The rangefinder first measures the value of D (t). From this value and its mean value D (t) M , ΔR (t) can be calculated according to the formula ΔR (t) = D (t) M -D (t). This calculation can be carried out in a control unit 10, to which the measurement result D (t) is made available. In the simple case of the example of the bottle of constant and known radius R 0 , D (t) M can simply be determined according to the formula D (t) M = D 0 -R 0 , from which ΔR (t) = D 0 -R 0 - D (t) yields. On the other hand, presetting the mean radius R 0 of the body (eg, if this body is non-rotationally symmetric, flattened, or irregularly shaped) may be based on determining R 0 = D 0 -D (t) M.

Weiterhin zeigt Figur 1 einen Motor 11 zum Antreiben der Rotation des Körpers 2, d.h. im gezeigten Beispiel zum rotativen Antreiben des Drehtellers 5. Der Motor wird mit einer vorgegebenen Grundfrequenz f0(t) angesteuert. Zum Beispiel kann eine Winkelgeschwindigkeit co(t) der Rotation des Körpers von der Steuereinheit 10 vorgegeben und einer Motorsteuereinheit 12 und von dieser dem Motor übergeben werden, wobei für die Grundfrequenz f0(t) = ω(t) · R0 / a gilt, mit a als Auflösung des Druckbildes. Sofern die vorgegebene Winkelgeschwindigkeit eine Konstante ω0 ist, ist auch die Grundfrequenz eine Konstante fo, wobei fo = ω0 · R0 / a gilt. Im einfachen Fall wird z.B. ein rotationssymmetrischer Körper 2 mit kontantem Radius R0 mit einer konstanten Winkelgeschwindigkeit ω0 gedreht, wobei der Körper exzentrisch rotiert.Further shows FIG. 1 a motor 11 for driving the rotation of the body 2, that is, in the example shown, for rotationally driving the turntable 5. The motor is driven at a predetermined fundamental frequency f 0 (t). For example, an angular velocity co (t) of the rotation of the body may be predetermined by the control unit 10 and provided to and from the motor 12, and for the fundamental frequency f 0 (t) = ω (t) * R 0 / a , with a as the resolution of the printed image. If the predetermined angular velocity is a constant ω 0 , the fundamental frequency is also a constant fo, where fo = ω 0 · R 0 / a. In the simple case, a rotationally symmetrical body is for example 2 with kontantem radius R 0 ω rotated at a constant angular speed 0, wherein the body rotates eccentrically.

Die Tintenstrahldüsen 7 benötigen zum Drucken einen Drucktakt f(t), mit welchem die Tintentropfen ausgestoßen werden. Dieser Drucktakt wird von der Steuereinheit 10 als eine Frequenz erzeugt und einer Drucksteuereinheit 13 und von dieser der Druckeinheit 6 übermittelt. Das Ansteuern der Druckeinheit mit einer Frequenz f(t) für den Drucktakt erfolgt erfindungsgemäß nach der Formel f(t) = f0(t) · k(t), wobei k(t) ein Korrekturwert gegenüber der Frequenz, mit der der Motor 11 angesteuert wird, ist. Das Berechnen dieses Korrekturwertes k(t) für den Drucktakt der Druckeinheit erfolgt erfindungsgemäß nach der Formel k(t) = 1 + ΔR(t) / R0. Folgendes Beispiel macht das zugrunde liegende Prinzip deutlich: Kommt der Körper 2 der Druckeinheit 6 mit seiner Oberfläche 3, z.B. aufgrund seiner exzentrischen Positionierung, während der Rotation näher, so erhöht sich die Bahngeschwindigkeit der Oberfläche an der Stelle, an der die Tintentropfen 8 auftreffen sollen, da diese Stellen nun einen größeren Abstand (Radius R(t)) zur Rotationsachse A aufweisen. Daher müssen die Tintentropfen, um eine vorgegebene Auflösung a beizubehalten, mit höherer Frequenz ausgestoßen werden. Entfernt sich die Oberfläche, so verringert sich die Bahngeschwindigkeit und die Frequenz muss entsprechend gesenkt werden.The ink jet nozzles 7 require a printing stroke f (t) for printing, with which the ink droplets are ejected. This pressure cycle is generated by the control unit 10 as a frequency and transmitted to a pressure control unit 13 and from this to the pressure unit 6. The control of the pressure unit with a frequency f (t) for the pressure cycle takes place according to the invention according to the formula f (t) = f 0 (t) · k (t), where k (t) is a correction value with respect to the frequency with which the motor 11 is controlled is. Calculating this Correction value k (t) for the pressure cycle of the pressure unit takes place according to the invention according to the formula k (t) = 1 + ΔR (t) / R 0 . The following example clarifies the underlying principle: If the body 2 of the printing unit 6 comes closer with its surface 3, eg because of its eccentric positioning, during the rotation, the web speed of the surface increases at the point where the ink drops 8 are to strike because these points now have a greater distance (radius R (t)) to the axis of rotation A. Therefore, to maintain a given resolution a, the ink drops must be ejected at a higher frequency. If the surface is removed, the web speed decreases and the frequency must be lowered accordingly.

Das Berechnen des Korrekturwertes k(t) erfolgt bevorzugt im Wesentlichen kontinuierlich. Hierzu wird kontinuierlich (oder quasikontinuierlich bzw. getaktet mit einer Taktfrequenz in der Größenordnung der Druckfrequenz oder höher) mit dem Entfernungsmesser 9 der Abstand D(t) gemessen und dieser Wert in der Steuereinheit 10 für die Berechnen des Korrekturwertes k(t) und für die Ansteuerung der Druckeinheit 9 mit dem Drucktakt f(t) = f0(t) · k(t) verwendet.The calculation of the correction value k (t) preferably takes place essentially continuously. For this purpose, the distance D (t) is measured continuously (or quasi-continuously or clocked with a clock frequency on the order of the printing frequency or higher) with the rangefinder 9 and this value in the control unit 10 for calculating the correction value k (t) and for the Control of the printing unit 9 with the pressure clock f (t) = f 0 (t) · k (t) used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Vorrichtungcontraption
22
Körperbody
2'2 '
imaginärer Körperimaginary body
33
Oberflächesurface
44
Abschnittsection
55
Drehtellerturntable
66
Tintenstrahl-DruckeinheitInkjet printing unit
77
Tintenstrahldüseninkjet nozzles
88th
Tintentropfenink drops
99
Entfernungsmesserrangefinder
1010
Steuereinheitcontrol unit
1111
Motorengine
1212
MotorsteuereinheitEngine control unit
1313
DrucksteuereinheitPressure control unit
AA
Rotationsachseaxis of rotation
GG
GeradeJust
D(t)D (t)
Abstanddistance
D(t)M D (t) M
mittlerer Abstandaverage distance
D0 D 0
Abstanddistance
R(t)R (t)
Radiusradius
ΔR(t).DELTA.R (t)
Radiusänderungradius change
R0 R 0
mittlerer Radiusaverage radius

Claims (8)

  1. Method for creating a printed image on a rotating, three-dimensional body, the method wherein an inkjet printing unit (6) having a plurality of inkjet nozzles disposed substantially along a straight line (6) for printing at a printing clock rate is provided, the body is rotated about an axis of rotation (A) substantially parallel to the straight line (G), and a motor (11) is provided to drive the rotation of the body, comprising the steps of
    prescribing a fundamental frequency f0(t) for activation of the motor (11), activating the motor (11) with the fundamental frequency f0(t) and
    prescribing an average radius R0 of the body (2),
    characterized by the further steps of
    determining the change in radius ΔR(t) of the body (2) during rotation of the body (2)
    calculating a correction value k(t) for a printing clock rate of the printing unit (6) where k(t) = 1 + ΔR(t) / R0, and
    activating the printing unit (t) with a frequency f(t) for the printing clock rate, where f t = f 0 t × k t .
    Figure imgb0002
  2. Method according to claim 1
    characterized in
    that the step of determining the change in radius ΔR(t) is a contactless measurement by means of a distance meter (9), in particular a triangulation measuring device.
  3. Method according to claim 2,
    characterized in
    that with the distance meter (9), a distance D(t) between the inkjet nozzles (7) and the surface (3) of the body (2) is measured at a point at which the drops of ink are intended to impinge on the surface, where ΔR(t) = D(t)M - D(t) and D(t)M is an average value over time of D(t).
  4. Method according to claim 3,
    characterized in
    that D(t)M = D0 - R0 applies for the average value over time, where D0 is a distance between the inkjet nozzles (7) and the axis of rotation (A).
  5. Method according to any one of the preceding claims,
    characterized in
    that the step of prescribing the average radius R0 of the body (2) is based on a determination of R0 = D0 - D(t)M, where D0 is a distance between the inkjet nozzles (7) and the axis of rotation (A) and D(t)M is an average value over time of D(t).
  6. Method according to any one of the preceding claims,
    characterized by
    the further step of prescribing an angular velocity ω(t) of the rotation of the body (2), where f0(t) = ω(t) × R0 / a applies for the fundamental frequency and a is a resolution of the printed image.
  7. Method according to claim 6,
    characterized in
    that the angular velocity is a constant ω0, and consequently the fundamental frequency f0 is also a constant, where f0 = ω0 × R0/a.
  8. Method according to any one of the preceding claims,
    characterized in
    that the step of calculating the correction value k(t) is carried out substantially continuously.
EP13195592.4A 2013-01-18 2013-12-04 Method for the generation of a printed image on a rotating, three-dimensional body Active EP2756956B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013000888.3A DE102013000888A1 (en) 2013-01-18 2013-01-18 Method for producing a printed image on a rotating, three-dimensional body

Publications (2)

Publication Number Publication Date
EP2756956A1 EP2756956A1 (en) 2014-07-23
EP2756956B1 true EP2756956B1 (en) 2015-10-28

Family

ID=49759030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13195592.4A Active EP2756956B1 (en) 2013-01-18 2013-12-04 Method for the generation of a printed image on a rotating, three-dimensional body

Country Status (5)

Country Link
US (1) US8974015B2 (en)
EP (1) EP2756956B1 (en)
JP (1) JP6226754B2 (en)
CN (1) CN103935136B (en)
DE (1) DE102013000888A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011113150A1 (en) * 2011-09-14 2013-03-14 Khs Gmbh Method and device for treating packaging by applying equipment
EP3166774B1 (en) 2014-07-13 2019-05-22 Stratasys Ltd. Method and system for rotational 3d printing
DE102014225256A1 (en) * 2014-12-09 2016-06-09 Krones Ag Method and apparatus for ink jet printing on containers
JP6596929B2 (en) * 2015-05-28 2019-10-30 ブラザー工業株式会社 Solid object coloring device
KR102353098B1 (en) 2015-07-13 2022-01-19 스트라타시스 엘티디. Operation of print nozzles in additive manufacturing and apparatus for cleaning print nozzles
JP6910076B2 (en) * 2016-05-30 2021-07-28 ランダ ラブズ (2012) リミテッド A device that prints on a conical object
FR3080998B1 (en) * 2018-05-14 2020-04-24 Reydel Automotive B.V. PROCESS FOR SURFACE TREATMENT OF A PART AND ASSOCIATED INSTALLATION
CN109291660B (en) * 2018-10-23 2019-10-15 马鞍山市博浪热能科技有限公司 Ring-pull can production printing mechanism based on digital printing
CN109572216B (en) * 2018-12-24 2020-01-03 北京美科艺数码科技发展有限公司 Printing method of ink-jet printer
US10710378B1 (en) 2019-04-08 2020-07-14 LSINC Corporation Printing system for applying images over a contoured axially symmetric object
CN114683710B (en) * 2020-12-25 2023-08-15 森大(深圳)技术有限公司 Cylindrical surface printing control method, device, control panel, printer and medium
CN114953733B (en) * 2021-02-25 2024-03-22 深圳市汉森软件股份有限公司 Rotator surface printing method, rotator surface printing device, rotator surface printing equipment and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043740A (en) * 1989-12-14 1991-08-27 Xerox Corporation Use of sequential firing to compensate for drop misplacement due to curved platen
JPH06340078A (en) * 1993-06-01 1994-12-13 Canon Inc Ink jet recording device
EP0931649A3 (en) * 1998-01-27 2000-04-26 Eastman Kodak Company Apparatus and method for making a contoured surface having complex topology
JP2000006493A (en) * 1998-06-29 2000-01-11 Ikegami Tsushinki Co Ltd 3-d printer
JP2001347656A (en) * 2000-06-08 2001-12-18 Minolta Co Ltd Three-dimensional coloring apparatus
AU2003207963A1 (en) * 2002-08-19 2004-03-03 Creo Il. Ltd. Continuous flow inkjet utilized for 3d curved surface printing
US7380911B2 (en) * 2004-05-10 2008-06-03 Eastman Kodak Company Jet printer with enhanced print drop delivery
JP2007001164A (en) * 2005-06-24 2007-01-11 Mimaki Engineering Co Ltd Inkjet printer for solid medium printing and printing method using the same
JP4923714B2 (en) * 2006-05-09 2012-04-25 富士ゼロックス株式会社 Image recording device
CN100418781C (en) * 2006-05-26 2008-09-17 杨光 Probe rod type marking machine
JP2009214397A (en) * 2008-03-10 2009-09-24 Ricoh Co Ltd Image formation device
DE102009012817A1 (en) 2008-04-17 2009-10-22 Heidelberger Druckmaschinen Ag Method for printing a blister foil web in a packaging machine
US8752546B2 (en) 2008-04-23 2014-06-17 General Electric Company System and method for mobilizing occlusions from a breathing tube
JP4591544B2 (en) * 2008-05-21 2010-12-01 富士ゼロックス株式会社 Correction information creating apparatus, image forming apparatus, and program
DE102008051791A1 (en) * 2008-10-17 2010-04-22 Khs Ag Method and device for providing containers
DE102009013477B4 (en) * 2009-03-19 2012-01-12 Khs Gmbh Printing device for printing on bottles or similar containers
DE102009014663B4 (en) 2009-03-27 2013-03-14 Khs Gmbh Device and method for detecting the rotational position of at least one intended for receiving a container rotating device
DE102009033810A1 (en) * 2009-07-18 2011-01-27 Till, Volker, Dipl.-Ing. Plant for printing on containers
CN202029505U (en) * 2011-03-23 2011-11-09 曾岐松 Vertical automatic thermoprinting machine for bottles

Also Published As

Publication number Publication date
EP2756956A1 (en) 2014-07-23
CN103935136A (en) 2014-07-23
CN103935136B (en) 2017-01-18
JP2014136217A (en) 2014-07-28
JP6226754B2 (en) 2017-11-08
US20140204135A1 (en) 2014-07-24
US8974015B2 (en) 2015-03-10
DE102013000888A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
EP2756956B1 (en) Method for the generation of a printed image on a rotating, three-dimensional body
DE102009014663B4 (en) Device and method for detecting the rotational position of at least one intended for receiving a container rotating device
EP3041661B1 (en) Device for adjustment of components of a rotary machine
DE4338743C2 (en) Method and device for operating an ultrasonic sensor
EP3040205B1 (en) Method and device for ink-jet printing on containers
DE102009012817A1 (en) Method for printing a blister foil web in a packaging machine
EP2349850A1 (en) Method and device for equipping containers
DE102004025102A1 (en) Device and method for determining an irregularity of a tire / wheel rim arrangement
EP2257490B1 (en) Method for operating a measuring device disposed on a rotating carousel filling machine and apparatus therefor
EP3426495B1 (en) Device for printing closures of closed containers
DE102009020936A1 (en) Method and device for aligning the rotational position of containers, in particular bottles
DE4244276A1 (en) Arrangement for measuring the position of a sheet edge on the surface of a rotating cylinder
DE102013206989A1 (en) Slip control for container treatment devices
DE19612797C2 (en) Dosing system
EP2054232A1 (en) Method for circumferentially printing containers
EP3245475A1 (en) Measuring system and method for calibrating printing stations
DE102015010953A1 (en) Device for measuring the geometry of a wheel axle of a motor vehicle
EP3468903B1 (en) Container-handling installation and method for detecting running characteristics of a roller on a lift curve of such a container-handling installation
EP3670431B1 (en) Device for filling containers and method for operating said device
EP0792059A1 (en) Method and apparatus for fabricating a stencil printing sheet
WO2008145408A1 (en) Method of, and apparatus for, positioning containers
EP3043995B1 (en) Method for the control of the rotational speed for a drive device of a printing roll
DE19906343A1 (en) Cyclic feed device for printed product in printing machine
EP2688747B1 (en) Device for applying at least one medium to at least one substrate and method for reproducibly establishing a rotational angle position of at least one first cylinder of a device
DE102017112198A1 (en) Method and device for producing a printed can lid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 3/407 20060101AFI20150508BHEP

Ipc: B41J 11/00 20060101ALI20150508BHEP

INTG Intention to grant announced

Effective date: 20150527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 757710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001413

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151204

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001413

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 757710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231227

Year of fee payment: 11

Ref country code: FR

Payment date: 20231220

Year of fee payment: 11

Ref country code: DE

Payment date: 20231231

Year of fee payment: 11