EP2754733A1 - Schutzschicht gegen Korrosion und Erosion - Google Patents

Schutzschicht gegen Korrosion und Erosion Download PDF

Info

Publication number
EP2754733A1
EP2754733A1 EP13151157.8A EP13151157A EP2754733A1 EP 2754733 A1 EP2754733 A1 EP 2754733A1 EP 13151157 A EP13151157 A EP 13151157A EP 2754733 A1 EP2754733 A1 EP 2754733A1
Authority
EP
European Patent Office
Prior art keywords
layer
chromium
protective layer
substrate
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13151157.8A
Other languages
English (en)
French (fr)
Inventor
Michael Annen
Jochen Barnikel
Arturo Flores Renteria
Andrei Ghicov
Torsten Neddemeyer
Friedhelm Schmitz
Dirk Wistuba
Bernd Van Den Toorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13151157.8A priority Critical patent/EP2754733A1/de
Publication of EP2754733A1 publication Critical patent/EP2754733A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Definitions

  • the invention relates to a protective layer against corrosion and erosion of components, which are flowed around by a fluid.
  • compressor blades of gas turbines are known which are to be protected against erosion and corrosion.
  • FIG. 1 an inventive layer system 1 is shown schematically.
  • the layer system 1 in particular for a compressor blade, in particular for a gas turbine 100 (FIG. Fig. 2 ), has a substrate 4.
  • an at least two-layer 13 is present, which is in particular only two layers.
  • the substrate 4 preferably has a 6% to 18% chromium-containing steel, in particular 12% to 16% chromium steel.
  • the underlying layer 7, preferably directly on the substrate 4, serves for corrosion protection, with the outermost layer 10, preferably directly on the underlying layer 7, serving for erosion protection.
  • the cathodic corrosion protection is carried out by elemental aluminum (Al), zinc (Zn), magnesium (Mg) and / or alloys (Al-Zn, Al-Mg, Zn-Mg, Al-Zn-Mg) thereof.
  • the outermost layer 10 is a hard layer, in particular a metal nitride layer, very particularly CrN, CrAlN (chromium nitride or chromium aluminum nitride layer), TiN and / or TiAlN.
  • a metal nitride layer very particularly CrN, CrAlN (chromium nitride or chromium aluminum nitride layer), TiN and / or TiAlN.
  • both the lower layer 7 and the outer erosion layer 13 are applied in a coating process, preferably by PVD or sputtering, very particularly by PVD.
  • PVD coating is that the roughness of these layers is known to be very good, which provides further advantages from an aerodynamic point of view.
  • the layer 13 has a layer thickness of 10 .mu.m to 50 .mu.m.
  • the underlying layer 7 preferably has a thickness of 1 ⁇ m-25 ⁇ m, the outer layer 10 has a thickness of 1 ⁇ m-25 ⁇ m.
  • the soft bottom layer 7 absorbs the impact energy of the particles, whereby the erosion resistance of the cover layer becomes even higher, and the hard cover layer 10 has increased erosion resistance.
  • FIG. 2 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earths or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earths or hafnium.
  • Such alloys are known from the EP 0 486 489 B1 . EP 0 786 017 B1 . EP 0 412 397 B1 or EP 1 306 454 A1 ,
  • MCrAlX may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner casing 138 of the turbine 108 and a vane head opposite the vane root.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Abstract

Durch die Verwendung einer weichen Korrosionsschutzschicht in einer äußeren harten Erosionsschutzschicht wird eine verbesserte Korrosion und Erosionsbeständigkeit erreicht.

Description

  • Die Erfindung betrifft eine Schutzschicht gegen Korrosion und Erosion von Bauteilen, die von einem Fluid umströmt werden.
  • Als ein Anwendungsbeispiel von Schutzschichten gegen Korrosion und Erosion sind Verdichterschaufeln von Gasturbinen bekannt, die gegen Erosionen und Korrosion geschützt werden sollen.
  • Bekannt sind Systeme, bei denen Lacke mit aluminiumhaltigen Partikeln aufgetragen werden, wobei der Lack zum Erosionsschutz beiträgt und die Aluminiumpartikel im Lack zum Korrosionsschutz beitragen, indem sie als Opferanode wirken.
  • Es ist Aufgabe der Erfindung ein Schutzschichtsystem vorzuschlagen, das verbesserte Eigenschaften gegenüber Korrosion und Erosion aufweist.
  • Die Aufgabe wird gelöst durch eine Schutzschicht gemäß Anspruch 1.
  • In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.
  • Es zeigen:
  • Figur 1
    ein erfindungsgemäßes Schichtsystem,
    Figur 2
    eine Gasturbine.
  • Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar. In Figur 1 ist ein erfindungsgemäßes Schichtsystem 1 schematisch dargestellt.
  • Das Schichtsystem 1, insbesondere für eine Verdichterschaufel, insbesondere für eine Gasturbine 100 (Fig. 2), weist ein Substrat 4 auf.
  • Auf dem Substrat 4 ist eine zumindest zweilagige Schicht 13 vorhanden, die insbesondere nur zweilagig ist.
  • Das Substrat 4 weist vorzugsweise einen 6% bis 18% chromhaltigen Stahl, insbesondere 12% bis 16% Chromstahl auf.
  • Die untenliegende Schicht 7, vorzugsweise direkt auf dem Substrat 4, dient zum Korrosionsschutz, wobei die äußerste Schicht 10, vorzugsweise direkt auf der untenliegenden Schicht 7, zum Erosionsschutz dient.
  • Der kathodische Korrosionsschutz erfolgt durch elementares Aluminium (Al), Zink (Zn), Magnesium (Mg) und/oder Legierungen (Al-Zn, Al-Mg, Zn-Mg, Al-Zn-Mg) daraus.
  • Die äußerste Schicht 10 ist eine Hartschicht, insbesondere eine Metallnitridschicht, ganz insbesondere CrN, CrAlN (Chromnitrid- oder Chromaluminiumnitridschicht), TiN und/oder TiAlN.
  • Vorteilhafterweise werden sowohl die untere Schicht 7 als auch die äußere Erosionsschicht 13 in einem Beschichtungsprozess aufgebracht, vorzugsweise durch PVD oder Sputtering, ganz insbesondere durch PVD.
  • Einen weiteren Vorteil stellt die PVD-Beschichtung dadurch dar, dass die Rauheit dieser Schichten bekannterweise sehr gut ist, was aus aerodynamischer Sicht weitere Vorteile erbringt.
  • Die Schicht 13 weist eine Schichtdicke von 10µm bis 50µm auf. Die untenliegende Schicht 7 weist vorzugsweise eine Dicke von 1µm - 25 µm auf, die äußere Schicht 10 eine Dicke von 1µm -25 µm.
  • Bei einer Gasturbinenverdichterschaufel erfolgt keine Wärmebehandlung der Schicht 13 und sie ist direkt nach dem Aufbringen einsetzbar.
  • Die weiche untere Schicht 7 absorbiert die Aufprallenergie der Partikel, wodurch die Erosionsbeständigkeit der Deckschicht noch höher wird und die harte Deckschicht 10 besitzt eine erhöhte Erosionsbeständigkeit.
  • Die Figur 2 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
  • Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
  • Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
  • Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Turbine 108.
  • Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
  • Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
  • An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
  • Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
  • Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch belastet.
  • Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
  • Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
  • Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
  • Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1 , EP 1 306 454 , EP 1 319 729 A1 , WO 99/67435 oder WO 00/44949 bekannt.
  • Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium). Solche Legierungen sind bekannt aus der EP 0 486 489 B1 , EP 0 786 017 B1 , EP 0 412 397 B1 oder EP 1 306 454 A1 .
  • Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
  • Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
  • Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.

Claims (6)

  1. Schichtsystem,
    zumindest aufweisend:
    ein Substrat (4),
    insbesondere aus einem chromhaltigen Stahl,
    ganz insbesondere aus einem 6% bis 18% chromhaltigen Stahl,
    eine kathodisch-wirksame Schutzschicht (7) aus einer Metalllegierung auf dem Substrat (4),
    insbesondere direkt auf dem Substrat (4) und
    eine äußere,
    insbesondere äußerste,
    harte Erosionsschutzschicht (10).
  2. Schutzschicht nach Anspruch 1,
    bei dem die kathodisch-wirksame Korrosionsschutzschicht (7) ein elementares Metall oder
    eine Legierung aus
    Aluminium (Al) und/oder Zink (Zn) und/oder Magnesium (Mg) aufweist,
    insbesondere daraus besteht.
  3. Schutzschicht nach einem oder beiden der Ansprüche 1 oder 2,
    bei dem die Erosionsschutzschicht (10) eine Hartstoffschicht,
    insbesondere eine Metallnitridverbindung,
    ganz insbesondere Chromnitrid (CrN), Chromaluminiumnitrid (CrAlN), Titannitrid (TiN) und/oder Titanaluminiumnitrid (TiAlN) aufweist,
    insbesondere daraus besteht.
  4. Schutzschicht nach einem oder mehreren der vorherigen Ansprüche 1 bis 3,
    bei dem die untere Schicht (7) und die äußere Schicht (10) durch dieselben Beschichtungsverfahren,
    insbesondere PVD oder Sputtering,
    aufgebracht wurden.
  5. Schutzschicht nach einem oder mehreren der vorherigen Ansprüche,
    die mehrlagig (7, 10) ausgebildet ist,
    insbesondere zur zweilagig.
  6. Schutzschicht nach einem oder mehreren der vorherigen Ansprüche,
    wobei die untenliegende Schicht (7) eine Dicke von 1µm - 25µm und
    die äußere Schicht (10) vorzugsweise eine Dicke von 1µm - 25µm aufweist.
EP13151157.8A 2013-01-14 2013-01-14 Schutzschicht gegen Korrosion und Erosion Withdrawn EP2754733A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13151157.8A EP2754733A1 (de) 2013-01-14 2013-01-14 Schutzschicht gegen Korrosion und Erosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13151157.8A EP2754733A1 (de) 2013-01-14 2013-01-14 Schutzschicht gegen Korrosion und Erosion

Publications (1)

Publication Number Publication Date
EP2754733A1 true EP2754733A1 (de) 2014-07-16

Family

ID=47559291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13151157.8A Withdrawn EP2754733A1 (de) 2013-01-14 2013-01-14 Schutzschicht gegen Korrosion und Erosion

Country Status (1)

Country Link
EP (1) EP2754733A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005460A1 (de) * 2015-07-06 2017-01-12 Siemens Aktiengesellschaft Konturtreue schutzschicht für verdichterbauteile von gasturbinen
US11274560B2 (en) 2017-04-28 2022-03-15 Siemens Energy Global GmbH & Co. KG Sealing system for a rotor blade and housing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366289A1 (de) * 1988-10-11 1990-05-02 Midwest Research Technologies, Inc. Mehrlagige verschleissfeste Beschichtungen
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP2226409A2 (de) * 2009-03-06 2010-09-08 General Electric Company Erosions- und korrosionsbeständige Turbinenkompressorschaufel und Herstellungsverfahren dafür
US20100247321A1 (en) * 2008-01-08 2010-09-30 General Electric Company Anti-fouling coatings and articles coated therewith
US20120171511A1 (en) * 2010-12-30 2012-07-05 Hon Hai Precision Industry Co., Ltd. Process for surface treating aluminum or aluminum alloy and article made with same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366289A1 (de) * 1988-10-11 1990-05-02 Midwest Research Technologies, Inc. Mehrlagige verschleissfeste Beschichtungen
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
EP0412397B1 (de) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Rheniumhaltige Schutzbeschichtung mit grosser Korrosions- und/oder Oxidationsbeständigkeit
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
WO2000044949A1 (en) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Nickel base superalloy with good machinability
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
EP1306454A1 (de) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
EP1319729A1 (de) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
US20100247321A1 (en) * 2008-01-08 2010-09-30 General Electric Company Anti-fouling coatings and articles coated therewith
EP2226409A2 (de) * 2009-03-06 2010-09-08 General Electric Company Erosions- und korrosionsbeständige Turbinenkompressorschaufel und Herstellungsverfahren dafür
US20120171511A1 (en) * 2010-12-30 2012-07-05 Hon Hai Precision Industry Co., Ltd. Process for surface treating aluminum or aluminum alloy and article made with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005460A1 (de) * 2015-07-06 2017-01-12 Siemens Aktiengesellschaft Konturtreue schutzschicht für verdichterbauteile von gasturbinen
RU2691822C1 (ru) * 2015-07-06 2019-06-18 Сименс Акциенгезелльшафт Повторяющее контур защитное покрытие для деталей компрессора газовых турбин
US10697068B2 (en) 2015-07-06 2020-06-30 Siemens Aktiengesellschaft Contour-following protective layer for compressor components of gas turbines
US11274560B2 (en) 2017-04-28 2022-03-15 Siemens Energy Global GmbH & Co. KG Sealing system for a rotor blade and housing

Similar Documents

Publication Publication Date Title
EP1707653B1 (de) Schichtsystem
EP1954854B1 (de) Zweilagiges thermisches schutzschichtsystem mit pyrochlor-phase
EP1951928B1 (de) Schichtsystem mit gadolinium-mischkristall-pyrochlorphase
EP1990327B1 (de) Keramisches Pulver, keramische Schicht und Schichtsystem mit einer Gadolinium-Mischkristall-Pyrochlorphase und Oxiden
EP2382333B1 (de) Legierung, schutzschicht und bauteil
EP2576853B1 (de) Legierung, schutzschicht und bauteil
EP2230329A1 (de) Zweilagiges poröses Schichtsystem mit Pyrochlor-Phase
EP1793008A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
EP1798299B1 (de) Legierung, Schutzschicht und Bauteil
DE202006009603U1 (de) Zweilagiges Schichtsystem mit Pyrochlor-Phase
EP1790743A1 (de) Legierung, Schutzschicht und Bauteil
EP1854899A1 (de) Legierung, Schutzschicht und Bauteil
EP1783236A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen und Bauteil
EP2754733A1 (de) Schutzschicht gegen Korrosion und Erosion
EP2557201A1 (de) Legierung, Schutzschicht und Bauteil
EP2128285A1 (de) Zweilagige MCrAIX-Schicht mit unterschiedlichen Kobalt- und Nickelgehalten
EP2611949B1 (de) Nickel basis legierung, schutzschicht und bauteil
WO2015071015A1 (de) Poröses keramisches schichtsystem
EP1790746B1 (de) Legierung, Schutzschicht und Bauteil
EP2474414A1 (de) Legierung, Schutzschicht und Bauteil
EP1818419A1 (de) Legierung, Schutzschicht und Bauteil
WO2011086046A2 (de) Legierung, schutzschicht und bauteil
EP2206806A1 (de) Zweilagige MCrAIX-Schicht mit unterschiedlichen Kobalt- und Nickelgehalten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150117