EP2753492A2 - Procédé et dispositif de recharge optimisée de batterie électrique - Google Patents

Procédé et dispositif de recharge optimisée de batterie électrique

Info

Publication number
EP2753492A2
EP2753492A2 EP12767031.3A EP12767031A EP2753492A2 EP 2753492 A2 EP2753492 A2 EP 2753492A2 EP 12767031 A EP12767031 A EP 12767031A EP 2753492 A2 EP2753492 A2 EP 2753492A2
Authority
EP
European Patent Office
Prior art keywords
charging
power
electric
rank
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12767031.3A
Other languages
German (de)
English (en)
Inventor
Melaine ROUSSELLE
Gaizka ALBERDI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Enedis SA
Original Assignee
Electricite de France SA
Electricite Reseau Distribution France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA, Electricite Reseau Distribution France SA filed Critical Electricite de France SA
Publication of EP2753492A2 publication Critical patent/EP2753492A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the invention relates to the field of the management of the charging of electric batteries, and in particular the charging of electric batteries of electric vehicles.
  • electric vehicles with an electrical energy storage system that can be connected to the power supply terminals with a charging plug.
  • the power supply terminals are each connected to the electrical distribution network.
  • the charging of the electric battery of such electrical systems starts as soon as this electric battery is connected to the electrical distribution network and ends when this electric battery is disconnected from the electrical distribution network.
  • this charging starts as soon as the charging plug of the electric vehicle is connected to the power supply terminal and continues as long as the electric vehicle is not disconnected. that is, until the vehicle user wants to pick up his vehicle, or as long as the battery is not full.
  • the constraints of the electrical network to which the power supply terminal is connected can in particular result in a load curve of a transformer or a delivery point, which is not uniform over time.
  • a transformer is under stress when its load exceeds its rated power.
  • the latter can have very varied charge levels when it is connected to a power supply terminal, which determines the amount of electrical energy required to obtain from the power supply terminal. electric, and therefore the recharge time required to complete a full charge.
  • the object of the present invention is to remedy the aforementioned drawbacks, by proposing an optimized charging method making it possible to take into account both the constraints related to the electrical network and those related to the user of the electrical system to be recharged, as well as the constraints related to the electric battery to recharge, and allowing a better preservation of the network charging devices.
  • an optimized charging method of the electric battery of at least one electric system by an electric charging device in which the electric battery is recharged for at least one time interval by applying a charge power level. associated with this time interval, this time interval belonging to a period of available charging time initiated by the connection of the charging system of the electric battery to the electric charging device, and the power level of charge being determined as a function of a load curve associated with said electric charging device and the residual electrical energy contained in the electric battery when connecting the charging system of the electric battery to the electric charging device.
  • the method includes sampling the load curve over the period of available load time to obtain a set of load curve power values associated with consecutive time intervals, respectively, and the sorting, in ascending order, curve power values charge to obtain a set of sorted charge curve power values;
  • the electric vehicle battery being recharged during charging time intervals associated with the first sorted load curve power values respectively, the charge power levels respectively applied during said charging time intervals being determined as a function of the k + 1 - th load factor power value sorted.
  • the determination of the load power levels applied during said k charging time intervals comprises the following steps, performed as long as the index k, of initial value equal to 1, is incremented:
  • the load power level at rank k associated with the time interval is equal to the minimum value between, on the one hand, a maximum load curve power value and, on the other hand, the difference between the load curve power value at rank k and the load curve power value associated with this time interval .
  • the load power level at rank k associated with this time interval is equal to the minimum value between a maximum load curve power value on the one hand and the sum of the the level of charge power at rank k-1 and the difference between the energy required and the electrical energy at rank k-1 divided by the number k.
  • the determination furthermore comprises the comparison between a charge duration at rank k, equal to the sum of k timeslots associated with the first k sorted load curve power values, with the duration of the available recharge time period, the index k being incremented only if the charging duration at rank k is lower or equal to the length of the available recharge time period.
  • the determination comprises calculating, for each consecutive time interval of the available time period, a load power level to be applied equal to the minimum value between, on the one hand, a curve power value maximum load and on the other hand the sum between the power level at rank k associated with said time interval and the difference between the electrical energy at rank k and the required energy divided by the number k.
  • charging of the electric battery further comprises, for each of the charging time intervals associated with a charge power level, comparing a limit power level associated with this time interval. with an increased load curve predictive power value equal to the sum of the load curve power value and the load power level associated with this charging time interval, the load power level n ' being applied, during this charging time interval, only if said increased charge curve power forecast value is lower than the limit power level associated with that charging time interval.
  • a power value of charge substantially equal to the difference between the power limit level and the load curve power value associated with this charging time interval.
  • the period of available charging time is deduced according to the moment of connection of the charging system of the electric battery to the electric charging device and an indication relating to a provided end of recharging time by the user of the electric vehicle.
  • the method comprises a prior verification of the period of available charging time as a function of the time required for the complete recharging of the electric battery, recharging of the electric battery during said at least one time interval. charging takes place only if the duration of the period of available charging time is greater than the time required for the complete recharging of the electric battery.
  • the electric battery is able to be modulated in load power and has substantially no memory effect, in particular an electric battery type Lithium-Ion.
  • the present invention also provides a computer program comprising instructions for carrying out the steps of the above method when executed by a processing unit of an electric charging system.
  • a program must be considered as a product within the framework of the protection sought by the present patent application.
  • the present invention furthermore proposes an optimized recharging device for at least one electric vehicle, connected to a power supply network and comprising at least one connection port that can be connected to the electric battery of an electric vehicle, the device being configured to implement the steps of the above method following the connection of the electric battery of an electric vehicle to the connection port of the optimized charging device.
  • the present invention finally proposes an optimized charging system for electrically recharging a fleet composed of at least one electric vehicle, the system comprising a power supply network and at least one electric charging device as described above, connected to said power supply network.
  • this system further comprises a computer system remote, connected to the electric charging device and comprising a processing unit adapted to implement the steps of the method above.
  • FIG. 2 illustrates the steps of an optimized charging method of an electric vehicle according to the present invention
  • FIG. 3 illustrates an embodiment of a prior checking step of the optimized charging method according to the present invention
  • FIG. 4 illustrates an embodiment of the step of determining the power levels to be applied in the optimized charging method according to the present invention.
  • FIG. 5 represents a graph illustrating the positive effect obtained by employing the electric charging method according to the present invention.
  • Figure 1 shows an optimized charging system of electric vehicles according to the present invention.
  • This optimized charging system comprises at least one electric recharging device T E , able to be connected to the charging system of the electric battery BAT of one or more electrical systems V E in order to recharge it electrically.
  • a single electric charging device T E and a single electrical system V E are shown in this FIG. 1, for illustrative purposes only, but the optimized charging system S E can comprise any number of electric charging devices in order to be able to recharge electrically. any number of electrical systems.
  • This electric charging device T E is itself connected to a power supply network ⁇ ⁇ ⁇ in order to obtain the electrical energy necessary for this recharge and may include an electrical transformer, for example.
  • This device T E thus has one or more pi connection ports, ... pi able (s) to be connected (s) to the electric battery BAT of an electrical system to proceed with its charging by means of the electrical energy supplied by the electricity supply network ENET-
  • the electrical system V E comprises one or more BAT electric battery associated with a charging system of this battery. This electrical system V E is used by a user U which plugs, and disconnects, the charging system of the battery BAT to the electric charging device T E according to its use of time.
  • the electrical system V E is shown as an electric vehicle, the present application finding a particularly advantageous application to this particular type of electrical system.
  • the electric vehicle V E is driven by a user U which connects and disconnects the charging system of the electric battery BAT to the electric charging device T E according to its use of time.
  • Such an electric vehicle can be an automobile, a moped, or any other equipment having an electric battery that can be recharged from the power grid.
  • the constraints related to the electric battery to be recharged such as the charging profile of the electric battery BAT, or the electrical energy still stored in this battery when the user U connects this battery BAT to the electric charging device T E ;
  • the electric battery BAT of the electrical system V E is thus recharged during at least one load time interval AT C h g (i) belonging to a period of available charging time Td, which is initiated by the connection from the recharging system of this BAT electric battery to the electric recharging device T E , which makes it possible to optimize the charging of this battery according to certain constraints related to the user in terms of the use of time.
  • the charging time interval AT C h g (i) is determined as a function of a charge curve TLC associated with the electric charging device T E , which also makes it possible to optimize the charging of the electric battery BAT according to constraints related to the electric charging device T E , and therefore to the optimized charging system SE.
  • Such a charge curve TLC can be estimated at a given moment, for example on the basis of an expected load variation, or updated during charging, so as to ensure a continuous optimization of the load with respect to the load. instantaneous state of the electric charging device T E.
  • the estimation of the TLC load curve can be performed on the basis of predefined models of load curves or load curve models calculated from a history of loads recorded at the of the electric charging device T E.
  • the updating of the TLC charge curve can in particular be achieved by real-time sampling of the charge of the electric charging device T E. Such an update is particularly interesting in the case where a large number of batteries connect and recharge at the same time, which can induce significant variations in the TLC charge curve.
  • FIG 2 illustrates the steps of an optimized charging method of the electric battery of an electrical system according to the present invention.
  • This method relates to the optimized electric charging of the electric battery of one or more electrical systems V E by an electric charging device T E , the electrical system V E comprising an electric battery BAT associated with a charging system that can be connected to it. electric charging device T E in order to carry out this recharge. Subsequently, the optimized recharge of a single electrical system V E is described for illustrative purposes, but the method can be applied to the recharge of any number of electrical systems.
  • This method can firstly comprise the determination (step 100) of a period of available charging time Td, performed to take account of the constraints of the user, in particular in terms of the use of time, which influences the time available to recharge the BAT electric battery.
  • the time t A for connecting the charging system of the electric battery BAT to the electric charging device T E determines the beginning of the period of available charging time Td. In other words, this moment of connection of the electric battery initiates the period of available charging time Td.
  • the time t D corresponding to the end of the period of available charging time Td it is advantageous to ask the user to indicate the time at which he plans to disconnect the electrical system V E (for example time he plans to pick up his electric vehicle), such as his departure time in the morning before leaving for work.
  • the user U can thus provide an indication of this instant ÎD end recharge, for example via a dedicated web interface for this purpose on a smartphone or on the dashboard of the electric vehicle used.
  • step 200 it is advantageous to verify beforehand (step 200) that the period of available charging time Td is sufficient, in order to initiate the optimized charging process only when it is the case.
  • a conventional electric charging process may be implemented (step 250) throughout the duration of the available charging time period Td, as will be explained later.
  • Figure 3 illustrates an embodiment of such pre-check step 200.
  • a partial charging time Tx corresponding to the level of residual electrical energy E in contained in the battery BAT when it is connected to the charging device T E , is firstly calculated (step 210). .
  • this partial charging time Tx corresponds to the time required to charge the battery BAT, from a state where it is empty of energy (that is to say starting from a state zero SoC charge), up to the residual electrical energy level E in .
  • this level of residual electrical energy E in is calculated beforehand by means of the following equation (1): - SOC 0
  • BAT is the efficiency parameter of the BAT electric battery, between 0 and 100%;
  • the complete charging time Tcomp corresponding to the time required for the complete charging of the battery BAT from a state where it is empty of energy (ie starting from a state of charge SoC zero), is then determined (step 220) according to the charge profile PFL (t) of the electric battery BAT.
  • this charging time Tcomp is calculated using the following equation (3):
  • E max is the level of electrical energy attained at the end of this full charge, typically corresponding to the maximum charge energy level of the BAT electric battery.
  • the present invention is however not limited to this case alone, and may also apply to the case where E max is a level of electrical energy corresponding to a certain desired level of charge energy, different from the maximum charge level of BAT electric battery.
  • the steps 210 for determining the partial charging time Tx and 220 for determining the full charging time Tcomp are not necessarily carried out in the order indicated above, but can very well be carried out in the reverse order; ie with a determination of the complete charging time Tcomp prior to the determination of the partial charging time Tx.
  • the duration T 0 o of charge necessary for a complete charge of the battery BAT containing a level of residual energy E in can be determined (step 230) by means of the following equation:
  • This duration T 0 o can then be compared (step 240) with the duration of the period of available charging time T d, to determine whether there is sufficient time to perform a full charge.
  • this duration T 0 o is less than the duration of the period of available charging time T d, then it is possible to advantageously put the optimized charging method according to the present invention. If, on the other hand, this duration T-mo is greater than the duration of the period of available charging time Td, then a complete recharge of the electric battery BAT is not possible.
  • step 300 determines (step 300) one or more charge power levels Pk (i) to be applied respectively during one or more charging time periods AT C h g (i) belonging to the available charging time period Td , initiated by the connection of the battery charging system BAT to the electric charging device T E , a charging power level Pk (i) being determined for each charging time interval AT C h g (i) and associated to this one.
  • the determination of the load power level (s) P k (i) is performed, on the one hand, as a function of a charge curve TLC associated with the electric charging device T E and, on the other hand, of residual electrical energy E in contained in the electric battery BAT when connecting the electric battery to the electric charging device.
  • the electric battery BAT is then recharged (step 400) during the charging time interval (s) AT C h g (i) by applying, during each charging time interval AT C h g (i), the load power level Pk (i) associated with it.
  • the recharging of the electric battery BAT is done taking into account the constraints of the user (reflected by the period of available charging time Td), the electrical network (reflected by the charge curve TLC of the electric charging device T E ) and the electric vehicle (reflected by the residual electrical energy E in still contained in the BAT electric battery at the time of its connection to the electric charging device T E ).
  • FIG. 4 illustrates an embodiment of step 300 for determining the power levels to be applied.
  • This determination step comprises the prior determination (step 31 0) of a set of load curve power values ⁇ TTC (i) ⁇ i ⁇ i ⁇ n sorted in ascending order from the TLC load curve associated with the electric charging device T E.
  • this preliminary determination can comprise, in a first step, the sampling (sub-step 31 1) of the charge curve TLC associated with the electric charging device T E , over the period of available charging time Td, so that to obtain a set ⁇ TLC (i) ⁇ i ⁇ j ⁇ n of load curve power values TLC (1) to TLC (n) each associated with consecutive time intervals ⁇ (1) to ⁇ ( ⁇ ) in the period of available charging time Td.
  • This sampling is advantageously carried out with a predetermined time step corresponding to a recharge time interval duration ⁇ , a charge curve power value TLC (i) then being associated with the time index i denoting the i- time interval ⁇ ( ⁇ ) included in the period of available charging time Td.
  • the load curve power values TLC (1) to TLC (n) are sorted (substep 313) in ascending order, in a second step, in order to obtain the entire ⁇ TTC (i) ⁇ ⁇ j ⁇ n of sorted load curve power values, each of these sorted load curve power values ⁇ TTC (i) ⁇ i ⁇ i ⁇ n being respectively associated with one of said time intervals ⁇ (1) to AT (n).
  • This residual electrical energy E in is communicated as such by the electric vehicle V E , if the latter is capable of measuring it itself. If, on the other hand, the electric vehicle V E measures the residual state of charge SoC 0 of the battery BAT at the time of connection to the electric charging device T E , then this residual electrical energy E in can be calculated from this state residual charge SoC 0 using equation (1) described above.
  • the load power level (s) P k (i), to be applied during one or more load time intervals among the time intervals ⁇ ( ⁇ ) consecutive, are then determined using these parameters.
  • At least one first load power level is applied
  • this first load power level being determined according to the second charge curve power value sorted TTC (2), in order to be able to enhance this first level of charging power.
  • k load power levels P k (1), ..., P k (k) are applied respectively during the k time intervals associated with the first k load curve power values sorted TTC (1) to TTC (k), these k load power levels P k (1), ..., P k (k) being determined as a function of the k + 1th load curve power value sorted TTC (k) , which makes it possible to enhance the charging power levels of the battery BAT at moments of low charge curve level TLC of the electric charging device T E.
  • the raising of the battery charge power levels at such times limits the impact on the TLC charging curve of the electric charging device T E and avoids the deleterious effects associated with the high value charge areas of the charging device. This TLC charge curve.
  • the determination of the k load power levels P k (1),..., P k (k) applied during the said k time intervals associated with the first k power values of load curve sorted TTC (1) to TTC (k), comprises an iterative process, a function of an index k, of initial value equal to 1, which is incremented as long as certain conditions are not fulfilled.
  • This iterative process comprises the following steps, repeated as long as the index k is incremented:
  • step 320 is associated with each of the k time intervals associated with the first k selected load curve power values TTC (1), ..., TTC (i), ..., TTC (k), a load curve power value at rank k, denoted by TLC k (i) for the time interval associated with the i-th load curve power value sorted TTC (i), equal to k + 1 the sorted charge curve power value TTC (k + 1).
  • step (330) is calculated for each of the k time intervals associated with the first k sorted load curve power values.
  • TTC (1) ..., TTC (i), ..., TTC (k), a load power level at rank k, denoted by P k (i) when this level is associated with the interval of time itself associated with the i-th load curve power value sorted TTC (i).
  • the load power level at rank k P k (i) is determined as a function of the difference between the value k TLC k (i) and the load curve power value TLC (i) associated with this time interval.
  • the level P k (i) of load power at rank k associated with this time interval is equal to the minimum value between, on the one hand, a maximum load curve power value P max and, on the other hand, the difference between the load curve power value at rank k TLC k (i) and the load curve power value TLC (i) associated with this time interval.
  • the level Pk (i) of load power at rank k is calculated according to the following equation (5):
  • the maximum load curve power value P max is a parameter dependent on the battery or the subscribed power.
  • the power level P k (i) is always at most equal to this maximum load curve power value P max , which guarantees never to exceed this threshold.
  • step 340 determines (step 340) an electrical energy at the rank k, denoted by E k , by applying the load power levels to the rank k P k (i) over the k time intervals AT C h g (1), ..., AT C h g (k) to which they are respectively associated.
  • This energy E k corresponds to the increase in electric energy that can be obtained by raising the k first sorted load curve power values.
  • step 350 compares (step 350) the electrical energy E k rank k thus determined with an electrical energy E required for charging the BAT electric battery.
  • electrical energy E required can be defined beforehand. In particular, it can be defined as the energy required to fully recharge the BAT electric battery. It depends in this case the residual electric energy E in contained in the electric heater when connecting the electric battery to the electric charging device. More precisely, it is equal to the difference between the maximum energy E max of charge of the electric battery and the residual electrical energy E in contained in the electric battery when connecting the electric battery to the electric charging device. ⁇
  • the index k is then incremented (step 355) if the electrical energy E k at rank k is less than or equal to the energy E required for recharging the battery.
  • the load curve power levels Pk (1) to Pk (k) obtained at this stage can then be applied respectively during the time intervals AT C h g (1) to AT C h g (k) with which they are associated.
  • the load power level at rank k P k (i) associated with the time interval can be calculated (step 360) to be equal to the minimum value between, on the one hand, the power value of the maximum load curve P ma x defined above and, on the other hand, the sum between the load power level Pk-i (i) at rank k-1 associated with the time interval and the difference between the energy electrical E required and electrical energy E k- at rank k-1, divided by the number k.
  • the charge power level Pk (i) at rank k is calculated according to the following equation (7):
  • This operation makes it possible to distribute equitably over the time intervals associated with the first k load curve power values sorted TTC (1), ..., TTC (i), ..., TTC (k), the surplus of energy required between the electrical energy E k- at rank k-1 and the electrical energy E required. So far, only one condition related to the comparison of the electrical energy E k at rank k with the energy E required for recharging the battery has been evoked to decide whether or not to continue the iterative process. However, it may be advantageous to add additional conditions.
  • the determination process 300 may furthermore comprise the comparison (step 370) between a charge duration at rank k, denoted by ⁇ AT C h g with the duration of the available charging time period Td. More precisely, the duration ⁇ AT C h g of charge at rank k is equal to the sum of k time intervals associated with k first sorted load curve power values.
  • the index k is then incremented only if the duration ⁇ AT C h g of charge at rank k is less than or equal to the duration of the period of available recharge time Td (in other words if the index k is less than number n in the case of sampling with a step of duration ⁇ ), that is to say that if the available recharge time is sufficient to allow the application of the k power levels Pk (i) determined up to here on their respective time intervals.
  • the charge power levels Pk (1) to Pk (k) obtained at this stage can then be applied respectively during the time intervals ⁇ T C h g (1) AT C h g (k) with which they are respectively associated, in one embodiment.
  • step 380 it may be advantageous at this stage to compare (step 380) again the electrical energy E k at rank k with the energy E required for recharging the electric battery BAT, in order to determine if this electrical energy E k at rank k differs from the energy E required for recharging the electric battery BAT by at least one predetermined distance.
  • the load power levels P k (1) to P k (k) obtained at that time. stage can then be applied respectively during the time intervals AT C h g (1) to AT C h g (k) to which they are respectively associated.
  • a load power level is calculated (step 390) to be applied as a function of the power level at the rank k P k (j) associated with this time interval and the difference between the electrical energy E k at rank k and the energy E required.
  • the load power level to be applied is equal to the minimum value between, on the one hand, a maximum load curve power value P ma x and, on the other hand, the sum between the power level at rank k P k (j) associated with said time interval and the difference between the electrical energy E k at rank k and the required energy E divided by the number k.
  • the level P k (j) of load power at rank k is calculated according to the following equation (8):
  • a number k of load power levels P k (1) to P k (k) are therefore applied during k charging time intervals AT C h g (1) at AT C h g (k) corresponding to the first k load curve power values sorted TTC (1) to TTC (k), these k charging time intervals AT C h g (1) at AT C h g ( k) that can cover the entire available charging period Td if it is relatively short compared to the amount of electrical energy to be recharged.
  • This limit power level Pn m can be constant over the entire available load period or have variations, in which case a limit power level Pnm (i) is associated with each time interval ⁇ ( ⁇ ), the values Pnm (i) may be different from each other.
  • the comparison is made for each of the time intervals ATchg (i) with which a power level is associated.
  • charge P k (i) the limit power level Pnm (i) associated with the time interval AT C h g (i) with an increased load curve predictive power value, designated TLC + VE (i ), corresponding to the sum of the load curve power value TLC (i) associated with the time interval AT C h g (i) and the load power level P k (i) associated with the interval of time AT C h g (i).
  • the level charging power P k (i) as determined is not applied. In one embodiment, charging is then inhibited during this time interval AT C h g (i). In another more advantageous embodiment, the load power value P k (i) is then recalculated to be substantially equal to the difference between the limit power level Pnm (i) and the load curve power value TLC. (i) associated with the time interval ATc hg (i)
  • the load power value P k (i) can be equal to the difference between the limit power level P
  • the load power value Pk (i) can be equal to the difference between the limit power level P
  • this embodiment preserves the electric charging device T E , with a possible incomplete recharging of the electric battery BAT .
  • Fig. 5 is a graph illustrating the positive effect obtained using the optimized charging method according to the present invention.
  • the TLC load curve of an electrical transformer during a whole day as well as the curve representing the time evolution of the limiting power Pnm beyond which this TLC load curve induces deleterious effects, the limit power level P
  • the time of arrival ÎA of the user at 18 hours (ie the moment of connection of an electric vehicle V E to the transformer) and the starting moment ÎD of the user at 7 o'clock (ie the instant disconnection of the electric vehicle V E from the power supply terminal) are indicated, which makes it possible to define an available charging period Td equivalent to the interval [ÎA; ÎD].
  • the charging power applied to the electric battery BAT is mainly maximum at times when the charge curve TLC is minimal, and at least below the level of the limit power P
  • TLC + VE the resulting load curve
  • the increase in the load curve induced by vehicle charging V E is mainly confined to the minimum load values of the TLC charge curve, which limits the deleterious effects generated for the electrical transformer, contrary to this which would be the case if the recharge was permanently activated during the period [t A ; t D ].
  • the electric consumption generated by the refill is limited to what is necessary to recharge the electric battery, without necessarily establishing a permanent power consumption.
  • the various steps of the optimized charging method described above can in particular be implemented by a program, which can be executed by a processing unit of an optimized charging system, implemented for example in the form of a computer or a computer. a data processor, this program including instructions for controlling the execution of the steps of a method as mentioned above.
  • the processing unit in question can be located in the optimized charging device T E or in the electrical system V E , in order to locally manage the charging of electric vehicles.
  • the processing unit in question can also be located remote from this optimized charging device T E , in a remote computer system belonging to the optimized charging system S E , in order to centrally manage this recharge, which is appropriate in the case of a large fleet.
  • instructions are communicated to the optimized charging device T E or to the electrical system V E via different telecommunication networks in order to manage the optimized charging.
  • the program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any other desirable form.
  • the invention also relates to a data carrier readable by a computer or data processor, and comprising instructions of a program such as mentioned above.
  • This information carrier can be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD-ROM or a microelectronic circuit ROM, or a magnetic recording means, for example a diskette or a hard disk.
  • the information medium may be a transmissible medium such as an electrical, electromagnetic or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can be downloaded in particular on an Internet type network.
  • the information carrier may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the optimized charging method of the present invention finds a particularly advantageous application in the context of the recharging of electric batteries of type having no memory effect, disadvantages of partial loads or cons-indication of the manufacturer, this type of battery moving from a charge activation state to a charge inhibit state with a low transition time, and not necessarily recharging at 100%.
  • the BAT electric battery can advantageously be of Lithium-Ion type.
  • the electrical system has been previously illustrated in the form of an electric vehicle.
  • the electrical system V E can very well take the form of any electrical system having electrical energy storage capabilities, for example a mobile phone with an electric battery to recharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé de recharge optimisée de la batterie électrique (BAT) d'au moins un système électrique (VE) par un dispositif de recharge électrique (TE), dans lequel la batterie électrique est rechargée (400) durant au moins un intervalle de temps (∆Tchg(i)) en appliquant un niveau de puissance de charge (Pk(i)) associé à cet intervalle de temps, cet intervalle de temps (∆Tchg(i)) appartenant à une période de temps de charge disponible (Td) initiée par le branchement du système de recharge de la batterie électrique au dispositif de recharge électrique, et le niveau de puissance de charge (Pk(i)) étant déterminé (300) en fonction d'une courbe de charge (TLC) associée au dispositif de recharge électrique et de l'énergie électrique résiduelle (Ein) contenue dans la batterie électrique lors du branchement du système de charge de la batterie électrique au dispositif de recharge électrique. L'invention concerne également un dispositif (TE) de recharge optimisée mettant en œuvre un tel procédé, ainsi qu'un système de recharge optimisée (SE) comprenant un tel dispositif de recharge optimisée.

Description

Procédé et dispositif de recharge optimisée de batterie électrique
L'invention concerne le domaine de la gestion de la recharge de batteries électriques, et notamment la recharge de batteries électriques de véhicules électriques.
Il existe actuellement une multitude de systèmes électriques disposant d'un système de stockage d'énergie électrique, notamment constitué d'une ou plusieurs batteries électriques et de leur système de recharge associé, pouvant ainsi être connectés à un réseau électrique afin d'être rechargé électriquement.
Parmi ces systèmes électriques, on peut notamment citer les véhicules électriques disposant d'un système de stockage d'énergie électrique pouvant être connecté sur des bornes d'alimentation électriques à l'aide d'une prise de recharge. Les bornes d'alimentation électrique sont chacune connectées au réseau de distribution électrique.
Habituellement, la recharge de la batterie électrique de tels systèmes électriques démarre dès la connexion de cette batterie électrique au réseau de distribution électrique et se termine lors de la déconnexion de cette batterie électrique du réseau de distribution électrique.
Ainsi, en ce qui concerne le cas particulier des véhicules électriques, cette recharge démarre dès le branchement de la prise de recharge du véhicule électrique sur la borne d'alimentation électrique et se poursuit tant que le véhicule électrique n'est pas débranché, c'est-à-dire jusqu'au moment où l'utilisateur du véhicule souhaite reprendre son véhicule, ou tant que la batterie n'est pas pleine.
Cependant, ce type de recharge n'est pas optimal, car cette recharge ne tient aucunement compte des contraintes liées au réseau électrique, à la batterie électrique à recharger ou à l'utilisateur du système électrique à recharger.
D'une part, les contraintes du réseau électrique auquel est raccordée la borne d'alimentation électrique peuvent notamment se traduire par une courbe de charge d'un transformateur ou d'un point de livraison, qui n'est pas uniforme dans le temps. Par exemple, un transformateur est sous contrainte quand sa charge dépasse sa puissance nominale.
En effet, plus le niveau de charge du transformateur est élevé, et plus ce transformateur s'échauffe, ce qui accélère son vieillissement. En outre, de grandes variations de charge peuvent induire des dilatations et des contraintes mécaniques assez brutales. A terme, ce transformateur peut devenir plus bruyant par augmentation des jeux.
En ce qui concerne la batterie électrique à recharger, cette dernière peut présenter des niveaux de charge très variés lors de son branchement à une borne d'alimentation électrique, ce qui conditionne la quantité d'énergie électrique nécessaire à obtenir de la borne d'alimentation électrique, et donc la durée de recharge nécessaire pour aboutir à une recharge complète.
Enfin, en ce qui concerne les contraintes de l'utilisateur du système électrique à recharger, ce dernier branche et débranche le système à des instants très variables, dépendant de son emploi du temps. Ainsi, lorsque le système électrique est une voiture électrique, le conducteur de ce véhicule gare et reprend son véhicule à des instants dépendant de son emploi du temps, ce qui conditionne le temps de charge disponible de la borne d'alimentation électrique. La présente invention a pour objet de remédier aux inconvénients précités, en proposant un procédé de recharge optimisée permettant la prise en compte aussi bien des contraintes liées au réseau électrique que de celles liées à l'utilisateur du système électrique à recharger, ainsi que des contraintes liées à la batterie électrique à recharger, et permettant une meilleure préservation des dispositifs de recharge du réseau électrique.
Elle propose à cet effet un procédé de recharge optimisée de la batterie électrique d'au moins un système électrique par un dispositif de recharge électrique, dans lequel la batterie électrique est rechargée durant au moins un intervalle de temps en appliquant un niveau de puissance de charge associé à cet intervalle de temps, cet intervalle de temps appartenant à une période de temps de charge disponible initiée par le branchement du système de recharge de la batterie électrique au dispositif de recharge électrique, et le niveau de puissance de charge étant déterminé en fonction d'une courbe de charge associée audit dispositif de recharge électrique et de l'énergie électrique résiduelle contenue dans la batterie électrique lors du branchement du système de charge de la batterie électrique au dispositif de recharge électrique.
Selon un mode de réalisation, le procédé comprend l'échantillonnage de la courbe de charge sur la période de temps de charge disponible afin d'obtenir un ensemble de valeurs de puissance de courbe de charge associées respectivement à des intervalles de temps consécutifs, et le tri, par ordre croissant, des valeurs de puissance de courbe de charge afin d'obtenir un ensemble de valeurs de puissance de courbe de charge triées ;
la batterie électrique du véhicule électrique étant rechargée durant k intervalles de temps de charge associés respectivement au k premières valeurs de puissance de courbe de charge triées, les niveaux de puissance de charge appliqués respectivement durant lesdits k intervalles de temps de charge étant déterminés en fonction de la k+1 - ième valeur de puissance de courbe de charge triée.
Dans un mode de réalisation particulièrement avantageux, la détermination des niveaux de puissance de charge appliqués durant lesdits k intervalles de temps de charge comprend les étapes suivantes, exécutées tant que l'indice k, de valeur initiale égale à 1 , est incrémenté :
associer, pour les k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, une valeur de puissance de courbe de charge au rang k égale à la k+1 ème valeur de puissance de courbe de charge triée ;
calculer, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, un niveau de puissance de charge au rang k associé audit intervalle de temps, le niveau de puissance de charge au rang k étant déterminé en fonction de la différence entre la valeur de puissance de courbe de charge au rang k et la valeur de puissance la courbe de charge associées à l'intervalle de temps ;
comparer une énergie électrique au rang k, déterminée en appliquant les niveaux de puissance de charge au rang k sur les k intervalles de temps auxquels ils sont respectivement associés, avec une énergie électrique requise pour la recharge de la batterie ;
incrémenter l'indice k si l'énergie électrique au rang k est inférieure ou égale à l'énergie requise pour la recharge de la batterie.
Selon un mode de réalisation, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, le niveau de puissance de charge au rang k associé à l'intervalle de temps est égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale et, d'autre part, la différence entre la valeur de puissance de courbe de charge au rang k et la valeur de puissance de courbe de charge associées à cet intervalle de temps.
Selon un autre mode de réalisation, lorsque l'énergie électrique au rang k est supérieure à l'énergie requise pour la recharge de la batterie, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, le niveau de puissance de charge au rang k associé à cet intervalle de temps est égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale et, d'autre part, la somme du niveau de puissance de charge au rang k-1 et de la différence entre l'énergie requise et l'énergie électrique au rang k-1 divisée par le nombre k.
Selon un autre mode de réalisation, lorsque l'énergie électrique au rang k est inférieure ou égale à l'énergie requise pour la recharge de la batterie, la détermination comprend en outre la comparaison entre une durée de charge au rang k, égale à la somme des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, avec la durée de la période de temps de recharge disponible, l'indice k n'étant incrémenté que si la durée de charge au rang k est inférieure ou égale à la durée de la période de temps de recharge disponible.
En particulier, lorsque la durée de charge au rang k est supérieure à la durée de la période de temps de recharge disponible et lorsque l'énergie électrique au rang k diffère de l'énergie requise pour la recharge de la batterie d'au moins un écart prédéterminé, la détermination comprend le calcul, pour chaque intervalle de temps consécutif de la période de temps disponible, d'un niveau de puissance de charge à appliquer égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale et, d'autre part, la somme entre le niveau de puissance au rang k associé audit intervalle de temps et la différence entre l'énergie électrique au rang k et l'énergie requise divisée par le nombre k.
Dans un mode de réalisation particulier, la recharge de la batterie électrique comprend en outre, pour chacun des intervalles de temps de charge auxquels sont associés un niveau de puissance de charge, la comparaison d'un niveau de puissance limite associé à cet intervalle de temps de charge avec une valeur prévisionnelle de puissance de courbe de charge augmentée égale à la somme de la valeur de puissance de courbe de charge et du niveau de puissance de charge associées à cet intervalle de temps de charge, le niveau de puissance de charge n'étant appliqué, durant cet intervalle de temps de charge, que si ladite valeur prévisionnelle de puissance de courbe de charge augmentée est inférieure au niveau de puissance limite associé à cet intervalle de temps de charge.
De manière particulièrement avantageuse, on associe, à chaque intervalle de temps de charge pour lequel la valeur prévisionnelle de puissance de courbe de charge augmentée est supérieure ou égale au niveau de puissance limite associé à cet intervalle de temps de charge, une valeur de puissance de charge substantiellement égale à la différence entre le niveau de puissance limite et la valeur de puissance de courbe de charge associées à cet intervalle de temps de charge.
Selon un mode de réalisation, la période de temps de charge disponible est déduite en fonction de l'instant de branchement du système de recharge de la batterie électrique au dispositif de recharge électrique et d'une indication relative à un instant de fin de recharge fournie par l'utilisateur du véhicule électrique.
Selon un autre mode de réalisation, le procédé comprend une vérification préalable de la période de temps de charge disponible en fonction de la durée nécessaire à la recharge complète de la batterie électrique, la recharge de la batterie électrique durant ledit au moins un intervalle de temps de charge n'ayant lieu que si la durée de la période de temps de charge disponible est supérieure à la durée nécessaire à la recharge complète de la batterie électrique.
Dans un mode de réalisation particulier, la batterie électrique est apte à être modulée en puissance de charge et ne présente substantiellement aucun effet de mémoire, en particulier une batterie électrique de type Lithium-Ion.
La présente invention propose également un programme d'ordinateur comprenant des instructions pour mettre en œuvre les étapes du procédé ci-avant lorsqu'il est exécuté par une unité de traitement d'un système de recharge électrique. Un tel programme doit être considéré comme un produit dans le cadre de la protection qui est recherchée par la présente demande de brevet.
La présente invention propose en outre un dispositif de recharge optimisée d'au moins un véhicule électrique, connecté à un réseau d'alimentation électrique et comprenant au moins un port de branchement apte à être connecté à la batterie électrique d'un véhicule électrique, le dispositif étant configuré pour mettre en œuvre les étapes du procédé ci-avant suite au branchement de la batterie électrique d'un véhicule électrique sur le port de branchement du dispositif de recharge optimisée. La présente invention propose enfin un système de recharge optimisée pour recharger électriquement une flotte composée d'au moins un véhicule électrique, le système comprenant un réseau d'alimentation électrique et au moins un dispositif de recharge électrique tel que décrit ci-avant, connecté audit réseau d'alimentation électrique. En particulier, ce système comprend en outre un système informatique distant, connecté au dispositif de recharge électrique et comprenant une unité traitement apte à mettre œuvre les étapes du procédé ci-avant.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
- la figure 1 illustre un système de recharge optimisée de véhicules électriques selon la présente invention ;
- la figure 2 illustre les étapes d'un procédé de recharge optimisée d'un véhicule électrique selon la présente invention ;
- la figure 3 illustre un mode de réalisation d'une étape de vérification préalable du procédé de recharge optimisée selon la présente invention ;
- la figure 4 illustre un mode de réalisation de l'étape de détermination des niveaux de puissance à appliquer dans le procédé de recharge optimisée selon la présente invention ; et
- la figure 5 représente un graphique illustrant l'effet positif obtenu en employant le procédé de recharge électrique selon la présente invention.
On se réfère tout d'abord à la figure 1 sur laquelle est illustré un système de recharge optimisée de véhicules électriques selon la présente invention.
Ce système de recharge optimisée, désigné par SE sur la figure 1 , comprend au moins un dispositif de recharge électrique TE, apte à être connecté au système de recharge de la batterie électrique BAT d'un ou plusieurs systèmes électriques VE afin de la recharger électriquement.
Un seul dispositif de recharge électrique TE et un seul système électrique VE sont représentés sur cette figure 1 , à titre purement illustratif, mais le système de recharge optimisée SE peut comprendre un nombre quelconque de dispositifs de recharge électrique afin de pouvoir recharger électriquement un nombre quelconque de systèmes électriques.
Ce dispositif de recharge électrique TE est lui-même connecté à un réseau d'alimentation électrique ΕΝΕτ afin d'obtenir l'énergie électrique nécessaire à cette recharge et peut comprendre un transformateur électrique, par exemple. Ce dispositif TE dispose ainsi d'un ou plusieurs ports de branchement pi ,...,pi apte(s) à être connecté(s) à la batterie électrique BAT d'un système électrique pour procéder à sa recharge au moyen de l'énergie électrique fourni par le réseau d'alimentation électrique ENET-
Le système électrique VE comprend une, voire plusieurs, batterie électrique BAT associée à un système de charge de cette batterie. Ce système électrique VE est utilisé par un utilisateur U qui branche, et débranche, le système de charge de cette batterie électrique BAT au dispositif de recharge électrique TE en fonction de son emploi de temps.
Sur la figure 1 , à titre purement illustratif, le système électrique VE est représenté comme étant un véhicule électrique, la présente demande trouvant une application particulièrement avantageuse à ce type particulier de système électrique. Dans cet exemple illustratif, le véhicule électrique VE est conduit par un utilisateur U qui branche et débranche le système de recharge de la batterie électrique BAT au dispositif de recharge électrique TE en fonction de son emploi de temps. Un tel véhicule électrique peut être une automobile, un vélomoteur, ou tout autre équipement disposant d'une batterie électrique pouvant être rechargée depuis le réseau électrique.
Ainsi, lors de l'optimisation de la recharge du système électrique VE, différentes contraintes s'appliquent au système de recharge optimisée décrit à la figure 1 :
- les contraintes liées au réseau de recharge électrique, telle que la courbe de charge associée au dispositif de recharge électrique TE ;
- les contraintes liées à la batterie électrique à recharger, telles que le profil de charge de la batterie électrique BAT, ou l'énergie électrique encore stockée dans cette batterie lorsque l'utilisateur U branche cette batterie BAT au dispositif de recharge électrique TE ; et
- les contraintes liées à l'utilisateur U lui-même, notamment au niveau de son emploi de temps, qui influencent les instants de branchement et de débranchement du système électrique sur le dispositif de recharge électrique TE, et donc la durée disponible de recharge de la batterie BAT.
Dans la présente invention, la batterie électrique BAT du système électrique VE est ainsi rechargée durant au moins un intervalle de temps de charge ATChg(i) appartenant à une période de temps de charge disponible Td, qui est initiée par le branchement du système de recharge de cette batterie électrique BAT au dispositif de recharge électrique TE, ce qui permet d'optimiser la recharge de cette batterie en fonction de certaines contraintes liées à l'utilisateur en matière d'emploi du temps.
Par ailleurs, l'intervalle de temps de charge ATChg(i) est déterminé en fonction d'une courbe de charge TLC associée au dispositif de recharge électrique TE, ce qui permet également d'optimiser la recharge de la batterie électrique BAT en fonction de contraintes liées au dispositif de recharge électrique TE, et donc au système de recharge optimisée SE.
Une telle courbe de charge TLC peut être estimée à un moment donné, par exemple sur la base d'une variation de charge attendue, ou mise à jour en cours de charge, de manière à assurer une optimisation continue de la charge par rapport à l'état instantané du dispositif de recharge électrique TE. D'une part, à titre illustratif, l'estimation de la courbe de charge TLC peut être effectuée sur la base de modèles prédéfinis de courbe de charge ou de modèles de courbe de charge calculés à partir d'un historique de charges relevées au niveau du dispositif de recharge électrique TE. D'autre part, la mise à jour de la courbe de charge TLC peut en particulier être réalisée grâce à l'échantillonnage en temps-réel de la charge du dispositif de recharge électrique TE. Une telle mise à jour est particulièrement intéressante dans le cas où un grand nombre de batteries se connectent et se rechargent en même temps, ce qui peut induire des variations importantes de la courbe de charge TLC.
On se réfère maintenant à la figure 2, sur laquelle sont illustrées les étapes d'un procédé de recharge optimisée de la batterie électrique d'un système électrique selon la présente invention.
Ce procédé concerne la recharge électrique optimisée de la batterie électrique d'un ou plusieurs systèmes électriques VE par un dispositif de recharge électrique TE, le système électrique VE comprenant une batterie électrique BAT associée à un système de recharge pouvant être connecté à ce dispositif de recharge électrique TE afin de procéder à cette recharge. Par la suite, la recharge optimisée d'un seul système électrique VE est décrite à titre illustratif, mais le procédé peut s'appliquer à la recharge d'un nombre quelconque de systèmes électriques.
Ce procédé peut tout d'abord comprendre la détermination (étape 100) d'une période de temps de charge disponible Td, effectuée pour tenir compte des contraintes de l'utilisateur, en particulier en termes d'emploi du temps, ce qui influence le temps disponible pour procéder à la recharge de la batterie électrique BAT.
Ainsi, l'instant tA de branchement du système de recharge de la batterie électrique BAT au dispositif de recharge électrique TE permet de déterminer le début de la période de temps de charge disponible Td. En d'autres termes, cet instant ÎA de branchement de la batterie électrique initie la période de temps de charge disponible Td. Pour déterminer l'instant tD correspondant à la fin la période de temps de charge disponible Td, il est avantageux de demander à l'utilisateur d'indiquer l'heure à laquelle il prévoit de déconnecter le système électrique VE (par exemple l'heure à laquelle il prévoit de reprendre son véhicule électrique), par exemple son heure de départ le matin avant de partir au travail. L'utilisateur U peut ainsi fournir une indication relative à cet instant ÎD de fin de recharge, par exemple via une interface web spécifiquement dédiée à cet effet sur un smartphone ou sur le tableau de bord du véhicule électrique employé.
Une fois cette période de temps de charge disponible Td déterminée, il est avantageux de vérifier préalablement (étape 200) que la période de temps de charge disponible Td est suffisante, afin de n'engager le processus de recharge optimisée que lorsque c'est le cas. Dans le cas contraire, un processus de recharge électrique classique peut être mis en œuvre (étape 250) durant toute la durée de la période de temps de charge disponible Td, comme cela sera expliqué ultérieurement. La figure 3 illustre un mode de réalisation d'une telle étape 200 de vérification préalable.
Dans ce mode de réalisation, une durée de charge partielle Tx, correspondant au niveau d'énergie électrique résiduelle Ein contenue dans la batterie électrique BAT lors de son branchement au dispositif de recharge TE, est tout d'abord calculée (étape 210).
En d'autres termes, cette durée de charge partielle Tx correspond au temps nécessaire pour charger la batterie électrique BAT, à partir d'un état où elle est vide d'énergie (c'est-à-dire en partant d'un état de charge SoC nul), jusqu'au niveau d'énergie électrique résiduelle Ein.
Dans le cas particulier où l'information disponible au moment du branchement consiste en un état de charge SoC0 de la batterie BAT, ce niveau d'énergie électrique résiduelle Ein est calculé au préalable au moyen de l'équation (1 ) suivante : - SOC0
où :
- EeXpi est la capacité exploitable de cette batterie BAT ; et
- SoC0 est l'état de charge de la batterie électrique BAT au moment de branchement au dispositif de recharge TE (i.e. à l'instant tA illustré sur la figure 4). La durée de charge partielle Tx est alors déterminée grâce à l'équation (2) suivante :
(2) Ein = BAT - chrgr \ PFL{t)dt ,
0
où :
- I~|BAT est le paramètre d'efficacité de la batterie électrique BAT, compris entre 0 et 100% ;
- \c rgr est le paramètre d'efficacité du chargeur de cette batterie BAT, compris également entre 0 et 100% ; et
- PFL(t) est le profil de la charge de la batterie électrique BAT soutirée du réseau d'alimentation électrique.
La durée de charge complète Tcomp, correspondant au temps nécessaire à la charge complète de la batterie électrique BAT à partir d'un état où elle est vide d'énergie (c'est-à-dire en partant d'un état de charge SoC nul), est ensuite déterminée (étape 220) en fonction du le profil PFL(t) de charge de la batterie électrique BAT.
En particulier, cette durée de charge Tcomp est calculée grâce à l'équation (3) suivante :
(3) = ηΒΑΤ - chrgr \ PFL(t)dt
0
où Emax est le niveau d'énergie électrique atteint à la fin de cette charge complète, correspondant typiquement au niveau d'énergie de charge maximum de la batterie électrique BAT. La présente invention ne se limite cependant pas à ce seul cas, et peut aussi s'appliquer au cas où Emax est un niveau d'énergie électrique correspondant à un certain niveau d'énergie de charge souhaité, différent du niveau maximum de charge de la batterie électrique BAT.
Les étapes 210 de détermination de la durée de charge partielle Tx et 220 de détermination de la durée de charge complète Tcomp ne sont pas nécessairement réalisées dans l'ordre indiqué précédemment, mais peuvent très bien être réalisées dans l'ordre inverse, c'est-à-dire avec une détermination de la durée de charge complète Tcomp précédant la détermination de la durée de charge partielle Tx. Une fois les durées Tx et Tcomp déterminées, la durée T 0o de charge nécessaire pour une charge complète de la batterie BAT contenant un niveau d'énergie résiduelle Ein peut être déterminée (étape 230) au moyen de l'équation suivante :
(4) T100 = Tcomp -Tx
Cette durée T 0o peut alors être comparée (étape 240) avec la durée de la période de temps de charge disponible Td, afin de déterminer si l'on dispose de suffisamment de temps pour effectuer une recharge complète.
Si cette durée T 0o est inférieure à la durée de la période de temps de charge disponible Td, alors il est possible de mettre avantageusement le procédé de recharge optimisé selon la présente invention. Si, par contre, cette durée T-mo est supérieure à la durée de la période de temps de charge disponible Td, alors une recharge complète de la batterie électrique BAT n'est pas possible.
Dans ce dernier cas, on peut procéder à une recharge électrique traditionnelle au cours de laquelle le profil de charge PFL(t), tronqué par la durée Tx, est appliqué durant toute la période de temps de charge disponible Td, c'est-à-dire où le plan de charge durant cette période Td se base sur une puissance de charge correspondant à P(t) = PFL(Tx + t) .
Pour revenir au procédé de recharge optimisée illustré à la figure 2, après avoir déterminé la période de temps de charge disponible Td et éventuellement vérifié que la durée T-mo est bien inférieure à la durée de cette période de temps de charge disponible Td, on détermine (étape 300) un, ou plusieurs, niveau de puissance de charge Pk(i) à appliquer respectivement pendant un, ou plusieurs, intervalle de temps de charge ATChg(i) appartenant à la période de temps de charge disponible Td, initiée par le branchement du système de recharge de la batterie électrique BAT au dispositif de recharge électrique TE, un niveau de puissance de charge Pk(i) étant déterminé pour chaque intervalle de temps de charge ATChg(i) et associé à celui-ci.
La détermination du ou des niveau(x) de puissance de charge Pk(i) est effectuée, d'une part, en fonction d'une courbe de charge TLC associée au dispositif de recharge électrique TE et, d'autre part, de l'énergie électrique résiduelle Ein contenue dans la batterie électrique BAT lors du branchement de la batterie électrique au dispositif de recharge électrique. La batterie électrique BAT est alors rechargée (étape 400) durant le(s) intervalle(s) de temps de charge ATChg(i) en appliquant, lors de chaque intervalle de temps de charge ATChg(i), le niveau de puissance de charge Pk(i) qui lui est associé.
Ainsi, la recharge de la batterie électrique BAT se fait en tenant compte des contraintes de l'utilisateur (reflétées par la période de temps de charge disponible Td), du réseau électrique (reflétées par la courbe de charge TLC du dispositif de recharge électrique TE) et du véhicule électrique (reflétées par l'énergie électrique résiduelle Ein encore contenue dans la batterie électrique BAT au moment de son branchement sur le dispositif de recharge électrique TE).
La figure 4 illustre un mode de réalisation de l'étape 300 de détermination des niveaux de puissance à appliquer.
Cette étape de détermination comprend la détermination préalable (étape 31 0) d'un ensemble de valeurs de puissance de courbe de charge {TTC(i)}i≤i<n triées par ordre croissant à partir de la courbe de charge TLC associée au dispositif de recharge électrique TE.
En particulier, cette détermination préalable peut comprendre, dans un premier temps, l'échantillonnage (sous-étape 31 1 ) de la courbe de charge TLC associée au dispositif de recharge électrique TE, sur la période de temps de charge disponible Td, afin d'obtenir un ensemble {TLC(i)}i≤j<n de valeurs de puissance de courbe de charge TLC(1 ) à TLC(n) associées chacune à des intervalles de temps ΔΤ(1 ) à ΔΤ(η) consécutifs dans la période de temps de charge disponible Td.
Cet échantillonnage est avantageusement réalisé avec un pas de temps prédéterminé correspondant à une durée d'intervalle de temps de recharge ΔΤ, une valeur de puissance de courbe de charge TLC(i) étant alors associée à l'indice de temps i désignant le i-ème intervalle de temps ΔΤ(ί) compris dans la période de temps de charge disponible Td.
Ainsi, à l'issue de cette phase d'échantillonnage, des valeurs de puissance de courbe de charge TLC(1 ), ... ,TLC(i), ... ,TLC(n) sont associées respectivement à une succession d'intervalles de temps ΔΤ(1 ), ... , ΔΤ(ί), ... ,ΔΤ(η) consécutifs, eux-mêmes désignés par une succession d'indice de temps 1 , ... ,i, ....n, respectant la relation ΔΤ(ί)=ί*ΔΤ.
L'échantillonnage de la courbe de charge TLC permet de travailler en temps discret, notamment lors du tri des indices associés aux valeurs de puissance de courbe de charge, ce qui est plus facilement réalisable notamment avec des moyens informatiques.
Une fois la courbe de charge TLC échantillonnée, les valeurs de puissance de courbe de charge TLC(1 ) à TLC(n) sont triées (sous-étape 313) par ordre croissant, dans un deuxième temps, afin d'obtenir l'ensemble {TTC(i)} j<n de valeurs de puissance de courbe de charge triées, chacune de ces valeurs de puissance de courbe de charge triées {TTC(i)}i≤i<n étant associée respectivement à l'un desdits intervalles de temps ΔΤ(1 ) à AT(n).
Ainsi, si les valeurs TLC(i) suivantes sont obtenues, purement à titre d'exemple, en échantillonnant la courbe de charge toutes les heures entre 1 heure et 7 heures du matin :
TLC(1 ) = 75 kW
TLC(2) = 80 kW
TLC(3) = 70 kW
TLC(4) = 65 kW
TLC(5) = 65 kW
TLC(6) = 60 kW
TLC(7) = 70 kW
Alors, on obtient les valeurs de puissance de courbe de charge triées TTC(i) suivantes :
TTC(1 ) = TLC(6) = 60 kW;
TTC(2) = TLC(4) = 65 kW
TTC(3) = TLC(5) = 65 kW;
TTC(4) = TLC(3) = 70 kW;
TTC(5) = TLC(7) = 70 kW;
TTC(6) = TLC(1 ) = 75 kW;
TTC(7) = TLC(2) = 80 kW.
Dans ce tri, lorsque plusieurs valeurs de puissance de courbe de charge TLC(i) sont identiques, on peut les trier par exemple selon leur ordre chronologique, ce qui est illustré ci-avant avec les valeurs TLC(4) et TLC(5) qui donnent respectivement les valeurs de puissance de courbe de charge triées TTC(2) et TTC(3). Une fois les valeurs de puissance de courbe de charge triées TTC(1 ) à TTC(n) obtenues, l'énergie électrique résiduelle Ein de la batterie électrique BAT du véhicule électrique est alors déterminée (étape 315).
Cette énergie électrique résiduelle Ein est communiquée telle quelle par le véhicule électrique VE, si ce dernier est capable de la mesurer lui-même. Si, par contre, le véhicule électrique VE mesure l'état de charge résiduel SoC0 de la batterie BAT au moment du branchement au dispositif de recharge électrique TE, alors cette énergie électrique résiduelle Ein peut être calculée à partir de cet état de charge résiduel SoC0 au moyen de l'équation (1 ) décrite précédemment.
Une fois obtenues les valeurs de puissance de courbe de charge triées TTC(1 ) à
TTC(n) et l'énergie électrique résiduelle Ein de la batterie BAT, le ou les niveaux de puissance de charge Pk(i), à appliquer pendant un ou plusieurs intervalles de temps charge parmi les intervalles de temps ΔΤ(ϊ) consécutifs, sont alors déterminés au moyen de ces paramètres.
En particulier, on applique au moins un premier niveau de puissance de charge
Pk(1 ) pendant un premier intervalle de temps de charge ATChg(1 ) correspondant à l'intervalle de temps ΔΤ(ϊ) associé à la première valeur de puissance de courbe de charge triées TTC(1 ), ce premier niveau de puissance de charge étant déterminé en fonction de la deuxième valeur de puissance de courbe de charge triées TTC(2), afin de pouvoir rehausser ce premier niveau de puissance de charge.
Plus généralement, k niveaux de puissance de charge Pk(1 ),..., Pk(k) sont appliqués respectivement durant les k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ) à TTC(k), ces k niveaux de puissance de charge Pk(1 ), ..., Pk(k) étant déterminés en fonction de la k+1 -ième valeur de puissance de courbe de charge triées TTC(k), ce qui permet de rehausser les niveaux de puissance de charge de la batterie BAT à des moments de faible niveau de courbe de charge TLC du dispositif de recharge électrique TE.
Le rehaussement des niveaux de puissance de charge de la batterie à de tels moments permet de limiter l'impact sur la courbe de charge TLC du dispositif de recharge électrique TE et d'éviter les effets délétères associés aux zones de charge de valeur élevée de cette courbe de charge TLC.
Dans le mode de réalisation illustré à la figure 4, la détermination des k niveaux de puissance de charge Pk(1 ), ..., Pk(k) appliqués durant lesdits k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ) à TTC(k), comprend un processus itératif, fonction d'un indice k, de valeur initiale égale à 1 , qui est incrémenté tant que certaines conditions ne sont pas remplies.
Ce processus itératif comprend les étapes suivantes, répétées tant que l'indice k est incrémenté :
• On associe (étape 320), à chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ), ..., TTC(i), ...,TTC(k), une valeur de puissance de courbe de charge au rang k, désignée par TLCk(i) pour l'intervalle de temps associé à la i-ème valeur de puissance de courbe de charge triées TTC(i), égale à la k+1 ème valeur de puissance de courbe de charge triée TTC(k+1 ).
Par cette opération, pour tous les intervalles de temps associés au k premières valeurs de puissance de courbe de charge triées TTC(1 ), ..., TTC(i), ...,TTC(k), les valeurs de puissance de courbe de charge au rang k TLCk(i) sont rehaussées au niveau de la k+1 ème valeur de puissance de courbe de charge triée TTC(k+1 ).
• On calcule ensuite (étape 330), pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées
TTC(1 ), ..., TTC(i), ...,TTC(k), un niveau de puissance de charge au rang k, désigné par Pk(i) lorsque ce niveau est associé à l'intervalle de temps lui-même associé à la i-ème valeur de puissance de courbe de charge triées TTC(i). Ici, pour un intervalle de temps associés à la i-ème valeur de puissance de courbe de charge triées TTC(i), le niveau de puissance de charge au rang k Pk(i) est déterminé en fonction de la différence entre la valeur de puissance de courbe de charge au rang k TLCk(i) et la valeur de puissance de courbe de charge TLC(i) associées à cet intervalle de temps.
Dans un mode de réalisation avantageux, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ), ..., TTC(i), ...,TTC(k), le niveau Pk(i) de puissance de charge au rang k associé à cet intervalle de temps est égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale Pmax et, d'autre part, la différence entre la valeur de puissance de courbe de charge au rang k TLCk(i) et la valeur de puissance de courbe de charge TLC(i) associées à cet intervalle de temps.
En d'autres termes, le niveau Pk(i) de puissance de charge au rang k est calculé selon l'équation (5) suivante :
(5) Pk (i) = mmiP^ , TLCk (i) - TLC(i))
La valeur de puissance de courbe de charge maximale Pmax est un paramètre dépendant de la batterie ou de la puissance souscrite. Ainsi, dans ce mode de réalisation avantageux, le niveau de puissance Pk(i) est toujours au plus égal à cette valeur de puissance de courbe de charge maximale Pmax, ce qui garantit de ne jamais dépasser ce seuil.
• On détermine alors (étape 340) une énergie électrique au rang k, désignée par Ek, en appliquant les niveaux de puissance de charge au rang k Pk(i) sur les k intervalles de temps ATChg(1 ), ... , ATChg(k) auxquels ils sont respectivement associés.
Cette énergie Ek correspond à l'augmentation d'énergie électrique pouvant être obtenue grâce au rehaussement des k premières valeurs de puissance de courbe de charge triées.
Cette énergie Ek peut notamment être obtenue au moyen de l'équation (6) suivante :
(6) Ek =∑Ρ4 (ί) ·ΔΓ (ί)
i=l
• On compare alors (étape 350) l'énergie électrique Ek au rang k ainsi déterminée avec une énergie électrique E requise pour la recharge de la batterie électrique BAT. Une telle énergie électrique E requise peut être définie au préalable. Elle peut notamment être définie comme étant l'énergie nécessaire à la recharge complète de la batterie électrique BAT. Elle dépend dans ce cas de l'énergie électrique résiduelle Ein contenue dans la batterie électrique lors du branchement de la batterie électrique au dispositif de recharge électrique. Plus précisément, elle est égale à la différence entre l'énergie maximale Emax de charge de la batterie électrique et l'énergie électrique résiduelle Ein contenue dans la batterie électrique lors du branchement de la batterie électrique au dispositif de recharge électrique. · L'indice k est alors incrémenté (étape 355) si l'énergie électrique Ek au rang k est inférieure ou égale à l'énergie E requise pour la recharge de la batterie.
Si, par contre, l'énergie électrique Ek au rang k est supérieure à l'énergie E requise pour la recharge de la batterie, l'incrémentation de l'indice k n'a pas lieu et le processus itératif permettant d'obtenir les niveaux de puissance de charge à appliquer s'arrête à ce stade.
Dans un premier mode de réalisation, les niveaux de puissance de courbe de charge Pk(1 ) à Pk(k) obtenus à ce stade peuvent alors être appliqués respectivement durant les intervalles de temps ATChg(1 ) à ATChg(k) auxquels ils sont associés.
Cependant, dans un autre mode de réalisation avantageux, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ), ... , TTC(i), ... ,TTC(k), le niveau de puissance de charge au rang k Pk(i) associé à l'intervalle de temps peut être calculé (étape 360) pour être est égal à la valeur minimum entre, d'une part, la valeur de puissance de courbe de charge maximale Pmax définie précédemment et, d'autre part, la somme entre le niveau Pk-i (i) de puissance de charge au rang k-1 associé à l'intervalle de temps et la différence entre l'énergie électrique E requise et l'énergie électrique Ek- au rang k-1 , divisée par le nombre k.
En d'autres termes, pour le i-ème intervalle de temps concerné, le niveau Pk(i) de puissance de charge au rang k est calculé selon l'équation (7) suivante :
<7) Pk (i) = min(Pmax , (i) +
k
Cette opération permet de répartir équitablement, sur les intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ), ... , TTC(i), ... ,TTC(k), le surplus d'énergie nécessaire entre l'énergie électrique Ek- au rang k-1 et l'énergie électrique E requise. Jusqu'ici, seule une condition liée à la comparaison de l'énergie électrique Ek au rang k avec l'énergie E requise pour la recharge de la batterie a été évoquée pour décider, ou non, de la poursuite du processus itératif. Il peut cependant être avantageux d'ajouter des conditions supplémentaires.
Ainsi, dans un mode de réalisation avantageux, lorsque l'énergie électrique Ek au rang k est inférieure ou égale à l'énergie E requise pour la recharge de la batterie BAT, le processus 300 de détermination peut comprendre en outre la comparaison (étape 370) entre une durée de charge au rang k, désignée par∑ATChg avec la durée de la période de temps de recharge disponible Td. Plus précisément, la durée ∑ATChg de charge au rang k est égale à la somme des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées.
En particulier, lorsque les intervalles de temps ΔΤ(ί) et les intervalles de temps de charge ATChg(i) ont une durée ΔΤ correspondant à un pas d'échantillonnage prédéterminé, ceci revient à comparer l'indice k avec le nombre n d'intervalles de temps consécutifs ΔΤ(ί).
L'indice k n'est alors incrémenté que si la durée∑ATChg de charge au rang k est inférieure ou égale à la durée de la période de temps de recharge disponible Td (autrement dit si l'indice k est inférieur au nombre n dans le cas d'un échantillonnage avec un pas de durée ΔΤ), c'est-à-dire que si la durée de recharge disponible est suffisante pour permettre l'application des k niveaux de puissance Pk(i) déterminés jusqu'ici sur leurs k intervalles de temps respectifs.
Si tel n'est pas le cas, c'est-à-dire si la durée totale des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées TTC(1 ) à TTC(k) dépasse la durée de la période de recharge disponible Td (autrement dit si l'indice k est supérieur ou égal nombre n dans le cas d'un échantillonnage avec un pas de durée ΔΤ), alors le processus itératif s'arrête à ce stade, la puissance de charge à appliquer à la batterie électrique BAT étant modulée sur l'ensemble de la période de recharge disponible Td.
Les niveaux de puissance de charge Pk(1 ) à Pk(k) obtenus à ce stade peuvent alors être appliqués respectivement durant les intervalles de temps ÀTChg(1 ) à ATChg(k) auxquels ils sont respectivement associés, dans un mode de réalisation.
Cependant, dans un autre mode de réalisation, il peut être avantageux à ce stade de comparer (étape 380) à nouveau l'énergie électrique Ek au rang k avec l'énergie E requise pour la recharge de la batterie électrique BAT, afin de déterminer si cette énergie électrique Ek au rang k diffère de l'énergie E requise pour la recharge de la batterie électrique BAT d'au moins un écart prédéterminé.
Si l'énergie électrique Ek au rang k ne diffère pas substantiellement de l'énergie E requise pour la recharge de la batterie électrique BAT, alors les niveaux de puissance de charge Pk(1 ) à Pk(k) obtenus à ce stade peuvent alors être appliqués respectivement durant les intervalles de temps ATChg(1 ) à ATChg(k) auxquels ils sont respectivement associés.
Si, par contre, l'énergie électrique Ek au rang k diffère de l'énergie E requise pour la recharge de la batterie électrique BAT d'au moins un écart prédéterminé, alors, pour chaque intervalle de temps AT(j) consécutif de la période de temps disponible Td, un niveau de puissance de charge est calculé (étape 390) à appliquer en fonction du niveau de puissance au rang k Pk(j) associé à cet intervalle de temps et de la différence entre l'énergie électrique Ek au rang k et l'énergie E requise.
Plus particulièrement, pour chacun des intervalles de temps AT(j) consécutifs, le niveau de puissance de charge à appliquer est égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale Pmax et, d'autre part, la somme entre le niveau de puissance au rang k Pk(j) associé audit intervalle de temps et la différence entre l'énergie électrique Ek au rang k et l'énergie E requise divisée par le nombre k.
En d'autres termes, pour le j-ème intervalle de temps concerné, le niveau Pk(j) de puissance de charge au rang k est calculé selon l'équation (8) suivante :
(8) Pk U) = min(Pmax , Pk (j) + ^¾
k Ainsi, à l'issue de ce processus itératif, un certain nombre k de niveaux de puissance de charge Pk(1 ) à Pk(k) sont donc appliqués pendant k intervalles de temps de charge ATChg(1 ) à ATChg(k) correspondant aux k premières valeurs de puissance de courbe de charge triées TTC(1 ) à TTC(k), ces k intervalles de temps de charge ATChg(1 ) à ATChg(k) pouvant recouvrir l'ensemble de la période de charge disponible Td si celle-ci s'avère relativement courte par rapport à la quantité d'énergie électrique à recharger.
Dans un mode de réalisation particulier, on peut chercher à éviter que les niveaux de puissance de charge Pk(i) dépassent un niveau de puissance limite P|im, pouvant être avantageusement fixé par exemple à 50-60 % de la puissance de charge nominale du dispositif de recharge électrique TE, pour laquelle les niveaux de charge dépassant cette valeur sont considérés comme défavorables.
Ce niveau de puissance limite Pnm peut être constant sur l'ensemble de la période de charge disponible ou présenter des variations, auquel cas un niveau de puissance limite Pnm(i) est associé à chaque intervalle de temps ΔΤ(ί), les valeurs Pnm(i) pouvant être différentes les unes des autres.
Dans ce mode de réalisation, après avoir déterminé les k niveaux de puissance de charge Pk(1 ) à Pk(k), on procède à la comparaison, pour chacun des intervalles de temps ATchg(i) auxquels est associé un niveau de puissance de charge Pk(i), du niveau de puissance limite Pnm(i) associé à l'intervalle de temps ATChg(i) avec une valeur prévisionnelle de puissance de courbe de charge augmentée, désignée par TLC+VE(i), correspondant à la somme de la valeur de puissance de courbe de charge TLC(i) associée à l'intervalle de temps ATChg(i) et du niveau de puissance de charge Pk(i) associée à l'intervalle de temps ATChg (i).
La recharge, durant l'intervalle de temps ATChg (i), à un niveau de puissance de charge Pk(i) n'a alors lieu que si la valeur prévisionnelle de puissance de courbe de charge augmentée TLC+VE(i) associée à cet intervalle de temps ATChg(i) est inférieure au niveau de puissance limite Piim(i), c'est-à-dire que si la courbe de charge n'est pas augmentée au-delà de ce niveau de puissance limite Pnm(i) du fait de l'application du processus de recharge optimisée selon la présente invention.
Par contre, si la valeur prévisionnelle de puissance de courbe de charge augmentée TLC+VE(i) associée à cet intervalle de temps ATChg(i) est supérieure ou égale au niveau de puissance limite Piim(i), alors le niveau de puissance de charge Pk(i) telle que déterminé n'est pas appliqué. Dans un mode de réalisation, la recharge est alors inhibée durant cet intervalle de temps ATChg(i). Dans un autre mode de réalisation plus avantageux, la valeur de puissance de charge Pk(i) est alors recalculée pour être substantiellement égale à la différence entre le niveau de puissance limite Pnm(i) et la valeur de puissance de courbe de charge TLC(i) associées à l'intervalle de temps ATchg(i)
En particulier, dans un cas où il est toléré que la valeur de la courbe de change augmentée TLC+VE(i) atteigne le niveau de puissance limite Piim(i), alors la valeur de puissance de charge Pk(i) peut être égale à la différence entre le niveau de puissance limite P|im(i) et la valeur de puissance de courbe de charge TLC(i) associées à l'intervalle de temps ATChg(i). Si, par contre, il n'est pas souhaitable que la valeur de la courbe de change augmentée TLC+VE(i) atteigne le niveau de puissance limite Piim(i), alors la valeur de puissance de charge Pk(i) peut être égale à la différence entre le niveau de puissance limite P|im(i) et la valeur de puissance de courbe de charge TLC(i) associées à l'intervalle de temps ATChg(i), minorée d'un faible écart de puissance prédéterminé (par exemple de l'ordre d'1 KW), de sorte à ce que la valeur de la courbe de charge augmentée atteigne quasiment, mais n'égale pas, ni ne dépasse, le niveau de puissance limite Piim(i)-
Ainsi, en évitant de recharger la batterie électrique BAT dans des zones de la courbe de charge TLC supérieures au niveau de puissance limite Pnm, ce mode de réalisation préserve le dispositif de recharge électrique TE, moyennant une éventuelle recharge incomplète de la batterie électrique BAT.
La figure 5 est un graphique illustrant l'effet positif obtenu au moyen du procédé de recharge optimisée selon la présente invention.
Sur ce graphique sont illustrées, d'une part, la courbe de charge TLC d'un transformateur électrique durant une journée entière, ainsi que la courbe représentant l'évolution temporelle de la puissance limite Pnm au-delà de laquelle cette courbe de charge TLC induit des effets délétères, le niveau de puissance limite P|im étant ici défini à 80 kW.
L'instant d'arrivée ÎA de l'utilisateur à 18 heures (i.e. l'instant de branchement d'un véhicule électrique VE au transformateur) et l'instant de départ ÎD de l'utilisateur vers 7 heures (i.e. l'instant de débranchement du véhicule électrique VE de la borne d'alimentation) sont indiqués, ce qui permet de définir une période de charge disponible Td équivalent à l'intervalle [ÎA ; ÎD] .
En bas de ce graphique est illustrée, d'autre part, la courbe CRM représentant temporellement la modulation de la puissance de charge appliquée à la batterie électrique BAT.
On voit bien en particulier, sur cette courbe CRM, que la puissance de charge appliquée à la batterie électrique BAT est principalement maximale à des moments où la courbe de charge TLC est minimale, et tout du moins en dessous du niveau de la puissance limite P|im.
Enfin, la courbe de charge résultante, désignée par TLC+VE, est illustrée. On voit bien, sur cette courbe de charge résultante, que ce sont principalement les parties minimales de la courbe de charge TLC, situées en dessous du niveau de puissance limite Pnm, qui sont rehaussées par la recharge optimisée du véhicule VE et ce jusqu'à une valeur de puissance répartie tout au long de la période de charge disponible Td. La courbe de charge TLC est donc lissée grâce au procédé de la présente invention.
Par conséquent, l'augmentation de la courbe de charge induite par la recharge du véhicule VE se cantonne principalement à des valeurs de charge minimales de la courbe de charge TLC, ce qui limite les effets délétères engendrés pour le transformateur électrique, contrairement à ce qui serait le cas si la recharge était activée de façon permanente durant la période [tA ; tD]. Avec la présente invention, la consommation électrique engendrée par la recharge se limite à ce qui est nécessaire pour recharger la batterie électrique, sans forcément qu'il y ait établissement permanent d'une consommation électrique.
Les différentes étapes du procédé de recharge optimisée décrit précédemment peuvent notamment être mises en œuvre par un programme, susceptible d'être exécuté par une unité de traitement d'un système de recharge optimisée, implémentée par exemple sous la forme d'un ordinateur ou d'un processeur de données, ce programme comportant des instructions pour commander l'exécution des étapes d'un procédé tel que mentionné ci-dessus.
En particulier, l'unité de traitement en question peut être située dans le dispositif de recharge optimisée TE ou dans le système électrique VE, afin de gérer localement la recharge des véhicules électrique.
L'unité de traitement en question peut aussi être située à distance de ce dispositif de recharge optimisée TE, dans un système informatique distant appartenant au système de recharge optimisée SE, afin de gérer de façon centralisée cette recharge, ce qui est approprié dans le cas d'une flotte de grande envergure. Dans ce dernier cas, des consignes sont communiquées au dispositif de recharge optimisée TE ou au système électrique VE via différents réseaux de télécommunication afin de gérer la recharge optimisée.
Pour sa part, le programme peut utiliser n'importe quel langage de programmation, et être sous la forme d'un code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
L'invention vise aussi un support d'informations lisible par un ordinateur ou processeur de données, et comportant des instructions d'un programme tel que mentionné ci-dessus. Ce support d'informations peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une ROM, par exemple un CD-ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette ou un disque dur.
D'autre part, le support d'informations peut être un support transmissible tel qu'un signal électrique, électromagnétique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme selon l'invention peut être en particulier téléchargé sur un réseau de type Internet. Alternativement, le support d'informations peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
Le procédé de recharge optimisée de la présente invention trouve une application particulièrement intéressante dans le cadre de la recharge de batteries électrique de type ne présentant pas d'effet mémoire, d'inconvénients de charges partielles ou de contre-indication du constructeur, ce type de batterie passant d'un état d'activation de charge à un état d'inhibition de charge avec un faible délai de transition, et ne se rechargeant pas nécessairement à 100%. Ainsi, la batterie électrique BAT peut avantageusement être de type Lithium-Ion.
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation ci-dessus décrits et représentés, à partir desquels on pourra prévoir d'autres modes et d'autres formes de réalisation, sans pour autant sortir du cadre de l'invention.
Ainsi, le système électrique a été illustré précédemment sous la forme d'un véhicule électrique. Cependant, le système électrique VE peut très bien prendre la forme de n'importe quel système électrique ayant des capacités de stockage d'énergie électrique, par exemple un téléphone portable disposant d'une batterie électrique à recharger.

Claims

Revendications
1 . Procédé de recharge optimisée de la batterie électrique (BAT) d'au moins un système électrique (VE) par un dispositif de recharge électrique (TE), dans lequel la batterie électrique est rechargée (400) durant au moins un intervalle de temps (ATchg(i)) en appliquant un niveau de puissance de charge (Pk(i)) associé audit intervalle de temps, ledit intervalle de temps (ATChg(i)) appartenant à une période de temps de charge disponible (Td) initiée par le branchement du système de recharge de la batterie électrique au dispositif de recharge électrique, et le niveau de puissance de charge (Pk(i)) étant déterminé (300) en fonction d'une courbe de charge (TLC) associée audit dispositif de recharge électrique et de l'énergie électrique résiduelle (Ein) contenue dans la batterie électrique lors du branchement du système de charge de la batterie électrique au dispositif de recharge électrique ;
comprenant en outre :
l'échantillonnage (31 1 ) de la courbe de charge (TLC) sur la période de temps de charge disponible (Td) afin d'obtenir un ensemble de valeurs de puissance de courbe de charge ({TLC(i)}i≤i<n) associées respectivement à des intervalles de temps (ΔΤ(ϊ)) consécutifs; et
le tri (313), par ordre croissant, des valeurs de puissance de courbe de charge ({TLC(i)}i≤i≤n) afin d'obtenir un ensemble de valeurs de puissance de courbe de charge triées ({TTC(i)}1≤i<n);
la batterie électrique du véhicule électrique étant rechargée (400) durant k intervalles de temps de charge associés respectivement au k premières valeurs de puissance de courbe de charge triées, les niveaux de puissance de charge appliqués respectivement durant lesdits k intervalles de temps de charge étant déterminés en fonction de la k+1 -ième valeur de puissance de courbe de charge triées (TTC(k)).
2. Procédé de recharge optimisée selon la revendication 1 , dans lequel la détermination (300) des niveaux de puissance de charge appliqués durant lesdits k intervalles de temps de charge comprend les étapes suivantes, exécutées tant que l'indice k, de valeur initiale égale à 1 , est incrémenté :
associer (320), pour les k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées ({TTC(i)}i≤i≤k), une valeur de puissance de courbe de charge au rang k (TLCk(i)) égale à la k+1 ème valeur de puissance de courbe de charge triée (TTC(k+1 )) ; calculer (330), pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées ({TTC(i)}i≤i≤k), un niveau de puissance de charge au rang k (Pk(i)) associé audit intervalle de temps, ledit niveau de puissance de charge au rang k (Pk(i)) étant déterminé en fonction de la différence entre la valeur de puissance de courbe de charge au rang k (TLCk(i)) et la valeur de puissance la courbe de charge (TLC(i)) associées audit intervalle de temps ;
comparer (350) une énergie électrique au rang k (Ek), déterminée (340) en appliquant les niveaux de puissance de charge au rang k (Pk(i)) sur les k intervalles de temps auxquels ils sont respectivement associés, avec une énergie électrique (E) requise pour la recharge de la batterie (BAT) ;
incrémenter (355) l'indice k si l'énergie électrique au rang k (Ek) est inférieure ou égale à l'énergie (E) requise pour la recharge de la batterie (BAT).
3. Procédé de recharge optimisée selon la revendication 2, dans lequel, pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées ({TTC(i)}i≤i≤k), le niveau de puissance de charge au rang k (Pk(i)) associé audit intervalle de temps est égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale (Pmax) et, d'autre part, la différence entre la valeur de puissance de courbe de charge au rang k (TLCk(i)) et la valeur de puissance de courbe de charge (TLC(i)) associées audit intervalle de temps.
4. Procédé de recharge optimisée selon l'une des revendications 2 ou 3, dans lequel, lorsque l'énergie électrique au rang k (Ek) est supérieure à l'énergie (E) requise pour la recharge de la batterie (BAT), pour chacun des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées ({TTC(i)}i≤i≤k), le niveau de puissance de charge au rang k (Pk(i)) associé audit intervalle de temps est égal (360) à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale (Pmax) et, d'autre part, la somme du niveau de puissance de charge au rang k-1 (Pk-i (i)) et de la différence entre l'énergie (E) requise et l'énergie électrique au rang k-1 (Ek-i ) divisée par le nombre k.
5. Procédé de recharge optimisée selon l'une des revendications 2 à 4, dans lequel, lorsque l'énergie électrique au rang k (Ek) est inférieure ou égale à l'énergie (E) requise pour la recharge de la batterie (BAT), la détermination (300) comprend en outre la comparaison (370) entre une durée de charge au rang k (∑ATChg), égale à la somme des k intervalles de temps associés aux k premières valeurs de puissance de courbe de charge triées, avec la durée (Td) de la période de temps de recharge disponible, l'indice k n'étant incrémenté (355) que si la durée de charge au rang k (∑ATChg) est inférieure ou égale à la durée (Td) de la période de temps de recharge disponible.
6. Procédé de recharge optimisée selon la revendication 5, dans lequel, lorsque la durée de charge au rang k (∑ATChg) est supérieure (370) à la durée (Td) de la période de temps de recharge disponible et lorsque l'énergie électrique au rang k (Ek) diffère (380) de l'énergie (E) requise pour la recharge de la batterie (BAT) d'au moins un écart prédéterminé, la détermination (300) comprend le calcul (390), pour chaque intervalle de temps (AT(j)) consécutif de la période de temps disponible (Td), d'un niveau de puissance de charge à appliquer égal à la valeur minimum entre, d'une part, une valeur de puissance de courbe de charge maximale (Pmax) et, d'autre part, la somme entre le niveau de puissance au rang k (Pk(j)) associé audit intervalle de temps et la différence entre l'énergie électrique au rang k (Ek) et l'énergie (E) requise divisée par le nombre k.
7. Procédé de recharge optimisée selon l'une des revendications 1 à 6, dans lequel la recharge (400) de la batterie électrique comprend en outre, pour chacun des intervalles de temps de charge (ATChg(i)) auxquels sont associés un niveau de puissance de charge (Pk(i)), la comparaison d'un niveau de puissance limite (Piim(i)) associé audit intervalle de temps de charge avec une valeur prévisionnelle de puissance de courbe de charge augmentée (TLC+VE(i)) égale à la somme de la valeur de puissance de courbe de charge (TLC(i)) et du niveau de puissance de charge (Pk(i)) associées audit intervalle de temps de charge, le niveau de puissance de charge (Pk(i)) n'étant appliqué, durant ledit intervalle de temps de charge (ATChg(i)), que si ladite valeur prévisionnelle de puissance de courbe de charge augmentée (TLC+VE(i)) est inférieure au niveau de puissance limite (Piim(i)) associé audit intervalle de temps de charge.
8. Procédé de recharge optimisée selon la revendication 7, dans lequel on associe, à chaque intervalle de temps de charge (ATChg(i)) pour lequel la valeur prévisionnelle de puissance de courbe de charge augmentée (TLC+VE(i)) est supérieure ou égale au niveau de puissance limite (Piim(i)) associé audit intervalle de temps de charge, une valeur de puissance de charge (Pk(i)) substantiellement égale à la différence entre le niveau de puissance limite (Piim(i)) et la valeur de puissance de courbe de charge (TLC(i)) associées audit intervalle de temps de charge (ATChg(i)).
9. Procédé de recharge optimisée selon l'une des revendications 1 à 8, dans lequel la période de temps de charge disponible (Td) est déduite (1 00) en fonction de l'instant (ÎA) de branchement du système de recharge de la batterie électrique (BAT) au dispositif de recharge électrique (TE) et d'une indication relative à un instant (ÎD) de fin de recharge fournie par l'utilisateur du véhicule électrique.
1 0. Procédé de recharge optimisée selon l'une des revendications 1 à 9, comprenant une vérification préalable (200) de la période de temps de charge disponible (Td) en fonction de la durée (T 0o) nécessaire à la recharge complète de la batterie électrique (BAT), la recharge (400) de la batterie électrique durant ledit au moins un intervalle de temps de charge (ATChg(i)) n'ayant lieu que si la durée de la période de temps de charge disponible (Td) est supérieure à la durée (T-mo) nécessaire à la recharge complète de la batterie électrique.
1 1 . Procédé de recharge optimisée selon l'une des revendications 1 à 1 0, dans lequel la batterie électrique est apte à être modulée en puissance de charge et ne présente substantiellement aucun effet de mémoire, en particulier une batterie électrique de type Lithium-Ion.
1 2. Programme d'ordinateur comprenant des instructions pour mettre en œuvre les étapes du procédé selon l'une des revendications 1 à 1 1 lorsqu'il est exécuté par une unité de traitement d'un système de recharge électrique.
1 3. Dispositif de recharge optimisée (TE) d'au moins un véhicule électrique (VE), connecté à un réseau d'alimentation électrique (ΕΝΕτ) et comprenant au moins un port de branchement (p-i) apte à être connecté à la batterie électrique (BAT) d'un véhicule électrique (VE), le dispositif étant configuré pour mettre en œuvre les étapes du procédé selon l'une des revendications 1 à 1 1 suite au branchement de la batterie électrique (BAT) d'un véhicule électrique (VE) sur le port de branchement du dispositif de recharge optimisée.
14. Système de recharge optimisée (SE) pour recharger électriquement une flotte composée d'au moins un véhicule électrique (VE), le système comprenant un réseau d'alimentation électrique (ENET) et au moins un dispositif de recharge électrique (TE) selon la revendication 13, connecté audit réseau d'alimentation électrique.
15. Système de recharge optimisée (SE) selon la revendication 14, comprenant en outre un système informatique distant, connecté au dispositif de recharge électrique et comprenant une unité de traitement apte à mettre œuvre les étapes du procédé selon l'une des revendications 1 à 1 1 .
EP12767031.3A 2011-09-07 2012-09-06 Procédé et dispositif de recharge optimisée de batterie électrique Withdrawn EP2753492A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157960A FR2979763B1 (fr) 2011-09-07 2011-09-07 Procede et dispositif de recharge optimisee de batterie electrique
PCT/FR2012/051990 WO2013034854A2 (fr) 2011-09-07 2012-09-06 Procédé et dispositif de recharge optimisée de batterie électrique

Publications (1)

Publication Number Publication Date
EP2753492A2 true EP2753492A2 (fr) 2014-07-16

Family

ID=46968260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12767031.3A Withdrawn EP2753492A2 (fr) 2011-09-07 2012-09-06 Procédé et dispositif de recharge optimisée de batterie électrique

Country Status (9)

Country Link
US (1) US9487097B2 (fr)
EP (1) EP2753492A2 (fr)
JP (1) JP5843970B2 (fr)
CN (1) CN104024035B (fr)
AU (1) AU2012306113C1 (fr)
CA (1) CA2847528A1 (fr)
FR (1) FR2979763B1 (fr)
IL (1) IL231356A0 (fr)
WO (1) WO2013034854A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968098B (zh) * 2012-11-05 2014-12-10 清华大学 一种对集群内电动汽车充电功率的分布式优化方法
DE102015219202A1 (de) * 2015-10-05 2017-04-06 Bayerische Motoren Werke Aktiengesellschaft Optimierung von Lade-/Entladeplänen für Elektrofahrzeuge
DE102015219201A1 (de) * 2015-10-05 2017-04-06 Bayerische Motoren Werke Aktiengesellschaft Ermittlung einer Betriebsstrategie für einen Lokalspeicher
CN108400620A (zh) * 2017-02-07 2018-08-14 杭州慧橙科技有限公司 一种考虑无线充电总容量的多负载有序充电方法
DE102019134508A1 (de) * 2019-12-16 2021-06-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Ladepark zu Lastmanagement mit Rückfalllösung
US11560066B2 (en) * 2020-03-20 2023-01-24 Gm Cruise Holdings Llc High voltage battery bypass for electric vehicle fleet
FI20215987A1 (en) * 2021-09-21 2023-03-22 Liikennevirta Oy / Virta Ltd DETERMINATION OF COMPLETION TIME FOR CHARGING

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179799A (en) * 1977-10-21 1979-12-25 The United States Of America As Represented By The Secretary Of The Air Force Method of molding a double cathode having a sensing grid for a porous electrode primary battery
US5032825A (en) * 1990-03-02 1991-07-16 Motorola, Inc. Battery capacity indicator
US5191291A (en) * 1991-04-30 1993-03-02 George Taylor Method and apparatus for determining the performance capabilities of secondary batteries
TW423665U (en) * 1994-02-10 2001-02-21 Hitachi Koki Kk Service-life discriminating feature added to a battery charger
US6046574A (en) * 1999-06-04 2000-04-04 Sony Corporation Battery dropout correction for battery monitoring in mobile unit
DE19960761C1 (de) * 1999-12-16 2001-05-23 Daimler Chrysler Ag Verfahren zur Überwachung der Restladung und der Leistungsfähigkeit einer Batterie
US6388447B1 (en) * 2000-11-07 2002-05-14 Moltech Power Systems, Inc. Method and apparatus for battery fuel gauging
JP3964635B2 (ja) * 2001-06-20 2007-08-22 松下電器産業株式会社 メモリー効果の検出方法およびその解消方法
US7676334B2 (en) * 2005-03-04 2010-03-09 Autonetworks Technologies, Ltd. Battery condition monitor
WO2007108517A1 (fr) * 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. Dispositif d'examen sanguin
JP4996596B2 (ja) * 2006-03-22 2012-08-08 パナソニック株式会社 血液検査装置
US7402978B2 (en) * 2006-06-30 2008-07-22 Gm Global Technology Operations, Inc. System and method for optimizing grid charging of an electric/hybrid vehicle
CN101335369B (zh) * 2007-06-29 2010-08-25 联想(北京)有限公司 移动终端电池的充电管理方法及装置
US8264207B2 (en) * 2007-10-16 2012-09-11 Ford Global Technologies, Llc Method and system for pulse charging an automotive battery
JP4333798B2 (ja) * 2007-11-30 2009-09-16 トヨタ自動車株式会社 充電制御装置および充電制御方法
US7952319B2 (en) * 2008-01-07 2011-05-31 Coulomb Technologies, Inc. Street light mounted network-controlled charge transfer device for electric vehicles
US20100123436A1 (en) * 2008-11-14 2010-05-20 Symbol Technologies, Inc. Optimized lithium-ion battery charging
DE102010006527A1 (de) * 2010-02-01 2011-08-04 RWE Rheinland Westfalen Netz AG, 45128 Anpassen von Lastprofilen und/oder Einspeiseprofilen
US8093861B2 (en) * 2010-02-21 2012-01-10 Greenwave Reality, Pte Ltd. Power transfer system for a rechargeable battery
FR2979764B1 (fr) * 2011-09-07 2013-09-27 Electricite De France Procede et dispositif de recharge optimisee de batterie electrique
US9406094B2 (en) * 2012-08-14 2016-08-02 Stem Inc. Method and apparatus for delivering power using external data
US11454999B2 (en) * 2012-08-29 2022-09-27 Stem, Inc. Method and apparatus for automatically reconfiguring multi-phased networked energy storage devices at a site

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013034854A2 *

Also Published As

Publication number Publication date
AU2012306113B2 (en) 2015-07-02
FR2979763A1 (fr) 2013-03-08
CN104024035A (zh) 2014-09-03
AU2012306113C1 (en) 2015-10-08
FR2979763B1 (fr) 2015-04-10
CN104024035B (zh) 2016-08-17
WO2013034854A2 (fr) 2013-03-14
JP2014526867A (ja) 2014-10-06
CA2847528A1 (fr) 2013-03-14
IL231356A0 (en) 2014-04-30
JP5843970B2 (ja) 2016-01-13
AU2012306113A1 (en) 2014-03-27
US20140217993A1 (en) 2014-08-07
WO2013034854A3 (fr) 2013-10-24
US9487097B2 (en) 2016-11-08

Similar Documents

Publication Publication Date Title
EP2753491B1 (fr) Procédé et dispositif de recharge optimisée de batterie électrique
WO2013034854A2 (fr) Procédé et dispositif de recharge optimisée de batterie électrique
EP3191337B1 (fr) Procédé de gestion de la plage d&#39;utilisation d&#39;une batterie
EP3237258B1 (fr) Procédé de gestion d&#39;énergie d&#39;une batterie de traction d&#39;un véhicule hybride rechargeable
EP2122379B1 (fr) Procede de determination du seuil de fin de decharge d&#39;une batterie rechargeable
FR2908243A1 (fr) Procede de gestion de charge d&#39;une batterie rechargeable
FR2978626A1 (fr) Recharge d&#39;un parc de batteries
EP2665120A1 (fr) Procédé et système d&#39;équilibrage de cellules constitutives d&#39;une batterie
FR3089164A1 (fr) Procédé de gestion optimisée de la charge d’une flotte de véhicules électriques.
EP2892753A2 (fr) Recharge d&#39;un parc de batteries
FR2961352A1 (fr) Procede d&#39;estimation des etats de charge et de sante d&#39;une batterie d&#39;un vehicule, estimateur et vehicule comportant un tel estimateur
FR3067878B1 (fr) Procede de charge de batteries pour un aeronef et systeme de stockage d&#39;energie electrique
WO2013034856A2 (fr) Procédé et dispositif de recharge optimisée de batterie électrique
EP2954335B1 (fr) Méthode de détermination de la valeur moyenne d&#39;un signal de tension périodique ou quasi-périodique
FR2982206A1 (fr) Dispositif et procede de gestion d&#39;une batterie en vue de sa non utilisation pendant une duree choisie
FR2937147A1 (fr) Procede de determination de l&#39;etat de charge d&#39;une batterie d&#39;un vehicule automobile
FR3102859A1 (fr) Méthode de charge d’une batterie d’accumulateurs par une borne de charge
EP4175160A1 (fr) Optimisation de l&#39;utilisation d&#39;un groupe électrogène
CA3183945A1 (fr) Procede de pilotage de charge et de decharge d&#39;une pluralite de dispositifs de stockage d&#39;energie electrique
FR3084221A1 (fr) Procede de gestion des commutations d’un bras d’interrupteur commande en frequence
WO2021209259A1 (fr) Procédé de calibration d&#39;un courant de charge d&#39;une batterie d&#39;un véhicule automobile électrique
WO2008081133A2 (fr) Procede de gestion des flux energetiques dans un dispositif d&#39;alimentation electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140227

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 21/00 20060101ALI20170904BHEP

Ipc: H02J 3/14 20060101ALI20170904BHEP

Ipc: B60L 11/18 20060101AFI20170904BHEP

Ipc: H02J 7/00 20060101ALI20170904BHEP

Ipc: G01N 27/416 20060101ALI20170904BHEP

INTG Intention to grant announced

Effective date: 20170929

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180210