EP2751844A2 - Non-planar photovoltaic device - Google Patents
Non-planar photovoltaic deviceInfo
- Publication number
- EP2751844A2 EP2751844A2 EP12755987.0A EP12755987A EP2751844A2 EP 2751844 A2 EP2751844 A2 EP 2751844A2 EP 12755987 A EP12755987 A EP 12755987A EP 2751844 A2 EP2751844 A2 EP 2751844A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- photovoltaic
- photovoltaic device
- flexible substrate
- grooves
- conductors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 239000004020 conductor Substances 0.000 claims description 26
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000010410 layer Substances 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 238000010329 laser etching Methods 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 230000005611 electricity Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001540 jet deposition Methods 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035272—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
- H01L31/035281—Shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/10—Photovoltaic [PV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a method of manufacturing a photovoltaic device and a photovoltaic device as such.
- FIG. 1 illustrates a photovoltaic module 1 according to the state of the art. It is in the form of a large square slab measuring between 1 and 3 meters apart, comprising several photovoltaic cells 2 interconnected, and whose surface electrical conductors 3 are interconnected, for example by welding, to finally conduct the current generated by all the photovoltaic cells 2 to a junction box 5 disposed under the module, which serves to connect it electrically with other modules.
- the photovoltaic cells 2 are further covered with a protective glass pane 6 at the upper surface of the module. Finally, the underside of the photovoltaic cells 2 is protected by a laminated polymer 4.
- photovoltaic modules 1 as described above is widespread and their format is almost standardized. However, there are specific implementations, such as the positioning on the roof of a building to produce electricity to meet a part of the building needs, for which the dimensions and / or form described above are not optimal. .
- To improve the integration of photovoltaic devices on the roof it is known to manufacture photovoltaic devices comprising the same structure as that described with reference to Figure 1 but of reduced size, being in a form of flat tiles, to be able to arrange them on a roof to replace existing tiles with the same construction technique.
- These existing solutions however remain unsatisfactory because complex and expensive to manufacture. Moreover, they do not allow meet all architectural aesthetic requirements, including not replacing curved tiles, such as Roman tiles. More generally, standard photovoltaic devices do not allow an implementation on curved surfaces, which limits the development of their use.
- an object of the invention is in particular to provide a photovoltaic device adapted for a curved surface.
- the invention is based on a method of manufacturing a photovoltaic device, characterized in that it comprises the following steps:
- the method of manufacturing a photovoltaic device may include the following preliminary steps:
- the realization of the electrical conductors in the grooves can be made by depositing metal in an electrochemical bath.
- the making of cuts in the at least one photovoltaic cell can be performed by laser etching.
- the assembly of at least one photovoltaic cell with a flexible substrate can be obtained by polymerization, or crosslinking, or welding, or bonding.
- the method of manufacturing a photovoltaic device may comprise a further step of shaping the photovoltaic device into a non-planar shape.
- the method of manufacturing a photovoltaic device may comprise an additional step of adding a transparent protective layer of resin type to the photovoltaic device.
- the invention also relates to a photovoltaic device, characterized in that it comprises at least one photovoltaic cell having cutouts, assembled to a flexible substrate, to form a flexible assembly and / or non-planar shape.
- the flexible substrate may comprise grooves comprising conductors that do not occupy the full height of the grooves, and the grooves may also include photovoltaic cell conductors in contact with the conductors of the flexible substrate.
- the flexible substrate may comprise a lower layer in the form of a film and a layer of polymer-type resin, and the grooves may extend over all or part of the thickness of the resin layer.
- the grooves may be arranged superimposed on the raised conductors on the surface of the at least one photovoltaic cell so that these conductors are all housed in grooves of the flexible substrate.
- the blanks may occupy all or part of the thickness of a photovoltaic cell, and / or the thickness of a photovoltaic cell plus the flexible substrate may be less than or equal to 250 ⁇ , or less than or equal to 200 ⁇ , and or the photovoltaic device may have a non-planar shape having at least one curvature of radius of curvature less than or equal to 1 meter.
- the covering device of a roof may comprise an assembly of photovoltaic devices as previously described in the form of rounded surface tiles and / or curved and / or curved.
- the invention also relates to a fabric characterized in that it comprises photovoltaic devices as described above.
- FIG. 1 represents in exploded perspective the structure of FIG. a photovoltaic module according to the state of the art.
- Figure 2 schematically shows a first step of the method of manufacturing a photovoltaic device according to one embodiment of the invention.
- Figure 3 schematically shows a second step of the method of manufacturing a photovoltaic device according to the embodiment of the invention.
- FIG. 4 schematically shows a third step of the method of manufacturing a photovoltaic device according to the embodiment of the invention.
- FIG. 5 represents a magnification of a portion of the photovoltaic device at the end of the third step according to the embodiment of the invention.
- FIG. 6 schematically represents a photovoltaic device according to one embodiment of the invention.
- FIG. 2 thus represents a first step in the method of manufacturing a photovoltaic device according to one embodiment of the invention.
- This method first comprises the manufacture of a photovoltaic cell 12 or a set of photovoltaic cells 12, based on silicon, according to a method of the state of the art.
- Conductors 13 are arranged on a surface of this (or these) cell (s) in order to conduct the current generated by photovoltaic effect. They stand out in relief on the flat surface of this (or these) cell (s).
- the method comprises a step of manufacturing a flexible substrate 20 intended to receive one or more photovoltaic cells 12.
- this flexible substrate 20 comprises a polymer-type multilayer structure : in the illustrated embodiment, it comprises a film 21 in its part lower and a resin layer 22 in its upper part.
- This resin layer 22 comprises grooves 24 in its thickness, in which metal conductors 23 are arranged, for example by transfer of a metal ribbon or by ink jet deposition of a metallic ink, or by electrochemical bath to using masks to arrange the metallization specifically in the grooves, or by any other metal deposition solution.
- the grooves 24 extend over the entire thickness of the resin layer 22, hence from the upper surface of the film 21.
- the conductors 23 occupy only part of the height of the grooves 24, leaving their upper part for receiving the conductors 13 of the photovoltaic cells.
- the geometry of the grooves 24 corresponds to that of the conductors 13 of the photovoltaic cells 12.
- the conductors 13 of the photovoltaic cells are rectilinear and parallel, arranged in a constant pitch p. They can also be in spherical form simpler to achieve (natural coalescence alloys and allowing self-centering of the cell on the substrate, which allows a high positioning accuracy).
- FIG. 3 illustrates the result of the assembly of a photovoltaic cell 12 with the flexible substrate 20.
- the conductors 13 of the photovoltaic cell 12 come into contact with the conductors 23 of the grooves 24, to form a single conductor occupying the entire height of the grooves.
- the flexible substrate 20 and the at least one photovoltaic cell 12 are then fixed by any means, such as by a polymerization allowing their bonding, or by crosslinking, etc., to obtain the welding or bonding of the two elements.
- the manufacturing method comprises a step of making cutouts 17 extending over all or part of the thickness of the cells.
- photovoltaic 12 as illustrated by Figures 4 and 5, to form a network of cutouts 17 provided to allow the subsequent folding of the photovoltaic device to conform to a desired three-dimensional shape.
- the network of cuts 17 is calculated in advance by techniques of the type used in origami, to obtain any desired three-dimensional shape.
- the depth of the cuts 17 in the photovoltaic cells 12 depends on the radius of curvature imposed by the final curved shape.
- the cuts are made by any method, such as laser engraving. Alternatively, all or part of the cuts may even extend over a portion of the thickness of the flexible substrate.
- the flexible substrate 20 ensures a good maintenance of the entire device after making the cuts 17, even if the latter are of significant depth, while limiting the risk of crack propagation.
- the flexible substrate 20 fills a second function of electrical continuity to conduct the current generated by the different parts of photovoltaic cells, even after the cuts, since it is able to conduct electricity between the cut areas and to the others cells.
- the result obtained by the steps described above is a photovoltaic device provided with a certain flexibility, more or less important depending on the choice of the network of cuts 17, which can make it possible to obtain photovoltaic devices in the form of flexible fabrics, comprising for example a multitude of photovoltaic cells attached adjacent to the same flexible substrate.
- This approach then allows an end user to use the fabric for any use requiring flexibility of the material, as in the textile, for implementation on a garment for example.
- the manufacturing process may comprise a final step consisting in deforming and shaping the result of planar shape as shown in FIG.
- this principle can also be used more generally to cover any non-surface plane of photovoltaic devices, such as a motor vehicle for example.
- the solution is suitable for large radii of curvature, less than or equal to 1 meter for example.
- the embodiment has been implemented with photovoltaic cells comprising conductors on their rear face.
- the same method could be used with cells comprising conductors on their front face or on their two faces.
- the proposed solution makes it possible to form a thin final structure (as shown in FIG. 4), the thickness of which is less than 250 ⁇ , or even less than or equal to 200 ⁇ .
- the cell (s) photovoltaic (s) has (s) a thickness of between 50 and 250 ⁇ .
- the flexible substrate 20 advantageously has a thickness between 100 and 1000 ⁇ .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
Abstract
The invention relates to a method for the production of a photovoltaic device, characterised in that it comprises the following steps consisting in: assembling at least one photovoltaic cell (12) with a flexible substrate (20); and subsequently making cut-outs (17) in the at least one photovoltaic cell in order to render same flexible and to allow the photovoltaic device to deform.
Description
Dispositif photovoltaïque non plan Non-planar photovoltaic device
L'invention concerne un procédé de fabrication d'un dispositif photovoltaïque ainsi qu'un dispositif photovoltaïque en tant que tel. The invention relates to a method of manufacturing a photovoltaic device and a photovoltaic device as such.
La figure 1 illustre un module photovoltaïque 1 selon l'état de la technique. Il se présente sous la forme d'une grande dalle carrée mesurant entre 1 et 3 mètres de côté, comprenant plusieurs cellules photovoltaïques 2 liées entre elles, et dont les conducteurs électriques 3 de surface sont reliés entre eux, par exemple par soudure, pour finalement conduire le courant généré par l'ensemble des cellules photovoltaïques 2 vers une boîte de jonction 5 disposée sous le module, qui sert à le relier électriquement avec d'autres modules. Les cellules photovoltaïques 2 sont de plus recouvertes d'une vitre en verre 6 protectrice, au niveau de la surface supérieure du module. Enfin, la face inférieure des cellules photovoltaïques 2 est protégée par un polymère laminé 4. FIG. 1 illustrates a photovoltaic module 1 according to the state of the art. It is in the form of a large square slab measuring between 1 and 3 meters apart, comprising several photovoltaic cells 2 interconnected, and whose surface electrical conductors 3 are interconnected, for example by welding, to finally conduct the current generated by all the photovoltaic cells 2 to a junction box 5 disposed under the module, which serves to connect it electrically with other modules. The photovoltaic cells 2 are further covered with a protective glass pane 6 at the upper surface of the module. Finally, the underside of the photovoltaic cells 2 is protected by a laminated polymer 4.
L'utilisation de modules photovoltaïques 1 tels que décrits ci-dessus est très répandue et leur format est quasi standardisé. Toutefois, il existe des implémentations particulières, comme le positionnement en toiture d'un bâtiment afin de produire de l'électricité pour répondre à une partie des besoins du bâtiment, pour lesquelles les dimensions et/ou forme décrites ci-dessus ne sont pas optimales. Pour améliorer l'intégration des dispositifs photovoltaïques en toiture, il est connu de fabriquer des dispositifs photovoltaïques comprenant la même structure que celle décrite en référence avec la figure 1 mais de format réduit, se présentant dans une forme de tuiles plates, pour pouvoir les disposer sur une toiture en remplacement des tuiles existantes avec la même technique de construction. Ces solutions existantes restent toutefois insatisfaisantes car complexes et coûteuses à fabriquer. De plus, elles ne permettent pas de
répondre à toutes les exigences esthétiques architecturales, notamment pas de remplacer les tuiles de forme courbée, comme les tuiles romanes très répandues. De manière plus générale, les dispositifs photovoltaïques standards ne permettent pas une implémentation sur des surfaces courbes, ce qui limite le développement de leur utilisation. The use of photovoltaic modules 1 as described above is widespread and their format is almost standardized. However, there are specific implementations, such as the positioning on the roof of a building to produce electricity to meet a part of the building needs, for which the dimensions and / or form described above are not optimal. . To improve the integration of photovoltaic devices on the roof, it is known to manufacture photovoltaic devices comprising the same structure as that described with reference to Figure 1 but of reduced size, being in a form of flat tiles, to be able to arrange them on a roof to replace existing tiles with the same construction technique. These existing solutions however remain unsatisfactory because complex and expensive to manufacture. Moreover, they do not allow meet all architectural aesthetic requirements, including not replacing curved tiles, such as Roman tiles. More generally, standard photovoltaic devices do not allow an implementation on curved surfaces, which limits the development of their use.
Ainsi, il existe un besoin d'une solution permettant de pallier aux inconvénients mentionnés ci-dessus et un objet de l'invention est notamment de proposer un dispositif photovoltaïque adapté pour une surface courbe. Thus, there is a need for a solution to overcome the drawbacks mentioned above and an object of the invention is in particular to provide a photovoltaic device adapted for a curved surface.
A cet effet, l'invention repose sur un procédé de fabrication d'un dispositif photovoltaïque, caractérisé en ce qu'il comprend les étapes suivantes : For this purpose, the invention is based on a method of manufacturing a photovoltaic device, characterized in that it comprises the following steps:
- assemblage d'au moins une cellule photovoltaïque avec un substrat souple ; puis, - Assembling at least one photovoltaic cell with a flexible substrate; then,
- réalisation de découpes dans la au moins une cellule photovoltaïque pour lui apporter une souplesse et permettre de déformer le dispositif photovoltaïque. Le procédé de fabrication d'un dispositif photovoltaïque peut comprendre les étapes préalables suivantes : - Making cuts in the at least one photovoltaic cell to provide flexibility and allow to deform the photovoltaic device. The method of manufacturing a photovoltaic device may include the following preliminary steps:
- réalisation de rainures dans le substrat souple ; - Making grooves in the flexible substrate;
- formation de conducteurs électriques dans ces rainures. La réalisation des conducteurs électriques dans les rainures peut être faite par dépôt de métal dans un bain électrochimique. - Formation of electrical conductors in these grooves. The realization of the electrical conductors in the grooves can be made by depositing metal in an electrochemical bath.
La réalisation de découpes dans la au moins une cellule photovoltaïque peut être réalisée par gravure laser.
L'assemblage d'au moins une cellule photovoltaïque avec un substrat souple peut être obtenu par polymérisation, ou réticulation, ou soudure, ou collage. Le procédé de fabrication d'un dispositif photovoltaïque peut comprendre une étape supplémentaire consistant à conformer le dispositif photovoltaïque dans une forme non plane. The making of cuts in the at least one photovoltaic cell can be performed by laser etching. The assembly of at least one photovoltaic cell with a flexible substrate can be obtained by polymerization, or crosslinking, or welding, or bonding. The method of manufacturing a photovoltaic device may comprise a further step of shaping the photovoltaic device into a non-planar shape.
Le procédé de fabrication d'un dispositif photovoltaïque peut comprendre une étape supplémentaire consistant à ajouter une couche transparente de protection de type résine sur le dispositif photovoltaïque. The method of manufacturing a photovoltaic device may comprise an additional step of adding a transparent protective layer of resin type to the photovoltaic device.
L'invention porte aussi sur un dispositif photovoltaïque, caractérisé en ce qu'il comprend au moins une cellule photovoltaïque présentant des découpes, assemblée à un substrat souple, pour former un ensemble souple et/ou de forme non plane. The invention also relates to a photovoltaic device, characterized in that it comprises at least one photovoltaic cell having cutouts, assembled to a flexible substrate, to form a flexible assembly and / or non-planar shape.
Le substrat souple peut comprendre des rainures comprenant des conducteurs qui n'occupent pas toute la hauteur des rainures, et les rainures peuvent comprendre aussi des conducteurs de cellules photovoltaïques en contact avec les conducteurs du substrat souple. The flexible substrate may comprise grooves comprising conductors that do not occupy the full height of the grooves, and the grooves may also include photovoltaic cell conductors in contact with the conductors of the flexible substrate.
Le substrat souple peut comprendre une couche inférieure sous forme de film et une couche de résine de type polymère, et les rainures peuvent s'étendre sur tout ou partie de l'épaisseur de la couche de résine. The flexible substrate may comprise a lower layer in the form of a film and a layer of polymer-type resin, and the grooves may extend over all or part of the thickness of the resin layer.
Les rainures peuvent être disposées de manière superposée aux conducteurs en relief à la surface de la au moins une cellule photovoltaïque de sorte que ces conducteurs sont tous logés dans des rainures du substrat souple.
Les découpes peuvent occuper tout ou partie de l'épaisseur d'une cellule photovoltaïque, et/ou l'épaisseur d'une cellule photovoltaïque plus du substrat souple peut être inférieure ou égale à 250 μητι, ou inférieure ou égale à 200 μητι, et/ou le dispositif photovoltaïque peut présenter une forme non plane présentant au moins une courbure de rayon de courbure inférieur ou égal à 1 mètre. The grooves may be arranged superimposed on the raised conductors on the surface of the at least one photovoltaic cell so that these conductors are all housed in grooves of the flexible substrate. The blanks may occupy all or part of the thickness of a photovoltaic cell, and / or the thickness of a photovoltaic cell plus the flexible substrate may be less than or equal to 250 μητι, or less than or equal to 200 μητι, and or the photovoltaic device may have a non-planar shape having at least one curvature of radius of curvature less than or equal to 1 meter.
Le dispositif de couverture d'un toit peut comprendre un assemblage de dispositifs photovoltaïques tels que décrits précédemment en forme de tuiles de surface arrondie et/ou courbée et/ou galbée. The covering device of a roof may comprise an assembly of photovoltaic devices as previously described in the form of rounded surface tiles and / or curved and / or curved.
L'invention porte aussi sur un tissu caractérisé en ce qu'il comprend des dispositifs photovoltaïques tels que décrits précédemment. The invention also relates to a fabric characterized in that it comprises photovoltaic devices as described above.
L'invention porte aussi sur un véhicule automobile, caractérisé en ce qu'il comprend des dispositifs photovoltaïques tels que décrits précédemment sur sa surface. Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un mode de réalisation particulier fait à titre non-limitatif en relation avec les figures jointes parmi lesquelles : La figure 1 représente en perspective éclatée la structure d'un module photovoltaïque selon l'état de la technique. The invention also relates to a motor vehicle, characterized in that it comprises photovoltaic devices as previously described on its surface. These objects, features and advantages of the present invention will be described in detail in the following description of a particular embodiment made in a non-limiting manner in relation to the attached figures among which: FIG. 1 represents in exploded perspective the structure of FIG. a photovoltaic module according to the state of the art.
La figure 2 représente schématiquement une première étape du procédé de fabrication d'un dispositif photovoltaïque selon un mode de réalisation de l'invention.
La figure 3 représente schématiquement une seconde étape du procédé de fabrication d'un dispositif photovoltaïque selon le mode de réalisation de l'invention. Figure 2 schematically shows a first step of the method of manufacturing a photovoltaic device according to one embodiment of the invention. Figure 3 schematically shows a second step of the method of manufacturing a photovoltaic device according to the embodiment of the invention.
La figure 4 représente schématiquement une troisième étape du procédé de fabrication d'un dispositif photovoltaïque selon le mode de réalisation de l'invention. La figure 5 représente un grossissement d'une partie du dispositif photovoltaïque à la fin de la troisième étape selon le mode de réalisation de l'invention. Figure 4 schematically shows a third step of the method of manufacturing a photovoltaic device according to the embodiment of the invention. FIG. 5 represents a magnification of a portion of the photovoltaic device at the end of the third step according to the embodiment of the invention.
La figure 6 représente schématiquement un dispositif photovoltaïque selon un mode de réalisation de l'invention. FIG. 6 schematically represents a photovoltaic device according to one embodiment of the invention.
La figure 2 représente ainsi une première étape du procédé de fabrication d'un dispositif photovoltaïque selon un mode de réalisation de l'invention. Ce procédé comprend d'abord la fabrication d'une cellule photovoltaïque 12 ou d'un ensemble de cellules photovoltaïques 12, à base de silicium, selon un procédé de l'état de la technique. Des conducteurs 13 sont disposés sur une surface de cette (ou ces) cellule(s) afin de conduire le courant généré par effet photovoltaïque. Ils ressortent donc en relief sur la surface plane de cette (ou ces) cellule(s). FIG. 2 thus represents a first step in the method of manufacturing a photovoltaic device according to one embodiment of the invention. This method first comprises the manufacture of a photovoltaic cell 12 or a set of photovoltaic cells 12, based on silicon, according to a method of the state of the art. Conductors 13 are arranged on a surface of this (or these) cell (s) in order to conduct the current generated by photovoltaic effect. They stand out in relief on the flat surface of this (or these) cell (s).
Selon un élément essentiel de l'invention, le procédé comprend une étape de fabrication d'un substrat souple 20, destiné à recevoir une ou plusieurs cellules photovoltaïques 12. Dans ce mode de réalisation, ce substrat souple 20 comprend une structure multicouches de type polymères : dans le mode de réalisation illustré, il comprend un film 21 dans sa partie
inférieure et une couche en résine 22 dans sa partie supérieure. Cette couche en résine 22 comprend des rainures 24 dans son épaisseur, dans lesquelles des conducteurs métalliques 23 sont disposés, par exemple par report d'un ruban métallique ou par dépôt par jet d'encre d'une encre métallique, ou par bain électrochimique à l'aide de masques pour disposer la métallisation spécifiquement dans les rainures, ou par toute autre solution de dépôt de métal. Dans ce mode de réalisation, les rainures 24 s'étendent sur toute l'épaisseur de la couche en résine 22, donc depuis la surface supérieure du film 21 . Les conducteurs 23 n'occupent qu'une partie de la hauteur des rainures 24, laissant libre leur partie supérieure destinée à recevoir les conducteurs 13 des cellules photovoltaïques. Pour cela, la géométrie des rainures 24 correspond à celle des conducteurs 13 des cellules photovoltaïques 12. Pour faciliter cette correspondance, les conducteurs 13 des cellules photovoltaïques sont rectilignes et parallèles, disposés selon un pas p constant. Ils peuvent aussi être sous forme sphérique plus simple à réaliser (coalescence naturelle des alliages et permettant un autocentrage de la cellule sur le substrat, ce qui permet une grande précision de positionnement). La figure 3 illustre le résultat de l'assemblage d'une cellule photovoltaïque 12 avec le substrat souple 20. Il apparaît ainsi que les conducteurs 13 de la cellule photovoltaïque 12 viennent en contact avec les conducteurs 23 des rainures 24, pour former un seul conducteur occupant toute la hauteur des rainures. Le substrat souple 20 et la au moins une cellule photovoltaïque 12 sont ensuite fixés par tout moyen, comme par une polymérisation permettant leur collage, ou par réticulation, etc., pour obtenir la soudure ou collage des deux éléments. According to an essential element of the invention, the method comprises a step of manufacturing a flexible substrate 20 intended to receive one or more photovoltaic cells 12. In this embodiment, this flexible substrate 20 comprises a polymer-type multilayer structure : in the illustrated embodiment, it comprises a film 21 in its part lower and a resin layer 22 in its upper part. This resin layer 22 comprises grooves 24 in its thickness, in which metal conductors 23 are arranged, for example by transfer of a metal ribbon or by ink jet deposition of a metallic ink, or by electrochemical bath to using masks to arrange the metallization specifically in the grooves, or by any other metal deposition solution. In this embodiment, the grooves 24 extend over the entire thickness of the resin layer 22, hence from the upper surface of the film 21. The conductors 23 occupy only part of the height of the grooves 24, leaving their upper part for receiving the conductors 13 of the photovoltaic cells. For this, the geometry of the grooves 24 corresponds to that of the conductors 13 of the photovoltaic cells 12. To facilitate this correspondence, the conductors 13 of the photovoltaic cells are rectilinear and parallel, arranged in a constant pitch p. They can also be in spherical form simpler to achieve (natural coalescence alloys and allowing self-centering of the cell on the substrate, which allows a high positioning accuracy). FIG. 3 illustrates the result of the assembly of a photovoltaic cell 12 with the flexible substrate 20. It thus appears that the conductors 13 of the photovoltaic cell 12 come into contact with the conductors 23 of the grooves 24, to form a single conductor occupying the entire height of the grooves. The flexible substrate 20 and the at least one photovoltaic cell 12 are then fixed by any means, such as by a polymerization allowing their bonding, or by crosslinking, etc., to obtain the welding or bonding of the two elements.
Ensuite, le procédé de fabrication comprend une étape de réalisation de découpes 17 s'étendant sur tout ou partie de l'épaisseur des cellules
photovoltaïques 12, comme illustré par les figures 4 et 5, pour former un réseau de découpes 17 prévues pour permettre le pliage ultérieur du dispositif photovoltaïque pour le conformer à une forme tridimensionnelle souhaitée. Pour cela, le réseau de découpes 17 est calculé au préalable par des techniques de type de celles utilisées en origami, afin d'obtenir la forme tridimensionnelle quelconque souhaitée. De même, la profondeur des découpes 17 dans les cellules photovoltaïques 12 dépend du rayon de courbure imposé par la forme courbée finale. Les découpes sont réalisées par tout procédé, comme par des gravures laser. En variante, tout ou partie des découpes peut même s'étendre sur une partie de l'épaisseur du substrat souple. Next, the manufacturing method comprises a step of making cutouts 17 extending over all or part of the thickness of the cells. photovoltaic 12, as illustrated by Figures 4 and 5, to form a network of cutouts 17 provided to allow the subsequent folding of the photovoltaic device to conform to a desired three-dimensional shape. For this, the network of cuts 17 is calculated in advance by techniques of the type used in origami, to obtain any desired three-dimensional shape. Similarly, the depth of the cuts 17 in the photovoltaic cells 12 depends on the radius of curvature imposed by the final curved shape. The cuts are made by any method, such as laser engraving. Alternatively, all or part of the cuts may even extend over a portion of the thickness of the flexible substrate.
En remarque, le substrat souple 20 assure un bon maintien de l'ensemble du dispositif après réalisation des découpes 17, même si ces dernières sont de profondeur importante, tout en limitant le risque de propagation de fissures. De plus, le substrat souple 20 remplit une seconde fonction de continuité électrique pour conduire le courant généré par les différentes parties de cellules photovoltaïques, même après les découpes, puisqu'il est apte à conduire l'électricité entre les zones découpées et vers les autres cellules. Note, the flexible substrate 20 ensures a good maintenance of the entire device after making the cuts 17, even if the latter are of significant depth, while limiting the risk of crack propagation. In addition, the flexible substrate 20 fills a second function of electrical continuity to conduct the current generated by the different parts of photovoltaic cells, even after the cuts, since it is able to conduct electricity between the cut areas and to the others cells.
Le résultat obtenu par les étapes décrites ci-dessus est un dispositif photovoltaïque doté d'une certaine souplesse, plus ou moins importante selon le choix du réseau de découpes 17, qui peut permettre d'obtenir des dispositifs photovoltaïques sous forme de tissus souples, comprenant par exemple une multitude de cellules photovoltaïques fixées de manière adjacente sur un même substrat souple. Cette approche permet ensuite à un utilisateur final d'utiliser le tissu pour toute utilisation nécessitant une souplesse du matériau, comme dans le textile, pour une implémentation sur un vêtement par exemple.
Le procédé de fabrication peut comprendre une étape finale qui consiste à déformer, conformer le résultat de forme plane tel que représenté sur la figure 4, pour atteindre un produit final de forme tridimensionnelle comme une tuile de forme galbée, dont la forme est ensuite figée en ajoutant par exemple une résine transparente 30 de protection sur tout ou partie de sa surface, pour obtenir le produit final tel que représenté à titre d'exemple par la figure 6. Naturellement, ce principe peut aussi être utilisé plus généralement pour recouvrir toute surface non plane de dispositifs photovoltaïques, comme un véhicule automobile par exemple. La solution est adaptée pour des rayons de courbure importants, inférieur ou égal à 1 mètre par exemple. The result obtained by the steps described above is a photovoltaic device provided with a certain flexibility, more or less important depending on the choice of the network of cuts 17, which can make it possible to obtain photovoltaic devices in the form of flexible fabrics, comprising for example a multitude of photovoltaic cells attached adjacent to the same flexible substrate. This approach then allows an end user to use the fabric for any use requiring flexibility of the material, as in the textile, for implementation on a garment for example. The manufacturing process may comprise a final step consisting in deforming and shaping the result of planar shape as shown in FIG. 4 to reach a final product of three-dimensional shape such as a curved shaped tile, the shape of which is then fixed in adding for example a transparent protective resin 30 on all or part of its surface, to obtain the final product as represented by way of example in FIG. 6. Naturally, this principle can also be used more generally to cover any non-surface plane of photovoltaic devices, such as a motor vehicle for example. The solution is suitable for large radii of curvature, less than or equal to 1 meter for example.
En remarque, le mode de réalisation a été implémenté avec des cellules photovoltaïques comprenant des conducteurs sur leur face arrière. En variante, le même procédé pourrait être utilisé avec des cellules comprenant des conducteurs sur leur face avant ou sur leurs deux faces. D'autre part, la solution proposée permet de former une structure finale (telle que représentée sur la figure 4) peu épaisse, dont l'épaisseur est inférieure à 250 μιτι, voire inférieure ou égale à 200 μιτι. La ou les cellule(s) photovoltaïque(s) présente(nt) une épaisseur comprise entre 50 et 250 μιτι. Le substrat souple 20 présente avantageusement une épaisseur comprise entre 100 et 1000 μιτι.
As a remark, the embodiment has been implemented with photovoltaic cells comprising conductors on their rear face. In a variant, the same method could be used with cells comprising conductors on their front face or on their two faces. On the other hand, the proposed solution makes it possible to form a thin final structure (as shown in FIG. 4), the thickness of which is less than 250 μιτι, or even less than or equal to 200 μιτι. The cell (s) photovoltaic (s) has (s) a thickness of between 50 and 250 μιτι. The flexible substrate 20 advantageously has a thickness between 100 and 1000 μιτι.
Claims
1 . Procédé de fabrication d'un dispositif photovoltaïque, caractérisé en ce qu'il comprend les étapes suivantes : 1. A method of manufacturing a photovoltaic device, characterized in that it comprises the following steps:
- assemblage d'au moins une cellule photovoltaïque (12) avec un substrat souple (20) ; puis, - assembling at least one photovoltaic cell (12) with a flexible substrate (20); then,
- réalisation de découpes (17) dans la au moins une cellule photovoltaïque pour lui apporter une souplesse et permettre de déformer le dispositif photovoltaïque. - Making cutouts (17) in the at least one photovoltaic cell to provide flexibility and allow to deform the photovoltaic device.
2. Procédé de fabrication d'un dispositif photovoltaïque selon la revendication précédente, caractérisé en ce qu'il comprend les étapes préalables suivantes : 2. A method of manufacturing a photovoltaic device according to the preceding claim, characterized in that it comprises the following preliminary steps:
- réalisation de rainures (24) dans le substrat souple (20) ; - Making grooves (24) in the flexible substrate (20);
- formation de conducteurs électriques (23) dans ces rainures (24). - Formation of electrical conductors (23) in these grooves (24).
3. Procédé de fabrication d'un dispositif photovoltaïque selon la revendication précédente, caractérisé en ce que la réalisation des conducteurs électriques (23) dans les rainures (24) est faite par dépôt de métal dans un bain électrochimique. 3. A method of manufacturing a photovoltaic device according to the preceding claim, characterized in that the realization of the electrical conductors (23) in the grooves (24) is made by depositing metal in an electrochemical bath.
4. Procédé de fabrication d'un dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce que la réalisation de découpes (17) dans la au moins une cellule photovoltaïque (12) est réalisée par gravure laser. 4. A method of manufacturing a photovoltaic device according to one of the preceding claims, characterized in that the making of cuts (17) in the at least one photovoltaic cell (12) is performed by laser etching.
5. Procédé de fabrication d'un dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce que l'assemblage d'au moins une cellule photovoltaïque (12) avec un substrat souple (20) est obtenu par polymérisation, ou réticulation, ou soudure, ou collage. 5. A method of manufacturing a photovoltaic device according to one of the preceding claims, characterized in that the assembly of at least one photovoltaic cell (12) with a flexible substrate (20) is obtained by polymerization, or crosslinking, or welding, or gluing.
6. Procédé de fabrication d'un dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape supplémentaire consistant à conformer le dispositif photovoltaïque dans une forme non plane. 6. A method of manufacturing a photovoltaic device according to one of the preceding claims, characterized in that it comprises an additional step of forming the photovoltaic device in a non-planar shape.
7. Procédé de fabrication d'un dispositif photovoltaïque selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape supplémentaire consistant à ajouter une couche transparente de protection de type résine sur le dispositif photovoltaïque. 7. A method of manufacturing a photovoltaic device according to one of the preceding claims, characterized in that it comprises an additional step of adding a transparent protective layer of resin type on the photovoltaic device.
8. Dispositif photovoltaïque, caractérisé en ce qu'il comprend au moins une cellule photovoltaïque (12) présentant des découpes (17), assemblée à un substrat souple (20), pour former un ensemble souple et/ou de forme non plane. 8. Photovoltaic device, characterized in that it comprises at least one photovoltaic cell (12) having cutouts (17), assembled to a flexible substrate (20), to form a flexible assembly and / or non-planar shape.
9. Dispositif photovoltaïque selon la revendication précédente, caractérisé en ce que le substrat souple (20) comprend des rainures (24) comprenant des conducteurs (23) qui n'occupent pas toute la hauteur des rainures (24), et en ce que les rainures (24) comprennent aussi des conducteurs (13) de cellules photovoltaïques (12) en contact avec les conducteurs (23) du substrat souple (20). 9. Photovoltaic device according to the preceding claim, characterized in that the flexible substrate (20) comprises grooves (24) comprising conductors (23) which do not occupy the entire height of the grooves (24), and in that the grooves (24) also comprise conductors (13) of photovoltaic cells (12) in contact with the conductors (23) of the flexible substrate (20).
10. Dispositif photovoltaïque selon la revendication 8 ou 9, caractérisé en ce que le substrat souple (20) assure un maintien mécanique de l'ensemble du dispositif photovoltaïque, et assure une continuité électrique entre les différentes parties d'une ou plusieurs cellules photovoltaïques du dispositif photovoltaïque, même avec les découpes (17). 10. Photovoltaic device according to claim 8 or 9, characterized in that the flexible substrate (20) provides a mechanical holding of the entire photovoltaic device, and provides electrical continuity between the different parts of one or more photovoltaic cells of the photovoltaic device, even with cutouts (17).
1 1 . Dispositif photovoltaïque selon la revendication 9 ou 10, caractérisé en ce que le substrat souple (20) comprend une couche inférieure sous forme de film (21 ) et une couche de résine (22) de type polymère, et en ce que les rainures (24) s'étendent sur tout ou partie de l'épaisseur de la couche de résine (22). 1 1. Photovoltaic device according to claim 9 or 10, characterized in that the flexible substrate (20) comprises a film-like bottom layer (21) and a polymer-type resin layer (22), and that the grooves (24) ) extend over all or part of the thickness of the resin layer (22).
12. Dispositif photovoltaïque selon l'une des revendications 9 à 1 1 , caractérisé en ce que les rainures (24) sont disposées de manière superposée aux conducteurs (13) en relief à la surface de la au moins une cellule photovoltaïque (12) de sorte que ces conducteurs (13) sont tous logés dans des rainures (24) du substrat souple (20). Photovoltaic device according to one of Claims 9 to 11, characterized in that the grooves (24) are arranged superimposed on the conductors (13) in relief on the surface of the at least one photovoltaic cell (12). so that these conductors (13) are all housed in grooves (24) of the flexible substrate (20).
13. Dispositif photovoltaïque selon l'une des revendications 8 à 12, caractérisé en ce que les découpes (17) occupent tout ou partie de l'épaisseur d'une cellule photovoltaïque (12), ou toute l'épaisseur d'une cellule photovoltaïque (12) plus une partie de l'épaisseur du substrat. 13. Photovoltaic device according to one of claims 8 to 12, characterized in that the cuts (17) occupy all or part of the thickness of a photovoltaic cell (12), or the entire thickness of a photovoltaic cell (12) plus a portion of the thickness of the substrate.
14. Dispositif photovoltaïque selon l'une des revendications 8 à 13, caractérisé en ce que la profondeur des découpes (17) dans au moins une cellule photovoltaïque (12) dépend du rayon de courbure de la forme courbée du dispositif photovoltaïque. Photovoltaic device according to one of claims 8 to 13, characterized in that the depth of the cuts (17) in at least one photovoltaic cell (12) depends on the radius of curvature of the curved shape of the photovoltaic device.
15. Dispositif photovoltaïque selon l'une des revendications 8 à 14, caractérisé en ce que l'épaisseur d'une cellule photovoltaïque (12) plus du substrat souple (20) est inférieure ou égale à 250 μιτι, ou inférieure ou égale à 200 μιτι, et/ou en ce que l'épaisseur d'une cellule photovoltaïque (12) est comprise entre 50 μιτι et 250 μιτι, et/ou en ce qu'il comprend au moins une cellule photovoltaïque (12) à base de silicium et/ou en ce que le dispositif photovoltaïque présente une forme non plane présentant au moins une courbure de rayon de courbure inférieur ou égal à 1 mètre. 15. Photovoltaic device according to one of claims 8 to 14, characterized in that the thickness of a photovoltaic cell (12) plus the flexible substrate (20) is less than or equal to 250 μιτι, or less than or equal to 200 μιτι, and / or in that the thickness of a photovoltaic cell (12) is between 50 μιτι and 250 μιτι, and / or in that it comprises at least one silicon-based photovoltaic cell (12) and / or in that the photovoltaic device has a non-planar shape having at least one curvature of radius of curvature less than or equal to 1 meter.
16. Dispositif de couverture d'un toit, caractérisé en ce qu'il comprend un assemblage de dispositifs photovoltaïques selon l'une des revendications 8 à 15 en forme de tuiles de surface arrondie et/ou courbée et/ou galbée. 16. A roof covering device, characterized in that it comprises an assembly of photovoltaic devices according to one of claims 8 to 15 in the form of rounded surface tiles and / or curved and / or curved.
17. Tissu caractérisé en ce qu'il comprend des dispositifs photovoltaïques selon l'une des revendications 8 à 15. 17. Fabric characterized in that it comprises photovoltaic devices according to one of claims 8 to 15.
18. Véhicule automobile, caractérisé en ce qu'il comprend des dispositifs photovoltaïques selon l'une des revendications 8 à 15 sur sa surface. 18. Motor vehicle, characterized in that it comprises photovoltaic devices according to one of claims 8 to 15 on its surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1157786A FR2979752B1 (en) | 2011-09-02 | 2011-09-02 | NON-PLAN PHOTOVOLTAIC DEVICE |
PCT/EP2012/066968 WO2013030342A2 (en) | 2011-09-02 | 2012-08-31 | Non-planar photovoltaic device |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2751844A2 true EP2751844A2 (en) | 2014-07-09 |
Family
ID=46800188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12755987.0A Withdrawn EP2751844A2 (en) | 2011-09-02 | 2012-08-31 | Non-planar photovoltaic device |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140283898A1 (en) |
EP (1) | EP2751844A2 (en) |
JP (1) | JP2014532293A (en) |
KR (1) | KR20140080489A (en) |
CN (1) | CN103918176A (en) |
FR (1) | FR2979752B1 (en) |
WO (1) | WO2013030342A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104917449B (en) * | 2015-06-12 | 2017-03-08 | 陈惠远 | A kind of flexible solar battery pack |
IL247556B (en) * | 2016-08-30 | 2019-05-30 | Hillel Rosenfeld | Photovoltaic module |
US11081606B2 (en) * | 2018-12-27 | 2021-08-03 | Solarpaint Ltd. | Flexible and rollable photovoltaic cell having enhanced properties of mechanical impact absorption |
US11978815B2 (en) | 2018-12-27 | 2024-05-07 | Solarpaint Ltd. | Flexible photovoltaic cell, and methods and systems of producing it |
WO2022074651A1 (en) * | 2020-10-07 | 2022-04-14 | Solarpaint Ltd. | Flexible solar panels and photovoltaic devices, and methods and systems of producing them |
NL2024940B1 (en) * | 2020-02-19 | 2021-10-06 | Atlas Technologies Holding Bv | Crystalline semiconductor chip that can be curved in two directions |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59153308U (en) * | 1983-03-30 | 1984-10-15 | 帝人株式会社 | clothing with solar cells |
CA2024662A1 (en) * | 1989-09-08 | 1991-03-09 | Robert Oswald | Monolithic series and parallel connected photovoltaic module |
US5538902A (en) * | 1993-06-29 | 1996-07-23 | Sanyo Electric Co., Ltd. | Method of fabricating a photovoltaic device having a three-dimensional shape |
JPH0799332A (en) * | 1993-06-29 | 1995-04-11 | Sanyo Electric Co Ltd | Manufacture of three-dimensional photovoltaic element |
JPH07312434A (en) * | 1994-05-17 | 1995-11-28 | Sanyo Electric Co Ltd | Solar battery module |
JPH1168133A (en) * | 1997-08-21 | 1999-03-09 | Sony Corp | Thin-film element module and its manufacture |
JPH11214725A (en) * | 1998-01-21 | 1999-08-06 | Canon Inc | Manufacture of photoelectric conversion device |
US20050268962A1 (en) * | 2000-04-27 | 2005-12-08 | Russell Gaudiana | Flexible Photovoltaic cells, systems and methods |
US6410362B1 (en) * | 2000-08-28 | 2002-06-25 | The Aerospace Corporation | Flexible thin film solar cell |
US20030041893A1 (en) * | 2001-08-31 | 2003-03-06 | Matsushita Electric Industrial Co. Ltd. | Solar cell, method for manufacturing the same, and apparatus for manufacturing the same |
CN100570905C (en) * | 2005-03-16 | 2009-12-16 | 富士电机系统株式会社 | Make the method for solar module |
JP4681352B2 (en) * | 2005-05-24 | 2011-05-11 | 本田技研工業株式会社 | Chalcopyrite solar cell |
US20100047959A1 (en) * | 2006-08-07 | 2010-02-25 | Emcore Solar Power, Inc. | Epitaxial Lift Off on Film Mounted Inverted Metamorphic Multijunction Solar Cells |
CN100568541C (en) * | 2007-01-23 | 2009-12-09 | 李毅 | A kind of flexible solar battery and manufacture method |
CN101640232B (en) * | 2008-08-28 | 2011-01-12 | 苏州富能技术有限公司 | Method for processing thin-film solar cell module |
JP2010092981A (en) * | 2008-10-06 | 2010-04-22 | Sharp Corp | Solar battery, backside contact solar battery, wiring substrate, and method of manufacturing solar battery |
CN102217087A (en) * | 2008-11-17 | 2011-10-12 | 应用材料股份有限公司 | Integrated bypass diode assemblies for back contact solar cells and modules |
WO2010088446A2 (en) * | 2009-02-02 | 2010-08-05 | Dow Global Technologies Inc. | Robust photovoltaic cell |
KR101040834B1 (en) * | 2009-03-31 | 2011-06-14 | 주식회사 탄탄구조엔지니어링 | Clamping device of solar battery module for solar generator |
KR101091405B1 (en) * | 2009-10-28 | 2011-12-07 | 엘지이노텍 주식회사 | Solar cell and method of fabircating the same |
-
2011
- 2011-09-02 FR FR1157786A patent/FR2979752B1/en not_active Expired - Fee Related
-
2012
- 2012-08-31 WO PCT/EP2012/066968 patent/WO2013030342A2/en active Application Filing
- 2012-08-31 JP JP2014527674A patent/JP2014532293A/en active Pending
- 2012-08-31 US US14/342,092 patent/US20140283898A1/en not_active Abandoned
- 2012-08-31 KR KR1020147008234A patent/KR20140080489A/en not_active Application Discontinuation
- 2012-08-31 EP EP12755987.0A patent/EP2751844A2/en not_active Withdrawn
- 2012-08-31 CN CN201280048992.4A patent/CN103918176A/en active Pending
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2013030342A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2013030342A2 (en) | 2013-03-07 |
KR20140080489A (en) | 2014-06-30 |
WO2013030342A3 (en) | 2014-03-06 |
FR2979752B1 (en) | 2016-03-11 |
US20140283898A1 (en) | 2014-09-25 |
FR2979752A1 (en) | 2013-03-08 |
JP2014532293A (en) | 2014-12-04 |
CN103918176A (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2751844A2 (en) | Non-planar photovoltaic device | |
US9640676B2 (en) | Methods and structures for improving the structural integrity of solar cells | |
CN103765600B (en) | Solaode and its production method | |
EP3118920B1 (en) | Self-supporting thin film battery and method for producing such a battery | |
WO2006045968A1 (en) | Monolithic multilayer structure for the connection of semiconductor cells | |
FR2896913A1 (en) | PROCESS FOR PRODUCING A QUASI-SUBSTRATE WAFER AND SEMICONDUCTOR BODY PRODUCED BY USING A QUASI-SUBSTRATE WAFER OF THIS TYPE | |
FR2914501A1 (en) | PHOTOVOLTAIC DEVICE WITH DISCONTINUOUS INTERDIGITED HETEROJUNCTION STRUCTURE | |
EP2981156B1 (en) | Photovoltaic panel and method for manufacturing such a panel | |
EP3900052A1 (en) | Process for passivating photovoltaic cells and process for producing passivated photovoltaic sub-cells | |
WO2016198797A1 (en) | Photovoltaic module and method for interconnecting photovoltaic cells for producing such a module | |
EP2497118B1 (en) | Photovoltaic cell conductor consisting of two, high-temperature and low-temperature, screen-printed parts | |
EP1618611B1 (en) | Method for production of a semiconductor device with auto-aligned metallisations | |
EP4222126B1 (en) | Radiofrequency-transparent solar-control heating glazing | |
FR2987173A1 (en) | METHOD FOR PRODUCING A MICROBATTERY | |
EP2852981B1 (en) | Photovoltaic module with photovoltaic cells having local widening of the bus | |
EP1854148A1 (en) | Method for metallisation of a semiconductor device | |
EP3316319B1 (en) | Photovoltaic cells with rear contacts and their method for manufacturing | |
EP3042397B1 (en) | Method for forming a photovoltaic cell | |
EP2246890B1 (en) | Method of fabrication of an imager module | |
FR3043252B1 (en) | PROCESS FOR PRODUCING A COMPOSITE SUBSTRATE | |
EP2328182A1 (en) | Photovoltaic module comprising built-in photovoltaic cells | |
EP2435228A1 (en) | Method and machine for producing a semiconductor, of the photovoltaic cell type, or a similar electronic component | |
WO2022129278A1 (en) | Interconnector for strings of solar cells that are intended to form a photovoltaic module | |
FR3123762A1 (en) | Electrical interconnection element of at least two photovoltaic cells | |
FR3076079A1 (en) | SEMI-TRANSPARENT MULTI-CELL PHOTOVOLTAIC DEVICE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140331 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20170403 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170815 |