EP2749659A1 - Method for manufacturing a motor vehicle component and motor vehicle component - Google Patents
Method for manufacturing a motor vehicle component and motor vehicle component Download PDFInfo
- Publication number
- EP2749659A1 EP2749659A1 EP13194999.2A EP13194999A EP2749659A1 EP 2749659 A1 EP2749659 A1 EP 2749659A1 EP 13194999 A EP13194999 A EP 13194999A EP 2749659 A1 EP2749659 A1 EP 2749659A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- max
- motor vehicle
- sheet
- vehicle component
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/04—Hardening by cooling below 0 degrees Celsius
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a method for producing a motor vehicle component according to the features in claim 1.
- the present invention further relates to a motor vehicle component according to the features in claim 12.
- motor vehicle bodies of metallic components For this purpose, motor vehicle pillars, rockers, roof rails or even longitudinal or transverse beams are first produced and then assembled into assemblies and then to the complete vehicle body.
- a motor vehicle and thus also a motor vehicle body or other motor vehicle structural components or body components should be particularly light, have a high crash safety and at the same time be produced cheaply.
- high-strength and ultra-high-strength steels have been developed in recent years, which are inexpensive to produce compared to light metals or fiber composites and at the same time have a particularly high stiffness and thus crash safety with low weight.
- the hot forming and press-hardening technology first to harden the hardenable steels above austenitizing temperature and then to thermoform and harden them. This entails high strengths but limited ductility properties of the component. Under certain circumstances, elaborate heat aftertreatments are necessary in order to adjust ductility in specific areas.
- TWIP steels An alternative to the hot-formed and press-hardened steels are so-called TWIP steels, in which an intensive mechanical twinning in austenitic steel occurs during plastic deformation. The process begins even at low load and solidifies the steel, with high elongation at break. The twin formation counteracts the dislocation movement like grain boundaries in the material structure and thus a further change of shape as resistance. The strain-induced twin formation causes a higher extensibility. Due to the martensitic areas results in a high strength at the same time.
- the object of the present invention is to demonstrate a production method and a motor vehicle component which can be produced efficiently, have a particularly low inherent weight and have a high degree of hardness combined with high ductility.
- a metallic component in particular of a high manganese-containing steel material, very particularly preferably of a TWIP steel, is provided with a predominantly austenitic structure.
- the component is then further cooled at a temperature substantially below room temperature, in particular between + 30 ° C and -250 ° C, most preferably between + 25 ° C and -200 ° C, to a cold forming temperature.
- a cold forming of the cooled sheet steel plate to the desired sheet metal component takes place at the achieved cold forming temperature.
- the cold-formed component is then removed from the forming tool.
- plastic deformation results in a transformation of the essentially austenitic microstructure into an at least partially, preferably complete, martensitic microstructure.
- the strength properties of the component are increased accordingly. It is a deformation-induced martensite formation.
- This simultaneously causes the increase in hardness and formability in the case of plastic stress in the manufacture of the motor vehicle component and / or in the use of the motor vehicle component.
- a silicon fraction results in solid solution hardening, which increases the yield strength of the component.
- the metastable carbon-rich austenite is transformed into martensite induced by deformation, as a result of which the motor vehicle component is at least partially solidified by the twinning of the TWIP effect.
- the TRIP effect is utilized according to the invention, which causes a special martensite formation during forming.
- the TRIP effect occurs in the case of deformation-induced martensite formation.
- the TRIP effect causes a simultaneous increase in hardness and formability under plastic stress.
- the TRIP effect is characterized in particular by the fact that as soon as the plastic area is reached during forming, the metastable carbon-rich austenite transforms into martensite induced by deformation. As a result, the steel is solidified during plastic deformation targeted.
- the stacking fault energy is lowered such that the twin formation occurring due to the TWIP effect is reduced to a negligible level.
- the transformation of the metastable austenite into martensite increases, which in turn increases the strength property of the component.
- a good strength property is achieved if the set degree of deformation takes place on the component at least locally except for the uniform expansion of the alloy material used.
- the aim is to convert as much as possible austenitic structure into martensite by plastic deformation.
- Another Control parameter is the degree of deformation itself. The higher the degree of deformation, the stronger the transformation of austenite into martensite.
- the cooling itself can be done with different cooling media, in particular liquid nitrogen is used.
- liquid nitrogen is used.
- a cold working temperature between + 25 ° C and -200 ° C, most preferably to a cooling temperature in the range of + 25 ° C to -197 ° C.
- this disclosure means any temperature in the latter interval, and thus in the range of + 25 ° C to -197 ° C, as a cold forming temperature.
- the sheet steel plate is pre-stretched at cold forming temperature.
- the cooling or the tempering takes place at least partially within the scope of the invention. This makes it possible to selectively adjust the desired strength properties only in regions within the component.
- the heat conduction within the sheet metal plate itself, for example, from a cooled region to a non-cooled region is negligible in the context of the invention by fast cooling times.
- the cooling itself can be carried out in particular in a cooling station, wherein the cooled sheet metal plate is transferred after cooling in a forming tool, wherein the forming tool in turn, in turn itself is cooled.
- the deformation itself then takes place in the forming tool at substantially the cold forming temperature. A slight warming during transfer and / or in the forming tool itself is again negligible within the scope of the invention.
- the metal sheet itself is cooled in the forming tool to the cold forming temperature and then directly cold formed.
- the sheet metal blank is preformed at least partially, in particular the preforming takes place at or above the room temperature.
- the preforming is thus carried out in particular in a range between 0 ° C and + 50 ° C, most preferably at + 20 ° C to + 30 ° C. Following this, the preformed sheet metal blank is then cooled to the cold forming temperature and then cold-formed.
- the preformed regions are formed directly to a final dimension, wherein the cold forming subsequently takes place in different regions from the preformed regions. Consequently, furthermore, preferably only the non-preformed areas are tempered or cooled and then cold-formed. As a result, the preformed areas have a lower strength than the cold-formed areas.
- preforming is performed, for example, as Vorrecken, in particular at cold forming temperature.
- the Vorrecken itself can then be carried out again partially.
- the degree of deformation during pre-stretching is in particular 10 to 90% of the final dimension.
- Another component of the present invention is a motor vehicle component that, according to a method with at least one of the aforementioned features is produced, wherein the motor vehicle component is formed from a TWIP steel alloy and according to the invention is characterized in that at least partial areas of the component have a substantially martensitic structure.
- the production method according to the invention therefore makes it possible to reduce the TWIP effect, and hence the mechanical twinning, and at the same time to produce a higher martensite proportion in the areas which have been formed at cold forming temperature.
- this is a TWIP steel alloy which, depending on the desired strength properties, is selected in the respective percentage proportion as well as the presence of the individual alloying elements.
- the motor vehicle component in the martensitic regions preferably has a yield strength Rp 0.2 between 500 and 1500 MPa, in particular between 700 and 1300 MPa, and very particularly preferably between 750 and 1000 MPa.
- Rp 0.2 yield strength between 500 and 1500 MPa, in particular between 700 and 1300 MPa, and very particularly preferably between 750 and 1000 MPa.
- the other areas then have a mating boundary between 200 and 800 MPa, in particular between 300 and 500 MPa.
- the motor vehicle component has a tensile strength Rm between 500 and 1800 MPa, in particular between 800 and 1700 MPa, and very particularly preferably between 1000 and 1650 MPa.
- the remaining regions then have a tensile strength Rm of 500 to 1500 MPa, in particular from 800 to 1200 MPa, and most preferably from 850 to 1100 MPa.
- FIG. 1 shows a stress-strain diagram of a steel formed according to the invention, wherein three different cold forming temperatures were selected. It can be seen that the lower the cold forming temperature has been chosen, the more the tensile strength increases. Thus, the steel of Curve 1 was transformed at room temperature and thus at substantially 20 ° C. The material was formed in curve 2 at -110.15 ° C and has a significantly higher tensile strength compared to the forming at room temperature. The component according to the curve 3 was formed at-196.15 ° C and has a significantly increased tensile strength again.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Kraftfahrzeugbauteils gemäß den Merkmalen in Patentanspruch 1.The present invention relates to a method for producing a motor vehicle component according to the features in
Die vorliegende Erfindung betrifft weiterhin ein Kraftfahrzeugbauteil gemäß den Merkmalen in Patentanspruch 12.The present invention further relates to a motor vehicle component according to the features in claim 12.
Aus dem Stand der Technik ist es bekannt, selbsttragende Kraftfahrzeugkarosserien aus metallischen Bauteilen herzustellen. Hierzu werden Kraftfahrzeugsäulen, Schweller, Dachholme oder aber auch Längs- bzw. Querträger zunächst hergestellt und dann zu Baugruppen und anschließend zu der kompletten Kraftfahrzeugkarosserie zusammengefügt.From the prior art it is known to produce self-supporting motor vehicle bodies of metallic components. For this purpose, motor vehicle pillars, rockers, roof rails or even longitudinal or transverse beams are first produced and then assembled into assemblies and then to the complete vehicle body.
Im Zuge der Anforderung an ein wirtschaftlich zu betreibendes Kraftfahrzeug wurde in den letzten Jahrzehnten auf gegenüber Stahl alternative Werkstoffe zurückgegriffen. So wurden beispielsweise vorstehende Kraftfahrzeugkarosserien aus Leichtmetall, insbesondere aus Aluminium, hergestellt. Diese sind jedoch mit hohen Produktionskosten aufgrund teurer Rohstoffe und aufwendiger Verarbeitungsverfahren behaftet.In the course of the requirement for an economically operable motor vehicle has been in recent decades on alternative to steel materials resorted. Thus, for example, protruding motor vehicle bodies made of light metal, in particular made of aluminum. However, these are associated with high production costs due to expensive raw materials and complex processing methods.
Weiterhin steigen immer mehr die Anforderungen an die Crashsicherheiten eines Kraftfahrzeuges, unter gleichzeitigem Kostendruck. Mithin sollen ein Kraftfahrzeug und somit auch eine Kraftfahrzeugkarosserie oder aber andere Kraftfahrzeugstrukturbauteile oder Karosseriebauteile besonders leicht sein, eine hohe Crashsicherheit haben und gleichzeitig günstig produzierbar sein.Furthermore, more and more demands on the crash safety of a motor vehicle, with simultaneous cost pressure. Thus, a motor vehicle and thus also a motor vehicle body or other motor vehicle structural components or body components should be particularly light, have a high crash safety and at the same time be produced cheaply.
Hierzu wurden in den letzten Jahren hochfeste und höchstfeste Stähle entwickelt, die im Vergleich zu Leichtmetallen oder aber Faserverbundwerkstoffen günstig produzierbar sind und gleichzeitig bei geringem Eigengewicht eine besonders hohe Steifigkeit und somit Crashsicherheit aufweisen.For this purpose, high-strength and ultra-high-strength steels have been developed in recent years, which are inexpensive to produce compared to light metals or fiber composites and at the same time have a particularly high stiffness and thus crash safety with low weight.
Beispielsweise ist es somit durch die Warmumform- und Presshärtetechnologie möglich. härtbare Stähle zunächst auf über Austenitisierungstemperatur zu erwärmen und sodann warm umzuformen und zu härten. Hiermit einhergehend sind hohe Festigkeiten bei jedoch beschränkten Duktilitätseigenschaften des Bauteils. Unter Umständen sind aufwendige Wärmenachbehandlungen notwendig, um gezielt in partiellen Bereichen eine Duktilität einzustellen.For example, it is thus possible by the hot forming and press-hardening technology. first to harden the hardenable steels above austenitizing temperature and then to thermoform and harden them. This entails high strengths but limited ductility properties of the component. Under certain circumstances, elaborate heat aftertreatments are necessary in order to adjust ductility in specific areas.
Eine Alternative zu den warmumgeformten und pressgehärteten Stählen sind sogenannte TWIP Stähle, bei denen eine intensive mechanische Zwillingsbildung in austenitischem Stahl bei plastischer Umformung auftritt. Der Vorgang setzt bereits bei geringer Belastung ein und verfestigt den Stahl, bei gleichzeitig hoher Bruchdehnung. Die Zwillingsbildung wirkt dabei für die Versetzungsbewegung wie Korngrenzen im Werkstoffgefüge und somit einer weiteren Formänderung als Widerstand entgegen. Die dehnungsinduzierte Zwillingsbildung verursacht dabei eine höhere Dehnbarkeit. Durch die martensitischen Bereiche ergibt sich gleichzeitig eine hohe Festigkeit.An alternative to the hot-formed and press-hardened steels are so-called TWIP steels, in which an intensive mechanical twinning in austenitic steel occurs during plastic deformation. The process begins even at low load and solidifies the steel, with high elongation at break. The twin formation counteracts the dislocation movement like grain boundaries in the material structure and thus a further change of shape as resistance. The strain-induced twin formation causes a higher extensibility. Due to the martensitic areas results in a high strength at the same time.
Beispielsweise ist die Herstellung derartiger TWIP Bauteile aus der
Ferner ist aus der
Aufgabe der vorliegenden Erfindung ist es, ausgehend vom Stand der Technik, ein Herstellungsverfahren sowie ein Kraftfahrzeugbauteil aufzuzeigen, das effizient herstellbar ist, ein besonders geringes Eigengewicht aufweist und eine hohe Härte bei gleichzeitig hoher Duktilität aufweist.The object of the present invention, starting from the state of the art, is to demonstrate a production method and a motor vehicle component which can be produced efficiently, have a particularly low inherent weight and have a high degree of hardness combined with high ductility.
Die zuvor genannte Aufgabe wird erfindungsgemäß mit einem Verfahren mit den Merkmalen im Patentanspruch 1 gelöst.The aforementioned object is achieved by a method having the features in
Der gegenständliche Teil der Aufgabe wird weiterhin mit einem Kraftfahrzeugbauteil gemäß den Merkmalen im Patentanspruch 12 gelöst.The objective part of the object is further achieved with a motor vehicle component according to the features in patent claim 12.
Vorteilhafte Ausführungsvarianten der vorliegenden Erfindung sind Gegenstand der abhängigen Patentansprüche.Advantageous embodiments of the present invention are the subject of the dependent claims.
Das erfindungsgemäße Verfahren zur Herstellung eines metallischen Kraftfahrzeugbauteils ist durch folgende Verfahrensschritte gekennzeichnet:
- Bereitstellen einer Stahlblechplatine mit einem Mangananteil von 10 bis 30% und einer Stapelfehlerenergie von 5 bis 50 mJ/m2, insbesondere 10 bis 40 mJ/m2, wobei der Werkstoff der Stahlblechplatine bei Raumtemperatur zur Zwillingsbildung neigt und zumindest partiell ein überwiegend austenitisches Gefüge aufweist,
- Zumindest partielles Temperieren der Stahlblechplatine auf eine Kaltumformtemperatur zwischen +30°C und -250°C,
- Umformen der Stahlblechplatine zu dem Blechbauteil bei im Wesentlichen Kaltumformtemperatur, wobei durch den Kaltumformvorgang zumindest partiell eine Martensitbildung induziert wird,
- Entnahme des Blechbauteils.
- Providing a steel sheet with a manganese content of 10 to 30% and a stacking fault energy of 5 to 50 mJ / m 2 , in particular 10 to 40 mJ / m 2 , wherein the material of the sheet steel plate tends to twin at room temperature and at least partially has a predominantly austenitic structure .
- At least partial tempering of the sheet steel plate to a cold forming temperature between + 30 ° C and -250 ° C,
- Forming the sheet steel plate to the sheet metal component at substantially cold forming temperature, wherein at least partially induced by the cold forming martensite formation,
- Removal of the sheet metal component.
Erfindungsgemäß wird somit vorgesehen, dass ein metallisches Bauteil, insbesondere aus einem hoch manganhaltigen Stahlwerkstoff, ganz besonders bevorzugt aus einem TWIP Stahl, bereitgestellt wird mit einem überwiegend austenitischen Gefüge. Das Bauteil wird dann weiterhin bei einer Temperatur, die im Wesentlichen unterhalb der Raumtemperatur liegt, insbesondere zwischen +30°C und -250°C, ganz besonders bevorzugt zwischen +25°C und -200°C, auf eine Kaltumformtemperatur gekühlt. Im Anschluss an die Kühlung erfolgt eine Kaltumformung der gekühlten Stahlblechplatine zu dem gewünschten Blechbauteil bei der erreichten Kaltumformtemperatur. Das kalt umgeformte Bauteil wird sodann aus dem Umformwerkzeug entnommen.According to the invention, it is thus provided that a metallic component, in particular of a high manganese-containing steel material, very particularly preferably of a TWIP steel, is provided with a predominantly austenitic structure. The component is then further cooled at a temperature substantially below room temperature, in particular between + 30 ° C and -250 ° C, most preferably between + 25 ° C and -200 ° C, to a cold forming temperature. After the cooling, a cold forming of the cooled sheet steel plate to the desired sheet metal component takes place at the achieved cold forming temperature. The cold-formed component is then removed from the forming tool.
Während des Kaltumformens erfolgt durch die plastische Verformung eine Umwandlung des im Wesentlichen austenitischen Gefüges in ein zumindest partiell, bevorzugt vollständiges martensitisches Gefüge. Hierdurch werden die Festigkeitseigenschaften des Bauteils entsprechend stark erhöht. Es handelt sich dabei um eine verformungsinduzierte Martensitbildung. Dies bewirkt gleichzeitig die Steigerung der Härte und Umformbarkeit bei plastischer Beanspruchung in der Herstellung des Kraftfahrzeugbauteils und/oder in der Verwendung des Kraftfahrzeugbauteils. Durch einen Siliziumanteil erfolgt eine Mischkristallverfestigung, die die Streckgrenze des Bauteils erhöht. Durch die plastische Formänderung wird der metastabile kohlenstoffreiche Austenit verformungsinduziert in Martensit umgewandelt, wodurch das Kraftfahrzeugbauteil zumindest partiell durch die Zwillingsbildung des TWIP Effektes verfestigt wird.During the cold forming, plastic deformation results in a transformation of the essentially austenitic microstructure into an at least partially, preferably complete, martensitic microstructure. As a result, the strength properties of the component are increased accordingly. It is a deformation-induced martensite formation. This simultaneously causes the increase in hardness and formability in the case of plastic stress in the manufacture of the motor vehicle component and / or in the use of the motor vehicle component. A silicon fraction results in solid solution hardening, which increases the yield strength of the component. As a result of the plastic deformation, the metastable carbon-rich austenite is transformed into martensite induced by deformation, as a result of which the motor vehicle component is at least partially solidified by the twinning of the TWIP effect.
Gleichzeitig wird erfindungsgemäß jedoch auch der TRIP Effekt ausgenutzt, der eine besondere Martensitbildung bei Umformung bewirkt. Hier tritt insbesondere der TRIP Effekt bei verformungsinduzierter Martensitbildung ein. Durch den TRIP Effekt wird eine gleichzeitige Steigerung der Härte sowie der Umformbarkeit bei plastischer Beanspruchung bewirkt. Der TRIP Effekt zeichnet sich insbesondere dadurch aus, dass sobald der plastische Bereich bei einer Umformung erreicht wird, sich der metastabile kohlenstoffreiche Austenit verformungsinduziert in Martensit umwandelt. Hierdurch wird der Stahl bei plastischer Verformung gezielt verfestigt.At the same time, however, the TRIP effect is utilized according to the invention, which causes a special martensite formation during forming. Here, in particular, the TRIP effect occurs in the case of deformation-induced martensite formation. The TRIP effect causes a simultaneous increase in hardness and formability under plastic stress. The TRIP effect is characterized in particular by the fact that as soon as the plastic area is reached during forming, the metastable carbon-rich austenite transforms into martensite induced by deformation. As a result, the steel is solidified during plastic deformation targeted.
Besonders bevorzugt wird zur Herstellung des erfindungsgemäßen Kraftfahrzeugbauteils eine Stahllegierung verwendet, die nachfolgende Legierungsbestandteile ausgedrückt in Gewichtsprozent aufweist:
- Kohlenstoff (C) max. 2%
- Mangan (Mn) 10 bis 30%
- Silizium (Si) max. 6%
- Aluminium (Al) max. 8%
- Niob (Nb) max. 1 %
- Vanadium (V) max. 1%
- Titan (Ti) max. 1%
- Carbon (C) max. 2%
- Manganese (Mn) 10 to 30%
- Silicon (Si) max. 6%
- Aluminum (Al) max. 8th%
- Niobium (Nb) max. 1 %
- Vanadium (V) max. 1%
- Titanium (Ti) max. 1%
Rest Eisen (Fe) und erschmelzungsbedingte Verunreinigungen.Remaining iron (Fe) and impurities caused by melting.
Durch gezielte Wahl der Legierungsbestandteile, abgestimmt auf die Kaltumformtemperatur, bei der das Bauteil umgeformt wird, besteht die Möglichkeit, das Kraftfahrzeugbauteil zumindest partiell gezielt mit Festigkeitseigenschaften einzustellen.By selective choice of the alloy components, matched to the cold forming temperature at which the component is formed, it is possible to set the motor vehicle component at least partially targeted with strength properties.
Insbesondere wird durch das Abkühlen der Blechplatine die Stapelfehlerenergie derart gesenkt, dass die durch den TWIP Effekt auftretende Zwillingsbildung auf ein zu vernachlässigendes Maß gesenkt wird. Gleichzeitig steigt jedoch die Umwandlung des metastabilen Austenits in Martensit, wodurch wiederrum die Festigkeitseigenschaft des Bauteils gesteigert wird. Insbesondere wird eine gute Festigkeitseigenschaft erreicht, wenn der eingestellte Umformgrad an dem Bauteil zumindest lokal bis auf die Gleichmaßdehnung des verwendeten Legierungswerkstoffes erfolgt.In particular, by cooling the sheet metal blank, the stacking fault energy is lowered such that the twin formation occurring due to the TWIP effect is reduced to a negligible level. At the same time, however, the transformation of the metastable austenite into martensite increases, which in turn increases the strength property of the component. In particular, a good strength property is achieved if the set degree of deformation takes place on the component at least locally except for the uniform expansion of the alloy material used.
Je nach verwendeter Legierungszusammensetzung und darauf abgestellter Kaltumformtemperatur der Blechplatine ist es Ziel, möglichst viel austenitisches Gefüge in Martensit durch die plastische Verformung umzuwandeln. Ein weiterer Steuerparameter ist der Umformgrad selber. Je höher der Umformgrad ist, desto stärker ist die Umwandlung von Austenit in Martensit.Depending on the alloy composition used and the cold-forming temperature of the sheet-metal plate, the aim is to convert as much as possible austenitic structure into martensite by plastic deformation. Another Control parameter is the degree of deformation itself. The higher the degree of deformation, the stronger the transformation of austenite into martensite.
Besonders vorteilige Festigkeitseigenschaften haben sich gezeigt, wenn eine Blechplatine mit einer Stapelfehlerenergie zwischen 5 und 50 mJ/m2, insbesondere von 20 bis 40 mJ/m2 als Ausgangsmaterial verwendet wird und anschließend auf die Kaltumformtemperatur abgekühlt wird, wobei insbesondere durch das Abkühlen die Stapelfehlerenergie gezielt innerhalb der Blechplatine auf einen Wert zwischen 15 und 20 mJ/m2 verringert wird.Particularly advantageous strength properties have been found when a sheet metal blanks with a stacking fault energy between 5 and 50 mJ / m 2 , in particular from 20 to 40 mJ / m 2 is used as starting material and is then cooled to the cold forming temperature, in particular by cooling the stacking fault energy is selectively reduced within the sheet metal plate to a value between 15 and 20 mJ / m 2 .
Die Abkühlung selbst kann dabei mit verschiedenen Abkühlmedien erfolgen, wobei insbesondere flüssiger Stickstoff verwendet wird. Mittels der Hilfe des flüssigen Stickstoffes wird insbesondere auf eine Kaltumformtemperatur zwischen +25°C und -200°C, ganz besonders bevorzugt auf eine Abkühltemperatur die im Bereich von +25°C bis -197°C liegt. Im Rahmen der Erfindung ist durch diese Offenbarung jede Temperatur im letztgenannten Intervall, mithin im Bereich von +25°C bis -197°C, als Kaltumformtemperatur zu verstehen. Mithin ist es möglich, das Bauteil beispielsweise auf eine Kaltumformtemperatur von -180°C, aber auch von -100°C oder jeglichen beliebigen Wert im Intervall von +25°C bis -197°C, abzukühlen. Insbesondere wird die Stahlblechplatine bei Kaltumformtemperatur vorgereckt.The cooling itself can be done with different cooling media, in particular liquid nitrogen is used. By means of the aid of the liquid nitrogen is in particular a cold working temperature between + 25 ° C and -200 ° C, most preferably to a cooling temperature in the range of + 25 ° C to -197 ° C. In the context of the invention, this disclosure means any temperature in the latter interval, and thus in the range of + 25 ° C to -197 ° C, as a cold forming temperature. Thus, it is possible, for example, to cool the component to a cold forming temperature of -180 ° C, but also of -100 ° C or any value in the interval of + 25 ° C to -197 ° C. In particular, the sheet steel plate is pre-stretched at cold forming temperature.
Insbesondere erfolgt die Abkühlung bzw. das Temperieren im Rahmen der Erfindung mindestens partiell. Hierdurch ist es möglich, die gewünschten Festigkeitseigenschaften gezielt nur bereichsweise innerhalb des Bauteils einzustellen. Die Wärmeleitung innerhalb der Blechplatine selber beispielweise von einem abgekühlten Bereich zu einem nicht abgekühlten Bereich ist dabei im Rahmen der Erfindung durch schnelle Abkühlzeiten zu vernachlässigen.In particular, the cooling or the tempering takes place at least partially within the scope of the invention. This makes it possible to selectively adjust the desired strength properties only in regions within the component. The heat conduction within the sheet metal plate itself, for example, from a cooled region to a non-cooled region is negligible in the context of the invention by fast cooling times.
Die Abkühlung selbst kann dabei insbesondere in einer Abkühlstation erfolgen, wobei die abgekühlte Blechplatine nach der Abkühlung in ein Umformwerkzeug transferiert wird, wobei das Umformwerkzeug insbesondere selbst wiederum gekühlt ist. Die Umformung selbst erfolgt dann in dem Umformwerkzeug bei im Wesentlichen der Kaltumformtemperatur. Eine geringe Erwärmung während des Transfers und/oder in dem Umformwerkzeug selber ist dabei wiederum im Rahmen der Erfindung zu vernachlässigen.The cooling itself can be carried out in particular in a cooling station, wherein the cooled sheet metal plate is transferred after cooling in a forming tool, wherein the forming tool in turn, in turn itself is cooled. The deformation itself then takes place in the forming tool at substantially the cold forming temperature. A slight warming during transfer and / or in the forming tool itself is again negligible within the scope of the invention.
In einer Alternative ist es möglich, dass die Blechplatine selbst in dem Umformwerkzeug auf die Kaltumformtemperatur abgekühlt wird und im Anschluss daran direkt kalt umgeformt wird.In an alternative, it is possible that the metal sheet itself is cooled in the forming tool to the cold forming temperature and then directly cold formed.
Ferner ist es im Rahmen der Erfindung alternativ auch möglich, dass die Blechplatine zumindest partiell vorgeformt wird, insbesondere findet das Vorformen bei oder oberhalb der Raumtemperatur statt. Im Rahmen der Erfindung wird das Vorformen somit insbesondere in einem Bereich zwischen 0°C und +50°C, ganz besonders bevorzugt bei +20°C bis +30°C durchgeführt. Im Anschluss daran wird dann wiederum die vorgeformte Blechplatine auf die Kaltumformtemperatur abgekühlt und dann kaltendgeformt.Furthermore, in the context of the invention, it is alternatively also possible for the sheet metal blank to be preformed at least partially, in particular the preforming takes place at or above the room temperature. In the context of the invention, the preforming is thus carried out in particular in a range between 0 ° C and + 50 ° C, most preferably at + 20 ° C to + 30 ° C. Following this, the preformed sheet metal blank is then cooled to the cold forming temperature and then cold-formed.
Weiterhin bevorzugt ist es im Rahmen der Einbindung möglich, dass die vorgeformten Bereiche direkt auf ein Endmaß geformt sind, wobei die Kaltumformung anschließend in von den vorgeformten Bereichen verschiedenen Bereichen erfolgt. Mithin werden weiterhin bevorzugt nur die nicht vorgeformten Bereiche temperiert bzw. abgekühlt und sodann kalt umgeformt. Hierdurch weisen die vorgeformten Bereiche eine geringere Festigkeit auf als die kaltumgeformten Bereiche.Furthermore, it is preferably possible within the scope of the integration that the preformed regions are formed directly to a final dimension, wherein the cold forming subsequently takes place in different regions from the preformed regions. Consequently, furthermore, preferably only the non-preformed areas are tempered or cooled and then cold-formed. As a result, the preformed areas have a lower strength than the cold-formed areas.
Im Rahmen der Erfindung ist es jedoch auch weiterhin möglich, dass gezielt Bereiche nur partiell vorgeformt sind, wobei die Vorformung beispielweise als Vorrecken, insbesondere bei Kaltumformtemperatur, ausgeführt wird. Das Vorrecken selbst kann dann auch wiederum partiell durchgeführt werden. Der Umformungsgrad beim Vorrecken beträgt insbesondere 10 bis 90% des Endmaßes. Im Rahmen der Erfindung ist es dann wiederum möglich, die vorgereckten bzw. vorgeformten Bereiche wiederum abzukühlen und kaltumzuformen, wobei durch den Grad des Vorformens bzw. Vorreckens wiederum gezielt der Grad der Martensitbildung eingestellt wird.In the context of the invention, however, it is also possible that specific areas are only partially preformed, wherein the preforming is performed, for example, as Vorrecken, in particular at cold forming temperature. The Vorrecken itself can then be carried out again partially. The degree of deformation during pre-stretching is in particular 10 to 90% of the final dimension. In the context of the invention, it is again possible in turn to cool and cold-form the pre-stretched or preformed regions, wherein the degree of martensite formation is in turn specifically adjusted by the degree of preforming or pre-stretching.
Weiterer Bestandteil der vorliegenden Erfindung ist ein Kraftfahrzeugbauteil, dass nach einem Verfahren mit mindestens einem der zuvor genannten Merkmale hergestellt ist, wobei das Kraftfahrzeugbauteil aus einer TWIP Stahllegierung ausgebildet ist und erfindungsgemäß dadurch gekennzeichnet ist, dass zumindest partielle Bereiche des Bauteils ein im Wesentlichen martensitisches Gefüge aufweisen. Durch das erfindungsgemäße Herstellungsverfahren ist es mithin möglich, den TWIP Effekt, mithin die mechanische Zwillingsbildung, zu reduzieren und gleichzeitig in den Bereichen, die bei Kaltumformtemperatur umgeformt wurden, einen höheren Martensitanteil herzustellen.Another component of the present invention is a motor vehicle component that, according to a method with at least one of the aforementioned features is produced, wherein the motor vehicle component is formed from a TWIP steel alloy and according to the invention is characterized in that at least partial areas of the component have a substantially martensitic structure. The production method according to the invention therefore makes it possible to reduce the TWIP effect, and hence the mechanical twinning, and at the same time to produce a higher martensite proportion in the areas which have been formed at cold forming temperature.
Insbesondere ist das Kraftfahrzeugbauteil aus einer Stahllegierung ausgebildet, die bevorzugt hoch manganhaltig ist und nachfolgende Legierungsbestandteile ausgedrückt in Gewichtsprozent aufweist
- Kohlenstoff (C) max. 2%
- Mangan (Mn) 10 bis 30%
- Silizium (Si) max. 6%
- Aluminium (Al) max. 8%
- Niob (Nb) max. 1 %
- Vanadium (V) max. 1%
- Titan (Ti) max. 1%
- Carbon (C) max. 2%
- Manganese (Mn) 10 to 30%
- Silicon (Si) max. 6%
- Aluminum (Al) max. 8th%
- Niobium (Nb) max. 1 %
- Vanadium (V) max. 1%
- Titanium (Ti) max. 1%
Rest Eisen (Fe) und erschmelzungsbedingte Verunreinigungen.Remaining iron (Fe) and impurities caused by melting.
Insbesondere handelt es sich dabei um eine TWIP Stahllegierung, die je nach gewünschten Festigkeitseigenschaften in dem jeweiligen prozentualen Anteil sowie dem Vorhandensein der einzelnen Legierungselemente ausgewählt ist.In particular, this is a TWIP steel alloy which, depending on the desired strength properties, is selected in the respective percentage proportion as well as the presence of the individual alloying elements.
Durch das erfindungsgemäße Herstellungsverfahren weist das Kraftfahrzeugbauteil in den martensitischen Bereichen bevorzugt eine Streckgrenze Rp 0,2 zwischen 500 und 1500 MPa, insbesondere zwischen 700 und 1300 MPa und ganz besonders bevorzugt zwischen 750 und 1000 MPa auf. Bei einem partiell hergestellten Bauteil weisen die übrigen Bereiche dann eine Steckgrenze zwischen 200 und 800 MPa, insbesondere zwischen 300 und 500 MPa auf.As a result of the production method according to the invention, the motor vehicle component in the martensitic regions preferably has a yield strength Rp 0.2 between 500 and 1500 MPa, in particular between 700 and 1300 MPa, and very particularly preferably between 750 and 1000 MPa. For a partially manufactured component The other areas then have a mating boundary between 200 and 800 MPa, in particular between 300 and 500 MPa.
Weiterhin bevorzugt weist das Kraftfahrzeugbauteil eine Zugfestigkeit Rm zwischen 500 und 1800 MPa, insbesondere zwischen 800 und 1700 MPa und ganz besonders bevorzugt zwischen 1000 und 1650 MPa auf. Bei einem partiell abgekühlten und umgeformten Bauteil weisen die übrigen Bereiche dann eine Zugfestigkeit Rm von 500 bis 1500 MPa insbesondere von 800 bis 1200 MPa und ganz besonders bevorzugt von 850 bis 1100 MPa auf.Further preferably, the motor vehicle component has a tensile strength Rm between 500 and 1800 MPa, in particular between 800 and 1700 MPa, and very particularly preferably between 1000 and 1650 MPa. In a partially cooled and formed component, the remaining regions then have a tensile strength Rm of 500 to 1500 MPa, in particular from 800 to 1200 MPa, and most preferably from 850 to 1100 MPa.
Weitere Vorteile, Merkmale, Eigenschaften und Aspekte der vorliegenden Erfindung werden in der nachfolgenden Beschreibung erläutert. Die schematischen Figuren dienen dem einfachen Verständnis der Erfindung. Es zeigen:
Figur 1- ein Spannungsdehnungsdiagramm eines erfindungsgemäß hergestellten Stahls bei drei verschiedenen Temperaturen.
- FIG. 1
- a stress-strain diagram of a steel according to the invention at three different temperatures.
In den Figuren werden für gleiche oder ähnliche Bauteile dieselben Bezugszeichen verwendet, auch wenn eine wiederholte Beschreibung aus vereinfachungsgründen entfällt.In the figures, the same reference numerals are used for the same or similar components, even if a repeated description is omitted for reasons of simplicity.
Claims (14)
Rest Eisen (Fe) und erschmelzungsbedingte Verunreinigungen.
Remaining iron (Fe) and impurities caused by melting.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012111959.7A DE102012111959A1 (en) | 2012-12-07 | 2012-12-07 | Method for producing a motor vehicle component and motor vehicle component |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2749659A1 true EP2749659A1 (en) | 2014-07-02 |
Family
ID=49230498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13194999.2A Withdrawn EP2749659A1 (en) | 2012-12-07 | 2013-11-29 | Method for manufacturing a motor vehicle component and motor vehicle component |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140158257A1 (en) |
EP (1) | EP2749659A1 (en) |
CN (1) | CN103866102A (en) |
DE (1) | DE102012111959A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013101276A1 (en) * | 2013-02-08 | 2014-08-14 | Benteler Automobiltechnik Gmbh | Method for producing a motor vehicle stabilizer |
CN104152797A (en) * | 2014-08-14 | 2014-11-19 | 燕山大学 | Low-temperature plastic high manganese steel plate and processing method thereof |
TWI504756B (en) | 2015-01-30 | 2015-10-21 | China Steel Corp | Manufacture method of high strength and high ductility steel |
MX2017014816A (en) * | 2015-05-21 | 2018-05-11 | Ak Steel Properties Inc | High manganese 3rd generation advanced high strength steels. |
EP3095889A1 (en) * | 2015-05-22 | 2016-11-23 | Outokumpu Oyj | Method for manufacturing a component made of austenitic steel |
KR101747034B1 (en) * | 2016-04-28 | 2017-06-14 | 주식회사 포스코 | Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same |
DE102016110661A1 (en) * | 2016-06-09 | 2017-12-14 | Salzgitter Flachstahl Gmbh | Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel |
US11519050B2 (en) | 2016-09-16 | 2022-12-06 | Salzgitter Flachstahl Gmbh | Method for producing a re-shaped component from a manganese-containing flat steel product and such a component |
DE102016117494A1 (en) | 2016-09-16 | 2018-03-22 | Salzgitter Flachstahl Gmbh | Process for producing a formed component from a medium manganese steel flat product and such a component |
CN108118255A (en) * | 2018-01-08 | 2018-06-05 | 河北工业大学 | A kind of low temperature resistant steel of high manganese TWIP and its manufacturing method with high impact toughness |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0889144A1 (en) * | 1997-07-01 | 1999-01-07 | Max-Planck-Institut für Eisenforschung GmbH | Ligth structural steel and its application |
WO2008078962A1 (en) | 2006-12-26 | 2008-07-03 | Posco | Composite steel and method of thermally treating the same |
WO2009090228A1 (en) * | 2008-01-17 | 2009-07-23 | Technische Universität Bergakademie Freiberg | Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof |
DE102010020373A1 (en) | 2010-05-12 | 2011-11-17 | Voestalpine Stahl Gmbh | Process for producing a component from an iron-manganese steel sheet |
WO2013064698A2 (en) * | 2011-11-05 | 2013-05-10 | Technische Universität Bergakademie Freiberg | Method for producing high-strength components from cast steel having trip/twip properties and use of the manufactured components |
WO2013124283A1 (en) * | 2012-02-25 | 2013-08-29 | Technische Universität Bergakademie Freiberg | Method for producing high-strength molded parts from high-carbon and high-manganese-containing austenitic cast steel with trip/twip properties |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004054444B3 (en) * | 2004-08-10 | 2006-01-19 | Daimlerchrysler Ag | Method for making steel articles with high rigidity and plasticity comprises mechanical shaping of steel in which twinning induce plasticity or shearband induced plasticity is produced, to give increase in rigidity of at least 30 percent |
EP1767659A1 (en) * | 2005-09-21 | 2007-03-28 | ARCELOR France | Method of manufacturing multi phase microstructured steel piece |
-
2012
- 2012-12-07 DE DE102012111959.7A patent/DE102012111959A1/en not_active Withdrawn
-
2013
- 2013-11-29 CN CN201310628010.5A patent/CN103866102A/en active Pending
- 2013-11-29 EP EP13194999.2A patent/EP2749659A1/en not_active Withdrawn
- 2013-11-29 US US14/093,202 patent/US20140158257A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0889144A1 (en) * | 1997-07-01 | 1999-01-07 | Max-Planck-Institut für Eisenforschung GmbH | Ligth structural steel and its application |
WO2008078962A1 (en) | 2006-12-26 | 2008-07-03 | Posco | Composite steel and method of thermally treating the same |
WO2009090228A1 (en) * | 2008-01-17 | 2009-07-23 | Technische Universität Bergakademie Freiberg | Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof |
DE102010020373A1 (en) | 2010-05-12 | 2011-11-17 | Voestalpine Stahl Gmbh | Process for producing a component from an iron-manganese steel sheet |
WO2013064698A2 (en) * | 2011-11-05 | 2013-05-10 | Technische Universität Bergakademie Freiberg | Method for producing high-strength components from cast steel having trip/twip properties and use of the manufactured components |
WO2013124283A1 (en) * | 2012-02-25 | 2013-08-29 | Technische Universität Bergakademie Freiberg | Method for producing high-strength molded parts from high-carbon and high-manganese-containing austenitic cast steel with trip/twip properties |
Non-Patent Citations (5)
Title |
---|
A. SAEED-AKBARI ET AL: "Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels", METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 40, no. 13, 17 October 2009 (2009-10-17), pages 3076 - 3090, XP055101313, ISSN: 1073-5623, DOI: 10.1007/s11661-009-0050-8 * |
CURTZE S ET AL: "Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate", ACTA MATERIALIA, ELSEVIER, OXFORD, GB, vol. 58, no. 15, 1 September 2010 (2010-09-01), pages 5129 - 5141, XP027145622, ISSN: 1359-6454, [retrieved on 20100701] * |
GRÄSSEL O ET AL: "Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP steels", JOURNAL DE PHYSIQUE IV, EDITIONS DE PHYSIQUE. LES ULIS CEDEX, FR, vol. 7, no. C05, 1 November 1997 (1997-11-01), pages 383 - 388, XP002081702, ISSN: 1155-4339 * |
O GRAÈ SSEL ET AL: "High strength Fe Mn (Al, Si) TRIP/TWIP steels development properties application", INTERNATIONAL JOURNAL OF PLASTICITY, 1 January 2000 (2000-01-01), pages 1391 - 1409, XP055101318, Retrieved from the Internet <URL:http://www.sciencedirect.com/science/article/pii/S0749641900000152/pdfft?md5=f2f99a2158bc0d4f088fab6c590b5256&pid=1-s2.0-S0749641900000152-main.pdf> * |
T. NIENDORF ET AL: "Deformation mechanisms in high-manganese steels showing twinning-induced plasticity: Fine-grained material and single crystals at ambient and cryogenic temperatures", SCRIPTA MATERIALIA, vol. 67, no. 11, 1 December 2012 (2012-12-01), pages 875 - 878, XP055112636, ISSN: 1359-6462, DOI: 10.1016/j.scriptamat.2012.08.011 * |
Also Published As
Publication number | Publication date |
---|---|
DE102012111959A1 (en) | 2014-06-12 |
CN103866102A (en) | 2014-06-18 |
US20140158257A1 (en) | 2014-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2749659A1 (en) | Method for manufacturing a motor vehicle component and motor vehicle component | |
EP2441852B1 (en) | Side-member and method for producing a thermoformed and press-hardened side-member | |
DE102008051992B4 (en) | Method for producing a workpiece, workpiece and use of a workpiece | |
EP2297367B9 (en) | Method for producing a formed steel part having a predominantly ferritic-bainitic structure | |
DE102013010946B3 (en) | Method and plant for producing a press-hardened sheet steel component | |
EP2341156B1 (en) | Use of a steel alloy in a hot-forming and press-hardening | |
EP1939308A1 (en) | Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain | |
DE102005052069B4 (en) | Process for the production of semi-finished steel by hot working | |
DE202012000616U1 (en) | Structural and / or body component for a motor vehicle with improved crash properties and corrosion protection | |
EP3728657B1 (en) | Method for generating metallic components having customised component properties | |
EP2415882B1 (en) | Method for producing a shaped metal sheet from a rolled, non-hardenable aluminium alloy | |
WO2009090228A1 (en) | Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof | |
DE102010004823A1 (en) | Producing metallic molded element for motor vehicle components, comprises providing board made of steel alloy, homogeneously heating the board and then deforming to molded element in pressing tool, and annealing the element in the tool | |
DE102016108836B4 (en) | Motor vehicle component and method for its production | |
DE102006030509A1 (en) | Method for treating a sheet metal component used in chassis construction comprises hardening the component in predetermined regions by introducing locally delimited energy into the mold | |
DE102008022401B4 (en) | Process for producing a steel molding having a predominantly bainitic structure | |
DE112008001181B4 (en) | Use of a steel alloy for axle tubes and axle tube | |
DE102008020757A1 (en) | Sheet workpiece forming method, involves inserting sheet workpiece into molding tool at specific temperature, forming workpiece by molding tool, and extracting heat from workpiece during retention period | |
DE102016113542B3 (en) | Method for producing a tank component | |
DE102013014814A1 (en) | Process for producing a high-strength or high-strength molded part made of hardenable steel | |
EP3728656B1 (en) | Method for producing metallic components having adapted component properties | |
DE102019102506A1 (en) | Method for producing a motor vehicle component from a 6000 aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20131129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
R17P | Request for examination filed (corrected) |
Effective date: 20141223 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NIENDORF, THOMAS Inventor name: RUESING, CHRISTIAN Inventor name: FREHN, ANDREAS Inventor name: MAIER, HANS JUERGEN |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MAIER, HANS JUERGEN Inventor name: NIENDORF, THOMAS Inventor name: RUESING, CHRISTIAN Inventor name: FREHN, ANDREAS |
|
17Q | First examination report despatched |
Effective date: 20171218 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190601 |