EP2747190B1 - Composant mems capacitif à ligne de transmission enterrée - Google Patents

Composant mems capacitif à ligne de transmission enterrée Download PDF

Info

Publication number
EP2747190B1
EP2747190B1 EP13198695.2A EP13198695A EP2747190B1 EP 2747190 B1 EP2747190 B1 EP 2747190B1 EP 13198695 A EP13198695 A EP 13198695A EP 2747190 B1 EP2747190 B1 EP 2747190B1
Authority
EP
European Patent Office
Prior art keywords
transmission line
pillars
membrane
stack
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13198695.2A
Other languages
German (de)
English (en)
Other versions
EP2747190A1 (fr
Inventor
Paolo MARTINS
Shailendra Bansropun
Matthieu Le Bailiff
Afshin Ziaei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2747190A1 publication Critical patent/EP2747190A1/fr
Application granted granted Critical
Publication of EP2747190B1 publication Critical patent/EP2747190B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/127Strip line switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Definitions

  • micro-switches also called “switches” made in MEMS technology, the acronym MEMS meaning “Micro Electro Mechanical System”, in English, and meaning electromechanical micro-system.
  • the privileged field of application relates to radiofrequency systems and more precisely to applications in the field of radars, in particular using frequencies between 8 and 12 GHz.
  • the MEMS components proposed can however find applications in very high frequency fields of the order of 150 GHz.
  • MEMS components By means of a control electrode, an electrostatic force is exerted on a mechanical object of very small dimensions arranged in the vicinity of a radiofrequency transmission line. The displacement or the deformation of the object subjected to this force varies an electronic parameter which is most often a resistance or a capacitance. This variation interrupts or restores the transmission of radio frequencies in the transmission line.
  • a capacitive type switch devices with a “bridge” or with a suspended membrane are preferably used.
  • a thin metal membrane or beam 1 of the order of 1 ⁇ m, is held suspended by pillars 2a, 2b above a radiofrequency transmission line 3 made on the surface of a substrate 4 in which a Sig signal is propagated.
  • a dielectric layer 5 is deposited on the surface of the transmission line 3.
  • Conductive lines 6a, 6b are connected to the transmission line 3 and connected to ground M.
  • the membrane 1 can be subjected to an electric voltage by means of a control electrode. In the absence of applied voltage, the membrane 1 is suspended above the transmission line 3 at a certain height or a certain first “gap” which can be assimilated to a first capacitor, typically the height is greater than 1 micron. When a sufficiently high voltage is applied to the control electrode, the membrane 1 is subjected to an electrostatic force which deforms it. The membrane 1 is then separated from the transmission line 3 by a dielectric layer forming a second capacitor which is much greater than the first formed by the air gap. Therefore, the radio frequencies are shorted to ground M.
  • this capacitance can be used to produce a micro-switch.
  • MEMS components as described above require a voltage generally greater than 10V to enable switching, and a switching time of a few microseconds.
  • the documents WO2010 / 138929 , EP2506282 , WO2010 / 065517 and US2010 / 141362 describe MEMS components of reduced dimensions.
  • miniMEMS MEMS components of reduced dimensions compared to conventional MEMS components.
  • miniMEMS MEMS components of small dimensions. More precisely, by miniMEMS component A MEMS component in which the dimensions are reduced by a factor of approximately 10.
  • the figure 2 shows a sectional view of a miniMEMS component produced according to a conventional technology proposed in the literature.
  • the miniMEMS component comprises a stack comprising a substrate 4, a transmission line 3, a layer of dielectric material 5 covering the transmission line 3, pillars 2a; 2b supporting a membrane 1.
  • the membrane 1 has a non-planar topology. This topology is the consequence of the process used to develop the miniMEMS component.
  • the conventional method of making a miniMEMS component comprises five main steps.
  • the first step consists in depositing the transmission line 3 in a longitudinal direction d Long on the substrate 4, the longitudinal direction d Long being parallel to the direction of propagation of the radiofrequencies inside the transmission line 3.
  • the second step consists in the deposition of the dielectric layer 5.
  • the third step consists in the deposition of a sacrificial layer 7.
  • the fourth step consists in the production of the pillars 2a; 2b and the fifth step of depositing the membrane 1.
  • the sacrificial layer 7 is removed.
  • the third step of producing the sacrificial layer 7 is carried out by applying a resin by centrifugal coating better known under the name of "spin coating” in English, or by a chemical vapor deposition technique better known under the name “Chemical vapor deposition", in English, or CVD.
  • a resin by centrifugal coating better known under the name of "spin coating” in English, or by a chemical vapor deposition technique better known under the name “Chemical vapor deposition”, in English, or CVD.
  • a resin by centrifugal coating better known under the name of "spin coating” in English, or by a chemical vapor deposition technique better known under the name “Chemical vapor deposition”, in English, or CVD.
  • the dimensions of the membrane 1 are of the order of 100 microns according to the transverse direction d Trans and 300 microns according to the longitudinal direction d Long , with an air gap of a few microns and a thickness of the order of a micron. These dimensions make it possible to compensate for the deformation, due to the topology during manufacture, which has no influence on the operation of the MEMS component.
  • the topology of the membrane 1 affects the operation of the miniMEMS component making it unusable.
  • the literature proposes a first solution applied to MEMS components making it possible to produce a substantially planar membrane. It consists in depositing a succession of thick layers of resins constituting the sacrificial layer 7. A succession of thermal annealing and dry etching is then applied in order to improve the flatness of the sacrificial layer before manufacturing the membranes.
  • This process is complex and very difficult to apply on a large scale for a limited result.
  • this process is not compatible for the development of miniMEMS
  • An aim of the invention is to develop a miniMEMS component for which the manufacturing process allows simple and reproducible implementation on a large scale.
  • MEMS micro electromechanical system
  • a stack having a substantially flat surface makes it possible in a single step to deposit a sacrificial layer with a substantially flat surface.
  • this technology is not limited to the miniMEMS component, it can be used for a conventional MEMS component.
  • the height of the pillars is between 100 nm and 500 nm
  • a transverse dimension of the membrane in a direction perpendicular to the longitudinal direction is between 10 and 50 microns
  • a longitudinal dimension of the membrane in the longitudinal direction is between 20 and 100 microns
  • the thickness of the membrane is between 100 nm and 500 nm.
  • the MEMS proposed according to the invention is particularly recommended for the preparation of miniMEMS for which the reduced dimensions of the height of the pillars in particular generate numerous malfunctions when they are produced according to the embodiments proposed in the state of the art.
  • the figure 3 represents a miniMEMS component it comprises a stack 8 comprising a substrate 4, a transmission line 3, a dielectric layer 5, and two pillars 2a; 2b positioned on the stack 8 and supporting a membrane 1.
  • the substrate 4 comprises a housing 9 in which the transmission line 3 is arranged, the transmission line 3 extending in a longitudinal direction parallel to the direction of propagation of the signal Sig.
  • the substrate 4 comprises silicon and comprises a passivation layer comprising SiO 2 but can just as easily be made of ceramic, sapphire or any other material conventionally used.
  • the dimensions of the housing 9 are adapted to receive the transmission line 3 making it possible to avoid the formation of a space between the side walls of the housing 9 and the transmission line 3, or, to avoid the presence of beads around the transmission line 3.
  • the transmission line 3 is buried inside the substrate 4, the assembly comprising the substrate 4 and the transmission line 3 having a substantially planar surface.
  • the transmission line 3 comprises a highly conductive metal, generally gold.
  • a first transverse dimension d1 of the membrane 1 in the direction perpendicular to the longitudinal direction d Long measures between 10 and 50 microns.
  • a second longitudinal dimension d2 of the membrane 1 along the longitudinal direction d Long measures between 20 and 100 microns.
  • the thickness of the membrane 1 is between 100 and 500 nm.
  • the transverse dimension of the transmission line 3 is slightly less than the transverse dimension d1 of the membrane 1. Furthermore, the thickness of the transmission line 3 is a parameter making it possible to limit the ohmic losses.
  • the thickness of the transmission line depends in particular on the material used to make the transmission line 3 and on the radiofrequency signal propagated inside the transmission line 3. In general, the lower the signal propagation frequency and the thicker the transmission line. The thickness is generally between 500 nm and 1 micron below the membrane.
  • the stack 8 may further comprise a passivation layer 10, arranged on the surface of the substrate 4, and comprising a housing 9 in which the transmission line 3 is arranged.
  • the passivation layer 10 comprises a material. low loss dielectric with low relative permittivity such as Si 3 N 4 or SiO 2 .
  • the thickness of the passivation layer 10 is equal to the thickness of the transmission line 3 to allow the burial of the transmission line 3.
  • This variant is advantageous in particular when a housing 9 cannot be formed directly in the substrate 4.
  • the passivation layer 10 then allows the transmission line 3 to be buried so that the surface of the first stack 8 is substantially flat.
  • a dielectric layer 5 is placed on the surface of the stack 8 and covering only the transmission line 3, or, alternatively the entire surface of the stack 8.
  • the dielectric layer 5 comprises Si 3 N 4 , SiO 2 or any other metal oxide.
  • the thickness of the layer is generally between 50 and 200 nm.
  • pillars 2a; 2b are arranged on the surface of the stack so as to support the metallic membrane 1.
  • pillars is meant column-shaped structures capable of supporting a load.
  • the pillars 2a; 2b comprise a highly conductive metal generally gold.
  • the membrane 1 has a thickness between 100 and 500 nm.
  • a space between the flat surface of the stack 8 and the membrane 1 defines the gap.
  • the gap is between 300 and 500 nm. This low gap value allows rapid switching of the miniMEMS component, the distance to be traveled by the membrane 1 being small. The switching speed is also improved by reducing the dimensions of the membranes which increases their stiffness and therefore their resonance frequencies.
  • the figures 4a to 4f represent different steps of the process for developing a miniMEMS component according to one aspect of the invention.
  • the figure 4a represents the first step in the preparation of the miniMEMS component comprising two sub-steps: a first sub-step consisting in depositing the passivation layer 10 on the surface of the substrate 4 by a CVD technique for example and a second sub-step consisting in the formation of the housing 9 by an etching method.
  • the figure 4b shows the second development step consisting in depositing the transmission line 3 inside the housing 9 of the passivation layer 10. This step is carried out by a metal deposition method of the evaporation type.
  • the figure 4c shows the third development step consisting in depositing the dielectric layer 6 followed by the deposition of a metal layer called the common electrode 11.
  • the common electrode 11 is deposited on the surface of the stack 8 with the exception of the surface located substantially above the transmission line 3.
  • the common layer 11 is gold or copper.
  • the figure 4d represents the fourth step of depositing the sacrificial layer 7 carried out by centrifugal coating with a photosensitive resin or a dielectric type material deposited by a CVD technique.
  • the sacrificial layer 7 is then etched at the level of the areas on which the pillars 2a; 2b must grow.
  • the figure 4e represents the fifth stage in the development of pillars 2a; 2b, this step is carried out by electrolytic growth from the common layer 11.
  • the figure 4f shows the sixth step of eliminating the sacrificial layer 7 and eliminating the excess of the common layer 11 which has not been used for the production of the pillars 2a; 2b.
  • the miniMEMS component thus produced comprises the stack 8 with a substantially planar surface comprising the substrate 4, a passivation layer 10 comprising a housing 9 in which the transmission line 3 is arranged, and a dielectric layer 5.
  • the two pillars 2a; 2b located on stack 8 support membrane 1.
  • the figures 5a and 5b show an example of how to use miniMEMS components.
  • the figure 5a represents a substrate 4 on which is deposited a transmission line 3 in which the signal Sig propagates. On either side of the transmission line 3, conductive lines 5a; 5b are connected to ground.
  • the miniMEMS according to the invention are arranged in matrix form.
  • the transmission line 3 is subdivided into four secondary transmission lines 3a, 3b, 3c, 3d.
  • miniMEMS components are arranged in series on each subdivision of the transmission line.
  • the attenuation obtained on one of the secondary transmission lines 3a, 3b, 3c, 3d corresponds to the cumulative influence of all the miniMEMS of the matrix.
  • the switching time is also reduced by a factor of about 10.

Landscapes

  • Micromachines (AREA)

Description

  • Le domaine de l'invention est celui des micro-interrupteurs encore dénommés « commutateurs » réalisés en technologie MEMS, l'acronyme MEMS signifiant « Micro Electro Mechanical System », en langue anglaise, et signifiant micro-système électromécanique.
  • Le domaine privilégié d'application concerne les systèmes radiofréquences et plus précisément les applications dans le domaine des radars notamment utilisant des fréquences comprises entre 8 et 12 GHz. Les composants MEMS proposés peuvent toutefois trouver des applications dans des domaines de fréquences très élevées de l'ordre de 150 GHz.
  • Le principe de fonctionnement des composants MEMS est le suivant. Au moyen d'une électrode de commande, on exerce une force électrostatique sur un objet mécanique de très faibles dimensions disposé au voisinage d'une ligne de transmission de radiofréquences. Le déplacement ou la déformation de l'objet soumis à cette force fait varier un paramètre électronique qui est le plus souvent une résistance ou une capacité. Cette variation interrompt ou rétablit la transmission des radiofréquences dans la ligne de transmission. Pour réaliser un interrupteur de type capacitif, on utilise préférentiellement des dispositifs à «pont» ou à membrane suspendue.
  • Le principe de fonctionnement de ce type de dispositif est décrit dans le cas le plus simple de l'utilisation en micro-interrupteur, et est illustré en figures 1a et 1b qui représentent respectivement un état dans lequel le signal passe et un état dans lequel le signal est court-circuité.
  • Plus précisément, une membrane ou une poutre métallique 1 de faible épaisseur, de l'ordre de 1 µm, est maintenue suspendue par des piliers 2a, 2b au dessus d'une ligne de transmission de radiofréquences 3 réalisée à la surface d'un substrat 4 dans laquelle un signal Sig est propagé. Une couche diélectrique 5 est déposée sur la surface de la ligne de transmission 3. Des lignes conductrices 6a, 6b sont connectées à la ligne de transmission 3 et reliées à la masse M.
  • La membrane 1 peut être soumise à une tension électrique au moyen d'une électrode de commande. En l'absence de tension appliquée, la membrane 1 est suspendue au-dessus de la ligne de transmission 3 à une certaine hauteur ou un certain premier « gap » pouvant être assimilé à une première capacité, typiquement la hauteur est supérieure à 1 micron. Lorsque l'on applique une tension suffisamment élevée sur l'électrode de commande, la membrane 1 est soumise à une force électrostatique qui la déforme. La membrane 1 est alors séparée de la ligne de transmission 3 par une couche de diélectrique formant une deuxième capacité qui est très supérieure à la première formée par le gap d'air. Par conséquent, les radiofréquences sont court-circuitées vers la masse M.
  • Selon le montage électronique, la variation de cette capacité peut être utilisée pour réaliser un micro-interrupteur.
  • Les composants MEMS tels que décrit précédemment nécessitent une tension généralement supérieure à 10V pour permettre une commutation, et, un temps de commutation de quelques microsecondes. Les documents WO2010/138929 , EP2506282 , WO2010/065517 et US2010/141362 décrivent des composants MEMS de dimensions réduites.
  • Pour améliorer les performances de ces dispositifs telle que la vitesse de commutation, il est connu d'utiliser des matrices comprenant des composants MEMS de dimensions réduites par rapport aux composants MEMS classiques. Nous appellerons par la suite ces composants MEMS de petites dimensions des « miniMEMS ». Plus précisément, on entend par composant miniMEMS un composant MEMS dans lequel les dimensions sont réduites d'un facteur d'environ 10.
  • La figure 2 représente une vue de coupe d'un composant miniMEMS réalisé selon une technologie classique proposée dans la littérature.
  • Le composant miniMEMS comprend un empilement comprenant un substrat 4, une ligne de transmission 3, une couche de matériau diélectrique 5 recouvrant la ligne de transmission 3, des piliers 2a ; 2b supportant une membrane 1. La membrane 1 présente une topologie non plane. Cette topologie est la conséquence du procédé utilisé pour l'élaboration du composant miniMEMS.
  • Typiquement, le procédé classique d'élaboration d'un composant miniMEMS comprend cinq étapes principales. La première étape consiste au dépôt de la ligne de transmission 3 selon une direction longitudinale dLong sur le substrat 4, la direction longitudinale dLong étant parallèle à la direction de propagation des radiofréquences à l'intérieur de la ligne de transmission 3. La deuxième étape consiste au dépôt de la couche diélectrique 5. La troisième étape consiste au dépôt d'une couche sacrificielle 7. La quatrième étape consiste à la réalisation des piliers 2a ; 2b et la cinquième étape de dépôt de la membrane 1. En fin de procédé d'élaboration du composant miniMEMS, la couche sacrificielle 7 est éliminée.
  • La troisième étape de réalisation de la couche sacrificielle 7 est réalisée par application d'une résine par enduction centrifuge plus connu sous le nom de « spin coating » en langue anglaise, ou par une technique de dépôt chimique en phase vapeur plus connue sous le nom « chemical vapor deposition », en langue anglaise, ou CVD. Quelque soit la méthode utilisée pour réaliser le dépôt de la couche sacrificielle 7, celle-ci épouse le relief de la surface sur laquelle elle est déposée. Par conséquent, la couche sacrificielle 7 présente une protubérance au niveau de la ligne de transmission 3 et de la couche diélectrique 5. La membrane 1 est ensuite déposée sur la couche sacrificielle 7, elle épouse la topologie de la couche sacrificielle 7. L'ordre de grandeur de la déformation est sensiblement égal à l'épaisseur de la ligne de transmission 3.
  • Dans le cas de composants MEMS classiques, les dimensions de la membrane 1 sont de l'ordre 100 microns selon la direction transverse dTrans et 300 microns selon la direction longitudinale dLong, avec un gap d'air de quelques microns et une épaisseur de l'ordre du micron. Ces dimensions permettent de compenser la déformation, due à la topologie lors de la fabrication qui n'a pas d'influence sur le fonctionnement du composant MEMS.
  • Par contre dans le cas de miniMEMS, la topologie de la membrane 1 affecte le fonctionnement du composant miniMEMS le rendant inutilisable.
  • La littérature propose une première solution appliquée aux composants MEMS permettant de réaliser une membrane sensiblement plane. Elle consiste à déposer une succession de couches épaisses de résines constitutives de la couche sacrificielle 7. Une succession de recuits thermiques et de gravures sèches est alors appliquée afin d'améliorer la planéité de la couche sacrificielle avant la fabrication des membranes.
  • Ce procédé est complexe et très difficilement applicable à grande échelle pour un résultat limité. De plus, au regard des dimensions, ce procédé n'est pas compatible pour l'élaboration de miniMEMS
    Un but de l'invention est d'élaborer un composant miniMEMS pour lequel le procédé de fabrication permet une mise en œuvre simple et reproductible à grande échelle.
  • Selon un aspect de l'invention, il est proposé un système micro électromécanique (MEMS) selon la revendication 1.
  • Un empilement présentant une surface sensiblement plane permet dans une unique étape de réaliser le dépôt d'une couche sacrificielle de surface sensiblement plane.
  • Par ailleurs cette technologie ne se limite pas au composant miniMEMS, elle est utilisable pour un composant MEMS classique.
  • Avantageusement, la hauteur des piliers est comprise entre 100 nm et 500 nm, une dimension transversale de la membrane selon une direction perpendiculaire à la direction longitudinale est comprise entre 10 et 50 microns, une dimension longitudinale de la membrane selon la direction longitudinale est comprise entre 20 et 100 microns et l'épaisseur de la membrane est comprise entre 100 nm et 500 nm.
  • Le MEMS proposé selon l'invention est particulièrement recommandé pour l'élaboration de miniMEMS pour lesquels les dimensions réduites de la hauteur des piliers notamment engendrent de nombreux disfonctionnement lorsqu'ils sont réalisés selon les modes de réalisations proposés dans l'état de la technique.
  • Selon un autre aspect de l'invention, il est proposé un procédé d'élaboration d'un système micro électromécanique RF capacitif à actionneur électrostatique selon la revendication 5.
  • La figure 3 représente un composant miniMEMS il comprend un empilement 8 comprenant un substrat 4, une ligne de transmission 3, une couche diélectrique 5, et deux piliers 2a ; 2b positionnés sur l'empilement 8 et supportant une membrane 1.
  • En l'espèce, le substrat 4 comprend un logement 9 dans lequel la ligne de transmission 3 est disposée, la ligne de transmission 3 s'étendant selon une direction longitudinale parallèle à la direction de propagation du signal Sig. Typiquement, le substrat 4 comprend du silicium et comprend une couche de passivation comprenant du SiO2 mais peut tout aussi bien être en céramique, saphir ou tout autre matériau classiquement utilisé.
  • Les dimensions du logement 9 sont adaptées pour recevoir la ligne de transmission 3 permettant d'éviter la formation d'un espace entre les parois latérales du logement 9 et la ligne de transmission 3, ou, d'éviter la présence de bourrelets autour de la ligne de transmission 3. En d'autres termes, la ligne de transmission 3 est enfouie à l'intérieur du substrat 4, l'ensemble comprenant le substrat 4 et la ligne de transmission 3 présentant une surface sensiblement plane. Avantageusement, la ligne de transmission 3 comprend un métal hautement conducteur, généralement de l'or.
  • Une première dimension transverse d1 de la membrane 1 selon la direction perpendiculaire à la direction longitudinale dLong mesure entre 10 et 50 microns.
  • Une deuxième dimension longitudinale d2 de la membrane 1 selon la direction longitudinale dLong mesure entre 20 et 100 microns. L'épaisseur de la membrane 1 est comprise entre 100 et 500 nm.
  • La dimension transverse de la ligne de transmission 3 est légèrement inférieure à la dimension transverse d1 de la membrane 1. Par ailleurs, l'épaisseur de la ligne de transmission 3 est un paramètre permettant de limiter les pertes ohmiques. L'épaisseur de la ligne de transmission dépend notamment du matériau utilisé pour réaliser la ligne de transmission 3 et du signal radiofréquences propagé à l'intérieur de la ligne de transmission 3. De manière générale, plus la fréquence de propagation du signal est basse et plus la ligne de transmission est épaisse. L'épaisseur est généralement comprise entre 500 nm et 1 micron sous la membrane.
  • En variante, l'empilement 8 peut comprendre en outre une couche de passivation 10, disposée à la surface du substrat 4, et comprenant un logement 9 dans lequel est disposée la ligne de transmission 3. Typiquement, la couche de passivation 10 comprend un matériau diélectrique à faible perte et faible permittivité relative tels que du Si3N4 ou du SiO2. L'épaisseur de la couche de passivation 10 est égale à l'épaisseur de la ligne de transmission 3 pour permettre l'enterrement de la ligne de transmission 3.
  • Cette variante est avantageuse notamment lorsqu'un logement 9 ne peut être formé directement dans le substrat 4. La couche de passivation 10 permet alors d'enfouir la ligne de transmission 3 de manière à ce que la surface du premier empilement 8 soit sensiblement plane.
  • Une couche diélectrique 5 est disposée à la surface de l'empilement 8 et recouvrant uniquement la ligne de transmission 3, ou, alternativement toute la surface de l'empilement 8. Typiquement, la couche diélectrique 5 comprend du Si3N4, SiO2 ou tout autre oxyde métallique. L'épaisseur de la couche est généralement comprise entre 50 et 200 nm.
  • Deux piliers 2a ; 2b sont disposés à la surface de l'empilement de manière à supporter la membrane 1 métallique. On entend par « piliers » des structures en forme de colonne pouvant supporter une charge. Avantageusement les piliers 2a ; 2b comprennent un métal hautement conducteur généralement de l'or.
  • Typiquement, la membrane 1 a une épaisseur comprise entre 100 et 500 nm.
  • Un espace entre la surface plane de l'empilement 8 et la membrane 1 définit le gap. Dans le cas d'un composant miniMEMS, le gap est compris entre 300 et 500 nm. Cette faible valeur de gap permet une commutation rapide du composant miniMEMS, la distance à parcourir par la membrane 1 étant faible. La vitesse de commutation est également améliorée par la diminution des dimensions des membranes qui augmente leurs raideurs et donc leurs fréquences de résonances.
  • Les figures 4a à 4f représentent différentes étapes du procédé d'élaboration d'un composant miniMEMS selon un aspect de l'invention.
  • La figure 4a représente la première étape d'élaboration du composant miniMEMS comprenant deux sous-étapes : une première sous-étape consistant au dépôt de la couche de passivation 10 à la surface du substrat 4 par une technique CVD par exemple et une deuxième sous-étape consistant à la formation du logement 9 par une méthode de gravure.
  • La figure 4b représente la deuxième étape d'élaboration consistant au dépôt de la ligne de transmission 3 à l'intérieur du logement 9 de la couche de passivation 10. Cette étape est réalisée par une méthode de dépôt métallique de type évaporation.
  • La figure 4c représente la troisième étape d'élaboration consistant à déposer la couche diélectrique 6 suivie du dépôt d'une couche métallique appelée électrode commune 11. L'électrode commune 11 est déposée à la surface de l'empilement 8 à l'exception de la surface située sensiblement au-dessus de la ligne de transmission 3. Avantageusement, la couche commune 11 est de l'or ou du cuivre.
  • La figure 4d représente la quatrième étape de dépôt de la couche sacrificielle 7 réalisé par enduction centrifuge d'une résine photosensible ou d'un matériau type diélectrique déposé par une technique CVD. La couche sacrificielle 7 est ensuite gravée au niveau des zones sur lesquelles les piliers 2a ; 2b doivent croître.
  • La figure 4e représente la cinquième étape d'élaboration des piliers 2a ; 2b, cette étape est réalisée par croissance électrolytique à partir de la couche commune 11.
  • La figure 4f représente la sixième étape d'élimination de la couche sacrificielle 7 et d'élimination de l'excès de la couche commune 11 n'ayant pas été utilisé pour la réalisation des piliers 2a ; 2b.
  • Le composant miniMEMS ainsi réalisé comprend l'empilement 8 de surface sensiblement plane comprenant le substrat 4, une couche de passivation 10 comprenant un logement 9 dans lequel est disposée la ligne de transmission 3, et une couche diélectrique 5. Les deux piliers 2a ; 2b situées sur l'empilement 8 supportent la membrane 1.
  • Les figures 5a et 5b représentent un exemple d'utilisation des composants miniMEMS.
  • La figure 5a représente un substrat 4 sur lequel est déposée une ligne de transmission 3 dans laquelle le signal Sig se propage. De part et d'autre de la ligne de transmission 3, des lignes conductrices 5a ; 5b sont connectées à la masse.
  • Les miniMEMS selon l'invention sont disposés sous forme matricielle. La ligne de transmission 3 est subdivisée en quatre lignes de transmission secondaires 3a, 3b, 3c, 3d.
  • Sur chacune des lignes de transmission secondaires 3a, 3b, 3c, 3d, des composants miniMEMS sont disposés en série sur chaque subdivision de la ligne de transmission.
  • L'atténuation obtenue sur une des lignes de transmission secondaires 3a, 3b, 3c, 3d correspond à l'influence cumulée de l'ensemble des miniMEMS de la matrice.
  • Ainsi, il est possible de réaliser un composant de type micro-interrupteur en utilisant une matrice de composants miniMEMS permettant de réduire la tension nécessaire pour la commutation de chacun des miniMEMS.
  • Par ailleurs, le temps de commutation est lui aussi réduit d'un facteur d'environ 10.

Claims (5)

  1. Système micro électromécanique (MEMS) capacitif à actionneur électrostatique comprenant :
    - un empilement (8) comprenant un substrat (4), une ligne de transmission de radiofréquences (3) selon une direction longitudinale (dLong), une couche diélectrique (6), une couche de passivation (10) située entre le substrat (4) et la couche diélectrique (6) comprenant un logement (9) à l'intérieur duquel la ligne de transmission de radiofréquences (3) est disposée, la surface supérieure de l'empilement (8) étant plane,
    - une électrode commune (11) connectée à la masse et disposée à la surface de l'empilement (8) sur la couche diélectrique, et en dehors de la surface située sensiblement au-dessus de la ligne de transmission (3),
    - une membrane métallique (1) et deux piliers (2a ; 2b), les deux piliers étant disposés sur l'électrode commune (11) et supportant la membrane (1) métallique, la hauteur des piliers (2a ; 2b) étant comprise entre 100 nm et 500 nm..
  2. Système selon l'une des revendications précédentes dans lequel une dimension transversale (d1) de la membrane (1) selon une direction perpendiculaire à la direction longitudinale (dLong) est comprise entre 10 et 50 microns.
  3. Système selon l'une des revendications précédentes dans lequel une dimension longitudinale (d2) de la membrane (1) selon la direction longitudinale (dLong) est comprise entre 20 et 100 microns.
  4. Système selon l'une des revendications précédentes dans lequel l'épaisseur de la membrane (1) est comprise entre 100 nm et 500 nm.
  5. Procédé d'élaboration d'un système micro électromécanique (MEMS) capacitif à actionneur électrostatique comprenant:
    - un empilement (8) comprenant un substrat (4), une ligne de transmission de radiofréquences (3) selon une direction longitudinale (dLong) et une couche diélectrique (6), la surface de l'empilement (8) étant plane,
    - une membrane métallique et deux piliers (2a ; 2b) supportant la membrane métallique (1), la hauteur des piliers (2a ; 2b) étant comprise entre 100 nm et 500 nm,
    ledit procédé comprenant :
    - une première étape d'élaboration dudit système comprenant deux sous-étapes :
    - une première sous étape de dépôt d'une couche de passivation (10) à la surface du substrat (4),
    - une deuxième sous étape de formation d'un logement (9) par gravure,
    - une deuxième étape de dépôt de la ligne de transmission (3) à l'intérieur du logement (9) de la couche de passivation (10),
    - une troisième étape de dépôt de la couche diélectrique (6) suivie du dépôt d'une couche métallique dénommée électrode commune (11), ladite électrode commune étant disposée à la surface de l'empilement sur la couche diélectrique et en dehors de la surface située sensiblement au-dessus de la ligne de transmission (3),
    - une quatrième étape de dépôt d'une couche sacrificielle (7), ladite couche sacrificielle étant ensuite gravée au niveau des zones sur lesquelles les piliers doivent croître,
    - une cinquième étape d'élaboration des piliers (2a, 2b) par croissance électrolytique à partir de l'électrode commune (11),
    - une sixième étape de dépôt de la membrane métallique (1) sur la couche sacrificielle, et d'élimination de la couche sacrificielle (7) et de l'excès d'électrode commune (11) n'ayant pas été utilisé pour la réalisation des piliers.
EP13198695.2A 2012-12-21 2013-12-20 Composant mems capacitif à ligne de transmission enterrée Active EP2747190B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1203561A FR3000049B1 (fr) 2012-12-21 2012-12-21 Composant mems capacitif a ligne de transmission enterree

Publications (2)

Publication Number Publication Date
EP2747190A1 EP2747190A1 (fr) 2014-06-25
EP2747190B1 true EP2747190B1 (fr) 2020-10-07

Family

ID=48521021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13198695.2A Active EP2747190B1 (fr) 2012-12-21 2013-12-20 Composant mems capacitif à ligne de transmission enterrée

Country Status (2)

Country Link
EP (1) EP2747190B1 (fr)
FR (1) FR3000049B1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619061A (en) * 1993-07-27 1997-04-08 Texas Instruments Incorporated Micromechanical microwave switching
WO2010065517A1 (fr) * 2008-12-01 2010-06-10 The Trustees Of Columbia University In The City Of New York Dispositif électromécaniques et leurs procédés de fabrication
US7978045B2 (en) * 2008-12-04 2011-07-12 Industrial Technology Research Institute Multi-actuation MEMS switch
US8363380B2 (en) * 2009-05-28 2013-01-29 Qualcomm Incorporated MEMS varactors
EP2506282B1 (fr) * 2011-03-28 2013-09-11 Delfmems Commutateur à point de croisement MEMS RF et matrice de commutateur à point de croisement comprenant des commutateurs à point de croisement MEMS RF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2747190A1 (fr) 2014-06-25
FR3000049A1 (fr) 2014-06-27
FR3000049B1 (fr) 2016-01-15

Similar Documents

Publication Publication Date Title
EP0605302B1 (fr) Procédé de fabrication d'un capteur de pression utilisant la technologie silicium sur isolant et capteur obtenu
CN102449447B (zh) 微机械可调法布里珀罗干涉仪、中间产品及其制造方法
US8913322B2 (en) Micromechanical tunable Fabry-Perot interferometer and a method for producing the same
EP2267893B1 (fr) Résonateur à ondes de volume avec des cavités partiellement remplies
US20060196843A1 (en) Process for fabricating monolithic membrane substrate structures with well-controlled air gaps
FR2925038A1 (fr) Systeme micromecanique et procede de realisation
CA2866388C (fr) Procede de fabrication d'un capteur de pression et capteur correspondant
EP2309559A1 (fr) Structure d'actionnement piézoélectrique comportant une jauge de contrainte piézorésistive intégrée et son procédé de réalisation
FR2762389A1 (fr) Microsysteme a membrane souple pour capteur de pression et procede de realisation
FR3076126A1 (fr) Procede de realisation d'un resonateur acoustique a ondes de volume a capacite parasite reduite
EP2546188B1 (fr) Procédé de réalisation d'une structure à membrane suspendue et à électrode enterrée
EP1964204B1 (fr) Boitier avec fonction accordable en frequence
EP1863174A1 (fr) Composant contenant un filtre BAW
EP2138455B1 (fr) Procédé de réalisation d'une structure MEMS comportant un élément mobile au moyen d'une couche sacrificielle hétérogène
FR2947096A1 (fr) Procede de realisation d'une membrane plane
EP2772943B1 (fr) Procédé de réalisation d'un dispositif microélectronique et dispositif correspondant
WO2010112428A1 (fr) Realisation d'un dispositif micro-electronique comportant un composant nems en silicium monocristallin et un transistor dont la grille est realisee dans la meme couche que la structure mobile de ce composant
EP2254243B1 (fr) Résonateur à ondes acoustiques de volume et son procédé de fabrication
EP2747190B1 (fr) Composant mems capacitif à ligne de transmission enterrée
EP3264480B1 (fr) Actionneur électromécanique
EP1536439B1 (fr) Composant incluant un condensateur variable
Giacomozzi et al. RF-MEMS packaging by using quartz caps and epoxy polymers
EP3828943A1 (fr) Microsystème mécanique et procédé de fabrication associé
US20160289064A1 (en) Thin Film Encapsulation of Electrodes
EP2428487A1 (fr) Circuit intégré comportant un dispositif à élément mobile vertical intégré dans un substrat de support et procédé de réalisation du dispositif à élément mobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181114

R17C First examination report despatched (corrected)

Effective date: 20181113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200429

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1322131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013073066

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201007

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1322131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013073066

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

26N No opposition filed

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 11

Ref country code: DE

Payment date: 20231114

Year of fee payment: 11