EP2744989B1 - Verdichtung und energie rückgewinnungseinheit - Google Patents
Verdichtung und energie rückgewinnungseinheit Download PDFInfo
- Publication number
- EP2744989B1 EP2744989B1 EP11784797.0A EP11784797A EP2744989B1 EP 2744989 B1 EP2744989 B1 EP 2744989B1 EP 11784797 A EP11784797 A EP 11784797A EP 2744989 B1 EP2744989 B1 EP 2744989B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- fluid
- expander
- unit according
- working fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011084 recovery Methods 0.000 title claims description 14
- 230000006835 compression Effects 0.000 title description 21
- 238000007906 compression Methods 0.000 title description 21
- 239000012530 fluid Substances 0.000 claims description 86
- 238000001816 cooling Methods 0.000 claims description 22
- 230000001050 lubricating effect Effects 0.000 claims description 18
- 230000009466 transformation Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000008016 vaporization Effects 0.000 claims description 5
- 238000009834 vaporization Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000007788 liquid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M5/00—Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
- F01M5/002—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
Definitions
- the present invention relates to a recuperator for recovery of thermal energy from the lubricating/cooling oil of a compressor and for conversion of said energy into mechanical energy, as well as to a compression and energy-recovery unit comprising said recuperator.
- the oil thus absorbs from the air the thermal energy that is generated during compression and the thermal energy that is generated by friction.
- Said thermal energy is usually dissipated in a radiator cooled by air in a forced way via a fan.
- the radiator can be cooled also by another fluid.
- US2005103016 A1 discloses a reciprocating engine that is cooled by a plurality of heat exchangers. The extracted heat is supplied to an ORC turbine to generate power.
- the aim of the present invention is to recover the thermal power generated in the compressor in a recuperator that converts it into mechanical or electrical power.
- the aforesaid aim is achieved by a compressor and energy-recovery unit according to Claim 1.
- FIG. 1 designated as a whole by 1 is a bladed expander according to the present invention.
- the expander 1 basically comprises an external casing 2, an annular stator 3 with axis A housed in the casing 2 and provided with a cylindrical cavity 4 with axis B parallel to and distinct from the axis A, and a substantially cylindrical rotor 5 with axis A housed in the cavity 4.
- the rotor 5 carries a plurality of blades 7, which extend in a radial direction in the annular chamber 6 and slide radially so as to co-operate substantially in a sealed way with an inner surface 8 of the stator 3.
- the blades 7 are spaced at equal distances apart circumferentially around the rotor 5, and divide the annular chamber 6 into a plurality of compartments 9 with variable volume.
- the stator 3 has an inlet port 10 in the area of minimum radial width of the compartment 6 and an outlet port 11 in the area of maximum radial width of the compartment 6 in such a way that each chamber 9 increases progressively in volume from the inlet port 10 to the outlet port 11.
- the casing 2 is conveniently provided in two pieces 13, 14, of which one (13) is a cup-shaped body defining integrally a head 15 and an outer annular wall 16, and the other (14) constitutes the other head of the casing.
- the casing 2 defines an annular chamber 17 surrounding the stator 3, which has an inlet 18 and an outlet 19 for connection to an external hydraulic circuit, as will be described more fully in what follows.
- the annular chamber 17 is delimited axially by the heads 14, 15 and radially by the stator 3 on the inside and by the wall 16 on the outside.
- the stator 3 is provided with radial fins 20 extending within the annular chamber 17 ( Figure 1 ), which have the purpose of increasing the surface of heat exchange with the fluid contained therein.
- the expander 1 is provided with an output shaft 12, which, in the example illustrated, is integral with the rotor 5.
- the output shaft 12 is supported in respective through seats 22, 23 of the heads 14, 15, and exits radially from the heads 14 with an axial end 24 of its own, which constitutes a power take off designed to be connected to a current generator or a motor functioning as generator or other mechanical load, as will be described more fully in what follows.
- the seat 23 of the heads 15 is closed axially by a lid 25.
- the shaft 12 is conveniently provided with a blind axial hole 26, which extends substantially throughout its length except for the end 24.
- the hole 26 gives out axially into a chamber 27, which is made in the lid 25 and communicates with a first area of the annular chamber 17 through a channel 28 made in the head 15.
- An opposite end of the hole 26 is connected by radial holes 29 with a portion 30 of the seat 22 and delimited axially in a sealed way by a pair of gaskets 34, 35.
- the hole 26 could present devices (not represented) designed to increase the coefficient of heat exchange.
- the portion 30 communicates with a second area of the annular chamber 17 opposite to the first area via a channel 36 made in the head 14.
- the expander 1 is used for carrying out the step of expansion of a thermodynamic cycle of the ORC (Organic Rankine Cycle) or Hirn type, during which it is possible to recover mechanical energy at the shaft 12 by subtracting thermal energy from a working fluid, generally an organic fluid or mixture, such as a chlorofluorocarbon in pure form or in mixture or a fluorocarbon, or the like.
- ORC Organic Rankine Cycle
- Hirn type a working fluid
- a working fluid generally an organic fluid or mixture, such as a chlorofluorocarbon in pure form or in mixture or a fluorocarbon, or the like.
- the inlet port 10 and the outlet port 11 of the expander are consequently connected, respectively, to a high-pressure branch and to a low-pressure branch of a closed circuit traversed by the working fluid.
- the annular chamber 17, the hole 26 of the shaft 12, and the corresponding connection channels and ports define as a whole a heating line 37 designed to be connected to a fluid source at a temperature at least equal to the inlet temperature of the working fluid.
- the expansion is carried out in conditions such as to be able to receive thermal energy from outside, instead of being substantially adiabatic, as occurs in expanders of a conventional type.
- the ideal configuration would be to carry out an isothermal expansion or even an expansion at an increasing temperature if the fluid that laps the chamber 17 were so to allow.
- the work exchanged thus depends upon the thermodynamic transformation that the gas undergoes during the transformation of expansion within the compartments.
- Figure 3 represents the cases of an adiabatic transformation (curve a) and of an isothermal transformation (curve i).
- stator and rotor heating proves even greater in the case where the fluid that expands in the compartment can present a transition of state from vapour to liquid: this is the case of water vapour or of any other substance, whether pure or in mixture.
- fraction of fluid that condenses represents a loss of work of expansion in so far as the liquid no longer undergoes variations of volume during the process of expansion.
- Figure 4 is a diagram of a compression unit 40 provided according to the present invention and equipped with an ORC recuperator 41 for recovery of the thermal energy from the lubricating/cooling oil of the compressor.
- the compression unit 40 basically comprises a compressor 42, for example a bladed volumetric compressor, driven by an electric motor 43 via a shaft 44. Connected in series on the output line of the compressed air 45 of the compressor 42 is a stage 46 of an air/working fluid heat exchanger 47 or economizer, described more fully in what follows.
- the compressor 42 comprises a lubricating/cooling line 49, which is connected to the heating line 37 of the expander 1 to form a closed oil circuit 50 therewith.
- the oil circuit further comprises a three-way by-pass valve 51, with three open-centre positions and continuous positioning, via which an oil outlet 52 of the compressor can be connected to the inlet 18 of the expander 1 or else to a line 53 of return to the compressor 42, thus bypassing the expander.
- the valve 51 is normally in a bypass position and is driven into the position of connection to the expander 1 by a thermal actuator 54 controlled by the temperature of the oil at output from the compressor 40. In this way, the recuperator 41 is activated only when the compressor reaches the steady-state temperature.
- the electromagnetic clutch 48 is controlled accordingly; i.e., it is closed until the steady-state temperature is reached.
- a stage 55 of an oil/working-fluid heat exchanger 56 Connected in series on the line 53 of return to the compressor are a stage 55 of an oil/working-fluid heat exchanger 56, described more fully in what follows and, downstream of this, a filter 57.
- the recuperator 41 comprises a closed circuit traversed by the working fluid and operating according to a Rankine cycle (if the organic fluid is brought into saturation conditions) or, preferably, a Hirn cycle (if the organic fluid is brought into superheating conditions).
- the recuperator 41 comprises a pump 58 driven by an electric motor 59 or other device and designed to bring the working fluid to a pre-set pressure level. At the end of the compression stage, the fluid is in the liquid state.
- the working fluid is in the state of saturated or superheated vapour, as mentioned previously.
- a two-position three-way solenoid valve 62 which can deliver the flow selectively, and two circuit branches 63, 64, set in parallel to one another and both connected to the inlet of the pump 58.
- Set on the first branch 63 is a radiator 65 in heat exchange with a forced air flow generated by an electric fan 66;
- set on the second branch 64 is a stage 67 of a heat exchanger 68, the other stage 69 of which is designed to be connected to a source of cold fluid, for example water, which may be available.
- the solenoid valve 62 can be omitted, and just one between the radiator 65 and the heat exchanger 68 can be used.
- the radiator 65 or the heat exchanger 68 constitutes a condenser in which the working fluid undergoes a change of state and returns into the liquid state, subsequently reaching the pump 58 (start of cycle).
- the compression unit 40 and the recuperator 41 are integrated together to form an integrated compression and energy-recovery unit 70, assembled on a single load-bearing structure 71 ( Figure 5 ).
- Figures 5 and 6 which are perspective views of the unit 70, the main components are clearly visible: the compressor 42, the electric motor 43, the expander 1 (all on a common axis), the heat exchangers 47 (air/ORC fluid), 56 (oil/ORC fluid), 68 (ORC fluid/water), the radiator 65 with the corresponding electric fan 66, and the oil filter 57.
- FIGS 7 and 8 illustrate, instead, an embodiment of the present invention in which the recuperator 41 constitutes an autonomous unit, interfaceable with an external compressor of any type or with another machine or system generating a recoverable thermal power (for example, a static internal-combustion engine or an internal-combustion engine for vehicle applications, or else a system for exploitation of the geothermal energy or of the energy produced by biomasses).
- a recoverable thermal power for example, a static internal-combustion engine or an internal-combustion engine for vehicle applications, or else a system for exploitation of the geothermal energy or of the energy produced by biomasses.
- the circuit diagram of the recuperator 41 is similar to the one described with reference to the integrated unit.
- the recuperator comprises an electric generator 72 driven by the bladed expander. Consequently, energy recovery occurs through generation of electrical energy, instead of mechanical energy.
- the economizer 47 can be omitted.
- the recuperator 41 has a pair of connections 73 for inlet/outlet of a hot fluid (oil, water, burnt gases, etc.) and a pair of connections 74 for inlet/outlet of a cold fluid (typically water of the water mains), whenever available.
- a hot fluid oil, water, burnt gases, etc.
- a cold fluid typically water of the water mains
- FIG 8 illustrates an embodiment of the recuperator 41.
- the components described with reference to the integrated solution of Figures 4 and 5 are designated by the same reference numbers, and clearly visible is the electric generator 72 coupled to the bladed expander 1.
- recuperator 41 In the case where the recuperator 41 is used in combination with an external compressor of a conventional type, two situations may basically arise.
- the hot fluid can be constituted directly by the lubricating/cooling oil of the compressor.
- the connections 73 of the recuperator 41 to a pair of bypass valves 76 set upstream and downstream of the radiator 75.
- the recuperator is consequently set in parallel with respect to the radiator 75, which can be excluded via the bypass valves 76 (and possibly used as emergency solution to prevent machine stoppages of the compressor 42 in the case of breakdown or maintenance of the recuperator).
- the hot fluid used by the recuperator 41 can be constituted by the cooling water.
- recuperator 41 is connected in parallel to the water stage of the water/oil heat exchanger 77 via bypass valves 76 set upstream and downstream of the heat exchanger itself along a water line 78.
- bypass valves 76 By switching the bypass valves 76, it is possible to select whether to use the recuperator 41 for the production of electrical energy or else use the cooling water for other purposes (for example, for heating environments in winter).
- the compression unit 40 basically comprises a compressor 42, for example a bladed volumetric compressor, driven by an electric motor 43 via a shaft 44. Connected in series on the output line for the compressed air 45 of the compressor 42 is a stage 46 of an air/working-fluid heat exchanger 47 or economizer, described more fully in what follows.
- the compressor 42 comprises a lubricating/cooling line 49, which is connected to the heating line 37 of the expander 1 to form a closed oil circuit 50 therewith.
- the oil circuit further comprises a three-way by-pass valve 51, with three open-centre positions and continuous positioning, via which an oil outlet 52 of the compressor can be connected to the inlet 18 of the expander 1 or else to a line 53 of return to the compressor 42, thus bypassing the expander.
- the valve 51 is normally in the bypass position and is driven into the position of connection to the expander 1 by a thermal actuator 54 controlled by the temperature of the oil at output from the compressor 40. In this way, the recuperator 41 is activated only when the compressor reaches the steady-state temperature.
- the electromagnetic clutch 48 is controlled accordingly; i.e., it is closed until the steady-state temperature is reached.
- a stage 55 of an oil/working-fluid heat exchanger 56 Connected in series on the line 53 of return to the compressor are a stage 55 of an oil/working-fluid heat exchanger 56, described more fully in what follows and, downstream of this, a filter 57.
- the recuperator 41 comprises a closed circuit traversed by the working fluid and operating according to a Rankine cycle (if the organic fluid is brought into saturation conditions) or, preferably, a Hirn cycle (if the organic fluid is brought into superheating conditions).
- the recuperator 41 comprises a pump 58 driven by an electric motor 59 or some other device and designed to bring the working fluid to a pre-set pressure level. At the end of the compression stage, the fluid is in the liquid state.
- the working fluid is in the state of saturated or superheated vapour, as mentioned previously.
- a two-position three-way solenoid valve 62 which can deliver the flow selectively, and two circuit branches 63, 64, set in parallel to one another and both connected to the inlet of the pump 58.
- Set on the first branch 63 is a radiator 65 in heat exchange with a forced air flow generated by an electric fan 66.
- Set on the second branch 64 is a stage 67 of a heat exchanger 68, the other stage 69 of which is designed to be connected to a source of cold fluid, for example water, which may be available.
- the solenoid valve 62 can be omitted, and just one between the radiator 65 and the heat exchanger 68 can be used.
- the radiator 65 or the heat exchanger 68 constitutes a condenser in which the working fluid undergoes a change of state and returns into the liquid state, subsequently reaching the pump 58 (start of cycle).
- the compression unit 40 and the recuperator 41 are integrated together to form an integrated compression and energy-recovery unit 70, assembled on a single load-bearing structure 71 ( Figure 5 ).
- Figures 5 and 6 which are perspective views of the unit 70, the main components are clearly visible: the compressor 42, the electric motor 43, the expander 1 (all on a common axis), the heat exchangers 47 (air/ORC fluid), 56 (oil/ORC fluid), 68 (ORC fluid/water), the radiator 65 with the corresponding electric fan 66, and the oil filter 57.
- Figures 7 and 8 illustrate, instead, an embodiment of the present invention in which the ORC recuperator 41 constitutes an autonomous unit, interfaceable with an external compressor of a rotary volumetric type to form a unit according to the present invention.
- the circuit diagram of the ORC recuperator 41 is similar to the one described with reference to the integrated unit.
- the recuperator comprises an electric generator 72 driven by the bladed expander. Consequently, energy recovery occurs through generation of electrical energy, instead of mechanical energy.
- the economizer 47 can be omitted.
- the ORC recuperator 41 has a pair of connections 73 for inlet/outlet of a hot fluid (oil, water, burnt gases, etc.) and a pair of connections 74 for inlet/outlet of a cold fluid (typically water of the water mains), whenever available.
- a hot fluid oil, water, burnt gases, etc.
- a cold fluid typically water of the water mains
- FIG. 8 illustrates one embodiment of the ORC recuperator 41.
- the components described with reference to the integrated solution of Figures 4 and 5 are designated by the same reference numbers, and clearly visible is the electric generator 72 coupled to the bladed expander 1
- the hot fluid can be constituted directly by the lubricating/cooling oil of the compressor.
- the connections 73 of the recuperator 41 to a pair of bypass valves 76 set upstream and downstream of the radiator 75.
- the recuperator is consequently set in parallel with respect to the radiator 75, which can be excluded via the bypass valves 76 (and possibly used as emergency solution to prevent machine stoppages of the compressor 42 in the case of breakdown or maintenance of the recuperator).
- the hot fluid used by the ORC recuperator 41 can be constituted by the cooling water; consequently, the heat exchange between the lubricating/cooling oil of the compressor 42 and the working fluid in this case is indirect.
- the ORC recuperator 41 is connected to the water stage of the water/oil heat exchanger 77 via bypass valves 76 set along the water line 78 upstream and downstream of the heat exchanger 77.
- bypass valves 76 By switching the bypass valves 76 it is possible to select whether to use the ORC recuperator 41 for the production of electrical energy or else use the cooling water for other purposes (for example, for heating environments in winter).
- recuperator 41 Use of a recuperator 41 provided according to the invention affords a considerable energy saving.
- the thermal power that is exchanged by the lubricating/cooling oil of a compressor is slightly lower than the electric power absorbed and is characterized by a medium-to-low thermal level.
- the oil in fact, does not generally exceed 100°C and cannot be cooled to temperatures lower than 55-60°C.
- the efficiency of the recuperator 41 can be approximately 15%.
- the thermal power exchanged with the lubricating/cooling oil of the compressor is approximately 40 kW.
- the mechanical/electrical power recovered is 6 kW.
- a value of 6 kW represents more than 10% of the absorbed electric power, which in the specific sector is very significant.
- the power produced by the system is used in mechanical form. Once the recovery system is brought to steady-state conditions, the mechanical power is supplied to the compressor 42 via the electromagnetic clutch 48, enabling reduction by more than 10% of the absorption of electric power of the electric motor 43.
- the power produced by the system is used in electrical form.
- the same power is reintroduced into the power mains, representing for the person running the compression unit an additional income (sale of electrical energy).
- thermostatting of the expander may be absent, or else limited to the stator or to the rotor, and may be provided in a way different from what has been described herein.
- Thermostatting can be carried out with the oil of the compressor or with another fluid, preferably in heat exchange therewith.
- the compressor 42 may be a volumetric rotary compressor of any type.
- the working fluid used may be an organic fluid such as a chlorofluorocarbon or any other fluid suited to the thermal levels involved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Claims (16)
- Verdichter- und Energierückgewinnungseinheit, umfassend einen Verdichter (42), der durch einen Elektromotor (43) angetrieben und mit einem Schmier-/Kühlölsystem versehen ist, dadurch gekennzeichnet, dass sie einen mit einem Rankine-Kreisprozess oder Hirn-Kreisprozess arbeitenden Rekuperator (41) umfasst, der eine Flügel-Expansionsmaschine (1) umfasst und ein Arbeitsfluid verwendet, das in zumindest indirektem Wärmeaustausch mit dem Schmier-/Kühlöl des Verdichters (42) steht, wobei die Flügel-Expansionsmaschine einen mit einem Einlassanschluss (10) und einem Auslassanschluss (11) für das Arbeitsfluid versehenen Stator (3), einen innerhalb des Stators (3) aufgenommenen Rotor (5) und eine Vielzahl von Flügeln (7), die so zwischen den Rotor (5) und den Stator (3) gesetzt sind, dass sie zwischen sich eine Vielzahl von Abteilen (9) mit veränderlichem Volumen begrenzen, welches zwischen dem Einlassanschluss (10) und dem Auslassanschluss (11) zunimmt, und eine Heizleitung (37) umfasst, die von einem heißen Fluid durchströmt und so ausgelegt ist, dass sie den Stator (3) und/oder den Rotor (5) einem Wärmeaustausch mit dem heißen Fluid unterzieht und an dem Arbeitsfluid eine im Wesentlichen isotherme Expansionsumwandlung durchführt.
- Einheit nach Anspruch 1, dadurch gekennzeichnet, dass die Flügel-Expansionsmaschine (1) mechanisch mit dem Verdichter (42) so verbindbar ist, dass sie dem Verdichter (42) selbst mechanische Leistung zuführt.
- Einheit nach Anspruch 1, dadurch gekennzeichnet, dass die Flügel-Expansionsmaschine mit einem Stromerzeuger (72) verbunden ist.
- Einheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Heizleitung (37) eine den Stator (3) zumindest teilweise umgebende Kammer (17) umfasst.
- Einheit nach Anspruch 4, dadurch gekennzeichnet, dass die Heizleitung (37) mindestens einen Hohlraum (26) im Inneren des Rotors (5) umfasst.
- Einheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem heißen Fluid um das Schmier-/Kühlöl des Verdichters (42) handelt.
- Einheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem heißen Fluid um ein Fluid handelt, das mit dem Schmier-/Kühlöl des Verdichters (42) in Wärmeaustausch steht.
- Einheit nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rekuperator eine Pumpe (58), mindestens einen Wärmetauscher (56) zum Erwärmen und Verdampfen des Arbeitsfluids unter Verwendung von dem Schmier-/Kühlöl des Verdichters (42) entzogener Wärme, wobei der Wärmetauscher (56) mit einem Förderstrom der Pumpe (58) und einem Einlass der Flügel-Expansionsmaschine (1) verbunden ist, und einen mit einem Auslass der Expansionsmaschine (1) und einem Einlass der Pumpe (58) verbundenen Kondensator (65; 68) umfasst.
- Einheit nach Anspruch 8, dadurch gekennzeichnet, dass sie einen geschlossenen Ölkreislauf (50) umfasst, der eine Schmier-/Kühlleitung (49) des Verdichters (42), die Heizleitung (37) des Verdampfers (1) und eine Stufe (56) des Tauschers zum Erwärmen und Verdampfen des Arbeitsfluids umfasst.
- Einheit nach Anspruch 9, dadurch gekennzeichnet, dass sie einen Vorwärmer (47) umfasst, in welchem das Arbeitsfluid mittels Wärmeaustauschs mit der von dem Verdichter (42) produzierten Druckluft vorgewärmt wird, wobei der Vorwärmer (47) dem Wärmetauscher (56) zum Erwärmen und Verdampfen des Arbeitsfluids vorgeschaltet ist.
- Einheit nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, dass der Ölkreislauf (50) ein Umgehungsventil (51) zum selektiven Verbinden eines Auslasses (52) des Verdichters (42) mit der Expansionsmaschine (3) oder einer Rücklaufleitung (53) zu dem Verdichter selbst umfasst.
- Einheit nach Anspruch 2, dadurch gekennzeichnet, dass sie eine elektromagnetische Kupplung zum selektiven mechanischen Verbinden der Expansionsmaschine (3) mit dem Verdichter (42) umfasst.
- Einheit nach Anspruch 3, dadurch gekennzeichnet, dass der Rekuperator (41) als eigenständige Einheit vorhanden ist, die mit dem Verdichter (42) koppelbar und zweckmäßig mit Verbindungen für ein heißes Fluid versehen ist, welches in dem Schmier-/Kühlöl des Verdichters (42) oder einem mit diesem in Wärmeaustausch stehenden Fluid besteht.
- Verfahren zur Rückgewinnung von Wärmeenergie aus dem Schmier-/Kühlöl eines Verdichters (42), dadurch gekennzeichnet, dass es einen mit einem Rankine-Kreisprozess oder Hirn-Kreisprozess arbeitenden Rekuperator (41) verwendet, der eine Flügel-Expansionsmaschine (1) umfasst und mit einem Arbeitsfluid arbeitet, das in zumindest indirektem Wärmeaustausch mit dem Schmier-/Kühlöl des Verdichters (42) steht, wobei die Flügel-Expansionsmaschine einen mit einem Einlassanschluss (10) und einem Auslassanschluss (11) für das Arbeitsfluid versehenen Stator (3), einen innerhalb des Stators (3) aufgenommenen Rotor (5) und eine Vielzahl von Flügeln (7), die so zwischen den Rotor (5) und den Stator (3) gesetzt sind, dass sie zwischen sich eine Vielzahl von Abteilen (9) mit veränderlichem Volumen begrenzen, welches zwischen dem Einlassanschluss (10) und dem Auslassanschluss (11) zunimmt, und eine Heizleitung (37) umfasst, die von einem heißen Fluid durchströmt und so ausgelegt ist, dass sie den Stator (3) und/oder den Rotor (5) einem Wärmeaustausch mit dem heißen Fluid unterzieht und an dem Arbeitsfluid eine im Wesentlichen isotherme Expansionsumwandlung durchführt.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass eine Temperaturregelung der Flügel-Expansionsmaschine (1) mittels des Öls erfolgt.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass eine Temperaturregelung der Flügel-Expansionsmaschine (1) mittels eines mit dem Öl in Wärmeaustausch stehenden Fluids erfolgt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IT2011/000325 WO2013042142A1 (en) | 2011-09-19 | 2011-09-19 | Compression and energy-recovery unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2744989A1 EP2744989A1 (de) | 2014-06-25 |
EP2744989B1 true EP2744989B1 (de) | 2019-03-06 |
Family
ID=44993819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11784797.0A Active EP2744989B1 (de) | 2011-09-19 | 2011-09-19 | Verdichtung und energie rückgewinnungseinheit |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2744989B1 (de) |
CN (1) | CN103975134B (de) |
WO (1) | WO2013042142A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11118731B2 (en) | 2019-04-05 | 2021-09-14 | Bendix Commercial Vehicle Systems Llc | Apparatus and method for cooling a high heat-generating component of a vehicle |
BR112022003981A2 (pt) * | 2019-09-06 | 2022-05-24 | Ivar Spa | Novo ciclo termodinâmico combinado com recuperação de alta energia |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI86464C (fi) * | 1990-09-26 | 1992-08-25 | High Speed Tech Ltd Oy | Foerfarande foer att saekra lagersmoerjning i en hermetisk hoegshastighetsmaskin. |
PT1668226E (pt) * | 2003-08-27 | 2008-04-18 | Ttl Dynamics Ltd | Sistema de recuperação de energia |
US7013644B2 (en) * | 2003-11-18 | 2006-03-21 | Utc Power, Llc | Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine |
DE102007041944B3 (de) * | 2007-09-04 | 2009-02-19 | Gesellschaft für Motoren und Kraftanlagen mbH | Vorrichtung zur Energieumwandlung, Kraft-Wärme-Kopplungsanlage mit einer derartigen Vorrichtung und Verfahren zum Betreiben einer ORC-Anlage |
JP2010540837A (ja) * | 2007-10-04 | 2010-12-24 | ユナイテッド テクノロジーズ コーポレイション | 往復機関からの廃熱を利用するカスケード型有機ランキンサイクル(orc)システム |
JP5495293B2 (ja) * | 2009-07-06 | 2014-05-21 | 株式会社日立産機システム | 圧縮機 |
CA2676502C (en) * | 2009-08-24 | 2018-12-04 | Victor Juchymenko | Supplementary thermal energy transfer in thermal energy recovery systems |
-
2011
- 2011-09-19 EP EP11784797.0A patent/EP2744989B1/de active Active
- 2011-09-19 WO PCT/IT2011/000325 patent/WO2013042142A1/en unknown
- 2011-09-19 CN CN201180074941.4A patent/CN103975134B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN103975134B (zh) | 2017-07-18 |
CN103975134A (zh) | 2014-08-06 |
EP2744989A1 (de) | 2014-06-25 |
WO2013042142A1 (en) | 2013-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2622350C2 (ru) | Система с замкнутым циклом для утилизации отработанного тепла (варианты) и способ утилизации отработанного тепла | |
EP3314096B1 (de) | Energieanlage und verfahren zur erzeugung von nutzleistung aus wärme, die von einer wärmequelle geliefert wird | |
KR101482879B1 (ko) | 동력 발생 장치 및 이 장치의 운전 방법 | |
WO2011058832A1 (ja) | エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム | |
CN102322300A (zh) | 用于功率发生系统的涡轮膨胀机 | |
JP2013092144A (ja) | 補助動力発生装置 | |
KR101501852B1 (ko) | 회전기 구동 시스템 | |
KR101511890B1 (ko) | 스크류 팽창기 | |
US9746215B2 (en) | Heat powered reciprocating piston engine | |
US12044150B2 (en) | Plant based upon combined Joule-Brayton and Rankine cycles working with directly coupled reciprocating machines | |
JP2014058877A (ja) | 補助動力発生装置及びこの装置の運転方法 | |
EP2744989B1 (de) | Verdichtung und energie rückgewinnungseinheit | |
EP2748433B1 (de) | Schaufelexpander | |
US20150107249A1 (en) | Extracting Heat From A Compressor System | |
US4187694A (en) | Binary working fluid air conditioning system | |
US10598050B2 (en) | Scissor type compression and expansion machine used in a thermal energy recuperation system | |
JP7177835B2 (ja) | 統合冷却を含む、特にランキンサイクルタイプの閉回路用の電気式ターボポンプアセンブリ | |
JPH0988501A (ja) | スクリュータービン及びそれを用いたバイナリー発電装置 | |
JP2005083343A (ja) | 発電装置 | |
CN113661307B (zh) | 发电系统和通过操作这种发电系统来发电的方法 | |
JPH02252901A (ja) | スクリュー膨張機の給油装置 | |
KR100741411B1 (ko) | 열매가스를 이용한 동력 발생장치 | |
EA045952B1 (ru) | Система и способ рекуперации отводимого тепла на основе циклов брайтона и ренкина | |
KR20120115698A (ko) | 액상매체 분사식 팽창/증발기를 이용하는 증기 사이클 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140319 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161128 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180925 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ING ENEA MATTEI S.P.A. |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ING. ENEA MATTEI S.P.A. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1104835 Country of ref document: AT Kind code of ref document: T Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011056912 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190607 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1104835 Country of ref document: AT Kind code of ref document: T Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011056912 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190706 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
26N | No opposition filed |
Effective date: 20191209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110919 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210923 Year of fee payment: 11 Ref country code: LU Payment date: 20210927 Year of fee payment: 11 Ref country code: MC Payment date: 20210920 Year of fee payment: 11 Ref country code: NL Payment date: 20210927 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210927 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20221001 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602011056912 Country of ref document: DE Representative=s name: MUELLER-BORE & PARTNER PATENTANWAELTE PARTG MB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230905 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240926 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240924 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240925 Year of fee payment: 14 |