EP2738627B1 - Cellule de vapeur micro-usinée - Google Patents

Cellule de vapeur micro-usinée Download PDF

Info

Publication number
EP2738627B1
EP2738627B1 EP13191631.4A EP13191631A EP2738627B1 EP 2738627 B1 EP2738627 B1 EP 2738627B1 EP 13191631 A EP13191631 A EP 13191631A EP 2738627 B1 EP2738627 B1 EP 2738627B1
Authority
EP
European Patent Office
Prior art keywords
vapor cell
hole
pattern
silicon element
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13191631.4A
Other languages
German (de)
English (en)
Other versions
EP2738627A2 (fr
EP2738627A3 (fr
Inventor
Thomas Overstolz
Jacques Haesler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP2738627A2 publication Critical patent/EP2738627A2/fr
Publication of EP2738627A3 publication Critical patent/EP2738627A3/fr
Application granted granted Critical
Publication of EP2738627B1 publication Critical patent/EP2738627B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • G04F5/145Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping

Definitions

  • the invention relates to highly miniaturized atomic clocks.
  • the invention particularly concerns micro-machined chip-sized vapor cells with volumes on the order of a few cubic millimeters or less.
  • the invention also concerns a method to fabricate the aforementioned vapor cells.
  • the unprecedented frequency stability of atomic clocks is achieved by a suitable interrogation of optically excited atoms in order to achieve the hyperfine splitting of the electron state of the reactant, which takes place in the so-called vapor cell, the heart of an atomic clock.
  • the vapor cell comprises a sealed cavity, which contains small amounts of suitable reactants: an alkali metal, preferably rubidium or cesium, buffer gas(es), and/or anti-relaxation coating(s).
  • MEMS technology allows for fabricating miniaturized vapor cells having a volume in the range of a few cubic millimeters. Silicon micromachining is particularly interesting. It allows a very high level of miniaturization and hybrid integration with control electronics and sensors, and the wafer-level batch fabrication affords a low cost production and higher reproducibility.
  • CPT coherent population trapping
  • DR double-resonance
  • the minimum size of the clock physics package is determined in part by the cavity that confines the microwaves used to excite the atoms. This cavity is usually larger than one-half the wavelength of the microwave radiation used to excite the atomic resonance. For cesium and rubidium, this wavelength is of the order of several centimeters, clearly posing a problem for the development of vapor cell references for portable applications. Thus, CPT or DR excitation is very suitable for micro-machined vapor cells.
  • US2006022761 A1 discloses the fabrication of a micro-machined vapor cell comprising a cavity etched in a silicon wafer.
  • the cavity is sealed by anodic bonding in its top part and in its bottom part by glass substrates.
  • electromagnets could be used for achieving a proper homogeneous magnetic field.
  • Helmholtz configuration with two planar coils integrated directly on the two windows of the vapor cell may be a suitable option.
  • planar coils realized in MEMS technology are characterized by a very low thickness of the coil, typically in the range of some hundreds of nanometer. As a consequence, a planar coil has a relatively high electrical resistance and hence an elevated power dissipation. Thus, a skilled person is not encouraged to investigate planar coils for providing a homogeneous magnetic field in a miniaturized vapor cell.
  • the object of this invention is to at least partially overcome the limitations described, and thereby provide a versatile simple configuration using electromagnets to create the needed homogeneous magnetic field on the vapor cell boosting the methods of miniaturization and providing a favorable simplicity to efficiency ratio.
  • the invention relates to a micro-machined vapor cell according to independent claim 1.
  • Such a vapor cell presents the advantage that the magnetic means don't add significant additional volume.
  • Another advantage of this solution is its very low electrical resistivity compared to a planar coil realized in MEMS technology.
  • the object of the invention contributes to the development of highly miniaturized atomic clocks using simple configurations in order to simplify and to improve the control of the assembled components.
  • the invention also concerns a method to fabricate the aforementioned vapor cell according to independent claim 6.
  • Figure 1 shows a micro-machined vapor cell 1 according to the invention comprising:
  • the cavity is preferably cylindrical but other shapes can be obviously used.
  • the vapor cell 1 comprises furthermore a solenoid 50 arranged to provide a homogeneous magnetic field to said vapor cell 1.
  • the solenoid 50 is coiled directly on the vapor cell 1 that defines the core of this solenoid 50. More precisely, the wire forming the solenoid is coiled along the longitudinal axis of the cavity, along the external surface 25 of the central silicon element 10.
  • the solenoid provides a homogeneous magnetic field to the vapor cell 1 with the advantage that not significant additional volume is added to the vapor cell 1, achieving an important goal of the invention.
  • Figure 1 presents two identical enlarged vapor cells 1, one of them showing through its upper sealing cap 40 the central silicon element 10, the cavity 20 being visible.
  • the different components of the vapor cell 1, the two glass caps 30 and 40 and the external surface 25 of the central silicon element 10, are arranged to keep the solenoid 50 in a substantially fixed, at least stable, position without the risk that it glides off. Essentially, the solenoid 50 has to be maintained between the two caps 30 and 40 that define banking means for the solenoid 50.
  • the central silicon element 10 has a dodecagonal shaped external surface 25 while the two glass caps 30 and 40, closing the cavity 20, have a quadratic shape with the particularity that they define limitation means for the solenoid 50 and that they exceed the footprint of the central silicon element 10, defined by its external surface.
  • different cap shapes could also be used as an ellipse or a regular polygon.
  • Other banking means may be considered, in addition to the sealing means. Hooks or notches can be considered, extending over the footprint of the central silicon element 10. Nevertheless, the quadratic shape of the caps 30 and 40 simplifies the fabrication process of the vapor cells 1 according to the invention as it is going to be described further.
  • the external surface 25 of the central silicon element 10 has preferably a regular polygonal shape, which could be an octagonal shape, but also a dodecagonal shape as said before, or a hexadecagonal shape, or any regular polygonal shapes having (n * 4) number of segments, where n is an integer and it is equal or greater than 2.
  • the different shapes of the glass caps 30 and 40 and the external surface 25 of the central silicon element 10 are obtained in the fabrication method by a combination of etching and dicing processes.
  • figure 2 presents two different patterns of holes 11 and 12 that are etched through a silicon wafer.
  • the first hole-pattern 11 consists of circular holes required for the vapor cell cavities 20 that are arranged in regularly spaced columns and rows.
  • the second hole-pattern 12 consists of holes having a star shape. The figure shows that this star shape is formed by four peaks 12A, 12B, 12C and 12D, each peak being arranged perpendicularly in reference to its two adjacent peaks.
  • the second hole-pattern 12 is offset towards the first hole-pattern 11 by half the column spacing and half the row spacing.
  • a silicon wafer square matrix is presented showing sixteen first circular hole-patterns 11 and nine second hole-patterns 12; this is going turn out that sixteen singular vapor cells 1 are going to be formed following the method of fabrication illustrated in this non limiting example.
  • the shape of the second hole-pattern 12 is chosen in function of the desired external surface 25 shape of the central silicon element 10, as illustrated in figure 4 to figure 6 .
  • figure 4 illustrates a second hole-pattern 12 showing the shape of a four-peaks star, in this case the four-peaks star is a rhombus (square), and it is formed by four adjacent octagons formed by eight external surface segments 14 that represent the external surface 25 shape of the central silicon element 10.
  • the four-peaks star has eight peak star segments 13 and it is formed by four adjacent dodecagons formed by twelve external surface segments 14; and in that way, figure 6 illustrates a four-peaks star having twelve peak star segments 13 and it is formed by four adjacent hexadecagons formed by sixteen external surface segments 14.
  • the four-peaks star gets more and more segments 13 too.
  • the four-peaks stars are formed by a number of (m * 4) segments 13, where m is an integer, equal to or greater than 1 and depending on the desired regular polygonal shape of the central silicon element external surface 25.
  • the peak star segments 13 plays an important role in the dicing process following the method presented hereafter.
  • two lines A and B define the dicing directions. These lines A and B intersect perpendicularly in the center of the second hole-pattern 12 (the four-peak star shape), each line connecting opposite peaks of the star.
  • Line A connects two peaks of the star 12A and 12B
  • line B connects the other two peaks of the star 12C and 12D. All the second hole-patterns 12 are identical, so, the definition of the lines A and B could be defined by any one of the second hole-patterns 12.
  • the next fabrication steps are the anodic bonding of a first glass wafer to one side of the silicon wafer (the bottom side of the etched silicon wafer) to form a first cap 30 to seal it.
  • the filling of the cavities 20 with the required reactants such as an alkali metal or an alkali metal azide.
  • the bonding of a second glass wafer to the other side of the silicon wafer also to form a second cap 40 to seal it, preferably under controlled atmosphere.
  • the bonded wafer stack is diced along the lines A and B defined by the shape of the second hole-pattern 12.
  • the solenoid 50 is then coiled directly on the central silicon element 10, the first 30 and second 40 glass caps defining banking means to keep it in a substantially fixed position without the risk that it glides off.
  • the volume of the vapor cell 1 is lower than 100 mm 3 , preferably even less than 1 mm 3 .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Claims (10)

  1. Cellule de vapeur micro-usinée (1) comprenant :
    - un élément central en silicium (10) formant une cavité (20) contenant des réactifs de cellule de vapeur tels qu'un métal alcalin ou un azoture de métal alcalin, un ou des gaz tampons, et/ou un ou des revêtements anti-relaxation,
    - des premier (30) et deuxième (40) bouchons de verre scellant la cavité (20), et
    - un solénoïde (50) agencé pour fournir un champ magnétique homogène à ladite cellule de vapeur (1), caractérisée en ce que
    le solénoïde (50) est bobiné directement sur l'élément central en silicium (10), qui forme le noyau du solénoïde (50) ;
    les premier (30) et deuxième (40) bouchons de verre définissent des moyens de retenue pour maintenir le solénoïde (50) bobiné sur l'élément central en silicium (10) .
  2. Cellule de vapeur micro-usinée (1) selon la revendication 1, caractérisée en ce que les premier (30) et deuxième (40) bouchons de verre dépassent de l'élément central en silicium (10).
  3. Cellule de vapeur micro-usinée (1) selon l'une quelconque des revendications 1 et 2, caractérisée en ce que l'élément central en silicium (10) présente une surface externe (25) ayant une forme polygonale régulière.
  4. Cellule de vapeur micro-usinée (1) selon la revendication 3, caractérisée en ce que la surface externe de forme polygonale régulière (25) de l'élément central en silicium (10) est un octogone, un dodécagone, un hexadécagone, et toutes les formes polygonales régulières ayant un nombre de (n*4) segments, où n est un entier égal ou supérieur à 2.
  5. Cellule de vapeur micro-usinée (1) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le volume de la cellule de vapeur est inférieur à 100 mm3.
  6. Procédé de fabrication de la cellule de vapeur micro-usinée (1) selon l'une quelconque des revendications précédentes et comprenant les étapes suivantes :
    - obtention d'une tranche de silicium,
    - gravure d'un premier motif de trou (11) et d'un deuxième motif de trou (12) à travers ladite tranche de silicium pour former des trous constituant des cavités (20),
    - liaison anodique d'une première tranche de verre sur le fond de la tranche de silicium gravée pour former un premier bouchon (30),
    - remplissage des trous avec des réactifs de cellule de vapeur tels qu'un métal alcalin ou un azoture de métal alcalin, un ou des gaz tampons, et/ou un ou des revêtements anti-relaxation,
    - liaison anodique d'une deuxième tranche de verre sur le dessus de la tranche de silicium gravée pour former un deuxième bouchon (40), un empilement de tranches assemblées étant obtenu,
    - découpe dudit empilement de tranches assemblées le long de lignes (A et B) définies par la forme du deuxième motif de trou (12), et
    - bobinage d'un solénoïde (50) directement sur l'élément central en silicium (10) entre le premier bouchon et le deuxième bouchon définissant des moyens de retenue pour maintenir le solénoïde (50) bobiné sur l'élément central en silicium (10).
  7. Procédé selon la revendication 6, caractérisé en ce que le premier motif de trou (11) et le deuxième motif de trou (12) sont agencés en colonnes et rangées régulières à travers la tranche de silicium.
  8. Procédé selon l'une quelconque des revendications 6 et 7, caractérisé en ce que la forme du deuxième motif de trou (12) est une étoile à quatre sommets.
  9. Procédé selon la revendication 8, caractérisé en ce que les étoiles à quatre sommets sont formées par (m*4) segments, où m est un entier égal ou supérieur à 1 et dépend de la surface externe de forme polygonale régulière souhaitée (25) de l'élément central en silicium (10) .
  10. Procédé selon l'une quelconque des revendications 8 et 9, caractérisé en ce que le procédé de découpe suit deux lignes perpendiculaires (A et B) qui se coupent au centre du deuxième motif de trou (12), chaque ligne reliant des sommets opposés de l'étoile.
EP13191631.4A 2012-11-05 2013-11-05 Cellule de vapeur micro-usinée Active EP2738627B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261722468P 2012-11-05 2012-11-05

Publications (3)

Publication Number Publication Date
EP2738627A2 EP2738627A2 (fr) 2014-06-04
EP2738627A3 EP2738627A3 (fr) 2015-02-18
EP2738627B1 true EP2738627B1 (fr) 2021-05-12

Family

ID=49546292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13191631.4A Active EP2738627B1 (fr) 2012-11-05 2013-11-05 Cellule de vapeur micro-usinée

Country Status (1)

Country Link
EP (1) EP2738627B1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6957187B2 (ja) * 2017-04-18 2021-11-02 浜松ホトニクス株式会社 チップの製造方法、及び、シリコンチップ
US10976386B2 (en) 2018-07-17 2021-04-13 Hi Llc Magnetic field measurement system and method of using variable dynamic range optical magnetometers
WO2020036666A1 (fr) 2018-08-17 2020-02-20 Hi Llc Magnétomètre à pompage optique
WO2020040882A1 (fr) 2018-08-20 2020-02-27 Hi Llc Composants de mise en forme de champ magnétique pour systèmes de mesure de champ magnétique et procédés de fabrication et d'utilisation
US10627460B2 (en) 2018-08-28 2020-04-21 Hi Llc Systems and methods including multi-mode operation of optically pumped magnetometer(s)
US11237225B2 (en) 2018-09-18 2022-02-01 Hi Llc Dynamic magnetic shielding and beamforming using ferrofluid for compact Magnetoencephalography (MEG)
US11370941B2 (en) 2018-10-19 2022-06-28 Hi Llc Methods and systems using molecular glue for covalent bonding of solid substrates
US11307268B2 (en) 2018-12-18 2022-04-19 Hi Llc Covalently-bound anti-relaxation surface coatings and application in magnetometers
US11294008B2 (en) 2019-01-25 2022-04-05 Hi Llc Magnetic field measurement system with amplitude-selective magnetic shield
CA3129530A1 (fr) 2019-02-12 2020-08-20 Hi Llc Filtres a boucle de retroaction neurale pour systemes et procedes de magnetoencephalographie (meg) a plage dynamique amelioree
EP3948317A1 (fr) 2019-03-29 2022-02-09 Hi LLC Réseaux de magnétomètres intégrés pour systèmes et procédés de détection de magnétoencéphalographie (meg)
US11269027B2 (en) 2019-04-23 2022-03-08 Hi Llc Compact optically pumped magnetometers with pump and probe configuration and systems and methods
US11293999B2 (en) 2019-05-03 2022-04-05 Hi Llc Compensation magnetic field generator for a magnetic field measurement system
US11839474B2 (en) 2019-05-31 2023-12-12 Hi Llc Magnetoencephalography (MEG) phantoms for simulating neural activity
US11131729B2 (en) 2019-06-21 2021-09-28 Hi Llc Systems and methods with angled input beams for an optically pumped magnetometer
US11415641B2 (en) 2019-07-12 2022-08-16 Hi Llc Detachable arrangement for on-scalp magnetoencephalography (MEG) calibration
US10996293B2 (en) 2019-08-06 2021-05-04 Hi Llc Systems and methods having an optical magnetometer array with beam splitters
WO2021045953A1 (fr) 2019-09-03 2021-03-11 Hi Llc Procédés et systèmes pour la remise à zéro de champ rapide pour la magnétoencéphalographie (meg)
US11474129B2 (en) 2019-11-08 2022-10-18 Hi Llc Methods and systems for homogenous optically-pumped vapor cell array assembly from discrete vapor cells
CN111024123B (zh) * 2019-12-18 2022-01-21 北京航空航天大学 一种碱金属气室内多层ots涂层制作方法
US11980466B2 (en) 2020-02-12 2024-05-14 Hi Llc Nested and parallel feedback control loops for ultra-fine measurements of magnetic fields from the brain using a neural detection system
US11872042B2 (en) 2020-02-12 2024-01-16 Hi Llc Self-calibration of flux gate offset and gain drift to improve measurement accuracy of magnetic fields from the brain using a wearable neural detection system
US11801003B2 (en) 2020-02-12 2023-10-31 Hi Llc Estimating the magnetic field at distances from direct measurements to enable fine sensors to measure the magnetic field from the brain using a neural detection system
US11604236B2 (en) 2020-02-12 2023-03-14 Hi Llc Optimal methods to feedback control and estimate magnetic fields to enable a neural detection system to measure magnetic fields from the brain
US11977134B2 (en) 2020-02-24 2024-05-07 Hi Llc Mitigation of an effect of capacitively coupled current while driving a sensor component over an unshielded twisted pair wire configuration
US11428756B2 (en) 2020-05-28 2022-08-30 Hi Llc Magnetic field measurement or recording systems with validation using optical tracking data
WO2021242682A1 (fr) 2020-05-28 2021-12-02 Hi Llc Systèmes et procédés d'enregistrement de champs biomagnétiques du cœur humain
WO2021242680A1 (fr) 2020-05-28 2021-12-02 Hi Llc Systèmes et procédés d'enregistrement de l'activité neuronale
US11766217B2 (en) 2020-05-28 2023-09-26 Hi Llc Systems and methods for multimodal pose and motion tracking for magnetic field measurement or recording systems
US11604237B2 (en) 2021-01-08 2023-03-14 Hi Llc Devices, systems, and methods with optical pumping magnetometers for three-axis magnetic field sensing
US11803018B2 (en) 2021-01-12 2023-10-31 Hi Llc Devices, systems, and methods with a piezoelectric-driven light intensity modulator
US12007454B2 (en) 2021-03-11 2024-06-11 Hi Llc Devices, systems, and methods for suppressing optical noise in optically pumped magnetometers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774529A (zh) * 2010-01-26 2010-07-14 北京航空航天大学 一种mems原子腔芯片及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265945B1 (en) * 1999-10-25 2001-07-24 Kernco, Inc. Atomic frequency standard based upon coherent population trapping
US20050007118A1 (en) * 2003-04-09 2005-01-13 John Kitching Micromachined alkali-atom vapor cells and method of fabrication
US20060022761A1 (en) * 2004-07-16 2006-02-02 Abeles Joseph H Chip-scale atomic clock (CSAC) and method for making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101774529A (zh) * 2010-01-26 2010-07-14 北京航空航天大学 一种mems原子腔芯片及其制备方法

Also Published As

Publication number Publication date
EP2738627A2 (fr) 2014-06-04
EP2738627A3 (fr) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2738627B1 (fr) Cellule de vapeur micro-usinée
US9461659B2 (en) Micro-machined vapor cell
Kitching Chip-scale atomic devices
Pétremand et al. Microfabricated rubidium vapour cell with a thick glass core for small-scale atomic clock applications
US10024929B2 (en) Vapor cell structure having cavities connected by channels for micro-fabricated atomic clocks, magnetometers, and other devices
US10527422B2 (en) Micro three-dimensional shell resonator gyroscope
Xia et al. The development of micromachined gyroscope structure and circuitry technology
CN104737246A (zh) 由穿过衬底的通孔提供的电感器
Eklund et al. Glass-blown spherical microcells for chip-scale atomic devices
JP6515091B2 (ja) ゲッター層を有するmemsデバイス
US20140247269A1 (en) High density, low loss 3-d through-glass inductor with magnetic core
EP3236304B1 (fr) Dispositif de miroir de balayage et son procédé de fabrication
US20160299335A1 (en) Micromirror arrangement
US8950552B2 (en) Mainspring comprising supplementary energy accumulation curves
McGilligan et al. Micro-fabricated components for cold atom sensors
CN105973217A (zh) 一种微型核磁共振陀螺仪气室
CN109859936B (zh) 具有轻量级构造的电感器装置
WO2015019471A1 (fr) Dispositif de mesure de champ magnétique
US8981874B2 (en) Resonator device and method of optimizing a Q-factor
Hasegawa et al. Effects of getters on hermetically sealed micromachined cesium–neon cells for atomic clocks
US8358881B2 (en) High-Q resonators assembly
CN107121718B (zh) 基于三维折叠超材料的圆偏振器及其制造方法
US20100220395A1 (en) Fabrication process of a microfabricated blazed grating
EP3843426A1 (fr) Dispositif de production sonore
GB2587331A (en) Single photon sources

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04F 5/14 20060101AFI20140922BHEP

Ipc: H03L 7/26 20060101ALI20140922BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04F 5/14 20060101AFI20150109BHEP

Ipc: H03L 7/26 20060101ALI20150109BHEP

R17P Request for examination filed (corrected)

Effective date: 20150703

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200320

RIC1 Information provided on ipc code assigned before grant

Ipc: G04F 5/14 20060101AFI20201023BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OVERSTOLZ, THOMAS

Inventor name: HAESLER, JACQUES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 602013077432

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RIN2 Information on inventor provided after grant (corrected)

Inventor name: HAESLER, JACQUES

Inventor name: OVERSTOLZ, THOMAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013077432

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1392584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1392584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210512

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210913

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013077432

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211105

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 11

Ref country code: DE

Payment date: 20231120

Year of fee payment: 11

Ref country code: CH

Payment date: 20231201

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210512