EP2737543A2 - Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque - Google Patents

Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque

Info

Publication number
EP2737543A2
EP2737543A2 EP12740153.7A EP12740153A EP2737543A2 EP 2737543 A2 EP2737543 A2 EP 2737543A2 EP 12740153 A EP12740153 A EP 12740153A EP 2737543 A2 EP2737543 A2 EP 2737543A2
Authority
EP
European Patent Office
Prior art keywords
dielectric layer
substrate
layer
solar cell
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12740153.7A
Other languages
German (de)
English (en)
Inventor
Jens Dirk MOSCHNER
Yvonne GASSENBAUER
Agata Lachowicz
Markus Fiedler
Gabriele Blendin
Katharina Dressler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecoran GmbH
Original Assignee
Schott Solar AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Solar AG filed Critical Schott Solar AG
Publication of EP2737543A2 publication Critical patent/EP2737543A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a solar cell, comprising a silicon substrate with the radiation-facing front, which is textured and has an n-doped region, a back having a p-doped region, along the back extending first dielectric layer, a substrate along facing away Side of the first dielectric layer extending second dielectric layer consisting of or containing a material selected from the group consisting of silicon nitride, silicon oxide, silicon oxynitride and a side facing away from the substrate side of the second dielectric layer extending metal layer.
  • WO 2009/071561 A discloses a MWT (Metal Wrap-Through) PERC (Passivated Emitter Rear Cell), in which a first layer of an oxide such as aluminum oxide is applied to the rear side and a SiNx: H layer as the second layer.
  • MWT Metal Wrap-Through
  • PERC Passivated Emitter Rear Cell
  • DE 10 2010 017 155 A provides at least one dielectric layer on the back side of the substrate of the solar cell, which consists of aluminum oxide, aluminum nitride or aluminum oxynitride and a further element.
  • EP 1489667 A2 and EP 1763086 AI one obtains knowledge about the possibility of increasing the time until the recombination of the free charge carriers and thus the recombination rate and thus again the efficiency, in the side facing away from the light, a dielectric layer between the silicon substrate and the metallization is applied.
  • EP 1763086 A1 describes the use of a dielectric layer system consisting of Si0 2 and an SiN layer deposited thereon for electrical passivation of the solar cell rear side.
  • EP 1489667 A2 uses a compound comprising Al 2 O 3 and SiO 2 for the dielectric passivation of the solar cell backside.
  • DE 3815 512 A 1 discloses a solar cell comprising a doped semiconductor body containing an n + p junction, which is covered over its entire surface with a contact layer on the rear side. On the back of the semiconductor body, an oxide layer is additionally applied over the entire surface.
  • the concentration of a charge carrier type on the surface can also be greatly reduced due to their field effect. This also suppresses recombination (field effect passivation).
  • various dielectrics in contact with silicon form a surface charge, particularly silicon oxide (weak positive), silicon nitride (positive), and aluminum oxide (negative). Depending on the chosen deposition process, this charge may be formed after an annealing step.
  • the wafer surface In order to be able to passivate the surface, it is first necessary to remove the surface damage resulting from the production process of the wafer.
  • the wafer surface can be etched in an acidic or alkaline solution.
  • the etching solution can be adjusted to be polishing or roughening.
  • a particularly smoothly etched surface offers the advantage of a lower recombination, rough surfaces, however, prove to be advantageous for the solar cell front side, since the reflection is reduced.
  • the wafer backside can be provided with a protective layer before doping.
  • a layer is removed from the wafer backside, the thickness of which is slightly larger than the penetration depth of the dopant, ie typically between 0.5 and a few ⁇ .
  • A10 x is a good alternative, but it can not be economically deposited in layer thicknesses that would ensure a sufficient temperature stability. Due to the difficulties described, combinations of these materials appear to be very advantageous, often using SiO x or A10 x as the first layer and SiO x or SiN as the second layer.
  • WO 2006/097303 A1 describes that a sufficient quality of the surface passivation is achieved only when using very thick layers; Further, the formation of contacts by locally introducing holes into the layers and applying a conductive material to the back surface will be described. Only the front side of the wafer is textured.
  • DE 100 46 170 A describes a method for contact formation between the back metal layer and silicon, after the application of the metal layer and, if necessary, sintering with metal paste, wherein the designated contact region is locally e.g. is heated by laser radiation, so that the metal penetrates the dielectric layer and connects to the silicon.
  • the parasitic contacts are formed on sintering of a layer of metal on the back of the cell deposited on the passivi.
  • the avoidance of these loss mechanisms takes place according to the classical teaching by the following measures:
  • Polishing or blank etching the wafer backside by subjecting the wafer to a one-sided etch after a texture step or by masking the back side after a two-sided smooth etch and texturing only the front side,
  • the opening of the layer for forming local contacts can be done by the following techniques:
  • the present invention has the object, a method for producing a solar cell and a solar cell in such a way that the solar cells with consistently high efficiency can be reproducibly made with fewer process steps.
  • the back side of the substrate has a gloss value at 60 ° irradiation angle less than 80 GU (gloss units), in particular between 2 GU and 80 GU, preferably in the range between 20 GU and 80 GU and that the first dielectric layer contains fixed negative charges.
  • 80 GU gloss units
  • a combination of bilateral (substantially) symmetrical texture is provided (characteristic: roughness on the back remains) with deposition of the following layer sequence: ⁇ therm. Si0 2 (optional) ⁇ , Al 2 0 3 , SiN x or SiO x .
  • AlO does not avoid parasitic contact (unopened cells).
  • AlO improves rough surface efficiency compared to SiO x .
  • A10 x must be designed in such a way that no "blistering" occurs in combination with the subsequent processing.
  • the process is carried out in such a way that substantially no increased recombination occurs despite the increased surface area.
  • Roughness reducing etching of the entire back surface occurs exclusively after diffusion, regardless of whether the diffusion is performed on one or both sides.
  • the removal is as high as necessary to remove the diffused layer, so typically greater than 0.5 ⁇ , but less than, for example, 5 ⁇ . Due to the contained negative charges, the losses are minimized by parasitic contacts.
  • the layer structure also helps ensure that even on a rough surface as possible no parasitic contacts are formed.
  • Preferred process sequences are the following, where appropriate, process steps can be omitted, replaced or changed in order.
  • step D preferably removal of the phosphorus glass before or after step E.
  • a dielectric layer preferably silicon nitride
  • the first dielectric layer consists of a material or contains one of the group of aluminum oxide, doped silicon oxide.
  • the invention provides that the first dielectric layer has a layer thickness D 1 with 5 nm ⁇ Dl ⁇ 100 nm.
  • the second dielectric layer should preferably have a layer thickness D2 with 40 nm ⁇ D2 ⁇ 400 nm.
  • the invention proposes that between the first dielectric layer and the substrate extends a silicon oxide or silicon oxide containing layer having a thickness D3 preferably 1 nm ⁇ D3 ⁇ 10 nm.
  • the invention is in particular characterized by a method for producing a solar cell, comprising the method steps
  • a second dielectric layer of a material or a material comprising the group of silicon nitride, silicon oxide, silicon oxynitride along the first dielectric layer Depositing a metal layer along the second dielectric layer.
  • the negatively charged layer is A10 x
  • ALD Atomic Laser Deposition
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • Substrate temperature at SiN deposition preferably> 320 ° C.
  • the rear side of the substrate is textured.
  • a silicon oxide or silicon oxide containing layer having a thickness D3 of preferably 1 nm ⁇ D3 ⁇ 10 nm. In this layer thickness region, the formation of the negative charges in the first dielectric layer does not become with special needs.
  • the layer having the thickness D3 may be e.g. be generated by thermal oxidation.
  • the single FIGURE shows an embodiment of a solar cell whose rear side RS is passivated by means of an at least double-layered dielectric layer 23, 24 in such a way that parasitic contact losses are substantially avoided.
  • This is achieved by the combination of bilateral (substantially) symmetrical texture T, wherein the roughness is retained on the back RS and with deposition of the following layer sequence: ⁇ therm. Si0 2 (optional) ⁇ , Al 2 O 3, SiN x or SiO x , viewed from the back RS.
  • the first dielectric layer 23, which contains stationary negative charges after deposition, is first applied to the rear side RS after optionally depositing a silicon oxide layer having a thickness of preferably between 1 m and 10 nm.
  • a fluorine doped silicon oxide layer is applied to the second dielectric layer 24, which may be silicon nitride, silicon oxide or silicon oxynitride.
  • a backside metal layer 25, in particular an aluminum layer, is then applied to the second dielectric layer 24 and contacted with the silicon substrate 21 at desired locations through the first and second dielectric layers 23, 24.
  • a front side contact 27 is applied in the usual way.
  • the rear side RS is not smoothly etched, but rather can be termed textured, since during etching of the front or top side OS, which faces the incident radiation, the rear side RS is also etched.
  • the ⁇ -layer 23 is designed so that no "blistering" occurs in combination with the subsequent processing.
  • the process control is carried out in such a way that substantially no increased recombination occurs despite the increased surface area of the rear side RS.
  • Roughness-reducing etching of the entire backside surface occurs exclusively after the diffusion of the dopant to form a pn junction in the silicon substrate 21, regardless of whether the diffusion is performed on one or both sides.
  • the removal is as high as necessary to remove the layer formed by diffusion of the dopant layer, so typically greater than 0.5 ⁇ , but less than. 5 ⁇ . Due to the contained negative charges in the first dielectric layer 23, the losses due to parasitic contacts are minimized.
  • the layer structure also helps ensure that even on a rough surface as possible no parasitic contacts are formed.
  • the sole FIGURE shows a solar cell produced by the method previously described as method II., which has a non-brightly etched reverse side RS.
  • the solar cell has a silicon wafer 21 with p-doping, in which a multi- or monocrystalline formation can be present.
  • the surfaces, ie the front side OS and back RS are etched in order to remove sawing damage or to form a texture T.
  • An otherwise performed according to the prior art separate Glanzlegien the back RS omitted.
  • an n-doping substance such as phosphorus is diffused (layer 22).
  • a silicon oxide layer may be previously applied directly to the back RS, with a thickness between 1 nm and 10 nm being preferred.
  • a second dielectric layer 24 is then deposited from a material such as silicon nitride, silicon oxide or silicon oxynitride, wherein the thickness is preferably between 40 nm and 400 nm.
  • the second dielectric layer 24 may also be referred to as a capping layer.
  • a metal layer, in particular an aluminum layer 25 is applied to the free outer side of the second dielectric layer 24. This can be done by vapor deposition or screen printing. Then, a preferably punctiform contacting takes place between the metal layer 25 and the substrate 21.
  • local metal-semiconductor contacts 26 can be produced by local heating of the backside metal by means of laser radiation such that the metal penetrates the dielectric layers 23, 24 and connects to the silicon.
  • the front side OS has a front side contact 27 in the usual way.
  • the inventive method allows the production of an improved Si solar cell with as few manufacturing steps, in particular in addition to the standard process (1 diffusion step, screen printing contacts).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une cellule photovoltaïque et une cellule photovoltaïque ainsi fabriquée. La cellule photovoltaïque comprend un substrat en silicium avec une face avant dirigée vers le rayonnement et une face arrière, une première couche diélectrique s'étendant le long de la face arrière, une deuxième couche diélectrique s'étendant le long de la face opposée au substrat de la première couche diélectrique et constituée d'un matériau choisi dans le groupe constitué par le nitrure de silicium, l'oxyde de silicium et l'oxynitrure de silicium, ainsi qu'une couche métallique s'étendant le long de la face opposée au substrat de la deuxième couche diélectrique. L'objet de la présente invention est de fabriquer une cellule photovoltaïque de manière reproductible avec un rendement particulièrement élevé et un petit nombre d'étapes de procédé. A cet effet, la face arrière du substrat présente une brillance inférieure à 80 UB sous un angle d'incidence de 60° et la première couche diélectrique contient des charges négatives immobiles.
EP12740153.7A 2011-07-29 2012-07-26 Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque Withdrawn EP2737543A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011052310 2011-07-29
DE201210102745 DE102012102745A1 (de) 2011-07-29 2012-03-29 Verfahren zur Herstellung einer Solarzelle sowie Solarzelle
PCT/EP2012/064715 WO2013017526A2 (fr) 2011-07-29 2012-07-26 Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque

Publications (1)

Publication Number Publication Date
EP2737543A2 true EP2737543A2 (fr) 2014-06-04

Family

ID=47503223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12740153.7A Withdrawn EP2737543A2 (fr) 2011-07-29 2012-07-26 Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque

Country Status (5)

Country Link
EP (1) EP2737543A2 (fr)
CN (1) CN103718311A (fr)
DE (1) DE102012102745A1 (fr)
TW (1) TW201312779A (fr)
WO (1) WO2013017526A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492400B (zh) * 2013-02-21 2015-07-11 茂迪股份有限公司 太陽能電池及其製造方法與太陽能電池模組
CN104241410B (zh) * 2014-09-24 2017-07-14 中国科学院宁波材料技术与工程研究所 复合硅基材料及其制法和应用
US9559245B2 (en) * 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
TWI539613B (zh) * 2015-07-16 2016-06-21 有成精密股份有限公司 高功率太陽能電池模組
CN110120431A (zh) * 2019-05-28 2019-08-13 中国科学院物理研究所 具有v型槽绒面的硅片及其应用
DE102019114498A1 (de) * 2019-05-29 2020-12-03 Hanwha Q Cells Gmbh Wafer-Solarzelle, Solarmodul und Verfahren zur Herstellung der Wafer-Solarzelle
CN110289333B (zh) * 2019-07-10 2022-02-08 江苏隆基乐叶光伏科技有限公司 一种太阳电池、生产方法及光伏组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815512C2 (de) 1988-05-06 1994-07-28 Deutsche Aerospace Solarzelle und Verfahren zu ihrer Herstellung
US6600557B1 (en) * 1999-05-21 2003-07-29 Memc Electronic Materials, Inc. Method for the detection of processing-induced defects in a silicon wafer
DE10046170A1 (de) 2000-09-19 2002-04-04 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Halbleiter-Metallkontaktes durch eine dielektrische Schicht
US7659475B2 (en) 2003-06-20 2010-02-09 Imec Method for backside surface passivation of solar cells and solar cells with such passivation
EP1763086A1 (fr) 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Cellule solaire avec une couche épaisse de passivation d'oxyde de silicium et de nitrure de silicium et son procédé de fabrication
EP2068369A1 (fr) * 2007-12-03 2009-06-10 Interuniversitair Microelektronica Centrum (IMEC) Cellules photovoltaïques ayant un circuit métallique et une passivation améliorée
TW200929575A (en) * 2007-12-28 2009-07-01 Ind Tech Res Inst A passivation layer structure of the solar cell and the method of the fabricating
US8338220B2 (en) * 2009-02-06 2012-12-25 Applied Materials, Inc. Negatively charged passivation layer in a photovoltaic cell
US20110132444A1 (en) * 2010-01-08 2011-06-09 Meier Daniel L Solar cell including sputtered reflective layer and method of manufacture thereof
DE102010017155B4 (de) * 2010-05-31 2012-01-26 Q-Cells Se Solarzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013017526A2 *

Also Published As

Publication number Publication date
CN103718311A (zh) 2014-04-09
TW201312779A (zh) 2013-03-16
WO2013017526A2 (fr) 2013-02-07
WO2013017526A3 (fr) 2013-11-07
DE102012102745A1 (de) 2013-01-31

Similar Documents

Publication Publication Date Title
EP0813753B1 (fr) Cellule solaire avec champ electrique arriere et procede de fabrication de ladite cellule
EP2583315B1 (fr) Procédé de fabrication d'une cellule solaire photovoltaïque à émetteur sélectif
EP0742959B1 (fr) Méthode de fabrication d'une cellule solaire et cellule solaire ainsi produite
EP1977442B1 (fr) Procédé de fabrication d'un composant semi-conducteur avec des zones dopées à des degrés différemment forts
WO2013017526A2 (fr) Procédé de fabrication d'une cellule photovoltaïque et cellule photovoltaïque
DE19741832A1 (de) Verfahren zur Herstellung einer Solarzelle und Solarzelle
EP2135300A2 (fr) Procédé de fabrication d'une cellule solaire et cellule solaire ainsi fabriquée
EP1968123A2 (fr) Procédé destiné à la fabrication de cellules solaires au silicium
DE102009005168A1 (de) Solarzelle und Verfahren zur Herstellung einer Solarzelle aus einem Siliziumsubstrat
EP0630525A1 (fr) Cellule solaire avec metallisation combinee et procede de fabrication de ladite cellule
DE112010000831T5 (de) Rückkontaktierung und Verbindung von zwei Solarzellen
WO2015044122A1 (fr) Procédé de fabrication d'une cellule solaire photovoltaïque comprenant une hétérojonction et une zone dopée par diffusion sur deux surfaces différentes
EP2529405A2 (fr) Procédé de dopage élevé local et de mise en contact d'une structure semi-conductrice qui est une cellule solaire ou une ébauche de cellule solaire
DE102018123397A1 (de) Verfahren zur Herstellung einer photovoltaischen Solarzelle mit einem Heteroübergang und einem eindiffundiertem Emitterbereich
WO2008107156A2 (fr) Procédé de fabrication d'une cellule solaire et cellule solaire ainsi fabriquée
WO2012083944A2 (fr) Procédé pour produire des cellules solaires en silicium présentant une face avant texturée et une surface arrière lisse
EP2823505B1 (fr) Procédé de réalisation d'une zone dopée dans une couche de semi-conducteur
WO2013071925A2 (fr) Procédé de fabrication d'une cellule solaire avec une couche combinée pecvd et cellule solaire avec une couche combinée pecvd
DE102014103303A1 (de) Verfahren zum Herstellen von Solarzellen mit simultan rückgeätzten dotierten Bereichen
WO2009030299A2 (fr) Procédé de fabrication d'une cellule solaire comportant une double couche de diélectrique
EP3050118A1 (fr) Procédé de fabrication d'une cellule solaire
WO2011141139A2 (fr) Procédé de fabrication d'une cellule solaire à contact unilatéral à base d'un substrat semiconducteur de silicium
DE102008028578A1 (de) Siliziumsolarzelle mit passivierter p-Typ-Oberfläche und Verfahren zur Herstellung derselben
DE112015001440T5 (de) Passivierung von lichtempfangenden Oberflächen von Solarzellen
DE102011001946A1 (de) Herstellungsverfahren einer Wafersolarzelle und Wafersolarzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170201