EP2732215A2 - Brennkammer für eine gasturbinenanlage - Google Patents

Brennkammer für eine gasturbinenanlage

Info

Publication number
EP2732215A2
EP2732215A2 EP12748204.0A EP12748204A EP2732215A2 EP 2732215 A2 EP2732215 A2 EP 2732215A2 EP 12748204 A EP12748204 A EP 12748204A EP 2732215 A2 EP2732215 A2 EP 2732215A2
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
resonator
wall
downstream
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12748204.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Sebastian Pfadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2732215A2 publication Critical patent/EP2732215A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • Combustion chamber for a gas turbine system The invention relates to a combustor for a gas turbine plant according to the preamble of claim 1 and an ent ⁇ speaking formed gas turbine plant according to claim. 6
  • Gas turbine plants essentially consist of a compressor, a combustion chamber with burner and an expansion turbine. Intake air is compressed in the compressor before it is mixed with fuel in the combustion chamber, which is arranged downstream of the burner and arranged in the compressor plenum, and this mixture is burned.
  • the expansion turbine connected downstream of the combustion chamber then extracts thermal energy from the combustion exhaust gases produced in the burner and converts them into mechanical energy.
  • a with for drinks ⁇ cycle turbine couplable generator may convert this mechanical power to generate electricity in electrical energy.
  • thermoacoustically induced vibrations deploy.
  • thermoacoustic oscillations in the combustion chamber pose a problem in the design and especially in the operation of gas turbine plants.
  • Helmholtz resonators consisting of at least one resonator tube and one resonator volume are used today for damping purposes.
  • Helmholtz resonators attenuate the amplitude of oscillations with the Helmholtz frequency as a function of the cross-sectional area and length of the resonator tube and of the resonator volume in certain frequency ranges.
  • Helmholtz resonators as damping devices for limiting thermoacoustic oscillations in combustion chambers are known, for example, from EP 1 605 209 A1 or US Pat
  • FIG 1 shows, for example, from US 2007/0125089 AI ⁇ be known array of Helmholtz resonators 20 on a ring of the combustion chamber 10 transverse to the flow direction.
  • the combustion chamber wall 10 is tubular and separates the combustion chamber 1 from the surrounding compressor plenum 2.
  • the openings 22 in the combustion chamber wall 10 between the resonator volume 21 and the combustion chamber 1 form the resonator tubes of the Helmholtz resonators.
  • Each Helmholtz resonator can - as shown in FIG 1 - have a plurality of resonator tubes or even a single Resonatorröhe.
  • comes with it at any entry of the hot combustion gases from the combustion chamber 1 into the Helmholtz resonators 20, additional openings for the supply of barrier air are provided.
  • these are arranged to ⁇ -openings 23 on the resonator tubes 22 opposite wall of the resonator 21st
  • These openings 23 make it possible for compressed air S to flow from the compressor plenum 2 surrounding the combustion chamber into the resonator volume 21 and from there via the resonator tubes 22 into the combustion chamber 1, thereby blocking the penetration of hot combustion gases into the resonator tubes 22.
  • the object of the invention is to provide a combustion chamber admirherstel ⁇ len, which overcomes the disadvantages described above. This object is achieved with the combustion chamber having the features of claim 1.
  • the resonator tubes become increasingly longer, which results in ever better convection cooling of the combustion chamber wall.
  • gas turbine plants can thus have the lowest possible pollutant emissions at maximum efficiency in all load ranges.
  • the invention is not restricted to the fact that the inclination of the resonator tubes takes place exclusively in the flow direction of the combustion exhaust gases. Rather, without further limitation of the present invention, embodiments are conceivable in which the resonator tubes have an inclination relative to the surface normal of the combustion chamber inner wall, which inclination is composed both of an inclination component in the flow direction and an inclination component transverse thereto. So The resonator tubes can be optimally adapted to the local conditions of the internal combustion chamber flow.
  • the inventive concept for injecting sealing air S into the combustion chamber of the combustion chamber 1 of a gas turbine plant will be described below by way of example with reference to a torch based on a tubular combustion chamber in which the damping device 20 is essentially adapted on the outside of the combustion chamber wall 10.
  • the invention is equally suitable for use in burners in which the damping device 20 is fully integrated in the burner chamber wall 10, or in any other embodiment in which a supply of sealing air S via the damping device 20.
  • FIG. 2 shows a partial section of a combustion chamber 1 along the flow direction of the combustion gases G, with egg ⁇ ner purge air, in which, in contrast to the prior art, the sealing air S at an angle greater than zero degrees (here about 45 degrees) relative to the surface normal N the
  • the damping properties of the Helmholtz resonators can differ from those of the Helmholtz resonators with vertical injection known from the prior art by the oblique arrangement of the resonator tubes with otherwise the same resonator volume and kept constant number of resonator tubes, is usually an adaptation of the Dämpfungseigen- create the resonator parameters required. This can e.g. by changing the number of resonator tubes 22 'and / or the feed openings 23 and / or their diameter or by changing the resonator volume 21. In the event that an association with several Helmholtz
  • Resonators consisting of resonators with different Helmholtz frequencies and thus different damping characteristics is used, it is advisable to form subsets with Helmholtz resonators of different types. Shown in FIG. 3 is the case that Helmholtz resonators of different types are arranged at different axial positions of the combustion chamber. The variant shown here aims lichst a portion of the seal air S mög ⁇ upstream, that is to inject release towards the zone of heat (resonator type 1) and a portion of the seal air S downstream possible to inject (resonator type 2).
  • the Helmholtz resonators of the type 1 arranged on a first ring around the tubular combustion chamber have resonator tubes 22 '' whose axis A is inclined at an angle in the direction upstream of the surface normal N of the combustion chamber inner wall, and the Helmholtz resonators arranged in a second ring.
  • Resonators of type 2 have resonator tubes 22 'whose axes A are inclined at an angle in direction direction downstream of the surface normal N are inclined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
EP12748204.0A 2011-09-01 2012-08-14 Brennkammer für eine gasturbinenanlage Withdrawn EP2732215A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011081963 2011-09-01
PCT/EP2012/065856 WO2013029984A2 (de) 2011-09-01 2012-08-14 Brennkammer für eine gasturbinenanlage

Publications (1)

Publication Number Publication Date
EP2732215A2 true EP2732215A2 (de) 2014-05-21

Family

ID=46690502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12748204.0A Withdrawn EP2732215A2 (de) 2011-09-01 2012-08-14 Brennkammer für eine gasturbinenanlage

Country Status (4)

Country Link
US (1) US20140345282A1 (zh)
EP (1) EP2732215A2 (zh)
CN (1) CN103765107B (zh)
WO (1) WO2013029984A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9410484B2 (en) * 2013-07-19 2016-08-09 Siemens Aktiengesellschaft Cooling chamber for upstream weld of damping resonator on turbine component
EP2865947B1 (en) * 2013-10-28 2017-08-23 Ansaldo Energia Switzerland AG Damper for gas turbine
US10359194B2 (en) * 2014-08-26 2019-07-23 Siemens Energy, Inc. Film cooling hole arrangement for acoustic resonators in gas turbine engines
JP6623485B2 (ja) * 2014-09-25 2019-12-25 三菱日立パワーシステムズ株式会社 燃焼器、及びこれを備えるガスタービン
EP3048370A1 (en) 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Combustion chamber for a gas turbine engine
JP6815735B2 (ja) * 2016-03-03 2021-01-20 三菱パワー株式会社 音響装置、ガスタービン
JP6797728B2 (ja) 2017-03-24 2020-12-09 三菱パワー株式会社 ガスタービン燃焼器の共鳴吸音装置並びにこれを備えたガスタービン燃焼器及びガスタービン
CN115682033A (zh) * 2021-07-28 2023-02-03 北京航空航天大学 防振燃烧室以及燃烧室防振方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer
US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6530221B1 (en) 2000-09-21 2003-03-11 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
JP3962554B2 (ja) * 2001-04-19 2007-08-22 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
EP1423645B1 (de) * 2001-09-07 2008-10-08 Alstom Technology Ltd Dämpfungsanordnung zur reduzierung von brennkammerpulsationen in einer gasturbinenanlage
EP1605209B1 (de) 2004-06-07 2010-08-04 Siemens Aktiengesellschaft Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
US7219498B2 (en) * 2004-09-10 2007-05-22 Honeywell International, Inc. Waffled impingement effusion method
US7413053B2 (en) * 2006-01-25 2008-08-19 Siemens Power Generation, Inc. Acoustic resonator with impingement cooling tubes
US7628020B2 (en) * 2006-05-26 2009-12-08 Pratt & Whitney Canada Cororation Combustor with improved swirl
US8413443B2 (en) * 2009-12-15 2013-04-09 Siemens Energy, Inc. Flow control through a resonator system of gas turbine combustor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013029984A2 *

Also Published As

Publication number Publication date
CN103765107A (zh) 2014-04-30
WO2013029984A2 (de) 2013-03-07
CN103765107B (zh) 2016-05-04
WO2013029984A3 (de) 2013-12-27
US20140345282A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
EP2732215A2 (de) Brennkammer für eine gasturbinenanlage
EP2732214A1 (de) Brennkammer für eine gasturbinenanlage
DE102005038395B4 (de) Brennkammerkühlung mit geneigten segmentierten Flächen
DE602005001682T2 (de) Helmholtzresonator für eine Brennkammer eines Gasturbinentriebwerks
EP1801504B1 (de) Magervormischbrenner mit einer Zerstäuberlippe
EP1738112B1 (de) Raketentriebwerk mit dämpfung von schwingungen der brennkammer durch resonatoren
DE102014117621A1 (de) Brennstoffinjektor mit Vormisch-Pilotdüse
DE102008037480A1 (de) Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse
DE102007042059A1 (de) Einspritzanordnung für eine Brennkammer
DE112008001448T5 (de) Kraftstoffinjektor mit Helmholtz-Resonatoren für einen Turbinenmotor
WO2014191495A1 (de) Gasturbinen-ringbrennkammer mit tangentialeindüsung als späte mager-einspritzung
WO2009109454A1 (de) Verfahren und brenneranordnung zum erzeugen von heissgas sowie anwendung des verfahrens
DE102008016931A1 (de) System zur Reduktion der Brennkammerdynamik
EP0687860A2 (de) Brennkammer mit Selbstzündung
EP1207350B1 (de) Brennkammer und Verfahren zum Betrieb dieser Brennkammer
CH702556A2 (de) Düse und Verfahren zur Brennstoffzufuhr durch eine mit gegenläufigem Drall arbeitende Düse.
EP1605209B1 (de) Brennkammer mit einer Dämpfungseinrichtung zur Dämpfung von thermoakustischen Schwingungen
DE102011052159A1 (de) Kraftstoffdüse und Kraftstoffdüsenanordnung und damit ausgestatte Gasturbine
EP2161502A1 (de) Vormischbrenner zur Verbrennung eines niederkalorischen sowie hochkalorischen Brennstoffes
EP2808611B1 (de) Injektor zum Einbringen eines Brennstoff-Luft-Gemisches in eine Brennkammer
EP2187125A1 (de) Vorrichtung und Verfahren zur Dämpfung von Verbrennungsschwingungen
EP1767855A1 (de) Brennkammer und Gasturbinenanlage
DE102013112162A1 (de) Mikromischerdüse
EP2295858A1 (de) Stabilisierung der Flamme eines Brenners
DE102019219697A1 (de) Gasturbinenbrennkammer und gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20161028