EP2729735B1 - Method of combustion of gases with fluctuating calorific contents - Google Patents

Method of combustion of gases with fluctuating calorific contents Download PDF

Info

Publication number
EP2729735B1
EP2729735B1 EP12733678.2A EP12733678A EP2729735B1 EP 2729735 B1 EP2729735 B1 EP 2729735B1 EP 12733678 A EP12733678 A EP 12733678A EP 2729735 B1 EP2729735 B1 EP 2729735B1
Authority
EP
European Patent Office
Prior art keywords
combustion
combustion chamber
gas
air
calorific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12733678.2A
Other languages
German (de)
French (fr)
Other versions
EP2729735A1 (en
Inventor
Dimosthenis Trimis
Alexandra LOUKOU
Isabel FRENZEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Bergakademie Freiberg
Original Assignee
Technische Universitaet Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Bergakademie Freiberg filed Critical Technische Universitaet Bergakademie Freiberg
Publication of EP2729735A1 publication Critical patent/EP2729735A1/en
Application granted granted Critical
Publication of EP2729735B1 publication Critical patent/EP2729735B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/103Combustion in two or more stages in separate chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes

Definitions

  • the invention relates to a method for combustion of fuel gases with fluctuating caloric contents, in particular with highly fluctuating caloric contents.
  • the described invention can be used in any system in which both high calorie and low calorie combustible gas are to be incinerated in the same combustion system without additional supply of fuel gas and / or combustion air.
  • the inventive method is suitable for.
  • afterburning in high-temperature fuel cell systems such as SOFC (solid oxide fuel cell).
  • anode gas During operation of a high-temperature fuel cell, anode gas accumulates, which contains essentially CO 2 and H 2 O. In addition, as combustible residues about 3 to 5% H 2 and CO are included. The aforementioned fuel is present in a very low concentration. One speaks of low calorie fuel gas. The anode residual gas leaves an anode compartment at a temperature of about 800 ° C.
  • high-calorie reformate gas leaves the anode space. It consists of a mixture of H 2 and CO. It is flammable and accumulates at different temperatures.
  • DE 43 30 130 C1 is a catalytic two-stage burner for hydrogen and / or hydrocarbon fuel gas is known. Due to the structural design of this burner, an almost complete combustion, in particular of hydrocarbon-containing fuel gases with high efficiency and low emissions is to be achieved.
  • DE 43 22 109 C2 includes a burner for a gas / air mixture, the combustion chamber is filled with a porous material with contiguous cavities, wherein the pore size of the material increases along the combustion chamber from the inlet to the outlet. With this burner, the flame should burn at low temperature and emission free emission. Both burners are not suitable for the combustion of hot fuel gases with strongly changing caloric contents. A method for burning fuel gases with fluctuating caloric contents is out US 2008/0092513 known.
  • the invention has for its object to overcome the disadvantages of the prior art. It should in particular a simple method for combustion of fuel gases with fluctuating caloric contents can be specified.
  • the invention is based on the knowledge to design the burner geometry so that the same burner can be used on the one hand for low-calorie fuel gases as a quasi-one-stage burner and on the other hand for high-calorie fuel gases as a two-stage burner.
  • the mass flow of combustion air is such that a low calorific fuel gas is completely burned, with a temperature in the range of 1000 ° C to 1600 ° C.
  • the remaining combustion air is supplied directly to the second combustion chamber and mixed there with the exhaust gas discharged from the first combustion chamber.
  • the combustion air consists exclusively of the cathode gas of a high-temperature fuel cell.
  • the oxygen content of the air is depleted from 21% to about 12% during operation of the high temperature fuel cell.
  • the cathode gas containing the depleted content of oxygen leaves a cathode space of the high-temperature fuel cell at a temperature of about 800 ° C.
  • the stored in the cathode gas heat energy can thus be made available to the burner. There is no need for additional air supply.
  • Fig. 1 the method for the combustion of high and low calorific fuel gases in two successive combustion chambers 5, 6 is shown.
  • Fig. 2 shows a operated according to this method first inventive burner.
  • the combustion chambers 5, 6 are located in a housing 1.
  • the burner has a fuel gas supply 2 and a combustion air supply 3.
  • the complete combustion takes place in a first combustion chamber 5, wherein the available combustion air using a corresponding flow divider 4 is divided so that only as much air enters the combustion chamber as for low-emission, complete fuel gas conversion is necessary.
  • the exhaust gas of the first stage / combustion chamber is then mixed only with the remaining air in a downstream second combustion chamber 6.
  • an advantageous embodiment of the two-stage burner comprises an ignition 9 in the first combustion chamber 5 for safe ignition of fuel gas and combustion air.
  • the mixture of fuel gas and combustion air is ignited in the first combustion chamber 5.
  • the hot exhaust gas of the first combustion chamber 5 is supplied to the second combustion chamber 6.
  • the exhaust gas of the first combustion chamber 5 still has a certain caloric content and ignites in the second combustion chamber 6 with the remaining combustion air due to the high temperatures by itself. If the ignition 9 instead mounted in the second combustion chamber, could a Ignition in the first combustion chamber can not be guaranteed.
  • the combustion air supply to the first combustion chamber 5 is to be dimensioned so that the combustion temperature in the first combustion chamber 5 is between 1000 ° C and 1600 ° C.
  • the combustion air can be depleted in oxygen, such as the cathode exhaust air of SOFC fuel cells (solid oxide fuel cell). Both the fuel gas and the oxygen-depleted combustion air at temperatures of more than 300 ° C fall on.
  • the fuel gas and combustion air temperature must be taken into account in the design of the combustion air supply to the first combustion chamber 5 in order to achieve the correct combustion temperature range.
  • a further advantageous embodiment includes a device for flame monitoring 10 in the burner.
  • Conventional methods of flame monitoring such as flame ionization detectors and UV detectors, could be used, but due to the hydrogen-containing lean gases as fuel gases would be the signals too weak.
  • the temperatures in the combustion chamber are sometimes higher than the maximum permissible operating temperature of such detectors. Therefore, flame monitoring by monitoring the combustion temperatures is advantageous. Both the temperature level and the temporal temperature gradient can be monitored in order to detect the ignition and a possible extinction of the flame can.
  • the burner operates safely, for example, if a flame can be detected in the first combustion chamber 5, for which reason the flame monitoring in the form of a temperature sensor in this chamber can take place advantageously.
  • the position of the sensor should be chosen so that the heat release can be detected, ie sufficient heat generation through the combustion process must already be ensured at the selected position.
  • the flame of the first combustion chamber also serves as a support flame for the second combustion chamber, insofar as it still has to be converted into fuel.
  • the temperature sensor can also be mounted in the exhaust pipe after both combustion chambers in order to detect differences in the exhaust gas temperature and the temperature level. In this case, the temperature sensor is not exposed to high process temperatures and also easily accessible. This also ensures the safe operation of the burner.
  • the possibilities of positioning a flame monitoring device 10 are in Fig. 2 represented by the reference numerals 10 ', 10 ".
  • a porous medium has a positive effect on the heat and mass transfer in the combustion chamber, whereby a homogenization of the combustion takes place, especially with regard to the combustion temperatures. This promotes the conversion of the species contained in the fuel gas, resulting in a reduction of the pollutant emissions of the burner.
  • the two-stage burner which in Fig. 4 is composed of two cylindrical, concentrically arranged tubes, of which the outer with a diameter of 70 mm, the housing 1 of the burner and the inner with a diameter of 26 mm, the inner, first combustion chamber 5 forms.
  • the gaseous fuel passes in the axial direction from above via the fuel gas supply 2 in the form of a tube having an inner diameter of 21 mm in the inner combustion tube serving as the first combustion chamber 5.
  • the entire oxygen-depleted, hot cathode air of a high-temperature fuel cell is brought into the space of the first combustion chambers 5 and the second combustion chamber 6 through the combustion air supply 3 tangentially mounted in the radial direction in the form of a pipe having an inner diameter of 26 mm.
  • the division of the cathode air flow is introduced by means of twelve holes with a diameter of 3.5 mm, which are placed in two rows superimposed radially in the upper part of the first combustion chamber 5, (combustion air flow divider 4a) and a circular plate with holes 11 to second combustion chamber 6 (flow divider for combustion air 4b) realized.
  • combustion air flow divider 4a combustion air flow divider 4a
  • second combustion chamber 6 flow divider for combustion air 4b
  • the high-calorie reformate gas as fuel gas which is not or only partially implemented in the fuel cell in start and stop mode, there is substoichiometric, partial combustion in the first combustion chamber 5, since the same geometry and available combustion air, the distribution of air remains unchanged.
  • the exhaust gas of the first combustion chamber 5 still has a caloric content and therefore in the second combustion chamber 6, which has a length of 82 mm and as a continuation of the outer burner tube to the exhaust gas discharge 12 tapered with an inner diameter of 45 mm, is fully implemented.
  • the burner can receive both the fuel gas and the combustion air exclusively from the high-temperature fuel cell.
  • the burner needs no additional supply of fuel gas or combustion air.

Description

Die Erfindung betrifft ein Verfahren zur Verbrennung von Brenngasen mit schwankenden kalorischen Gehalten, insbesondere mit stark schwankenden kalorischen Gehalten. Die beschriebene Erfindung kann in jedem System verwendet werden, bei dem sowohl hochkalorisches als auch niederkalorisches Brenngas ohne zusätzliche Zuführung von Brenngas und/oder Verbrennungsluft in demselben Verbrennungssystem verbrannt werden sollen. Das erfindungsgemäße Verfahren eignet sich z. B. zur Nachverbrennung in Hochtemperatur-Brennstoffzellensystemen, wie beispielsweise SOFC (Festoxid-Brennstoffzelle).The invention relates to a method for combustion of fuel gases with fluctuating caloric contents, in particular with highly fluctuating caloric contents. The described invention can be used in any system in which both high calorie and low calorie combustible gas are to be incinerated in the same combustion system without additional supply of fuel gas and / or combustion air. The inventive method is suitable for. As for afterburning in high-temperature fuel cell systems, such as SOFC (solid oxide fuel cell).

Beim Betrieb einer Hochtemperatur-Brennstoffzelle fällt Anodengas an, welches im Wesentlichen CO2 und H2O enthält. Daneben sind als brennbare Reste etwa 3 bis 5% H2 sowie CO enthalten. Der vorgenannte Brennstoff liegt in einer sehr geringen Konzentration vor. Man spricht von niederkalorischem Brenngas. Das Anodenrestgas verlässt einen Anodenraum bei einer Temperatur von etwa 800°C.During operation of a high-temperature fuel cell, anode gas accumulates, which contains essentially CO 2 and H 2 O. In addition, as combustible residues about 3 to 5% H 2 and CO are included. The aforementioned fuel is present in a very low concentration. One speaks of low calorie fuel gas. The anode residual gas leaves an anode compartment at a temperature of about 800 ° C.

Beim Start- oder Stopp-Betrieb einer Hochtemperatur-Brennstoffzelle kommt es vor, dass anstelle des Anodenrestgases hochkalorisches Reformatgas den Anodenraum verlässt. Es besteht aus einer Mischung aus H2 und CO. Es ist brennbar und fällt bei unterschiedlichen Temperaturen an.During start or stop operation of a high-temperature fuel cell, it happens that instead of the anode residual gas, high-calorie reformate gas leaves the anode space. It consists of a mixture of H 2 and CO. It is flammable and accumulates at different temperatures.

Zur Verbrennung des beim Betrieb einer Hochtemperatur-Brennstoffzelle anfallenden Gases werden bisher im Wesentlichen vorgemischte Verbrennungssysteme benutzt, wobei teilweise auch ein poröses Medium zur Verbesserung der Verbrennungsstabilität und zur Senkung der Emissionen in den Brennraum eingebracht wurde. Außerdem wurden Katalysatoren im Brennraum eingesetzt, wobei Brenngas- und Verbrennungsluft nicht bzw. nicht so stark vorgewärmt waren. Die bekannten Lösungen nutzen eine vorgemischte Verbrennung, wobei ein erhöhter Systemintegrations- und Regelungsaufwand resultiert. Außerdem wird in den bereits bekannten Lösungen häufig auf den Gebrauch von Katalysatoren zurückgegriffen, welche vor allem hinsichtlich des Dauerbetriebs solcher Verbrennungssysteme große Nachteile aufgrund von Degradationserscheinungen aufweisen. Weiterhin werden durch den Einsatz von Katalysatoren zusätzliche Kosten verursacht. Die bisherigen Lösungen beschränken sich auf die Verbrennung von Brenngasen mit bestimmten kalorischen Gehalten.For combustion of the resulting during operation of a high-temperature fuel cell gas so far substantially premixed combustion systems are used, sometimes Also, a porous medium was introduced into the combustion chamber to improve combustion stability and reduce emissions. In addition, catalysts were used in the combustion chamber, with fuel gas and combustion air were not or not so much preheated. The known solutions use a premixed combustion, resulting in increased system integration and control effort. In addition, in the already known solutions, recourse is often made to the use of catalysts which, especially with regard to the continuous operation of such combustion systems, have great disadvantages due to degradation phenomena. Furthermore, the use of catalysts causes additional costs. The previous solutions are limited to the combustion of fuel gases with certain caloric contents.

Nach DE 43 30 130 C1 ist ein katalytisch zweistufiger Brenner für Wasserstoff und/oder kohlenwasserstoffhaltiges Brenngas bekannt. Durch die konstruktive Ausgestaltung dieses Brenners soll eine nahezu vollständige Verbrennung insbesondere von kohlenwasserstoffhaltigen Brenngasen bei hohem Wirkungsgrad und geringen Emissionen erreicht werden. DE 43 22 109 C2 beinhaltet einen Brenner für ein Gas-/Luftgemisch, dessen Brennraum mit einem porösen Material mit zusammenhängenden Hohlräumen ausgefüllt ist, wobei die Porengröße des Materials längs des Brennraumes vom Einlass zum Auslass zunimmt. Mit diesem Brenner soll die Flamme bei niedriger Temperatur und schadstoffemissionsfrei brennen. Beide Brenner sind für die Verbrennung von heißen Brenngasen mit stark wechselnden kalorischen Gehalten nicht geeignet. Ein Verfahren zur Verbrennung von Brenngasen mit schwankenden kalorischen Gehalten ist aus US 2008/0092513 bekannt.To DE 43 30 130 C1 is a catalytic two-stage burner for hydrogen and / or hydrocarbon fuel gas is known. Due to the structural design of this burner, an almost complete combustion, in particular of hydrocarbon-containing fuel gases with high efficiency and low emissions is to be achieved. DE 43 22 109 C2 includes a burner for a gas / air mixture, the combustion chamber is filled with a porous material with contiguous cavities, wherein the pore size of the material increases along the combustion chamber from the inlet to the outlet. With this burner, the flame should burn at low temperature and emission free emission. Both burners are not suitable for the combustion of hot fuel gases with strongly changing caloric contents. A method for burning fuel gases with fluctuating caloric contents is out US 2008/0092513 known.

Der Erfindung liegt die Aufgabe zugrunde, die Nachteile nach dem Stand der Technik zu überwinden. Es soll insbesondere ein einfaches Verfahren zur Verbrennung von Brenngasen mit schwankenden kalorischen Gehalten angegeben werden.The invention has for its object to overcome the disadvantages of the prior art. It should in particular a simple method for combustion of fuel gases with fluctuating caloric contents can be specified.

Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 7.This object is solved by the features of claim 1. Advantageous embodiments of the invention will become apparent from the features of claims 2 to 7.

Der Erfindung liegt die Erkenntnis zu Grunde, die Brennergeometrie so zu gestalten, dass derselbe Brenner einerseits für niederkalorische Brenngase als quasi-einstufiger Brenner und andererseits für hochkalorische Brenngase als zweistufiger Brenner verwendet werden kann.The invention is based on the knowledge to design the burner geometry so that the same burner can be used on the one hand for low-calorie fuel gases as a quasi-one-stage burner and on the other hand for high-calorie fuel gases as a two-stage burner.

Beim erfindungsgemäßen Verfahren gelangt unabhängig vom kalorischen Gehalt des Brenngases im Wesentlichen der gleiche Massestrom an Verbrennungsluft in die erste Brennkammer. Der Massestrom an Verbrennungsluft ist so bemessen, dass ein niederkalorisches Brenngas vollständig verbrannt wird, und zwar mit einer Temperatur im Bereich von 1000°C bis 1600°C. Die restliche Verbrennungsluft wird unmittelbar der zweiten Brennkammer zugeführt und dort mit dem aus der ersten Brennkammer abgeführten Abgas gemischt.In the method according to the invention, regardless of the caloric content of the fuel gas, essentially the same mass flow of combustion air reaches the first combustion chamber. The mass flow of combustion air is such that a low calorific fuel gas is completely burned, with a temperature in the range of 1000 ° C to 1600 ° C. The remaining combustion air is supplied directly to the second combustion chamber and mixed there with the exhaust gas discharged from the first combustion chamber.

Auch bei der Zufuhr von hochkalorischem Brenngas wird der ersten Brennstufe lediglich der Massestrom an Verbrennungsluft zugeführt, welcher eine stöchiometrische Verbrennung eines niederkalorischen Brenngases ermöglicht. In diesem Fall wird nur ein Teil des hochkalorischen Brenngases in der ersten Brennkammer verbrannt. Die Temperatur in der ersten Brennkammer übersteigt dabei nicht 1600°C. Der unverbrannte Rest des hochkalorischen Brenngases gelangt in die zweite Brennkammer und wird dort mit der der zweiten Brennkammer zugeführten restlichen Verbrennungsluft verbrannt. Die zweite Brennkammer kann als Diffusionsbrenner ausgestaltet sein. Vorteilhafterweise besteht die Verbrennungsluft ausschließlich aus dem Kathodengas einer Hochtemperatur-Brennstoffzelle. Beim Betrieb einer Hochtemperatur-Brennstoffzelle wird deren Kathode Luft zugeführt. Der Sauerstoffgehalt der Luft wird beim Betrieb der Hochtemperatur-Brennstoffzelle von 21% auf etwa 12% abgereichert. Das den abgereicherten Gehalt an Sauerstoff enthaltende Kathodengas verlässt mit einer Temperatur von etwa 800°C einen Kathodenraum der Hochtemperatur-Brennstoffzelle. Die im Kathodengas gespeicherte Wärmeenergie kann somit dem Brenner zur Verfügung gestellt werden. Es wird keine weitere Luftzufuhr benötigt.Even with the supply of high-calorie fuel gas of the first combustion stage, only the mass flow of combustion air is supplied, which allows a stoichiometric combustion of a low-calorie combustible gas. In this case, only a part of the high-calorie fuel gas is burned in the first combustion chamber. The temperature in the first combustion chamber does not exceed 1600 ° C. The unburned remainder of the high-calorie fuel gas enters the second combustion chamber and is there incinerated with the remaining combustion air supplied to the second combustion chamber. The second combustion chamber may be configured as a diffusion burner. Advantageously, the combustion air consists exclusively of the cathode gas of a high-temperature fuel cell. When operating a high-temperature fuel cell whose cathode air is supplied. The oxygen content of the air is depleted from 21% to about 12% during operation of the high temperature fuel cell. The cathode gas containing the depleted content of oxygen leaves a cathode space of the high-temperature fuel cell at a temperature of about 800 ° C. The stored in the cathode gas heat energy can thus be made available to the burner. There is no need for additional air supply.

Die Erfindung wird nunmehr beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung des erfindungsgemäßen Verfahrens,
Fig. 2
eine schematische Schnittdarstellung eines ersten Brenners,
Fig. 3
eine schematische Schnittdarstellung eines zweiten Brenners, und
Fig. 4
eine Schnittdarstellung eines dritten Brenners.
The invention will now be described by way of example with reference to the drawings. Show it:
Fig. 1
a schematic representation of the method according to the invention,
Fig. 2
a schematic sectional view of a first burner,
Fig. 3
a schematic sectional view of a second burner, and
Fig. 4
a sectional view of a third burner.

In Fig. 1 ist das Verfahren für die Verbrennung von hoch- und niederkalorischen Brenngasen in zwei nacheinander geschalteten Brennkammern 5, 6 dargestellt. Fig. 2 zeigt einen nach diesem Verfahren betriebenen ersten erfindungsgemäßen Brenner. Die Brennkammern 5, 6 befinden sich in einem Gehäuse 1. Außerdem besitzt der Brenner eine Brenngaszuführung 2 und eine Verbrennungsluftzuführung 3. Im Fall des niederkalorischen Brenngases findet die vollständige Verbrennung in einer ersten Brennkammer 5 statt, wobei die zur Verfügung stehende Verbrennungsluft mithilfe eines entsprechenden Strömungsteilers 4 so aufgeteilt wird, dass nur so viel Luft in die Brennkammer gelangt wie zur emissionsarmen, vollständigen Brenngasumsetzung notwendig ist. Das Abgas der ersten Stufe/Brennkammer wird dann lediglich mit der restlichen Luft in einer nachgeschalteten zweiten Brennkammer 6 vermischt.In Fig. 1 the method for the combustion of high and low calorific fuel gases in two successive combustion chambers 5, 6 is shown. Fig. 2 shows a operated according to this method first inventive burner. The combustion chambers 5, 6 are located in a housing 1. In addition, the burner has a fuel gas supply 2 and a combustion air supply 3. In the case of low calorific fuel gas, the complete combustion takes place in a first combustion chamber 5, wherein the available combustion air using a corresponding flow divider 4 is divided so that only as much air enters the combustion chamber as for low-emission, complete fuel gas conversion is necessary. The exhaust gas of the first stage / combustion chamber is then mixed only with the remaining air in a downstream second combustion chamber 6.

Wenn ein hochkalorisches Brenngas im beschriebenen Brenner umgesetzt werden soll, findet in der ersten Brennkammer eine partielle Verbrennung statt, da bei gleicher Geometrie und zur Verfügung stehender Verbrennungsluftmenge die Aufteilung der Luft annähernd gleich bleibt. Das Abgas der ersten Brennkammer, welches noch einen kalorischen Gehalt hat, wird anschließend in der zweiten Brennkammer mit der restlichen Luft vermischt und vollständig umgesetzt.If a high-calorie fuel gas to be implemented in the described burner, partial combustion takes place in the first combustion chamber, since the same geometry and the available amount of combustion air, the distribution of air remains approximately the same. The exhaust gas of the first combustion chamber, which still has a caloric content, is then mixed in the second combustion chamber with the remaining air and completely reacted.

Es besteht dabei zu keinem Zeitpunkt des Brennerbetriebs und unabhängig vom kalorischen Gehalt des Brenngases die Notwendigkeit dem Prozess zusätzliches Brenngas oder/und Verbrennungsluft zuzuführen.There is at no time in the burner operation and regardless of the caloric content of the fuel gas, the need to supply the process additional fuel gas and / or combustion air.

Wie in Fig. 2 gezeigt umfasst eine vorteilhafte Ausführung des zweistufigen Brenners eine Zündung 9 in der ersten Brennkammer 5 zur sicheren Zündung von Brenngas und Verbrennungsluft. Das Gemisch aus Brenngas und Verbrennungsluft wird in der ersten Brennkammer 5 gezündet. Das heiße Abgas der ersten Brennkammer 5 wird der zweiten Brennkammer 6 zugeführt. Im Fall des hochkalorischen Brenngases weist das Abgas der ersten Brennkammer 5 noch einen bestimmten kalorischen Gehalt auf und entzündet sich in der zweiten Brennkammer 6 mit der restlichen Verbrennungsluft aufgrund der hohen Temperaturen von selbst. Wäre die Zündung 9 stattdessen in der zweiten Brennkammer angebracht, könnte ein Zünden in der ersten Brennkammer nicht gewährleistet werden.As in Fig. 2 an advantageous embodiment of the two-stage burner comprises an ignition 9 in the first combustion chamber 5 for safe ignition of fuel gas and combustion air. The mixture of fuel gas and combustion air is ignited in the first combustion chamber 5. The hot exhaust gas of the first combustion chamber 5 is supplied to the second combustion chamber 6. In the case of high-calorie fuel gas, the exhaust gas of the first combustion chamber 5 still has a certain caloric content and ignites in the second combustion chamber 6 with the remaining combustion air due to the high temperatures by itself. If the ignition 9 instead mounted in the second combustion chamber, could a Ignition in the first combustion chamber can not be guaranteed.

Die Verbrennungsluftzufuhr zur ersten Brennkammer 5 ist so zu bemessen, dass die Verbrennungstemperatur in der ersten Brennkammer 5 zwischen 1000°C und 1600 °C liegt. Dabei kann die Verbrennungsluft an Sauerstoff abgereichert sein, wie beispielsweise die Kathodenabluft von SOFC-Brennstoffzellen (Festoxid-Brennstoffzelle). Dabei fallen sowohl das Brenngas als auch die an Sauerstoff abgereicherte Verbrennungsluft bei Temperaturen von mehr als 300°C an. Die Brenngas- und Verbrennungslufttemperatur muss bei der Bemessung der Verbrennungsluftzufuhr zur ersten Brennkammer 5 berücksichtigt werden, um den richtigen Verbrennungstemperaturbereich zu erreichen.The combustion air supply to the first combustion chamber 5 is to be dimensioned so that the combustion temperature in the first combustion chamber 5 is between 1000 ° C and 1600 ° C. In this case, the combustion air can be depleted in oxygen, such as the cathode exhaust air of SOFC fuel cells (solid oxide fuel cell). Both the fuel gas and the oxygen-depleted combustion air at temperatures of more than 300 ° C fall on. The fuel gas and combustion air temperature must be taken into account in the design of the combustion air supply to the first combustion chamber 5 in order to achieve the correct combustion temperature range.

Eine weitere vorteilhafte Ausführung beinhaltet eine Einrichtung zur Flammenüberwachung 10 im Brenner. Übliche Methoden der Flammenüberwachung, wie Flammenionisationsdetektoren und UV-Detektoren, könnten genutzt werden, aber aufgrund der wasserstoffhaltigen Schwachgase als Brenngase wären die Signale zu schwach. Weiterhin sind die Temperaturen im Brennraum teilweise höher als die zulässige maximale Einsatztemperatur solcher Detektoren. Deswegen ist eine Flammenüberwachung durch Überwachung der Verbrennungstemperaturen vorteilhaft. Sowohl das Temperaturniveau also auch der zeitliche Temperaturgradient können überwacht werden, um das Zünden und ein eventuelles Erlöschen der Flamme detektieren zu können. Der Brenner arbeitet beispielsweise sicher, wenn in der ersten Brennkammer 5 eine Flamme detektiert werden kann, weswegen die Flammenüberwachung in Form eines Temperatursensors in dieser Kammer vorteilhaft stattfinden kann. Die Position des Sensors sollte so gewählt werden, dass die Wärmefreisetzung detektiert werden kann, d. h. eine ausreichende Wärmeentwicklung durch den Verbrennungsprozess muss an der gewählten Position bereits gewährleistet sein. Die Flamme der ersten Brennkammer dient ebenfalls als Stützflamme für die zweite Brennkammer, insofern in dieser noch Brennstoff umgesetzt werden muss. Der Temperatursensor kann alternativ auch im Abgasrohr nach beiden Brennkammern angebracht werden, um dort Unterschiede in der Abgastemperatur und das Temperaturniveau zu detektieren. In diesem Fall ist der Temperatursensor nicht zu hohen Prozesstemperaturen ausgesetzt und außerdem leicht zugänglich. Auch so wird der sichere Betrieb des Brenners sichergestellt. Die Möglichkeiten der Positionierung einer Flammenüberwachungseinrichtung 10 sind in Fig. 2 mit den Bezugszeichen 10', 10" dargestellt.A further advantageous embodiment includes a device for flame monitoring 10 in the burner. Conventional methods of flame monitoring, such as flame ionization detectors and UV detectors, could be used, but due to the hydrogen-containing lean gases as fuel gases would be the signals too weak. Furthermore, the temperatures in the combustion chamber are sometimes higher than the maximum permissible operating temperature of such detectors. Therefore, flame monitoring by monitoring the combustion temperatures is advantageous. Both the temperature level and the temporal temperature gradient can be monitored in order to detect the ignition and a possible extinction of the flame can. The burner operates safely, for example, if a flame can be detected in the first combustion chamber 5, for which reason the flame monitoring in the form of a temperature sensor in this chamber can take place advantageously. The position of the sensor should be chosen so that the heat release can be detected, ie sufficient heat generation through the combustion process must already be ensured at the selected position. The flame of the first combustion chamber also serves as a support flame for the second combustion chamber, insofar as it still has to be converted into fuel. Alternatively, the temperature sensor can also be mounted in the exhaust pipe after both combustion chambers in order to detect differences in the exhaust gas temperature and the temperature level. In this case, the temperature sensor is not exposed to high process temperatures and also easily accessible. This also ensures the safe operation of the burner. The possibilities of positioning a flame monitoring device 10 are in Fig. 2 represented by the reference numerals 10 ', 10 ".

Weiterhin besteht die Möglichkeit den zweistufigen Brenner so auszuführen, dass in der ersten und/oder zweiten Brennkammer ein offenporiges hochtemperaturbeständiges Material 7, 8 enthalten ist, in dem die Brenngase teilweise oder vollständig umgesetzt werden, wie Fig. 3 zeigt. Der Einsatz eines porösen Mediums wirkt sich positiv auf den Wärme- und Stofftransport im Brennraum aus, wodurch eine Homogenisierung der Verbrennung, vor allem hinsichtlich der Verbrennungstemperaturen erfolgt. Dadurch wird die Umsetzung der im Brenngas enthaltenen Spezies begünstigt, was zu einer Verringerung der Schadstoffemissionen des Brenners führt.Furthermore, it is possible to carry out the two-stage burner so that in the first and / or second combustion chamber an open-cell high-temperature resistant material 7, 8 is contained, in which the fuel gases are partially or completely implemented, such as Fig. 3 shows. The use of a porous medium has a positive effect on the heat and mass transfer in the combustion chamber, whereby a homogenization of the combustion takes place, especially with regard to the combustion temperatures. This promotes the conversion of the species contained in the fuel gas, resulting in a reduction of the pollutant emissions of the burner.

Die Erfindung soll anhand des nachfolgenden Ausführungsbeispiels erläutert werden:The invention will be explained with reference to the following embodiment:

Der zweistufige Brenner, welcher in Fig. 4 dargestellt ist, besteht aus zwei zylindrischen, konzentrisch angeordneten Rohren, von denen das äußere mit einem Durchmesser von 70 mm das Gehäuse 1 des Brenners und das innere mit einem Durchmesser von 26 mm die innere, erste Brennkammer 5 bildet. Der gasförmige Brennstoff gelangt in axialer Richtung von oben über die Brenngaszuführung 2 in Form eines Rohres mit einem Innendurchmesser von 21 mm in das als erste Brennkammer 5 dienende innere Brennrohr. Die gesamte sauerstoffabgereicherte, heiße Kathodenluft einer Hochtemperaturbrennstoffzelle wird durch die, in radialer Richtung tangential angebrachte Verbrennungsluftzuführung 3 in Form eines Rohres mit einem Innendurchmesser von 26 mm in den Zwischenraum der ersten Brennkammern 5 und der zweiten Brennkammer 6 gebracht. Die Aufteilung des Kathodenluftstroms wird mithilfe von zwölf Löchern mit einem Durchmesser von 3,5 mm, welche in zwei Reihen übereinander versetzt radial in den oberen Teil der ersten Brennkammer 5 eingebracht sind, (Strömungsteiler für Verbrennungsluft 4a) und einer kreisrunden Platte mit Löchern 11 zur zweiten Brennkammer 6 (Strömungsteiler für Verbrennungsluft 4b) realisiert. Wenn die Luft durch den tangentialen Einlass in den Brenner gelangt, passiert ein Teil von ihr direkt diese Löcher und gelangt somit in das innere Brennerrohr, welches die innere Brennkammer 5 und somit die erste Verbrennungsstufe bildet. Um diesen Effekt noch zu verstärken, wird die kreisrunde Platte 11 mit zehn, auf einem Kreisbogen angeordneten Löchern mit einem Durchmesser von 8 mm zwischen dem inneren und dem äußeren Brennerrohr, am Ende des inneren Brennerrohres fixiert. Der Brenner kann aus hochwarmfesten Stahl gebaut und die Brennkammern können mit feuerfestem Material ausgekleidet/beschichtet sein.The two-stage burner, which in Fig. 4 is composed of two cylindrical, concentrically arranged tubes, of which the outer with a diameter of 70 mm, the housing 1 of the burner and the inner with a diameter of 26 mm, the inner, first combustion chamber 5 forms. The gaseous fuel passes in the axial direction from above via the fuel gas supply 2 in the form of a tube having an inner diameter of 21 mm in the inner combustion tube serving as the first combustion chamber 5. The entire oxygen-depleted, hot cathode air of a high-temperature fuel cell is brought into the space of the first combustion chambers 5 and the second combustion chamber 6 through the combustion air supply 3 tangentially mounted in the radial direction in the form of a pipe having an inner diameter of 26 mm. The division of the cathode air flow is introduced by means of twelve holes with a diameter of 3.5 mm, which are placed in two rows superimposed radially in the upper part of the first combustion chamber 5, (combustion air flow divider 4a) and a circular plate with holes 11 to second combustion chamber 6 (flow divider for combustion air 4b) realized. When the air passes through the tangential inlet into the burner, a part of it passes directly through these holes and thus enters the inner burner tube containing the inner combustion chamber 5 and thus forms the first combustion stage. In order to further enhance this effect, the circular plate 11 is fixed with ten 8 mm diameter holes arranged on a circular arc between the inner and outer burner tubes, at the end of the inner burner tube. The burner can be made of heat resisting steel and the combustion chambers can be lined / coated with refractory material.

Im Fall des niederkalorischen Anodenrestgases der Hochtemperaturbrennstoffzelle als Brenngas findet die vollständige Verbrennung in der ersten Brennkammer 5 statt, welche 114 mm lang ist. Der gesamte Kathodenluftstrom wird mit dem beschriebenen Strömungsteiler für die Verbrennungsluft 4a, 4b so aufgeteilt, dass genau so viel Verbrennungsluft in die innere, erste Brennkammer 5 gelangt wie zur vollständigen, emissionsarmen Verbrennung des niederkalorischen Anodenrestgases notwendig ist. Das Abgas der ersten Verbrennungsstufe wird dann lediglich mit der restlichen Kathodenluft in einer nachgeschalteten zweiten Brennkammer 6 vermischt, bevor es den Brenner in axialer Richtung über die Abgasabführung 12 verlässt.In the case of the low calorie anode remanent gas of the high temperature fuel cell as fuel gas, complete combustion takes place in the first combustion chamber 5, which is 114 mm long. The entire cathode air flow is divided with the described flow divider for the combustion air 4a, 4b so that exactly as much combustion air enters the inner, first combustion chamber 5 as is necessary for the complete, low-emission combustion of the low-calorie anode residual gas. The exhaust gas of the first combustion stage is then mixed only with the remaining cathode air in a downstream second combustion chamber 6, before it leaves the burner in the axial direction via the exhaust gas outlet 12.

Im Fall des hochkalorischen Reformatgases als Brenngas, welches in der Brennstoffzelle im Start- und Stoppbetrieb nicht oder nur unvollständig umgesetzt wird, kommt es zur unterstöchiometrischen, partiellen Verbrennung in der ersten Brennkammer 5, da bei gleicher Geometrie und zur Verfügung stehender Verbrennungsluft die Aufteilung der Luft unverändert bleibt. Das bedeutet, dass das Abgas der ersten Brennkammer 5 immer noch einen kalorischen Gehalt besitzt und deshalb in der zweiten Brennkammer 6, welche eine Länge von 82 mm hat und als Weiterführung des äußeren Brennerrohres bis zur Abgasabführung 12 mit einem Innendurchmesser von 45 mm konisch zuläuft, vollständig umgesetzt wird.In the case of the high-calorie reformate gas as fuel gas, which is not or only partially implemented in the fuel cell in start and stop mode, there is substoichiometric, partial combustion in the first combustion chamber 5, since the same geometry and available combustion air, the distribution of air remains unchanged. This means that the exhaust gas of the first combustion chamber 5 still has a caloric content and therefore in the second combustion chamber 6, which has a length of 82 mm and as a continuation of the outer burner tube to the exhaust gas discharge 12 tapered with an inner diameter of 45 mm, is fully implemented.

In beiden Fällen kann der Brenner sowohl das Brenngas als auch die Verbrennungsluft ausschließlich von der Hochtemperaturbrennstoffzelle beziehen. Der Brenner benötigt keine zusätzliche Zufuhr von Brenngas oder Verbrennungsluft.In both cases, the burner can receive both the fuel gas and the combustion air exclusively from the high-temperature fuel cell. The burner needs no additional supply of fuel gas or combustion air.

Es wurde bereits experimentell nachgewiesen, dass sowohl hoch- als auch niederkalorische heiße Brenngase mit heißer Verbrennungsluft (sauerstoffabgereichert) in dem die Erfindung betreffenden zweistufigen nicht vorgemischten Brenner vollständig und sicher umgesetzt werden können. Dabei waren die erzielten Verbrennungstemperaturen in der ersten Brennkammer sowohl für das niederkalorische Anodenrestgas bei vollständiger Verbrennung in der ersten Brennkammer 5, als auch für das hochkalorische Reformatgas bei partieller Verbrennung nahezu gleich. Somit wurde gezeigt, dass der beschriebene zweistufige Brenner als Nachverbrennungssystem in einem SOFC (Festoxidbrennstoffzelle) basierten Mikro-KWK System verwendet werden kann.It has already been experimentally demonstrated that both high and low calorific hot fuel gases with hot combustion air (oxygen depleted) in the invention two-stage non-premixed burner can be completely and safely implemented. In this case, the combustion temperatures achieved in the first combustion chamber were almost the same for both the low-calorie anode residual gas with complete combustion in the first combustion chamber 5, and for the high-calorie reformate gas with partial combustion. Thus, it has been demonstrated that the described two-stage burner can be used as a post-combustion system in a SOFC (solid oxide fuel cell) based micro CHP system.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gehäusecasing
22
BrenngaszuführungFuel gas supply
33
VerbrennungsluftzuführungCombustion air supply
44
Strömungsteiler für die Verbrennungsluft (4a, 4b)Flow divider for the combustion air (4a, 4b)
55
erste Brennkammerfirst combustion chamber
66
zweite Brennkammersecond combustion chamber
77
offenporiges hochtemperaturbeständiges Material in der ersten Brennkammeropen-pore high-temperature resistant material in the first combustion chamber
88th
offenporiges hochtemperaturbeständiges Material in der zweiten Brennkammeropen-pore high temperature resistant material in the second combustion chamber
99
Zündungignition
1010
Flammenüberwachung (10' und 10")Flame monitoring (10 'and 10 ")
1111
kreisrunde Platte mit Löcherncircular plate with holes
1212
Abgasabführungflue gas discharge

Claims (7)

  1. A method for the combustion of combustion gases having fluctuating calorific contents, having the following features
    providing a burner having a first combustion chamber (5) and a second combustion chamber (6), which is installed downstream of the first combustion chamber (5), a combustion gas feed (2) to the first combustion chamber (5), and a combustion air feed (3) having a flow divider (4) for dividing the combustion air such that a first mass flow of combustion air is fed to the first combustion chamber (5) and a second mass flow of combustion air is fed to the second combustion chamber (6),
    operating the burner for low-calorific combustion gases in a quasi single-stage first operating mode and for high-calorific combustion gases in a two-stage second operating mode,
    in that the flow divider (4) is geometrically configured such that, independently of the calorific content of the combustion gas, substantially the same first mass flow (4a) of combustion air enters the first combustion chamber (5) which, in the first operating mode, allows complete combustion in the first combustion chamber (5) exclusively with low-calorific combustion gases and which is sized such that a combustion temperature in the first combustion chamber (5) is between 1000°C and 1600°C, wherein a mixture of the combustion gas and the combustion air is ignited in the first combustion chamber (5),
    feeding an exhaust gas from the first combustion chamber (5) to the second combustion chamber (6),
    wherein, in the second operating mode, when high-calorific combustion gas is fed, only that portion in the first combustion chamber (5) is combusted that corresponds to the low-calorific portion, and the uncombusted remainder of the high-calorific combustion gas is combusted in the second combustion chamber (6) with the second mass flow (4b) of combustion air.
  2. The method according to claim 1, characterized in that the combustion air is depleted of oxygen.
  3. The method according to claim 1 or 2, characterized in that the combustion gas is fed at temperatures greater than 300°C.
  4. The method according to any one of the preceding claims, characterized in that the combustion air is fed at temperatures greater than 300°C.
  5. The method according to any one of the preceding claims, characterized in that the combustion air consists exclusively of cathode gas from a high temperature fuel cell.
  6. The method according to any one of the preceding claims, characterized in that, in the first combustion chamber (5), the combustion gases are converted in an open-pored, high-temperature resistant material (7).
  7. The method according to any one of the preceding claims, characterized in that, in the second combustion chamber (6), the exhaust gas from the first combustion chamber (5) is converted in an open-pored, high-temperature resistant material (8).
EP12733678.2A 2011-07-04 2012-07-04 Method of combustion of gases with fluctuating calorific contents Not-in-force EP2729735B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110106446 DE102011106446A1 (en) 2011-07-04 2011-07-04 Method and device for combustion of fuel gases, in particular of fuel gases with greatly fluctuating caloric contents
PCT/EP2012/063035 WO2013004744A1 (en) 2011-07-04 2012-07-04 Method and device for the combustion of combustion gases with fluctuating calorific contents

Publications (2)

Publication Number Publication Date
EP2729735A1 EP2729735A1 (en) 2014-05-14
EP2729735B1 true EP2729735B1 (en) 2015-09-09

Family

ID=46506360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12733678.2A Not-in-force EP2729735B1 (en) 2011-07-04 2012-07-04 Method of combustion of gases with fluctuating calorific contents

Country Status (3)

Country Link
EP (1) EP2729735B1 (en)
DE (1) DE102011106446A1 (en)
WO (1) WO2013004744A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2111048T3 (en) * 1991-07-05 1998-03-01 Thermatrix Inc A Delaware Corp METHOD AND APPARATUS FOR CONTROLLED REACTION IN A REACTION MATRIX.
DE4322109C2 (en) * 1993-07-02 2001-02-22 Franz Durst Burner for a gas / air mixture
DE4330130C1 (en) 1993-09-06 1994-10-20 Fraunhofer Ges Forschung Catalytic burner
DE10149014A1 (en) * 2001-09-28 2003-04-17 Iav Gmbh High temperature fuel cell system has oxide ceramic high temperature fuel cell whose residual anode gases are burnt in porous burner arranged after fuel cell.
WO2003072919A1 (en) * 2002-02-22 2003-09-04 Catalytica Energy Systems, Inc. Catalytically piloted combustion system and methods of operation
DE10246231A1 (en) * 2002-10-04 2004-04-15 Robert Bosch Gmbh Automotive fuel cell has afterburner chamber void filled with open pored silicon carbide foam ceramic foam block with glow plug ignition with regulated input of combustion gases
DE10360458A1 (en) * 2003-12-22 2005-07-28 J. Eberspächer GmbH & Co. KG The fuel cell system
EP1861657A1 (en) * 2005-03-23 2007-12-05 Alstom Technology Ltd Method and device for combusting hydrogen in a premix burner
DE102006046255A1 (en) * 2006-09-28 2008-04-03 J. Eberspächer GmbH & Co. KG Burner arrangement, particularly fuel cell system, particularly in vehicles, has burner for burning hydrogen containing fuel gas with oxygen-containing oxidizer gas, and fuel gas inlet for supply of burner with hydrogen containing fuel gas

Also Published As

Publication number Publication date
WO2013004744A1 (en) 2013-01-10
DE102011106446A1 (en) 2013-01-10
EP2729735A1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
DE19536836C2 (en) Process for operating a power plant
DE102004049903B4 (en) Burner device with a porous body
EP2313687B1 (en) Method for igniting and operating burners when gasifying carbon-containing fuels
EP3058279B1 (en) Method for the ignition of a power plant burner, and coal dust burner suitable for the method
EP0655580A2 (en) Mixing device for oil or gasburner
EP2542836B1 (en) Device for providing hot exhaust gases
EP2300748B1 (en) Method for controlling the addition of an additional fuel
EP2729735B1 (en) Method of combustion of gases with fluctuating calorific contents
EP1153453B1 (en) Device for evaporating and/or overheating a hydrocarbon
EP1923946A1 (en) Application of a burner device in a fuel cell system
EP1919018B1 (en) Fuel cell system
EP0484777A2 (en) Method of stabilizing a combustion process
DE10104607A1 (en) Gas generation system for a fuel cell system and method for operating a gas generation system
AT520881B1 (en) Method for operating a fuel cell system
DE102015104401A1 (en) Method for reducing NOx emissions during the combustion of pulverized fuel
EP0353491A1 (en) Installation for burning special waste
DE10059892B4 (en) Method of operating a combined heat and power plant and combined heat and power plant
DE102017005917A1 (en) Combustion process and multi-stage burner
EP3282511B1 (en) Solid oxide fuel cell stack
EP2058592B1 (en) Fuel-powered heating system, in particular for camping vehicles
EP0166913B1 (en) Burner for waste gas incineration
EP1919019A1 (en) Burner assembly
DE10145441A1 (en) Arrangement for producing thermal energy to start gas generation system has at least one starter burner in form of flame burner to which at least one liquid and one gaseous fuel are fed
DE102015104406A1 (en) Method for reducing NOx emissions during the combustion of pulverized fuel
DE102013014838A1 (en) Apparatus for burning gaseous substances

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 748443

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004464

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004464

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012004464

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 748443

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704