EP2729689B1 - Piston for an internal combustion engine - Google Patents

Piston for an internal combustion engine Download PDF

Info

Publication number
EP2729689B1
EP2729689B1 EP12755778.3A EP12755778A EP2729689B1 EP 2729689 B1 EP2729689 B1 EP 2729689B1 EP 12755778 A EP12755778 A EP 12755778A EP 2729689 B1 EP2729689 B1 EP 2729689B1
Authority
EP
European Patent Office
Prior art keywords
cooling channel
piston
narrowing
constriction
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12755778.3A
Other languages
German (de)
French (fr)
Other versions
EP2729689A1 (en
Inventor
Ulrich Bischofberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2729689A1 publication Critical patent/EP2729689A1/en
Application granted granted Critical
Publication of EP2729689B1 publication Critical patent/EP2729689B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons

Definitions

  • the present invention relates to a piston for an internal combustion engine according to the preamble of patent claim 1.
  • Pistons of this type are exposed to high mechanical and, in particular, thermal stress in modern combustion engines. There is therefore a fundamental need to continually optimize the cooling of the pistons by supplying coolant to the cooling channel, particularly in the area of the piston crown.
  • a piston designed in this way is used, for example, in the US 2,244,008 A described.
  • the object of the present invention is to further develop a generic piston in such a way that the cooling in the area of the piston crown is further improved.
  • the solution is that the cooling channel has a constriction.
  • the present invention is based on the continuity equation of fluid dynamics, according to which a narrowing of the flow cross-section in flowing fluids leads to an increase in the flow velocity.
  • the narrowing provided according to the invention in conjunction with the shaker effect, causes the coolant circulating in the cooling channel not only to be mixed, but also to be specifically accelerated by the narrowing and guided towards the piston bottom. This causes the mixed and thus cooled Coolant is guided past the particularly hot wall sections of the cooling channel in the area of the piston bottom much more efficiently and more frequently per piston stroke than in the previously known pistons. This increases the heat transfer coefficient between the cooling channel wall and the coolant and thus significantly improves the cooling of the piston according to the invention.
  • the constriction is formed by exactly one material elevation on a cooling channel wall, and the cooling channel cover is essentially dome-shaped. This ensures that the coolant in the area of the cooling channel cover is forced into a circular flow, so that it interacts with the wall of the cooling channel several times per piston stroke. Coolant of a lower temperature is always accelerated through the constriction and replenished. This effect is particularly effective when the radial dimension of the essentially dome-shaped cooling channel cover at its widest point is at least equal to twice the radial dimension of the constriction. In this case, less hot coolant can flow downwards, so that the flow of coolant of a lower temperature through the constriction towards the cooling channel cover is not significantly impeded.
  • the constriction provided according to the invention expediently has a distance from the cooling channel floor that corresponds to at least one third of the axial height and/or at most two thirds of the axial height of the cooling channel. This makes it possible to achieve a particularly effective acceleration of the coolant flow in the direction of the cooling channel ceiling. To optimize the acceleration, the constriction preferably has essentially the same distance from the cooling channel floor and from the cooling channel ceiling.
  • constriction is expediently designed as a circumferential constriction in order to achieve the acceleration effect along the entire cooling channel.
  • the cooling channel wall adjacent to the ring section can be designed to be vertical or inclined inwards.
  • the present invention is suitable for all piston types and all piston designs and can be implemented with any piston material.
  • Fig.1 shows an embodiment of a piston 10 according to the invention.
  • the piston 10 can be a one-piece or multi-piece piston.
  • the piston 10 can be made of a steel material and/or a light metal material.
  • Fig.1 shows an example of a one-piece piston head 11 of a piston according to the invention.
  • the piston head 11 has a piston bottom 12 with a combustion bowl 13, a circumferential top land 14 and a ring section 15 for receiving piston rings (not shown).
  • a circumferential cooling channel 16 with a cooling channel bottom 17 and a cooling channel cover 18 is provided.
  • the piston 10 also has a piston skirt in a manner known per se, which can be integral with the piston head 11 or can be designed as a separate component that is firmly connected to the piston head 11 in a manner known per se or, for example, in the manner of a pendulum-shaft piston (not shown).
  • the cooling channel 16 has a circumferential constriction 20.
  • the constriction 20 is formed by exactly one material elevation 21 in the cooling channel wall adjacent to the combustion bowl 13.
  • the cooling channel wall 22 adjacent to the ring section 15 is essentially vertical in this embodiment. It can also be slightly inclined inwards, i.e. in the direction of the combustion bowl 13.
  • the cooling channel cover 18 of the cooling channel 16 is essentially dome-shaped.
  • the constriction 20 has essentially the same distance A from the cooling channel base 17 and from the cooling channel cover 18 at its narrowest point.
  • the coolant in the area of the cooling channel cover 18 is forced into a circular flow, as indicated by the circular arrows, so that the coolant can interact with the wall of the cooling channel in the area of the piston base 12 and the combustion bowl 13 several times per piston stroke. Coolant of a lower temperature is always accelerated through the constriction 20 and supplied.
  • the radial dimension B of the essentially dome-shaped cooling channel cover 18 at its widest point is Position at least equal to twice the radial dimension b of the constriction 20, i.e. B ⁇ 2 ⁇ b. In this case, less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 20 in the direction of the cooling channel cover 18 is not significantly impeded.
  • the piston 10 according to the invention or the piston upper part 11 can be produced in a manner known per se by casting, forging, sintering, etc. in a one-piece piston upper part 11, as shown in Fig.1
  • the cooling channel designed according to the invention can be produced in a manner known per se by casting with a salt core.
  • Fig.2 shows an embodiment of a piston 110 not belonging to the invention.
  • the piston 110 can be a one-piece or multi-piece piston.
  • the piston 110 can be made of a steel material and/or a light metal material.
  • Fig.2 shows, by way of example, a one-piece piston head 111 of the piston 110.
  • the piston head 111 has a piston bottom 112 with a combustion bowl 113, a circumferential top land 114 and a ring section 115 for receiving piston rings (not shown).
  • a circumferential cooling channel 116 with a cooling channel bottom 117 and a cooling channel cover 118 is provided.
  • the piston 110 also has a piston shaft in a manner known per se, which can be formed in one piece with the piston head 111 or as a separate component that is firmly connected to the piston head 111 in a manner known per se or, for example, in the manner of a pendulum shaft piston (not shown).
  • the cooling channel 116 has a circumferential constriction 120.
  • the constriction 120 is formed in this embodiment by exactly two opposing material elevations 121 in the two Combustion bowl 113 or cooling channel walls adjacent to ring section 115.
  • the cooling channel cover 118 of the cooling channel 116 has a flow divider 123 at its zenith, which is arranged centrally to the constriction 120.
  • the distance between the constriction 120 and the cooling channel bottom 117 is approximately exactly as large as the distance between the constriction 120 and the cooling channel cover 118.
  • the radial dimension B of the cooling channel cover 118 at its widest point is at least equal to twice the radial dimension b of the constriction 120, i.e. B ⁇ 2 ⁇ b. In this case, less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 120 in the direction of the cooling channel cover 118 is not significantly impeded.
  • the regions 118a, 118b of the cooling channel cover 118 that adjoin the flow divider 123 are arcuate or circular in cross section and the flow divider 123 is V-shaped in cross section.
  • the piston 110 or the piston upper part 111 can be produced in a manner known per se by casting, forging, sintering, etc.
  • the cooling channel 116 can be produced in a manner known per se by casting with a salt core. If the piston upper part 111 is formed in two parts and the two parts are connected to one another by friction welding, the friction weld seam can be laid through the cooling channel 116 so that opposing material elevations 121, which cause the constriction 120, can be formed by friction weld beads, as are created in a manner known per se during the friction welding process.
  • Fig.3 shows a further embodiment of a piston 210 not belonging to the invention.
  • the piston 210 can be a one-piece or multi-piece piston.
  • the piston 210 can be made of a steel material and/or a light metal material.
  • Fig.3 shows, by way of example, a one-piece piston head 211 of the piston 210.
  • the piston head 211 has a piston bottom 212 with a combustion bowl 213, a circumferential top land 214 and a ring section 215 for receiving piston rings (not shown).
  • a circumferential cooling channel 216 with a cooling channel bottom 217 and a cooling channel cover 218 is provided.
  • the piston 210 also has a piston shaft in a manner known per se, which can be formed in one piece with the piston head 211 or as a separate component that is firmly connected to the piston head 211 in a manner known per se or, for example, in the manner of a pendulum shaft piston (not shown).
  • the cooling channel 216 has a circumferential constriction 220.
  • the constriction 220 is formed by exactly two axially offset material elevations 221a, 221b in the two cooling channel walls adjacent to the combustion bowl 213 and the ring section 215.
  • an inner expansion 224 extending to the combustion bowl 213 is formed in the area of the cooling channel base 217.
  • a constriction 220 extending to the uppermost Ring groove of the ring section 215 and an outer extension 225 extending to the top land 214.
  • this cooling effect is also influenced by the fact that the material elevation 221a has a thickness D1 that is greater than the thickness D2 of the material elevation 221b. Consequently, the inner extension 224 has a larger radius than the outer extension 225. Accordingly, in this embodiment, the area of the combustion bowl is cooled particularly effectively during engine operation.
  • the material elevation 221b can also have a greater thickness than the material elevation 221a, so that in this case the outer extension 225 has a larger radius than the inner extension 224 and consequently the area of the piston crown 213 and the top land 214 is cooled particularly effectively (not shown).
  • the extensions 224, 225 can extend radially inwards or outwards as far as desired within the scope of what is structurally possible, as shown in Fig.3 is indicated by dash-dot lines.
  • the cooling channel bottom 217 and the cooling channel top 218 of the cooling channel 216 are essentially dome-shaped.
  • the constriction 220 has essentially the same distance A from the cooling channel bottom 217 and from the cooling channel top 218 at its narrowest point.
  • the coolant in the area of the cooling channel bottom 217 and in the area of the cooling channel top 218 is forced into a counterclockwise circular flow, as indicated by the circular arrows.
  • the coolant can thus interact several times per piston stroke with the wall of the cooling channel in the area of the piston bottom 212 and the combustion bowl 213. coolant of lower temperature is always accelerated and supplied through the constriction 220.
  • the radial dimension B of the inner widening 224 or the outer widening 225 at their widest point is at least equal to twice the radial dimension b of the constriction 20, i.e. B ⁇ 2 ⁇ b, as shown in Fig.1 using the example of the outer widening 225.
  • less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 220 in the direction of the cooling channel cover 218 is not significantly impeded and the area of the piston crown 212 is effectively cooled.
  • the piston 210 or the piston upper part 211 can be produced in a manner known per se by casting, forging, sintering, etc.
  • the cooling channel 216 can be produced in a conventional manner by casting with a salt core.

Description

Die vorliegende Erfindung betrifft einen Kolben für einen Verbrennungsmotor gemäß dem Oberbegriff des Patentanspruchs 1.The present invention relates to a piston for an internal combustion engine according to the preamble of patent claim 1.

Gattungsgemäße Kolben sind in modernen Verbrennungsmotoren hohen mechanischen und insbesondere thermischen Belastungen ausgesetzt. Daher besteht ein grundsätzlicher Bedarf, die Kühlung der Kolben mittels Zufuhr von Kühlmittel in den Kühlkanal, insbesondere im Bereich des Kolbenbodens, stets zu optimieren.Pistons of this type are exposed to high mechanical and, in particular, thermal stress in modern combustion engines. There is therefore a fundamental need to continually optimize the cooling of the pistons by supplying coolant to the cooling channel, particularly in the area of the piston crown.

Ein derart ausgebildeter Kolben ist beispielsweise in der US 2,244,008 A beschrieben.A piston designed in this way is used, for example, in the US 2,244,008 A described.

Die Aufgabe der vorliegenden Erfindung besteht darin, einen gattungsgemäßen Kolben so weiterzuentwickeln, dass die Kühlung im Bereich des Kolbenbodens weiter verbessert wird.The object of the present invention is to further develop a generic piston in such a way that the cooling in the area of the piston crown is further improved.

Die Lösung besteht darin, dass der Kühlkanal eine Verengung aufweist.The solution is that the cooling channel has a constriction.

Die vorliegende Erfindung beruht auf der Kontinuitätsgleichung der Fluiddynamik, wonach bei strömenden Fluiden eine Verengung des Strömungsquerschnitts zu einer Erhöhung der Strömungsgeschwindigkeit führt. Im erfindungsgemäßen Kolben bewirkt die erfindungsgemäß vorgesehene Verengung in Zusammenwirkung mit dem Shaker-Effekt, dass das im Kühlkanal umlaufende Kühlmittel nicht nur durchmischt, sonders durch die Verengung gezielt beschleunigt und in Richtung Kolbenboden geführt wird. Dies bewirkt, dass das durchmischte und damit abgekühlte Kühlmittel wesentlich effizienter und häufiger pro Kolbenhub als in den bisher bekannten Kolben an den besonders heißen Wandabschnitten des Kühlkanals im Bereich des Kolbenbodens vorbeigeführt wird. Somit wird der Wärmeübergangskoeffizient zwischen Kühlkanalwand und Kühlmittel erhöht und damit die Kühlung des erfindungsgemäßen Kolbens wesentlich verbessert.The present invention is based on the continuity equation of fluid dynamics, according to which a narrowing of the flow cross-section in flowing fluids leads to an increase in the flow velocity. In the piston according to the invention, the narrowing provided according to the invention, in conjunction with the shaker effect, causes the coolant circulating in the cooling channel not only to be mixed, but also to be specifically accelerated by the narrowing and guided towards the piston bottom. This causes the mixed and thus cooled Coolant is guided past the particularly hot wall sections of the cooling channel in the area of the piston bottom much more efficiently and more frequently per piston stroke than in the previously known pistons. This increases the heat transfer coefficient between the cooling channel wall and the coolant and thus significantly improves the cooling of the piston according to the invention.

Erfindungsgemäß ist vorgesehen, dass die Verengung durch genau eine Materialerhöhung an einer Kühlkanalwand gebildet ist, und dass die Kühlkanaldecke im Wesentlichen kuppelförmig ausgebildet ist. Damit wird erreicht, dass das Kühlmittel im Bereich der Kühlkanaldecke in eine kreisförmig umlaufende Strömung gezwungen wird, so dass mehrmals pro Kolbenhub mit der Wand des Kühlkanals wechselwirkt. Dabei wird stets Kühlmittel niedrigerer Temperatur durch die Verengung beschleunigt und nachgeliefert. Dieser Effekt ist dann besonders wirkungsvoll, wenn das radiale Maß der im Wesentlichen kuppelförmigen Kühlkanaldecke an ihrer breitesten Stelle mindestens gleich dem zweifachen radialen Maß der Verengung ist. In diesem Fall kann weniger heißes Kühlmittel nach unten strömen, so dass der Fluss von Kühlmittel niedrigerer Temperatur durch die Verengung hindurch in Richtung der Kühlkanaldecke nicht wesentlich behindert wird.According to the invention, the constriction is formed by exactly one material elevation on a cooling channel wall, and the cooling channel cover is essentially dome-shaped. This ensures that the coolant in the area of the cooling channel cover is forced into a circular flow, so that it interacts with the wall of the cooling channel several times per piston stroke. Coolant of a lower temperature is always accelerated through the constriction and replenished. This effect is particularly effective when the radial dimension of the essentially dome-shaped cooling channel cover at its widest point is at least equal to twice the radial dimension of the constriction. In this case, less hot coolant can flow downwards, so that the flow of coolant of a lower temperature through the constriction towards the cooling channel cover is not significantly impeded.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Kolbens ergeben sich aus den Unteransprüchen.Advantageous further developments of the piston according to the invention emerge from the subclaims.

Zweckmäßigerweise weist die erfindungsgemäß vorgesehene Verengung einen Abstand vom Kühlkanalboden aufweist, der mindestens einem Drittel der axialen Höhe und/oder höchsten zwei Dritteln der axialen Höhe des Kühlkanals entspricht. Damit kann eine besonders wirksame Beschleunigung des Kühlmittelstromes in Richtung der Kühlkanaldecke erzielt werden. Zur Optimierung der Beschleunigung weist die Verengung vorzugsweise im Wesentlichen den gleichen Abstand vom Kühlkanalboden und von der Kühlkanaldecke auf.The constriction provided according to the invention expediently has a distance from the cooling channel floor that corresponds to at least one third of the axial height and/or at most two thirds of the axial height of the cooling channel. This makes it possible to achieve a particularly effective acceleration of the coolant flow in the direction of the cooling channel ceiling. To optimize the acceleration, the constriction preferably has essentially the same distance from the cooling channel floor and from the cooling channel ceiling.

Die Verengung ist zweckmäßigerweise als umlaufende Verengung ausgebildet, um den Beschleunigungseffekt entlang des gesamten Kühlkanals zu bewirken.The constriction is expediently designed as a circumferential constriction in order to achieve the acceleration effect along the entire cooling channel.

Zur weiteren Optimierung der Strömungsverhältnisse im Kühlkanal kann die der Ringpartie benachbarte Kühlkanalwand senkrecht oder schräg nach innen geneigt ausgebildet sein.To further optimize the flow conditions in the cooling channel, the cooling channel wall adjacent to the ring section can be designed to be vertical or inclined inwards.

Die vorliegende Erfindung ist für alle Kolbentypen und alle Kolbenbauarten geeignet und mit jedem Kolbenwerkstoff realisierbar.The present invention is suitable for all piston types and all piston designs and can be implemented with any piston material.

Ein Ausführungsbeispiel der vorliegenden Erfindung sowie zwei nicht zur vorliegenden Erfindung gehörige Ausführungsbeispiele werden im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen in einer schematischen, nicht maßstabsgetreuen Darstellung:

  • Fig. 1 ein Ausführungsbeispiel eines erfindungsgemäßen Kolbens in einer Teildarstellung im Schnitt;
  • Fig. 2 ein Ausführungsbeispiel eines nicht zur Erfindung gehörigen Kolbens in einer perspektivischen Teildarstellung im Schnitt;
  • Fig. 3 ein weiteres Ausführungsbeispiel eines nicht zur Erfindung gehörigen Kolbens in einer Teildarstellung im Schnitt.
An embodiment of the present invention and two embodiments not belonging to the present invention are explained in more detail below with reference to the accompanying drawings. They show in a schematic, not to scale representation:
  • Fig.1 an embodiment of a piston according to the invention in a partial sectional view;
  • Fig.2 an embodiment of a piston not belonging to the invention in a perspective partial view in section;
  • Fig.3 another embodiment of a piston not belonging to the invention in a partial sectional view.

Fig. 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Kolbens 10. Der Kolben 10 kann ein einteiliger oder mehrteiliger Kolben sein. Der Kolben 10 kann aus einem Stahlwerkstoff und/oder einem Leichtmetallwerkstoff hergestellt sein. Fig. 1 zeigt beispielhaft einen einteiligen Kolbenkopf 11 eines erfindungsgemä-ßen Kolbens 10. Der Kolbenkopf 11 weist einen mit einer Verbrennungsmulde 13 aufweisenden Kolbenboden 12, einem umlaufenden Feuersteg 14 und eine Ringpartie 15 zur Aufnahme von Kolbenringen (nicht dargestellt) auf. In Höhe der Ringpartie 15 ist ein umlaufender Kühlkanal 16 mit einem Kühlkanalboden 17 und einer Kühlkanaldecke 18 vorgesehen. Der Kolben 10 weist ferner in an sich bekannter Weise einen Kolbenschaft auf, der mit dem Kolbenkopf 11 einstückig oder als separates Bauteil ausgebildet sein, dass mit dem Kolbenkopf 11 in an sich bekannter Weise fest oder bspw. nach Art eines Pendelschaftkolbens verbunden ist (nicht dargestellt). Fig.1 shows an embodiment of a piston 10 according to the invention. The piston 10 can be a one-piece or multi-piece piston. The piston 10 can be made of a steel material and/or a light metal material. Fig.1 shows an example of a one-piece piston head 11 of a piston according to the invention. Piston 10. The piston head 11 has a piston bottom 12 with a combustion bowl 13, a circumferential top land 14 and a ring section 15 for receiving piston rings (not shown). At the level of the ring section 15, a circumferential cooling channel 16 with a cooling channel bottom 17 and a cooling channel cover 18 is provided. The piston 10 also has a piston skirt in a manner known per se, which can be integral with the piston head 11 or can be designed as a separate component that is firmly connected to the piston head 11 in a manner known per se or, for example, in the manner of a pendulum-shaft piston (not shown).

In dem Ausführungsbeispiel der vorliegenden Erfindung weist der Kühlkanal 16 eine umlaufende Verengung 20 auf. Die Verengung 20 ist in diesem Ausführungsbeispiel durch genau eine Materialerhöhung 21 in der der Verbrennungsmulde 13 benachbarten Kühlkanalwand gebildet. Die der Ringpartie 15 benachbarte Kühlkanalwand 22 ist in diesem Ausführungsbeispiel im Wesentlichen senkrecht ausgebildet. Sie kann auch leicht schräg nach innen, d. h. in Richtung der Verbrennungsmulde 13, geneigt ausgebildet sein.In the embodiment of the present invention, the cooling channel 16 has a circumferential constriction 20. In this embodiment, the constriction 20 is formed by exactly one material elevation 21 in the cooling channel wall adjacent to the combustion bowl 13. The cooling channel wall 22 adjacent to the ring section 15 is essentially vertical in this embodiment. It can also be slightly inclined inwards, i.e. in the direction of the combustion bowl 13.

Die Kühlkanaldecke 18 des Kühlkanals 16 ist im Wesentlichen kuppelförmig ausgebildet. Die Verengung 20 weist in diesem Ausführungsbeispiel an ihrer engsten Stelle im Wesentlichen den gleichen Abstand A vom Kühlkanalboden 17 und von der Kühlkanaldecke 18 auf. Im Ergebnis wird das Kühlmittel im Bereich der Kühlkanaldecke 18 in eine kreisförmig umlaufende Strömung gezwungen, wie sie durch die kreisförmigen Pfeile angedeutet wird, so dass das Kühlmittel mehrmals pro Kolbenhub mit der Wand des Kühlkanals im Bereich des Kolbenbodens 12 und der Verbrennungsmulde 13 wechselwirken kann. Dabei wird stets Kühlmittel niedrigerer Temperatur durch die Verengung 20 beschleunigt und nachgeliefert. Zur Optimierung dieses Effekts ist bei diesem Ausführungsbeispiel das radiale Maß B der im Wesentlichen kuppelförmigen Kühlkanaldecke 18 an ihrer breitesten Stelle mindestens gleich dem zweifachen radialen Maß b der Verengung 20, also B ≥ 2 × b. In diesem Fall kann weniger heißes Kühlmittel nach unten strömen, so dass der Fluss von Kühlmittel niedrigerer Temperatur durch die Verengung 20 hindurch in Richtung der Kühlkanaldecke 18 nicht wesentlich behindert wird.The cooling channel cover 18 of the cooling channel 16 is essentially dome-shaped. In this embodiment, the constriction 20 has essentially the same distance A from the cooling channel base 17 and from the cooling channel cover 18 at its narrowest point. As a result, the coolant in the area of the cooling channel cover 18 is forced into a circular flow, as indicated by the circular arrows, so that the coolant can interact with the wall of the cooling channel in the area of the piston base 12 and the combustion bowl 13 several times per piston stroke. Coolant of a lower temperature is always accelerated through the constriction 20 and supplied. To optimize this effect, in this embodiment, the radial dimension B of the essentially dome-shaped cooling channel cover 18 at its widest point is Position at least equal to twice the radial dimension b of the constriction 20, i.e. B ≥ 2 × b. In this case, less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 20 in the direction of the cooling channel cover 18 is not significantly impeded.

Der erfindungsgemäße Kolben 10 bzw. das Kolbenoberteil 11 kann in an sich bekannter Weise durch Gießen, Schmieden, Sintern etc. hergestellt sein. in einem einstöckigen Kolbenoberteil 11, wie es in Fig. 1 dargestellt ist, kann der erfindungsgemäß ausgestaltete Kühlkanal in an sich bekannter Weise durch Gießen mit einem Salzkern hergestellt werden.The piston 10 according to the invention or the piston upper part 11 can be produced in a manner known per se by casting, forging, sintering, etc. in a one-piece piston upper part 11, as shown in Fig.1 As shown, the cooling channel designed according to the invention can be produced in a manner known per se by casting with a salt core.

Fig. 2 zeigt ein Ausführungsbeispiel eines nicht zur Erfindung gehörigen Kolbens 110. Der Kolben 110 kann ein einteiliger oder mehrteiliger Kolben sein. Der Kolben 110 kann aus einem Stahlwerkstoff und/oder einem Leichtmetallwerkstoff hergestellt sein. Fig. 2 zeigt beispielhaft einen einteiligen Kolbenkopf 111 des Kolbens 110. Der Kolbenkopf 111 weist einen mit einer Verbrennungsmulde 113 aufweisenden Kolbenboden 112, einem umlaufenden Feuersteg 114 und eine Ringpartie 115 zur Aufnahme von Kolbenringen (nicht dargestellt) auf. In Höhe der Ringpartie 115 ist ein umlaufender Kühlkanal 116 mit einem Kühlkanalboden 117 und einer Kühlkanaldecke 118 vorgesehen. Der Kolben 110 weist ferner in an sich bekannter Weise einen Kolbenschaft auf, der mit dem Kolbenkopf 111 einstückig oder als separates Bauteil ausgebildet sein, dass mit dem Kolbenkopf 111 in an sich bekannter Weise fest oder bspw. nach Art eines Pendelschaftkolbens verbunden ist (nicht dargestellt). Fig.2 shows an embodiment of a piston 110 not belonging to the invention. The piston 110 can be a one-piece or multi-piece piston. The piston 110 can be made of a steel material and/or a light metal material. Fig.2 shows, by way of example, a one-piece piston head 111 of the piston 110. The piston head 111 has a piston bottom 112 with a combustion bowl 113, a circumferential top land 114 and a ring section 115 for receiving piston rings (not shown). At the level of the ring section 115, a circumferential cooling channel 116 with a cooling channel bottom 117 and a cooling channel cover 118 is provided. The piston 110 also has a piston shaft in a manner known per se, which can be formed in one piece with the piston head 111 or as a separate component that is firmly connected to the piston head 111 in a manner known per se or, for example, in the manner of a pendulum shaft piston (not shown).

[In diesem Ausführungsbeispiel weist der Kühlkanal 116 eine umlaufende Verengung 120 auf. Die Verengung 120 ist in diesem Ausführungsbeispiel durch genau zwei einander gegenüberliegende Materialerhöhungen 121 in den beiden zur Verbrennungsmulde 113 bzw. zur Ringpartie 115 benachbarten Kühlkanalwänden gebildet.[In this embodiment, the cooling channel 116 has a circumferential constriction 120. The constriction 120 is formed in this embodiment by exactly two opposing material elevations 121 in the two Combustion bowl 113 or cooling channel walls adjacent to ring section 115.

Die Kühlkanaldecke 118 des Kühlkanals 116 weist in diesem Ausführungsbeispiel in ihrem Zenith einen Strömungsteiler 123 auf, der mittig zur Verengung 120 angeordnet ist. Der Abstand der Verengung 120 zum Kühlkanalboden 117 ist in diesem Ausführungsbeispiel etwa genau so groß wie der Abstand der Verengung 120 zur Kühlkanaldecke 118. Im Ergebnis wird das beschleunigt durch die Verengung 120 strömende Kühlmittel im Bereich der Kühlkanaldecke 118 in zwei entgegengesetzt drehende Strömungen gezwungen, wie sie durch die gegenläufig kreisförmigen Pfeile angedeutet werden, so dass das Kühlmittel mehrmals pro Kolbenhub mit der Wand des Kühlkanals 116 im Bereich des Kolbenbodens 112 und der Verbrennungsmulde 113 wechselwirken kann. Dabei wird stets Kühlmittel niedrigerer Temperatur durch die Verengung 120 beschleunigt und nachgeliefert. Zur Optimierung dieses Effekts ist bei diesem Ausführungsbeispiel das radiale Maß B der Kühlkanaldecke 118 an ihrer breitesten Stelle mindestens gleich dem zweifachen radialen Maß b der Verengung 120, also B ≥ 2 × b. In diesem Fall kann weniger heißes Kühlmittel nach unten strömen, so dass der Fluss von Kühlmittel niedrigerer Temperatur durch die Verengung 120 hindurch in Richtung der Kühlkanaldecke 118 nicht wesentlich behindert wird.In this embodiment, the cooling channel cover 118 of the cooling channel 116 has a flow divider 123 at its zenith, which is arranged centrally to the constriction 120. In this embodiment, the distance between the constriction 120 and the cooling channel bottom 117 is approximately exactly as large as the distance between the constriction 120 and the cooling channel cover 118. As a result, the coolant flowing at an accelerated rate through the constriction 120 is forced into two oppositely rotating flows in the area of the cooling channel cover 118, as indicated by the counter-rotating circular arrows, so that the coolant can interact several times per piston stroke with the wall of the cooling channel 116 in the area of the piston bottom 112 and the combustion bowl 113. In this case, coolant of a lower temperature is always accelerated through the constriction 120 and supplied. To optimize this effect, in this embodiment, the radial dimension B of the cooling channel cover 118 at its widest point is at least equal to twice the radial dimension b of the constriction 120, i.e. B ≥ 2 × b. In this case, less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 120 in the direction of the cooling channel cover 118 is not significantly impeded.

Zur Optimierung dieses Effekts sind bei diesem Ausführungsbeispiel die Bereiche 118a, 118b der Kühlkanaldecke 118, die an den Strömungsteiler 123 anschlie-ßen, im Querschnitt bogenförmig oder kreisförmig und der Strömungsteiler 123 im Querschnitt V-förmig ausgebildet.To optimize this effect, in this embodiment, the regions 118a, 118b of the cooling channel cover 118 that adjoin the flow divider 123 are arcuate or circular in cross section and the flow divider 123 is V-shaped in cross section.

Der Kolben 110 bzw. das Kolbenoberteil 111 kann in an sich bekannter Weise durch Gießen, Schmieden, Sintern etc hergestellt sein. In einem einstückigen Kolbenoberteil 111, wie es im nicht zur Erfindung gehörigen Ausführungsbeispiel der in Fig. 2 dargestellt ist, kann der Kühlkanal 116 in an sich bekannter Weise durch Gießen mit einem Salzkern hergestellt werden. Wenn das Kolbenoberteil 111 zweiteilig ausgebildet und die beiden Teile durch Reibschweißen miteinander verbunden sind, kann die Reibschweißnaht durch den Kühlkanal 116 gelegt werden, so dass einander gegenüberliegenden Materialerhöhungen 121, welche die Verengung 120 bewirken, durch Reibschweißwulste gebildet werden können, wie sich in an sich bekannter Weise während des Reibschweißvorgangs entstehen.The piston 110 or the piston upper part 111 can be produced in a manner known per se by casting, forging, sintering, etc. In a one-piece piston upper part 111, as in the embodiment not belonging to the invention the in Fig.2 As shown, the cooling channel 116 can be produced in a manner known per se by casting with a salt core. If the piston upper part 111 is formed in two parts and the two parts are connected to one another by friction welding, the friction weld seam can be laid through the cooling channel 116 so that opposing material elevations 121, which cause the constriction 120, can be formed by friction weld beads, as are created in a manner known per se during the friction welding process.

Fig. 3 zeigt ein weiteres Ausführungsbeispiel eines nicht zur Erfindung gehörigen Kolbens 210. Der Kolben 210 kann ein einteiliger oder mehrteiliger Kolben sein. Der Kolben 210 kann aus einem Stahlwerkstoff und/oder einem Leichtmetallwerkstoff hergestellt sein. Fig. 3 zeigt beispielhaft einen einteiligen Kolbenkopf 211 des Kolbens 210. Der Kolbenkopf 211 weist einen mit einer Verbrennungsmulde 213 aufweisenden Kolbenboden 212, einem umlaufenden Feuersteg 214 und eine Ringpartie 215 zur Aufnahme von Kolbenringen (nicht dargestellt) auf. In Höhe der Ringpartie 215 ist ein umlaufender Kühlkanal 216 mit einem Kühlkanalboden 217 und einer Kühlkanaldecke 218 vorgesehen. Der Kolben 210 weist ferner in an sich bekannter Weise einen Kolbenschaft auf, der mit dem Kolbenkopf 211 einstückig oder als separates Bauteil ausgebildet sein, dass mit dem Kolbenkopf 211 in an sich bekannter Weise fest oder bspw. nach Art eines Pendelschaftkolbens verbunden ist (nicht dargestellt). Fig.3 shows a further embodiment of a piston 210 not belonging to the invention. The piston 210 can be a one-piece or multi-piece piston. The piston 210 can be made of a steel material and/or a light metal material. Fig.3 shows, by way of example, a one-piece piston head 211 of the piston 210. The piston head 211 has a piston bottom 212 with a combustion bowl 213, a circumferential top land 214 and a ring section 215 for receiving piston rings (not shown). At the level of the ring section 215, a circumferential cooling channel 216 with a cooling channel bottom 217 and a cooling channel cover 218 is provided. The piston 210 also has a piston shaft in a manner known per se, which can be formed in one piece with the piston head 211 or as a separate component that is firmly connected to the piston head 211 in a manner known per se or, for example, in the manner of a pendulum shaft piston (not shown).

In diesem Ausführungsbeispiel weist der Kühlkanal 216 eine umlaufende Verengung 220 auf. Die Verengung 220 ist in diesem Ausführungsbeispiel durch genau zwei axial versetzt zueinander angeordnete Materialerhöhungen 221a, 221b in den beiden zur Verbrennungsmulde 213 bzw. zur Ringpartie 215 benachbarten Kühlkanalwänden gebildet. Dadurch wird im Bereich des Kühlkanalbodens 217 eine sich zur Verbrennungsmulde 213 erstreckende innere Ausweitung 224 ausgebildet. Ferner wird im Bereich der Kühlkanaldecke 218 eine sich zur obersten Ringnut der Ringpartie 215 und zum Feuersteg 214 erstreckende äußere Ausweitung 225 ausgebildet. Dies führt dazu, dass im Motorbetrieb diese thermisch besonders hoch belasteten Bereiche des Kolbenkopfs 211, nämlich der Kolbenboden 212 im Bereich der Verbrennungsmulde 213 und des Feuerstegs 214 sehr wirksam gekühlt werden. Diese Kühlwirkung wird bei diesem Ausführungsbeispiel auch dadurch beeinflusst, dass die Materialerhöhung 221a eine Dicke D1 aufweist, die größer ist als die Dicke D2 der Materialerhöhung 221b. Folglich weist die innere Ausweitung 224 einen größeren Radius auf die äußere Ausweitung 225. Demnach wird bei diesem Ausführungsbeispiel im Motorbetrieb der Bereich der Verbrennungsmulde besonders wirksam gekühlt. Selbstverständlich kann auch die Materialerhöhung 221b eine größere Dicke aufweisen als die Materialerhöhung 221a, so dass in diesem Fall die äußere Ausweitung 225 einen größeren Radius als die innere Ausweitung 224 aufweist und folglich der Bereich des Kolbenbodens 213 und des Feuerstegs 214 besonders wirksam gekühlt wird (nicht dargestellt).In this embodiment, the cooling channel 216 has a circumferential constriction 220. In this embodiment, the constriction 220 is formed by exactly two axially offset material elevations 221a, 221b in the two cooling channel walls adjacent to the combustion bowl 213 and the ring section 215. As a result, an inner expansion 224 extending to the combustion bowl 213 is formed in the area of the cooling channel base 217. Furthermore, in the area of the cooling channel ceiling 218, a constriction 220 extending to the uppermost Ring groove of the ring section 215 and an outer extension 225 extending to the top land 214. This means that during engine operation, these thermally particularly highly stressed areas of the piston head 211, namely the piston crown 212 in the area of the combustion bowl 213 and the top land 214, are cooled very effectively. In this embodiment, this cooling effect is also influenced by the fact that the material elevation 221a has a thickness D1 that is greater than the thickness D2 of the material elevation 221b. Consequently, the inner extension 224 has a larger radius than the outer extension 225. Accordingly, in this embodiment, the area of the combustion bowl is cooled particularly effectively during engine operation. Of course, the material elevation 221b can also have a greater thickness than the material elevation 221a, so that in this case the outer extension 225 has a larger radius than the inner extension 224 and consequently the area of the piston crown 213 and the top land 214 is cooled particularly effectively (not shown).

Die Ausweitungen 224, 225 können im Rahmen des konstruktiv Möglichen sich in radialer Richtung nach innen bzw. nach außen beliebig weit erstrecken, wie es in Fig. 3 strichpunktiert angedeutet ist.The extensions 224, 225 can extend radially inwards or outwards as far as desired within the scope of what is structurally possible, as shown in Fig.3 is indicated by dash-dot lines.

Der Kühlkanalboden 217 und die Kühlkanaldecke 218 des Kühlkanals 216 sind im Wesentlichen kuppelförmig ausgebildet. Die Verengung 220 weist in diesem Ausführungsbeispiel an ihrer engsten Stelle im Wesentlichen den gleichen Abstand A vom Kühlkanalboden 217 und von der Kühlkanaldecke 218 auf. Im Ergebnis wird das Kühlmittel im Bereich des Kühlkanalbodens 217 und im Bereich der Kühlkanaldecke 218 in eine im Gegenuhrzeigersinn kreisförmig umlaufende Strömung gezwungen, wie sie durch die kreisförmigen Pfeile angedeutet wird. Somit kann das Kühlmittel mehrmals pro Kolbenhub mit der Wand des Kühlkanals im Bereich des Kolbenbodens 212 und der Verbrennungsmulde 213 Wechselwirken. Dabei wird stets Kühlmittel niedrigerer Temperatur durch die Verengung 220 beschleunigt und nachgeliefert. Zur Optimierung dieses Effekts ist bei diesem Ausführungsbeispiel das radiale Maß B der inneren Aufweitung 224 bzw. der äußeren Aufweitung 225 an ihrer jeweils breitesten Stelle mindestens gleich dem zweifachen radialen Maß b der Verengung 20, also B ≥ 2 × b, wie es in Fig. 1 am Beispiel der äußeren Aufweitung 225 dargestellt ist. In diesem Fall kann weniger heißes Kühlmittel nach unten strömen, so dass der Fluss von Kühlmittel niedrigerer Temperatur durch die Verengung 220 hindurch in Richtung der Kühlkanaldecke 218 nicht wesentlich behindert und der Bereich des Kolbenbodens 212 wirksam gekühlt wird. Da zugleich ein Teil des frischen Kühlmittels niedrigerer Temperatur im Bereich des Kühlkanalbodens in einer kreisförmigen Strömung umläuft, anstatt durch die Verengung 220 nach oben zu fließen, wobei dieses Kühlmittel nicht durch zurückströmendes heißes Kühlmittel aus dem Bereich der Kühlkanaldecke 218 übermäßig erwärmt wird, wird auch der Bereich der Verbrennungsmulde wirksam gekühlt.The cooling channel bottom 217 and the cooling channel top 218 of the cooling channel 216 are essentially dome-shaped. In this embodiment, the constriction 220 has essentially the same distance A from the cooling channel bottom 217 and from the cooling channel top 218 at its narrowest point. As a result, the coolant in the area of the cooling channel bottom 217 and in the area of the cooling channel top 218 is forced into a counterclockwise circular flow, as indicated by the circular arrows. The coolant can thus interact several times per piston stroke with the wall of the cooling channel in the area of the piston bottom 212 and the combustion bowl 213. coolant of lower temperature is always accelerated and supplied through the constriction 220. To optimize this effect, in this embodiment, the radial dimension B of the inner widening 224 or the outer widening 225 at their widest point is at least equal to twice the radial dimension b of the constriction 20, i.e. B ≥ 2 × b, as shown in Fig.1 using the example of the outer widening 225. In this case, less hot coolant can flow downwards, so that the flow of coolant of lower temperature through the constriction 220 in the direction of the cooling channel cover 218 is not significantly impeded and the area of the piston crown 212 is effectively cooled. At the same time, since part of the fresh coolant of lower temperature circulates in a circular flow in the area of the cooling channel cover instead of flowing upwards through the constriction 220, and this coolant is not excessively heated by hot coolant flowing back from the area of the cooling channel cover 218, the area of the combustion bowl is also effectively cooled.

Der Kolben 210 bzw. das Kolbenoberteil 211 kann in an sich bekannter Weise durch Gießen, Schmieden, Sintern etc. hergestellt sein. In einem einstückigen Kolbenoberteil 211, wie es im nicht zur Erfindung gehörigen Ausführungsbeispiel gemäß Fig. 3 dargestellt ist, kann der Kühlkanal 216 in an sich bekannter Weise durch Gießen mit einem Salzkern hergestellt werden.The piston 210 or the piston upper part 211 can be produced in a manner known per se by casting, forging, sintering, etc. In a one-piece piston upper part 211, as in the embodiment not belonging to the invention according to Fig.3 As shown, the cooling channel 216 can be produced in a conventional manner by casting with a salt core.

Claims (6)

  1. Piston (10, 110, 210) for an internal combustion engine, having a piston head (11, 111, 211) and a piston skirt, wherein the piston head (11, 111, 211) has a circumferential ring belt (15, 115, 215) and, in the region of the ring belt (15, 115, 215), a circumferential cooling channel (16, 116, 216) having a cooling channel floor (17, 117, 217) and a cooling channel ceiling (18, 118, 218), wherein the cooling channel (16, 116, 216) has a narrowing (20, 120, 220),
    wherein the narrowing (20) is formed by precisely one material elevation (21) on a cooling channel wall and the cooling channel ceiling (18) is substantially dome-shaped,
    characterised in that
    the radial dimension (B) of the substantially dome-shaped cooling channel ceiling (18), at its widest point, is at least equal to twice the radial dimension (b) of the narrowing (20).
  2. Piston according to claim 1, characterised in that the narrowing (20, 120, 220) has a distance from the cooling channel floor (17, 117, 217) that corresponds to at least one third of the axial height of the cooling channel (20, 120, 220).
  3. Piston according to claim 1, characterised in that the narrowing (20, 120, 220) has a distance from the cooling channel floor (17, 117, 217) that corresponds to at most two thirds of the axial height of the cooling channel (20, 120, 220).
  4. Piston according to claim 1, characterised in that the narrowing (20, 120, 220) has substantially the same distance (A) from the cooling channel floor (17, 117, 217) as from the cooling channel ceiling (18, 118, 218).
  5. Piston according to claim 1, characterised in that the narrowing (20, 120, 220) is formed as a continuous narrowing (20, 120, 220).
  6. Piston according to claim 1, characterised in that the cooling channel (16) has a cooling channel wall (22) adjacent to the ring belt (15), which wall is inclined vertically or obliquely inwards.
EP12755778.3A 2011-07-05 2012-07-04 Piston for an internal combustion engine Active EP2729689B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011106562 2011-07-05
DE102011116332A DE102011116332A1 (en) 2011-07-05 2011-10-19 Piston for an internal combustion engine
PCT/DE2012/000670 WO2013004215A1 (en) 2011-07-05 2012-07-04 Piston for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2729689A1 EP2729689A1 (en) 2014-05-14
EP2729689B1 true EP2729689B1 (en) 2024-04-17

Family

ID=47426675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12755778.3A Active EP2729689B1 (en) 2011-07-05 2012-07-04 Piston for an internal combustion engine

Country Status (8)

Country Link
US (1) US9109530B2 (en)
EP (1) EP2729689B1 (en)
JP (1) JP6335781B2 (en)
KR (1) KR101962988B1 (en)
CN (1) CN103649509B (en)
BR (1) BR112014000079B1 (en)
DE (1) DE102011116332A1 (en)
WO (1) WO2013004215A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012014192A1 (en) 2012-07-18 2014-01-23 Mahle International Gmbh Piston e.g. single-part piston for e.g. diesel engine of passenger car, has cooling passage provided with passage wall adjacent to ring portion, and annular component provided in region of wall and comprising edge that projects into passage
DE102012215541A1 (en) 2012-08-31 2014-03-06 Mahle International Gmbh piston
JP6209382B2 (en) * 2013-07-24 2017-10-04 日立オートモティブシステムズ株式会社 Piston for internal combustion engine, piston manufacturing method and manufacturing apparatus
WO2017150321A1 (en) * 2016-03-02 2017-09-08 本田技研工業株式会社 Piston of internal combustion engine and method for manufacturing same
DE102016224280A1 (en) * 2016-06-02 2017-12-07 Mahle International Gmbh Piston of an internal combustion engine
DE102019213953A1 (en) * 2019-09-12 2021-03-18 Mahle International Gmbh Pistons for an internal combustion engine
DE102019219614A1 (en) * 2019-12-13 2021-06-17 Mahle International Gmbh Pistons for an internal combustion engine
US11326549B2 (en) * 2020-01-21 2022-05-10 Ford Global Technologies, Llc 218-0266 volcano-shaped inlet of piston oil-cooling gallery
DE102020207512A1 (en) 2020-06-17 2021-12-23 Mahle International Gmbh Method of making a piston
CN114278455B (en) * 2020-09-27 2023-12-19 马勒汽车技术(中国)有限公司 Piston with split-flow internal cooling flow channel
US20240011451A1 (en) * 2020-12-03 2024-01-11 Cummins Inc. Piston, block assembly, and method for cooling
DE102021203241A1 (en) 2021-03-30 2022-10-06 Mahle International Gmbh Piston for an internal combustion engine and method of manufacturing the piston
DE102021211034A1 (en) 2021-09-30 2023-03-30 Mahle International Gmbh Pistons

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2244008A (en) * 1939-06-16 1941-06-03 Gen Motors Corp Piston construction
US3349672A (en) * 1964-11-25 1967-10-31 Mahle Kg Piston for internal combustion engines
JP2003138984A (en) * 2001-11-02 2003-05-14 Yanmar Co Ltd Piston structure of internal combustion engine
JP2004285942A (en) * 2003-03-24 2004-10-14 Kubota Corp Engine
DE102004027974A1 (en) * 2004-06-08 2005-12-29 Mahle Gmbh A built piston and method of preventing damage in contact surfaces of the top and bottom of the piston
DE102006053179A1 (en) * 2005-11-10 2007-05-16 Ks Kolbenschmidt Gmbh Method for manufacturing one-piece steel piston of internal combustion engine for private cars uses fine casting with casting mould and lost core shaped to form closable openings in coolant channel once they are removed
DE102006013884A1 (en) * 2006-03-25 2007-09-27 Mahle International Gmbh Internal combustion engine`s piston, has head with piston base exposed to focal ray and skirt, and circular partition wall arranged in cooling channel formed by skirt and arranged parallel to head, where wall has nozzle-like openings
JP2007270813A (en) * 2006-03-31 2007-10-18 Yamaha Motor Co Ltd Piston for internal combustion engine

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT195181B (en) 1953-07-22 1958-01-25 Oesterr Saurerwerke Ag Pistons for internal combustion engines
DE1751342B1 (en) 1968-05-14 1970-06-18 Alcan Aluminiumwerke Piston with ring-shaped cooling channel arranged in the piston head
JPS54173114U (en) * 1978-05-26 1979-12-07
JPS5650753U (en) * 1979-09-27 1981-05-06
JPS5927119U (en) * 1982-08-13 1984-02-20 株式会社小松製作所 piston cooling system
DE3707462A1 (en) 1987-03-07 1988-09-15 Man B & W Diesel Gmbh Oil-cooled, multi-part trunk piston for internal combustion engines
DE4018252A1 (en) * 1990-06-07 1991-12-12 Man B & W Diesel Ag Oil cooled IC engine - has oil deflection ring to recirculate oil in internal chamber in position
JPH10184450A (en) * 1996-12-26 1998-07-14 Isuzu Motors Ltd Piston with cooling cavity part and manufacture thereof
JP4005209B2 (en) * 1998-03-17 2007-11-07 ヤンマー株式会社 Piston of internal combustion engine
DE102005037175A1 (en) * 2005-08-06 2007-02-08 Mahle International Gmbh Piston for an internal combustion engine and cover ring for the cooling channel of such a piston
ATE464466T1 (en) * 2005-09-17 2010-04-15 Ks Kolbenschmidt Gmbh PISTONS, ESPECIALLY COOLING CHANNEL PISTONS, WITH THREE FRICTION WELDING ZONES
WO2007054299A1 (en) * 2005-11-10 2007-05-18 Ks-Kolbenschmidt Gmbh One-part steel piston as a precision-casting variant with a core for the precision-casting production of a cooling channel
JP2007263068A (en) * 2006-03-29 2007-10-11 Toyota Motor Corp Piston abrasion resistant ring
DE102006022413B4 (en) 2006-05-13 2011-03-03 Ks Kolbenschmidt Gmbh Ringbearer cooling channel
JP2009215978A (en) 2008-03-11 2009-09-24 Honda Motor Co Ltd Fuel direct injection engine
DE102008062219A1 (en) * 2008-12-13 2010-06-17 Mahle International Gmbh Piston for an internal combustion engine
DE102010033879A1 (en) * 2010-08-10 2012-02-16 Mahle International Gmbh Method for producing a piston for an internal combustion engine and pistons for an internal combustion engine
DE102010033881A1 (en) * 2010-08-10 2012-02-16 Mahle International Gmbh Piston for an internal combustion engine and method for its production
DE102010056220A1 (en) * 2010-12-24 2012-06-28 Mahle International Gmbh Piston for an internal combustion engine
DE102011106379A1 (en) * 2011-07-04 2013-01-10 Mahle International Gmbh Piston for an internal combustion engine
US8671905B2 (en) * 2011-07-12 2014-03-18 Mahle International Gmbh Piston for an internal combustion engine and method for its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2244008A (en) * 1939-06-16 1941-06-03 Gen Motors Corp Piston construction
US3349672A (en) * 1964-11-25 1967-10-31 Mahle Kg Piston for internal combustion engines
JP2003138984A (en) * 2001-11-02 2003-05-14 Yanmar Co Ltd Piston structure of internal combustion engine
JP2004285942A (en) * 2003-03-24 2004-10-14 Kubota Corp Engine
DE102004027974A1 (en) * 2004-06-08 2005-12-29 Mahle Gmbh A built piston and method of preventing damage in contact surfaces of the top and bottom of the piston
DE102006053179A1 (en) * 2005-11-10 2007-05-16 Ks Kolbenschmidt Gmbh Method for manufacturing one-piece steel piston of internal combustion engine for private cars uses fine casting with casting mould and lost core shaped to form closable openings in coolant channel once they are removed
DE102006013884A1 (en) * 2006-03-25 2007-09-27 Mahle International Gmbh Internal combustion engine`s piston, has head with piston base exposed to focal ray and skirt, and circular partition wall arranged in cooling channel formed by skirt and arranged parallel to head, where wall has nozzle-like openings
JP2007270813A (en) * 2006-03-31 2007-10-18 Yamaha Motor Co Ltd Piston for internal combustion engine

Also Published As

Publication number Publication date
KR20140050020A (en) 2014-04-28
US20140290618A1 (en) 2014-10-02
CN103649509A (en) 2014-03-19
BR112014000079B1 (en) 2021-08-03
CN103649509B (en) 2019-10-15
EP2729689A1 (en) 2014-05-14
BR112014000079A2 (en) 2017-02-14
DE102011116332A1 (en) 2013-01-10
US9109530B2 (en) 2015-08-18
JP6335781B2 (en) 2018-05-30
JP2014520991A (en) 2014-08-25
KR101962988B1 (en) 2019-03-27
WO2013004215A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
EP2729689B1 (en) Piston for an internal combustion engine
EP1913250B1 (en) Piston for an internal combustion engine and covering ring for the cooling duct of a piston of said type
EP2184478A1 (en) Multipart piston for a combustion engine
EP2681469B1 (en) Piston for a combustion engine
DE102007050213A1 (en) Piston for an internal combustion engine
EP2113319B1 (en) Foundry core to construct a cooling channel
DE102006056013A1 (en) Piston for internal-combustion engine, has radially rotating cooling ducts spaced apart from each other and integrated to piston head and ring zone, and forming vertically aligned cross sectional profile
EP2890884A1 (en) Piston for an internal combustion engine
EP3004609A1 (en) Piston for an internal combustion engine
WO2014190964A1 (en) Piston for an internal combustion engine
WO2013004218A1 (en) Piston for an internal combustion engine
DE102015006354A1 (en) Piston for an internal combustion engine
DE102012014192A1 (en) Piston e.g. single-part piston for e.g. diesel engine of passenger car, has cooling passage provided with passage wall adjacent to ring portion, and annular component provided in region of wall and comprising edge that projects into passage
DE102004029926B4 (en) Piston for an internal combustion engine
EP2893177B1 (en) Piston for an internal combustion engine
EP2890883B1 (en) Piston
DE102019121728B3 (en) Pistons with an annular cooling chamber for reciprocating internal combustion engines
DE102007050214A1 (en) Piston for an internal combustion engine
DE102015005217A1 (en) Piston for an internal combustion engine
DE102009059656B4 (en) Piston for an internal combustion engine
DE102015005218A1 (en) Piston for an internal combustion engine
DE102005043072B4 (en) Pickup for a warehouse
WO2015104013A1 (en) Piston for an internal combustion engine, and method for producing the same
DE102013009161A1 (en) Piston for an internal combustion engine
DE102004060546A1 (en) Cooling duct piston for internal combustion engine has circular cooling duct arranged in piston head with at least one inlet opening and one discharge opening with upper wall which rises monotonously and lower wall which falls monotonously

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH