WO2017150321A1 - Piston of internal combustion engine and method for manufacturing same - Google Patents

Piston of internal combustion engine and method for manufacturing same Download PDF

Info

Publication number
WO2017150321A1
WO2017150321A1 PCT/JP2017/006732 JP2017006732W WO2017150321A1 WO 2017150321 A1 WO2017150321 A1 WO 2017150321A1 JP 2017006732 W JP2017006732 W JP 2017006732W WO 2017150321 A1 WO2017150321 A1 WO 2017150321A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cooling channel
combustion engine
internal combustion
fin
Prior art date
Application number
PCT/JP2017/006732
Other languages
French (fr)
Japanese (ja)
Inventor
新二 忍田
森 誠治
守門 星野
良重 岩▲崎▼
恭和 栗山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2017150321A1 publication Critical patent/WO2017150321A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid

Definitions

  • the present invention relates to a piston for an internal combustion engine and a method for manufacturing the same.
  • a piston for an automobile engine provided with an annular oil flow passage so as to go around the top is known (for example, see Patent Document 1).
  • This piston is cooled by the oil flowing through the oil flow passage when the engine is driven.
  • the oil flow passage of the piston of patent document 1 is exhibiting the substantially rectangular shape by the cross sectional view orthogonal to the rotation direction. Fins are erected on the ceiling surface of the oil flow passage so as to extend along the circumferential direction.
  • Such a piston is improved in cooling efficiency by increasing the contact area with the cooling oil flowing through the oil flow passage by the fins.
  • an object of the present invention is to provide a piston of an internal combustion engine that has excellent cooling efficiency and high reliability, and a method for manufacturing the same.
  • the piston of the internal combustion engine of the present invention that solves the above problems includes a cooling channel formed in an annular shape in the piston head along the outer periphery of the piston head, and the cooling channel extending in the extending direction of the cooling channel. And a fin formed on an inner wall surface, wherein the fin is formed at a position avoiding a stress concentration portion of the piston head around the cooling channel. Further, in the method of manufacturing the piston of the internal combustion engine, the core including at least a portion imitating the shape of the cooling channel is disposed at a predetermined position in a mold having a cavity imitating the shape of the piston, and It has the process of inject
  • FIG. 2 is a longitudinal sectional view of a piston taken along line II-II in FIG.
  • FIG. 3 is a partial perspective view of a piston showing a III-III cross section of FIG. 2.
  • CAE showing a stress distribution on the inner wall surface of the cooling channel of the piston is a (C omputer A ided E ngineering) analysis diagram. It is composition explanatory drawing for demonstrating the one aspect
  • the main feature of the piston of this embodiment is that fins are formed on the inner wall surface of the cooling channel so as to avoid the stress concentration portion of the piston head around the cooling channel.
  • the piston in this embodiment is assumed to be used for an automobile engine, and is disposed so as to be capable of reciprocating in a cylinder bore formed by a cylindrical space formed in a cylinder block.
  • the cylinder block in which the piston is disposed includes a cylinder head in which an intake port and an exhaust port are disposed on the upper side, and a crankcase that rotatably supports the crankshaft on the lower side.
  • the piston is attached to the crankshaft via a connecting rod (connecting rod). Oil is supplied to a cooling channel of the piston, which will be described in detail later, from an oil pan disposed below the crankcase via a predetermined path.
  • the piston flowing when the engine is driven is cooled by the oil flowing through the cooling channel. Below, after explaining the whole structure of a piston, it demonstrates in more detail about a cooling channel and the fin formed in this cooling channel.
  • FIG. 1 is a perspective view of the piston 1 of the present embodiment.
  • FIG. 2 is a longitudinal sectional view of the piston 1 taken along the line II-II in FIG.
  • the cooling channel 2 and the inlet passage 4 and the outlet passage 5 communicating with the cooling channel 2 are indicated by hidden lines (dotted lines).
  • the vertical direction in the following description is based on the vertical arrow direction shown in FIG. 1 with the cylinder head side of the piston disposed in the cylinder bore as the upward direction and the crankcase side as the downward direction.
  • the piston 1 includes a cylindrical piston head 6, and a sidewall 7 and a skirt 8 that are formed integrally with the piston head 6.
  • the piston head 6 has an upper surface 9 that defines a combustion space in the cylinder bore (not shown).
  • a combustion chamber 10 in which the upper surface 9 is partially depressed downward is formed at the center of the upper surface 9.
  • the upper surface 9 excluding the location where the combustion chamber 10 is formed may be referred to as the top surface 11.
  • the first ring groove 12a, the second ring groove 12b, and the third ring groove 12c are formed on the outer peripheral surface of the piston head 6 in order from the top so as to be arranged at a predetermined interval.
  • a top ring (not shown) is attached to the first ring groove 12a.
  • a second ring (not shown) is attached to the second ring groove 12b.
  • An oil ring (not shown) is attached to the third ring groove 12c.
  • FIGS. 1 and 2 a pair of sidewalls 7 are arranged so as to face each other below the piston head 6, and are integrally formed with the piston head 6 as described above.
  • FIG. 1 shows the outer surface of one of the opposing side walls 7a
  • FIG. 2 shows the inner surface of one of the opposing side walls 7b. ing.
  • a pin boss 14a in which a pin insertion hole 13a is formed is integrally formed in the sidewall 7a.
  • a pin boss 14b in which a pin insertion hole 13b is formed is formed integrally with the sidewall 7b.
  • a piston pin (not shown) connected to the connecting rod is inserted through the pin insertion hole 13a (see FIG. 1) and the pin insertion hole 13b (see FIG. 2).
  • skirts 8a and skirts 8b in this embodiment are arranged so as to face each other below the piston head 6. These skirts 8a and 8b are disposed so as to connect the pair of sidewalls 7a and 7b, and are formed integrally with the piston head 6 as described above.
  • the skirts 8a and 8b form a slidable contact surface with respect to the inner peripheral surface of the cylinder bore, and have a circular peripheral surface in a cross-sectional view. That is, the pair of sidewalls 7 a and 7 b and the skirts 8 a and 8 b facing each other below the piston head 6 have a substantially oval outer shape in a cross-sectional view orthogonal to the central axis of the piston 1.
  • the sidewalls 7a and 7b and the skirts 8a and 8b in the present embodiment are integrally formed, and have a hollow portion 15 on the inner side as shown in FIG.
  • the hollow portion 15 is opened downward, and the upper portion is closed by the piston head 6.
  • the hollow portion 15 faces the pin insertion hole 13a (see FIG. 1) and the pin insertion hole 13b (see FIG. 2).
  • the pair of sidewalls 7a and 7b is simply referred to as a sidewall 7 when it is not necessary to distinguish between them.
  • the pair of pin insertion holes 13a and 13b, and the pair of pin bosses 14a and 14b if it is not necessary to distinguish the pair, the skirt 8 and the pin insertion are simply performed. They are referred to as hole 13 and pin boss 14.
  • reference numeral 10 is a combustion chamber
  • reference numeral 12a is a first ring groove
  • reference numeral 12b is a second ring groove
  • reference numeral 12c is a third ring groove.
  • Reference numeral 2 is a cooling channel described below
  • reference numeral 3 is a fin
  • reference numeral 4 is an inlet passage
  • reference numeral 5 is an outlet passage.
  • FIG. 3 is a partial perspective view of the piston 1 showing a III-III cross section of FIG.
  • the fins 3 are indicated by imaginary lines (two-dot chain lines) for convenience of drawing.
  • the cooling channel 2 is formed in the piston head 6.
  • the cooling channel 2 is formed by partially hollowing the solid portion of the piston head 6.
  • the cooling channel 2 is formed along the outer periphery of the piston head 6 and has an annular shape inside the outer periphery.
  • reference numeral 4 denotes an inlet passage
  • reference numeral 5 denotes an outlet passage.
  • Reference numeral 7 is a side wall
  • reference numeral 8 is a skirt
  • reference numeral 14 is a pin boss
  • reference numeral 16 is an inner wall surface of the cooling channel 2.
  • the cooling channel 2 is preferably formed above the first ring groove 12a or formed in the vertical direction at the same height as the first ring groove 12a.
  • the cooling channel 2 formed at such a position is more excellent in the cooling efficiency of the piston head 6.
  • the cross-sectional shape of the cooling channel 2 in the present embodiment is substantially rectangular except for the fin 3 described in detail later.
  • the cross-sectional shape of the cooling channel 2 is not limited to this, and may be, for example, a polygon other than a rectangle, a circle, or an ellipse.
  • an inlet passage 4 and an outlet passage 5 is connected to the cooling channel 2. That is, one end side of the inlet passage 4 and the outlet passage 5 is open to the inner wall surface 16 of the cooling channel 2 as shown in FIG.
  • path 5 in this embodiment is avoiding the inner wall surface 16 part of the cooling channel 2 in which the fin 3 mentioned later is formed.
  • each of the inlet passage 4 and the outlet passage 5 extends in the piston head 6 in the vertical direction so that the cooling channel 2 and the hollow portion 15 of the piston 1 communicate with each other.
  • the inlet passage 4 and the outlet passage 5 are formed by removing support pins 31 and 31 (see FIG. 6) disposed in the mold 20 (see FIG. 6) in the manufacturing method of the piston 1 described in detail later. It is formed in the piston head 6 as a mark.
  • the inlet passage 4 is adapted to receive an oil jet that is continuously or intermittently injected from an oil jet nozzle (not shown) disposed below the cylinder bore (not shown). .
  • the oil jet nozzle is supplied with oil from the oil pan (not shown).
  • the oil flows through the cooling channel 2 from the inlet passage 4 to cool the piston head 6, and then is discharged to the hollow portion 15 of the piston 1 through the outlet passage 5.
  • the oil discharged to the hollow portion 15 is returned to the oil pan while lubricating the sliding contact portions of the crankshaft (not shown), the connecting rod (not shown) and the like disposed below.
  • the piston 1 of the present embodiment has fins 3 formed on the inner wall surface 16 of the cooling channel 2.
  • the fin 3 in the present embodiment is configured by a rib that is erected on the inner wall surface 16 of the cooling channel 2.
  • the fins 3 in this embodiment are assumed to extend continuously over the entire circumference of the cooling channel 2, but intermittently in the circumferential direction of the cooling channel 2 (in the circumferential direction) as will be described later. It is also acceptable to be formed.
  • the fin 3 is formed at a position that avoids the stress concentration portion of the piston head 6 around the cooling channel 2.
  • FIG. 4 shows the cooling channel 2 and the outlet passage 5 in the half of the piston 1 (the half located on the back side in FIG. 2) cut along the line II-II in FIG.
  • FIG. 4 (a) is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is viewed obliquely upward from the hollow portion 15 side of the piston 1 shown in FIG.
  • FIG. 4B is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is looked up obliquely upward from below the outer peripheral side of the piston head 6 shown in FIG.
  • FIG. 4C is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is looked down obliquely downward from above the piston head 6 shown in FIG.
  • FIGS. 4 (a), 4 (b) and 4 (c) show the inside of the cooling channel 2 according to the stress of the piston head 6 (see FIG. 2) around the cooling channel 2 when the engine is driven under a predetermined condition.
  • the stress distribution appearing on the wall surface 16 is expressed stepwise in shades of shade. Specifically, as shown in FIGS. 4 (a), 4 (b) and 4 (c), the area where the stress is 0 MPa or more and the detection limit or less is shown in white, and the shade density is the stress. According to the magnitude
  • the low stress region A3 is formed on the inner wall surface 16 formed on the outer peripheral side (ring grooves 12a, 12b, and 12c side in FIG. 2).
  • the stress concentration part which consists of middle stress area
  • a low stress region A3 medium stress is formed on the inner wall surface 16 formed on the inner peripheral side (the central axis side of the piston head 6).
  • a stress concentration site consisting of a region A2 and a high stress region A1 appears.
  • a conspicuous stress concentration portion does not appear in the upper portion of the inner wall surface 16.
  • FIG. 4A a conspicuous stress concentration portion appears in the lower portion of the inner wall surface 16 (the inner wall surface 16 on the skirt 8 side).
  • 4 (a), 4 (b) and 4 (c) show the stress distribution in the cooling channel 2 in the half located on the back side of the paper of FIG. 2, but the paper of FIG. Also in the half located on the front side, stress concentration sites appear in a mirror image (line symmetric) positional relationship with respect to the stress concentration sites shown in FIGS.
  • the fin 3 in the present embodiment is formed at a position that avoids the stress concentration portion, in other words, is formed on the inner wall surface 16 of the cooling channel 2 where no conspicuous stress concentration portion appears.
  • the fin 3 includes at least an inner wall surface 16 formed on the pin boss 14 side of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14, and the top surface 11 of the piston 1 and the pin boss 14.
  • shaft X2 means the center axis
  • FIG. 5 is a configuration explanatory diagram for explaining an aspect of the piston 1 in which the fins 3 are twisted so as to avoid stress concentration sites.
  • the piston 1 is drawn with a virtual line (two-dot chain line).
  • FIG. 5 shows a state in which the fin 3 is twisted by showing a cross section of the cooling channel 2 in a predetermined phase of the cooling channel 2 that goes around the central axis X ⁇ b> 1 of the piston 1.
  • the S1-S1 cross section and the S5-S5 cross section indicate the cross section of the cooling channel 2 above the center in the circumferential direction of each skirt 8 (one skirt is not shown).
  • the S3-S3 cross section and the S7-S7 cross section show the cross section of the cooling channel 2 above the center of each pin boss 14 (one pin boss is not shown).
  • the S2-S2 cross section shows a cross section in the middle of changing from the S1-S1 cross section to the S3-S3 cross section, and shows a cross section at the center in the circumferential direction between S1-S3.
  • section S4-S4 shows a section in the middle of changing from section S3-S3 to section S5-S5, and shows a section at the center in the circumferential direction between S3-S5.
  • the S6-S6 cross section shows a cross section in the middle of changing from the S5-S5 cross section to the S7-S7 cross section, and shows a cross section at the center in the circumferential direction between S5-S7.
  • the section S8-S8 shows a section in the middle of changing from the section S7-S7 to the section S1-S1, and shows a section at the center in the circumferential direction between S7-S1.
  • the left side of the drawing shows the outer peripheral side of the piston head 6, and the upper side of the drawing shows the top surface 11 side of the piston 1.
  • the arrows in the respective cross-sectional views of the eight cooling channels 2 indicate directions in which the fins 3 are twisted around the cooling channel central axis X2 when assuming the circulation direction of the cooling channel 2 returning from S1 to S1 through S5. Show. Symbols S1 to S8 appended to the arrow indicate the cross-sectional transition direction. For example, “S1 ⁇ S2” indicates a direction in which the fin 3 is twisted from S1 to S2.
  • the fin 3 in the piston 1 of the present embodiment is a high stress region that appears above the inner wall surface 16 (on the top surface 11 side) in the S1-S1 cross section and the S5-S5 cross section on the skirt 8. It is formed on the lower side of the inner wall surface 16 so as to avoid A1 (see FIG. 4C). That is, the fin 3 is formed on the lower side of the inner wall surface 16 where a conspicuous stress concentration site does not appear.
  • the fin 3 has a medium stress region A2 on the inner wall surface 16 on the pin boss 14 side (see FIG. 4A) and an inner wall surface 16 on the outer peripheral side in the S3-S3 cross section and the S7-S7 cross section on the pin boss 14. Is formed on the inner wall surface 16 on the upper side (the top surface 11 side) so as to avoid the intermediate stress region A2 (see FIG. 4B). That is, the fin 3 is formed on the upper side of the inner wall surface 16 where a conspicuous stress concentration portion does not appear.
  • the fin 3 shown in the S1-S1 cross section is gradually twisted in the direction of the arrow attached to the S1-S1 cross section as the cooling channel 2 goes around, so that the fin 3 shown in the S2-S2 cross section becomes a position. Then, the fin 3 is gradually twisted in the direction of the arrow added to the S2-S2 cross section, thereby becoming the position of the fin 3 shown in the S3-S3 cross section.
  • the displacement and the displacement from the position of the fin 3 shown in the S7-S7 cross section to the position of the fin 3 shown in the S1-S1 cross section are performed by gradually twisting the fin 3 in the direction of the arrow attached to each cross-sectional view.
  • the twist direction of the fin 3 in this embodiment is reversed at “S3 ⁇ S4” in the S3-S3 sectional view and “S7 ⁇ S8” in the S7-S7 sectional view. This is because the fin 3 more reliably avoids the stress concentration site.
  • the fin 3 is formed at least on the inner wall surface formed on the pin boss 14 side of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14.
  • the inner wall surface 16 formed on the outer peripheral side and the inner peripheral side of the piston head 6 of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14, and the top surface 11 of the piston 1 and the skirt 8 What is necessary is just to be formed in the position which avoids the inner wall surface 16 by the side of the top surface 11 of the cooling channel 2 extended between.
  • FIG. 6 is a configuration explanatory view of the mold 20 used for manufacturing the piston 1.
  • the mold 20 includes a pair of side molds 21, 21 that can move in the horizontal direction, an upper mold 22 that is combined with the side molds 21, 21 from above, and a side mold 21, 21 from below.
  • the lower mold 23 to be combined and a pair of core pins 24a and 24b disposed at positions corresponding to the pin insertion holes 13a and 13b of the piston 1 (see FIG. 1) are mainly provided.
  • a cavity 25 simulating the shape of the inverted piston 1 (piston 1 obtained by reversing the top and bottom of the state shown in FIG. 1) is formed in the closed mold 20.
  • the side molds 21 and 21 are formed with runners 26 through which the molten metal flows.
  • the runner 26 communicates with the cavity 25 through a plurality of gates (not shown) formed at predetermined locations around the cavity 25.
  • a plurality of overflow outlets (not shown) connected to the ceiling surface of the cavity 25 are formed in the upper portions of the side molds 21 and 21, and these overflow outlets are connected to the overflow reservoir 27.
  • the overflow reservoir 27 is provided with a predetermined degassing device 28.
  • symbol 29 is the salt core arrange
  • the salt core 29 is formed to resemble the shape of the annular cooling channel 2 (see FIG. 5), and is disposed in the cavity 25 by a support member (not shown) provided on the lower mold 23.
  • the salt core 29 shown in FIG. 6 is substantially U-shaped in a cross-sectional view in which a portion corresponding to the fin 3 (see FIG. 5) is missing, but a third core that will be described in detail later as a modified example.
  • the composite core 33 (see FIG. 7A) can be used.
  • the upper mold 22 is provided with a pair of support pins 31 and 31 penetrating the upper mold 22 in the vertical direction. These support pins 31, 31 are movable in the vertical direction with respect to the upper mold 22. These support pins 31, 31 are disposed at positions where the tip ends in the cavity 25 penetrating the upper mold 22 correspond to the inlet passage 4 (see FIG. 2) and the outlet passage 5 (see FIG. 2), respectively. ing. Each of the tips of the support pins 31, 31 is in contact with the salt core 29 in the cavity 25.
  • reference numeral 32 denotes a piston that pressurizes the molten metal in the cavity 25.
  • the salt core 29 simulating the shape of the cooling channel 2 (see FIG. 5) is formed.
  • the salt core 29 is formed of a material containing salt as a main component.
  • the salt include sodium chloride, potassium chloride, calcium chloride, magnesium chloride, barium chloride and the like.
  • the material of the salt core 29 can include aggregates (for example, artificial sand and natural sand), hard powder (for example, ceramic powder) and the like as necessary.
  • a commercial item can also be used as a material of the salt core 29 in this embodiment.
  • the salt core 29 is disposed at a predetermined position of the mold 20. Thereafter, molten metal is poured into the mold 20, and the salt core 29 is cast in the cavity 25. Then, after the molten metal in the mold 20 is cooled, the mold is opened and the piston base material (not shown) in the mold 20 is taken out. At this time, pin insertion holes 13a and 13b (see FIGS. 1 and 2) are formed in the trace where the core pins 24a and 24b are extracted from the piston base material. Further, an inlet passage 4 and an outlet passage 5 shown in FIG. 2 are formed at the trace where the support pins 31 are extracted from the piston base material.
  • the salt core 29 remaining in the piston base material is taken out by water washing or air blow through traces of the support pins 31 and 31 (corresponding to the inlet passage 4 and the outlet passage 5 in FIG. 2).
  • the cooling channel 2 (see FIG. 5) is formed on the piston base material as a trace of the salt core 29 being taken out.
  • finishing processing is performed on the piston base material by cutting, polishing, etc., and a series of manufacturing steps of the piston 1 is completed.
  • the manufacturing method in this embodiment has demonstrated what uses the said metal mold
  • FIG. 7 is a process explanatory view of the manufacturing method of the piston 1 using the composite core 33
  • (a) is a partial side view including a cross section of the composite core 33
  • (b) shows the molten metal 34 in the mold 20.
  • FIG. 6 is a partial side view including a cross-section showing a state of the composite core 33 when injected into (see FIG. 6)
  • FIG. 6C is a partial side view including a cross-section showing a state of the cast-in composite core 33.
  • the partial side view of the composite core 33 of FIG. 7 is drawn on the basis of the composite core 33 arranged in the mold 20 like the salt core 29 shown in FIG.
  • the composite core 33 used in this manufacturing method imitates the first core 33 a simulating the shape of the fin 3 (see FIG. 5) and the cooling channel 2. It is comprised with the 2nd core 33b.
  • the second core 33b is formed of the same shape and material as the salt core 29 (see FIG. 6).
  • the first core 33a is disposed substantially inside the U shape in a cross-sectional view of the second core 33b. That is, as shown in FIG. 5, the first core 33a is formed on the peripheral surface of the annular second core 33b in the same manner as the fin 3 formed to be twisted in the annular cooling channel 2. It is formed so as to be twisted in the circumferential direction of the child 33b.
  • the first core 33 a is removed from the second core by the heat of the molten metal 34 injected into the mold 20.
  • the material (core material) of the first core 33a examples include a material that contacts the molten metal 34 in the mold 20 and melts or vaporizes.
  • the main component is wax, specifically, an ester of a higher fatty acid and a monohydric or dihydric higher alcohol (for example, myricyl cellotate, myricyl alcohol, Oleic acid, cetyl alcohol and the like), but are not limited thereto.
  • the composite core 33 is disposed in the mold 20, and the molten metal 34 is injected into the mold 20. Thereby, the composite core 33 comes into contact with the molten metal 34 as shown in FIG.
  • the first core 33 a is removed from the second core 33 b by the molten metal 34, while being replaced with the molten metal 34.
  • the second core 33 b having the same shape as the salt core 29 is cast by the molten metal 34.
  • the fins 3 are formed inside the substantially U-shape of the second core 33b having the same shape as the salt core 29.
  • the mold is opened by cooling, and the second core 33b is removed in the same manner as the salt core 29, and the cooling channel 2 is formed.
  • the piston base material is finished by cutting, polishing, etc., and the series of manufacturing steps of the piston 1 is completed.
  • the piston 1 of this embodiment can form the fins 3 twisted in the cooling channel 2 by a manufacturing method as described above, but is not limited to this manufacturing method.
  • the first core 33a is not lost by the molten metal 34 as described above, but the first core 33a is removed before the molten metal 34 is injected, and then the gold is removed.
  • the molten metal 34 can also be poured into the mold 20.
  • a core formed by a 3D plotter (3D printer) can be disposed in the mold 30. It can also be manufactured by a stacking method using a 3D plotter (3D printer) using three-dimensional data based on the shape of the piston 1. According to this manufacturing method, the core can be omitted.
  • the fins 3 in the piston 1 of the present embodiment are formed on the inner wall surface 16 of the cooling channel 2 so as to avoid stress concentration sites. Therefore, the piston 1 according to the present embodiment is less reliable than the conventional piston, and has a high reliability because it is difficult to form starting points such as fatigue fracture and brittle fracture.
  • the piston 1 of the present embodiment includes an inner wall surface 16 (see FIG. 4A) formed on the pin boss 14 side which is a stress concentration portion, and an inner wall surface on the top surface 11 side on the skirt 8. 16 (see FIG. 4B), and the fin 3 is formed so as to avoid the inner wall surface 16 (see FIG. 4C) formed on the outer peripheral side of the piston head 6 on the pin boss 14. Yes. Therefore, the piston 1 of the present embodiment is more reliable because it is harder to form a starting point such as fatigue fracture or brittle fracture more reliably.
  • the piston 1 of the present embodiment avoids a stress concentration site by the fin 3 being twisted around the cooling channel central axis X2 (see FIG. 5). This allows the fins 3 to extend so as to avoid stress concentration sites without disturbing the oil flow in the cooling channel 2.
  • the fin 3 twisted in the cooling channel 2 has a longer length in the cooling channel 2 than a fin that is not twisted. That is, the piston 1 of the present embodiment having the fin 3 that is twisted further improves the cooling performance by increasing the heat transfer area of the fin 5 in the cooling channel 2 as compared with the piston having the fin that is not twisted. To do.
  • the fin 3 is twisted, so that the oil flowing along the fin 3 has a longer flow stroke than the oil flowing along the fin not twisted. Therefore, the oil flow rate in the cooling channel 2 is increased, and the oil flow easily forms a turbulent state. The heat exchange efficiency between the fins 3 and the oil is further improved.
  • the manufacturing method of the piston 1 of the present embodiment employs a casting method using a salt core 29 having a recess (substantially U-shaped inner space) corresponding to the fin 3 to be twisted.
  • a salt core 29 having a recess (substantially U-shaped inner space) corresponding to the fin 3 to be twisted.
  • the twisted fins 3 can be easily formed, which is extremely difficult in the manufacturing method by cutting.
  • the first core 33a is disposed in the recess (substantially U-shaped inner space) of the second core 33b corresponding to the salt core 29. Since they are arranged, the shape retention when handling the composite core 33 (third core) becomes better.
  • the first core 33 a of the composite core 33 (third core) is removed from the second core 33 b by the heat of the molten metal 34. It is made of the material to be. As described above, the fin 3 is formed by the molten metal that has entered the removal trace of the first core 33a.
  • the salt core 29 is formed by a molten metal that has entered a recess (substantially U-shaped inner space) formed in the salt core 29 in advance.
  • the salt core 29 is formed by filling the above-mentioned material in a mold (not shown) simulating the cooling channel 2 in which the fins 3 are formed. Therefore, the depression (substantially U-shaped inner space) of the salt core 29 corresponding to the fin 3 is limited to a shape that can be punched (a shape having a punching taper). Thereby, the shape of the fin 3 is also restricted.
  • the shape of the fin 3 is limited to a shape that can be punched. It is never done. Therefore, the design freedom of the shape of the fin 3 is further improved, and the fin 3 having a larger surface area (heat transfer area) can be formed.
  • the fin 3 at the position shown in the S1-S1 cross-sectional view is gently twisted so as to be the position of each fin 3 from the S2-S2 cross-sectional view to the S8-S8 cross-sectional view.
  • the piston 1 that has been twisted and returned to the position of the fin 3 shown in the S1-S1 cross-sectional view has been described.
  • the piston 1 of the present invention is not limited to this as long as the fin 3 is formed at a position avoiding the stress concentration site.
  • FIG. 8 is a chart showing modifications 1 to 4 of the fin 3 formed on the inner wall surface of the cooling channel 2.
  • the S1-S1 cross section, the S2-S2 cross section, and the S3-S3 cross section respectively correspond to the S1-S1 cross section, the S2-S2 cross section, and the S3-S3 cross section in FIG. That is, the S1-S1 cross section represents the cross section of the cooling channel 2 on the skirt 8.
  • the S3-S3 cross section represents a cross section of the cooling channel 2 on the pin boss 14.
  • the S2-S2 cross section represents a cross section of the cooling channel 2 at the S2 position which is an intermediate position between S1 and S3.
  • the left side of the drawing shows the outer peripheral side of the piston head 6, the right side of the drawing shows the inner diameter side of the piston head 6, and the upper side of the drawing shows the piston. 1 shows the top surface 11 side.
  • the fins 3 in the cooling channel 2 on the skirt 8 are on the top surface of the cooling channel 2 where stress concentration points appear (see FIG. 4B).
  • the fins 3 are formed so as to avoid the above. That is, in the first and second modifications, the fin 3 is formed on the inner wall surface 16 on the inner peripheral side of the cooling channel 2. In the third modification and the fourth modification, the fins 3 are formed on the inner wall surface 16 on the outer peripheral side of the cooling channel 2.
  • the fin 3 in the cooling channel 2 on the pin boss 14 is connected to the inner wall surface 16 on the lower side of the cooling channel 2 where the stress concentration portion appears, and the cooling.
  • the fins 3 are formed so as to avoid the outer peripheral side and inner peripheral wall surface 16 of the channel 2. That is, in Modification 1 to Modification 4, the fin 3 is formed on the inner wall surface 16 on the upper side of the cooling channel 2.
  • the fin 3 is twisted counterclockwise (counterclockwise) from the S1 position, and the fin 3 is formed on the inner wall surface 16 on the upper side of the cooling channel 2 at the S2 position. Further, in the first modification, the fin 3 extends as it is without being twisted from the S2 position to the S3 position.
  • the fin 3 extends without being twisted from the S1 position to the S2 position. Further, from the S2 position to the S3 position, the fin 3 is twisted counterclockwise (counterclockwise) and formed on the upper inner wall surface 16.
  • the fin 3 is twisted clockwise (clockwise) and formed on the upper inner wall surface 16. Further, the fin 3 extends without being twisted from the S2 position to the S3 position.
  • the fin 3 extends without being twisted from the S1 position to the S2 position. Further, from the S2 position to the S3 position, the fin 3 is twisted clockwise (clockwise) and formed on the inner wall surface 16 on the inner diameter side.
  • the fins 3 are continuously formed over the entire circumference of the cooling channel 2, but the present invention allows the fins 3 to be formed intermittently. That is, the fin 3 in the piston 1 of the present invention may be either continuous or discontinuous as long as it is formed at a position that avoids the stress concentration portion over the entire circumference of the cooling channel 2.
  • the fins 3 extending in the circumferential direction of the cooling channel 2 in one row are assumed, but a plurality of rows of fins 3 may be used.

Abstract

This piston (1) of an internal combustion engine is characterized by being provided with: a cooling channel (2) that is formed inside a piston head (6) so as to be annular along the outer periphery of the piston head (6); and a fin (3) that is formed on the inner wall surface of the cooling channel (2) so as to extend in the extending direction of the cooling channel (2), wherein the fin (3) is formed at a position avoiding a part where concentration of stress occurs on the piston head (6) around the cooling channel (2).

Description

内燃機関のピストン及びその製造方法Piston for internal combustion engine and method for manufacturing the same
 本発明は、内燃機関のピストン及びその製造方法に関する。 The present invention relates to a piston for an internal combustion engine and a method for manufacturing the same.
 従来、自動車用エンジンのピストンとして頂部を周回するように環状のオイル流通路を設けたものが知られている(例えば、特許文献1参照)。このピストンは、エンジン駆動時にオイル流通路を流れるオイルによって冷却される。また、特許文献1のピストンのオイル流通路は、周回方向に直交する断面視で略矩形を呈している。このオイル流通路の天井面には、周回方向に沿って延びるようにフィンが立設されている。
 このようなピストンは、フィンによってオイル流通路を流れる冷却オイルとの接触面積が増大することで冷却効率が向上する。
2. Description of the Related Art Conventionally, a piston for an automobile engine provided with an annular oil flow passage so as to go around the top is known (for example, see Patent Document 1). This piston is cooled by the oil flowing through the oil flow passage when the engine is driven. Moreover, the oil flow passage of the piston of patent document 1 is exhibiting the substantially rectangular shape by the cross sectional view orthogonal to the rotation direction. Fins are erected on the ceiling surface of the oil flow passage so as to extend along the circumferential direction.
Such a piston is improved in cooling efficiency by increasing the contact area with the cooling oil flowing through the oil flow passage by the fins.
特開昭58-101250号公報JP 58-101250 A
 ところが、エンジン駆動時にシリンダボア内を摺動するピストンには応力が発生する。特にオイル流通路周りで発生する応力は、フィンの形成部位に集中しやすい。したがって、フィンの形成部位は、フィンを有しない部位よりも疲労破壊や脆性破壊などの起点となりやすい。したがって、このようなピストンにおいては、頂部の冷却効率に優れるとともに信頼性の高いものが望まれている。 However, stress is generated in the piston that slides in the cylinder bore when the engine is driven. In particular, the stress generated around the oil flow passage tends to concentrate on the fin formation site. Therefore, the formation site of the fin is more likely to be a starting point for fatigue failure or brittle failure than the site without the fin. Therefore, such a piston is desired to have excellent cooling efficiency at the top and high reliability.
 そこで、本発明の課題は、冷却効率に優れるとともに信頼性の高い内燃機関のピストン及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a piston of an internal combustion engine that has excellent cooling efficiency and high reliability, and a method for manufacturing the same.
 前記課題を解決する本発明の内燃機関のピストンは、ピストンヘッドの外周に沿って前記ピストンヘッド内に環状に形成されるクーリングチャンネルと、前記クーリングチャンネルの延在方向に延びるように前記クーリングチャンネルの内壁面に形成されるフィンと、を備え、前記フィンは、前記クーリングチャンネル周りでのピストンヘッドの応力集中部位を避ける位置に形成されていることを特徴とする。
 また、この内燃機関のピストンの製造方法は、前記クーリングチャンネルの形状を模った部分を少なくとも含む中子をピストンの形状を模ったキャビティを有する型内の所定の位置に配置するとともに、前記型内に溶湯を注入する工程を有することを特徴とする。
The piston of the internal combustion engine of the present invention that solves the above problems includes a cooling channel formed in an annular shape in the piston head along the outer periphery of the piston head, and the cooling channel extending in the extending direction of the cooling channel. And a fin formed on an inner wall surface, wherein the fin is formed at a position avoiding a stress concentration portion of the piston head around the cooling channel.
Further, in the method of manufacturing the piston of the internal combustion engine, the core including at least a portion imitating the shape of the cooling channel is disposed at a predetermined position in a mold having a cavity imitating the shape of the piston, and It has the process of inject | pouring a molten metal in a type | mold.
 本発明によれば、冷却効率に優れるとともに信頼性の高い内燃機関のピストン及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a piston for an internal combustion engine that has excellent cooling efficiency and high reliability, and a method for manufacturing the same.
本発明の実施形態に係るピストンの斜視図である。It is a perspective view of the piston which concerns on embodiment of this invention. 図1のII-II線におけるピストンの縦断面図である。FIG. 2 is a longitudinal sectional view of a piston taken along line II-II in FIG. 図2のIII-III断面を示すピストンの部分斜視図である。FIG. 3 is a partial perspective view of a piston showing a III-III cross section of FIG. 2. ピストンのクーリングチャンネルの内壁面における応力分布を示すCAE(Computer Aided Engineering)解析図である。CAE showing a stress distribution on the inner wall surface of the cooling channel of the piston is a (C omputer A ided E ngineering) analysis diagram. 応力集中部位を避けるようにフィンが捻じれているピストンの一態様を説明するための構成説明図である。It is composition explanatory drawing for demonstrating the one aspect | mode of the piston in which the fin is twisted so that a stress concentration site | part may be avoided. ピストンの製造に使用する金型の構成説明図である。It is composition explanatory drawing of the metal mold | die used for manufacture of a piston. 複合中子を使用したピストンの製造方法の工程説明図であり、(a)は複合中子の断面を含む部分側面図、(b)は、溶湯を金型に注入した際の複合中子の様子を示す、断面を含む部分側面図、(c)は、鋳包まれた複合中子の様子を示す、断面を含む部分側面図である。It is process explanatory drawing of the manufacturing method of the piston which uses a composite core, (a) is a partial side view including the cross section of a composite core, (b) is a composite core at the time of injecting a molten metal into a metal mold | die. (C) is a partial side view including a cross section showing a state of a cast-in composite core. クーリングチャンネルの内壁面に形成されるフィンの変形例1から変形例4を示す図表である。It is a graph which shows the modification 1 to the modification 4 of the fin formed in the inner wall face of a cooling channel.
 次に、本発明の実施形態における内燃機関のピストンについて説明する。
 本実施形態のピストンは、クーリングチャンネル周りでのピストンヘッドの応力集中部位を避けるようにクーリングチャンネルの内壁面にフィンが形成されていることを主な特徴とする。
Next, the piston of the internal combustion engine in the embodiment of the present invention will be described.
The main feature of the piston of this embodiment is that fins are formed on the inner wall surface of the cooling channel so as to avoid the stress concentration portion of the piston head around the cooling channel.
 本実施形態でのピストンは、自動車用エンジンに使用されるものを想定しており、シリンダブロックに形成される円柱空間からなるシリンダボア内に往復運動可能に配置されている。ちなみに、ピストンが配置されるシリンダブロックは、上側に吸気ポート及び排気ポートが配置されるシリンダヘッドを備え、下側にクランクシャフトを回転自在に支持するクランクケースを備えている。ピストンは、このクランクシャフトにコネクティングロッド(コンロッド)を介して取り付けられている。後に詳しく説明するピストンのクーリングチャンネルには、クランクケースの下側に配置されるオイルパンから所定の経路を介してオイルが供給される。クーリングチャンネルを流れるオイルによってエンジン駆動時のピストンは冷却される。以下では、ピストンの全体構成について説明した後に、クーリングチャンネルと、このクーリングチャンネル内に形成されるフィンについてさらに詳しく説明する。 The piston in this embodiment is assumed to be used for an automobile engine, and is disposed so as to be capable of reciprocating in a cylinder bore formed by a cylindrical space formed in a cylinder block. Incidentally, the cylinder block in which the piston is disposed includes a cylinder head in which an intake port and an exhaust port are disposed on the upper side, and a crankcase that rotatably supports the crankshaft on the lower side. The piston is attached to the crankshaft via a connecting rod (connecting rod). Oil is supplied to a cooling channel of the piston, which will be described in detail later, from an oil pan disposed below the crankcase via a predetermined path. The piston flowing when the engine is driven is cooled by the oil flowing through the cooling channel. Below, after explaining the whole structure of a piston, it demonstrates in more detail about a cooling channel and the fin formed in this cooling channel.
<ピストンの全体構成>
 図1は、本実施形態のピストン1の斜視図である。図2は、図1のII-II線におけるピストン1の縦断面図である。なお、図1中、クーリングチャンネル2、並びにこのクーリングチャンネル2に連通する入口通路4及び出口通路5はそれぞれ隠れ線(点線)で示している。また、以下の説明における上下の方向は、シリンダボア内に配置されたピストンのシリンダヘッド側を上方向とし、クランクケース側を下方向とした図1に示す上下の矢印方向を基準とする。
<Piston overall configuration>
FIG. 1 is a perspective view of the piston 1 of the present embodiment. FIG. 2 is a longitudinal sectional view of the piston 1 taken along the line II-II in FIG. In FIG. 1, the cooling channel 2 and the inlet passage 4 and the outlet passage 5 communicating with the cooling channel 2 are indicated by hidden lines (dotted lines). Further, the vertical direction in the following description is based on the vertical arrow direction shown in FIG. 1 with the cylinder head side of the piston disposed in the cylinder bore as the upward direction and the crankcase side as the downward direction.
 図1に示すように、ピストン1は、円柱状のピストンヘッド6と、このピストンヘッド6と一体に形成されるサイドウォール7とスカート8と、を備えている。
 ピストンヘッド6には、前記のシリンダボア(図示を省略)内で燃焼空間を画成する上面9が規定されている。
As shown in FIG. 1, the piston 1 includes a cylindrical piston head 6, and a sidewall 7 and a skirt 8 that are formed integrally with the piston head 6.
The piston head 6 has an upper surface 9 that defines a combustion space in the cylinder bore (not shown).
 上面9の中央部には、この上面9が下方に部分的に窪んで形成される燃焼室10が形成されている。なお、以下の説明においては、燃焼室10の形成箇所を除く上面9を頂面11ということがある。 A combustion chamber 10 in which the upper surface 9 is partially depressed downward is formed at the center of the upper surface 9. In the following description, the upper surface 9 excluding the location where the combustion chamber 10 is formed may be referred to as the top surface 11.
 ピストンヘッド6の外周面には、上方から順番に第1リング溝12a、第2リング溝12b、及び第3リング溝12cが所定の間隔を開けて並ぶように形成されている。なお、第1リング溝12aにはトップリング(図示を省略)が取り付けられる。第2リング溝12bにはセカンドリング(図示を省略)が取り付けられる。第3リング溝12cには、オイルリング(図示を省略)が取り付けられる。 The first ring groove 12a, the second ring groove 12b, and the third ring groove 12c are formed on the outer peripheral surface of the piston head 6 in order from the top so as to be arranged at a predetermined interval. A top ring (not shown) is attached to the first ring groove 12a. A second ring (not shown) is attached to the second ring groove 12b. An oil ring (not shown) is attached to the third ring groove 12c.
 サイドウォール7は、図1及び図2に示すように、ピストンヘッド6の下方で相互に対向するように一対配置され、前記のようにピストンヘッド6と一体に形成されている。ちなみに、図1には対向し合うサイドウォール7のうちの一方のサイドウォール7aの外面が示され、図2には、対向し合うサイドウォール7のうちの一方のサイドウォール7bの内面が示されている。 As shown in FIGS. 1 and 2, a pair of sidewalls 7 are arranged so as to face each other below the piston head 6, and are integrally formed with the piston head 6 as described above. Incidentally, FIG. 1 shows the outer surface of one of the opposing side walls 7a, and FIG. 2 shows the inner surface of one of the opposing side walls 7b. ing.
 図1に示すように、サイドウォール7aには、ピン挿通孔13aが形成されるピンボス14aが一体に形成されている。図2に示すように、サイドウォール7bには、ピン挿通孔13bが形成されるピンボス14bが一体に形成されている。これらピン挿通孔13a(図1参照)及びピン挿通孔13b(図2参照)には、前記のコネクティングロッドと連結するピストンピン(図示を省略)が挿通される。 As shown in FIG. 1, a pin boss 14a in which a pin insertion hole 13a is formed is integrally formed in the sidewall 7a. As shown in FIG. 2, a pin boss 14b in which a pin insertion hole 13b is formed is formed integrally with the sidewall 7b. A piston pin (not shown) connected to the connecting rod is inserted through the pin insertion hole 13a (see FIG. 1) and the pin insertion hole 13b (see FIG. 2).
 本実施形態でのスカート8aとスカート8bとは、図2に示すように、ピストンヘッド6の下方で相互に対向するように一対配置されている。これらのスカート8a,8bは、一対のサイドウォール7a,7bを連結するように配置され、前記のようにピストンヘッド6と一体に形成されている。 Referring to FIG. 2, a pair of skirts 8a and skirts 8b in this embodiment are arranged so as to face each other below the piston head 6. These skirts 8a and 8b are disposed so as to connect the pair of sidewalls 7a and 7b, and are formed integrally with the piston head 6 as described above.
 スカート8a,8bは、前記のシリンダボアの内周面に対する摺接面を形成し、断面視で円弧の周面を有している。つまり、ピストンヘッド6の下方でそれぞれ対向し合う一対のサイドウォール7a,7bとスカート8a,8bとは、ピストン1の中心軸に直交する断面視で略オーバル形状の外形を有している。 The skirts 8a and 8b form a slidable contact surface with respect to the inner peripheral surface of the cylinder bore, and have a circular peripheral surface in a cross-sectional view. That is, the pair of sidewalls 7 a and 7 b and the skirts 8 a and 8 b facing each other below the piston head 6 have a substantially oval outer shape in a cross-sectional view orthogonal to the central axis of the piston 1.
 また、本実施形態でのサイドウォール7a,7bとスカート8a,8bとは、一体に形成されることで、図2に示すように、内側に中空部15を有している。
 この中空部15は、下方に開放され、上方がピストンヘッド6で閉じられている。この中空部15には、前記のピン挿通孔13a(図1参照)及びピン挿通孔13b(図2参照)が臨んでいる。
Further, the sidewalls 7a and 7b and the skirts 8a and 8b in the present embodiment are integrally formed, and have a hollow portion 15 on the inner side as shown in FIG.
The hollow portion 15 is opened downward, and the upper portion is closed by the piston head 6. The hollow portion 15 faces the pin insertion hole 13a (see FIG. 1) and the pin insertion hole 13b (see FIG. 2).
 なお、以下の説明において、一対のサイドウォール7a,7bを特に区別する必要がない場合には、単にサイドウォール7と称する。また、一対のスカート8a,8b、一対のピン挿通孔13a,13b、及び一対のピンボス14a,14bにおいても同様に、一対のそれぞれを特に区別する必要がない場合には、単にスカート8、ピン挿通孔13、及びピンボス14と称する。
 図2中、符号10は燃焼室であり、符号12aは第1リング溝であり、符号12bは第2リング溝であり、符号12cは第3リング溝である。そして、符号2は、次に説明するクーリングチャンネルであり、符号3はフィンであり、符号4は入口通路であり、符号5は出口通路である。
In the following description, the pair of sidewalls 7a and 7b is simply referred to as a sidewall 7 when it is not necessary to distinguish between them. Similarly, in the pair of skirts 8a and 8b, the pair of pin insertion holes 13a and 13b, and the pair of pin bosses 14a and 14b, if it is not necessary to distinguish the pair, the skirt 8 and the pin insertion are simply performed. They are referred to as hole 13 and pin boss 14.
In FIG. 2, reference numeral 10 is a combustion chamber, reference numeral 12a is a first ring groove, reference numeral 12b is a second ring groove, and reference numeral 12c is a third ring groove. Reference numeral 2 is a cooling channel described below, reference numeral 3 is a fin, reference numeral 4 is an inlet passage, and reference numeral 5 is an outlet passage.
<クーリングチャンネル>
 図3は、図2のIII-III断面を示すピストン1の部分斜視図である。なお、図3中、フィン3については作図の便宜上、仮想線(二点鎖線)で示している。
 図3に示すように、クーリングチャンネル2は、ピストンヘッド6内に形成されている。言い換えれば、クーリングチャンネル2は、ピストンヘッド6の中実部を一部中空にして形成されている。
 このクーリングチャンネル2は、ピストンヘッド6の外周に沿って形成され、外周の内側で環状を呈している。
 図3中、符号4は、入口通路であり、符号5は、出口通路である。また、符号7は、サイドウォールであり、符号8は、スカートであり、符号14は、ピンボスであり、符号16は、クーリングチャンネル2の内壁面である。
<Cooling channel>
FIG. 3 is a partial perspective view of the piston 1 showing a III-III cross section of FIG. In FIG. 3, the fins 3 are indicated by imaginary lines (two-dot chain lines) for convenience of drawing.
As shown in FIG. 3, the cooling channel 2 is formed in the piston head 6. In other words, the cooling channel 2 is formed by partially hollowing the solid portion of the piston head 6.
The cooling channel 2 is formed along the outer periphery of the piston head 6 and has an annular shape inside the outer periphery.
In FIG. 3, reference numeral 4 denotes an inlet passage, and reference numeral 5 denotes an outlet passage. Reference numeral 7 is a side wall, reference numeral 8 is a skirt, reference numeral 14 is a pin boss, and reference numeral 16 is an inner wall surface of the cooling channel 2.
 クーリングチャンネル2は、図2に示すように、第1リング溝12aよりも上方に形成されるか、又は上下方向に第1リング溝12aと同じ高さで形成されたものが望ましい。このような位置に形成されるクーリングチャンネル2は、ピストンヘッド6の冷却効率に、より優れる。 As shown in FIG. 2, the cooling channel 2 is preferably formed above the first ring groove 12a or formed in the vertical direction at the same height as the first ring groove 12a. The cooling channel 2 formed at such a position is more excellent in the cooling efficiency of the piston head 6.
 図2に示すように、本実施形態でのクーリングチャンネル2の断面形状は、後に詳しく説明するフィン3の部分を除いて略矩形を呈している。ただし、クーリングチャンネル2の断面形状は、これに限定されるものではなく、例えば、矩形以外の多角形や、円形、楕円形とすることもできる。 As shown in FIG. 2, the cross-sectional shape of the cooling channel 2 in the present embodiment is substantially rectangular except for the fin 3 described in detail later. However, the cross-sectional shape of the cooling channel 2 is not limited to this, and may be, for example, a polygon other than a rectangle, a circle, or an ellipse.
 クーリングチャンネル2には、入口通路4と出口通路5の一端が接続されている。つまり、これらの入口通路4と出口通路5の一端側は、図3に示すように、クーリングチャンネル2の内壁面16に開口している。
 なお、本実施形態での入口通路4と出口通路5の一端側は、図3に示すように、後記のフィン3が形成されるクーリングチャンネル2の内壁面16部分を避けて開口している。
 これらの入口通路4と出口通路5のそれぞれは、図2に示すように、ピストンヘッド6内を上下方向に延びることで、クーリングチャンネル2とピストン1の中空部15とを連通させている。
One end of an inlet passage 4 and an outlet passage 5 is connected to the cooling channel 2. That is, one end side of the inlet passage 4 and the outlet passage 5 is open to the inner wall surface 16 of the cooling channel 2 as shown in FIG.
In addition, as shown in FIG. 3, the one end side of the entrance channel | path 4 and the exit channel | path 5 in this embodiment is avoiding the inner wall surface 16 part of the cooling channel 2 in which the fin 3 mentioned later is formed.
As shown in FIG. 2, each of the inlet passage 4 and the outlet passage 5 extends in the piston head 6 in the vertical direction so that the cooling channel 2 and the hollow portion 15 of the piston 1 communicate with each other.
 本実施形態での入口通路4と出口通路5は、後に詳しく説明するピストン1の製造方法において、金型20(図6参照)内に配置される支持ピン31,31(図6参照)の抜き跡としてピストンヘッド6内に形成される。 In the present embodiment, the inlet passage 4 and the outlet passage 5 are formed by removing support pins 31 and 31 (see FIG. 6) disposed in the mold 20 (see FIG. 6) in the manufacturing method of the piston 1 described in detail later. It is formed in the piston head 6 as a mark.
 ちなみに、この入口通路4は、前記のシリンダボア(図示を省略)の下方に配置されるオイルジェットノズル(図示を省略)から連続的に又は断続的に噴射されるオイルジェットを受け入れるようになっている。なお、このオイルジェットノズルには、前記のオイルパン(図示を省略)のオイルが供給される。
 そして、オイルは、入口通路4からクーリングチャンネル2内を流れてピストンヘッド6を冷却した後、出口通路5を介してピストン1の中空部15に排出される。中空部15に排出されたオイルは、下方に配置される前記のクランクシャフト(図示を省略)、コネクティングロッド(図示を省略)などにおける摺接部を潤滑しながら、オイルパンに戻される。
Incidentally, the inlet passage 4 is adapted to receive an oil jet that is continuously or intermittently injected from an oil jet nozzle (not shown) disposed below the cylinder bore (not shown). . The oil jet nozzle is supplied with oil from the oil pan (not shown).
The oil flows through the cooling channel 2 from the inlet passage 4 to cool the piston head 6, and then is discharged to the hollow portion 15 of the piston 1 through the outlet passage 5. The oil discharged to the hollow portion 15 is returned to the oil pan while lubricating the sliding contact portions of the crankshaft (not shown), the connecting rod (not shown) and the like disposed below.
<フィン>
 本実施形態のピストン1は、図2及び図3に示すように、クーリングチャンネル2の内壁面16にフィン3が形成されている。
 本実施形態でのフィン3は、図2に示すように、クーリングチャンネル2の内壁面16に立設されるリブで構成されている。
 本実施形態でのフィン3は、クーリングチャンネル2の全周にわたって連続的に延在しているものを想定しているが、後記するようにクーリングチャンネル2の周方向に(周回方向に)断続的に形成されているものも許容される。
 フィン3は、クーリングチャンネル2周りでのピストンヘッド6の応力集中部位を避ける位置に形成されている。
<Fin>
As shown in FIGS. 2 and 3, the piston 1 of the present embodiment has fins 3 formed on the inner wall surface 16 of the cooling channel 2.
As shown in FIG. 2, the fin 3 in the present embodiment is configured by a rib that is erected on the inner wall surface 16 of the cooling channel 2.
The fins 3 in this embodiment are assumed to extend continuously over the entire circumference of the cooling channel 2, but intermittently in the circumferential direction of the cooling channel 2 (in the circumferential direction) as will be described later. It is also acceptable to be formed.
The fin 3 is formed at a position that avoids the stress concentration portion of the piston head 6 around the cooling channel 2.
 図4は、クーリングチャンネル2の内壁面16における応力分布を示すためにクーリングチャンネル2の内壁面16及び出口通路5の内壁面16aのみを抽出して表したCAE(Computer Aided Engineering)解析図である。図4は、図1のII-II線で切断したピストン1の半体(図2の紙面裏側に位置する半体)におけるクーリングチャンネル2及び出口通路5を表している。 4, CAE (C omputer A ided E ngineering) analysis showing by extracting only the inner wall surface 16a of the inner wall surface 16 and the outlet passageway 5 of the cooling channel 2 in order to show the stress distribution in the inner wall surface 16 of the cooling channel 2 FIG. FIG. 4 shows the cooling channel 2 and the outlet passage 5 in the half of the piston 1 (the half located on the back side in FIG. 2) cut along the line II-II in FIG.
 図4(a)は、図2に示すピストン1の中空部15側からピンボス14上方のクーリングチャンネル2を斜め上方に見上げた様子を示すCAE解析図である。図4(b)は、図2に示すピストンヘッド6の外周側の下方からピンボス14上方のクーリングチャンネル2を斜め上方に見上げた様子を示すCAE解析図である。図4(c)は、図2に示すピストンヘッド6の上方からピンボス14上方のクーリングチャンネル2を斜め下方に見下ろした様子を示すCAE解析図である。 FIG. 4 (a) is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is viewed obliquely upward from the hollow portion 15 side of the piston 1 shown in FIG. FIG. 4B is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is looked up obliquely upward from below the outer peripheral side of the piston head 6 shown in FIG. FIG. 4C is a CAE analysis diagram showing a state in which the cooling channel 2 above the pin boss 14 is looked down obliquely downward from above the piston head 6 shown in FIG.
 図4(a)、図4(b)及び図4(c)には、所定条件のエンジン駆動時にクーリングチャンネル2周りでのピストンヘッド6(図2参照)の応力に応じてクーリングチャンネル2の内壁面16に現われる応力分布を網掛けの濃淡で段階的に表している。具体的には、図4(a)、図4(b)及び図4(c)に示すように、応力が0MPa以上、検出限界以下の領域を白抜きで表し、網掛けの濃さを応力の大きさに合せて低応力領域A3、中応力領域A2、及び高応力領域A1の3段階に分けて表した。 4 (a), 4 (b) and 4 (c) show the inside of the cooling channel 2 according to the stress of the piston head 6 (see FIG. 2) around the cooling channel 2 when the engine is driven under a predetermined condition. The stress distribution appearing on the wall surface 16 is expressed stepwise in shades of shade. Specifically, as shown in FIGS. 4 (a), 4 (b) and 4 (c), the area where the stress is 0 MPa or more and the detection limit or less is shown in white, and the shade density is the stress. According to the magnitude | size, it represented in three steps, low-stress area | region A3, medium-stress area | region A2, and high-stress area | region A1.
 周回するクーリングチャンネル2(図2参照)の内壁面16(図2参照)のうち、ピンボス14(図2参照)上のクーリングチャンネル2においては、図4(a)に示すように、内壁面16の下側部分に、低応力領域A3及び中応力領域A2が形成される応力集中部位が現われている。 Of the inner wall surface 16 (see FIG. 2) of the circulating cooling channel 2 (see FIG. 2), in the cooling channel 2 on the pin boss 14 (see FIG. 2), as shown in FIG. A stress concentration site where the low-stress region A3 and the medium-stress region A2 are formed appears in the lower portion of the.
 また、ピンボス14上のクーリングチャンネル2においては、図4(b)に示すように、外周側(図2のリング溝12a,12b,12c側)に形成される内壁面16に、低応力領域A3、中応力領域A2及び高応力領域A1からなる応力集中部位が現われている。 Further, in the cooling channel 2 on the pin boss 14, as shown in FIG. 4B, the low stress region A3 is formed on the inner wall surface 16 formed on the outer peripheral side ( ring grooves 12a, 12b, and 12c side in FIG. 2). The stress concentration part which consists of middle stress area | region A2 and high stress area | region A1 appears.
 また、ピンボス14上のクーリングチャンネル2においては、図4(c)に示すように、内周側(ピストンヘッド6の中心軸側)に形成される内壁面16に、低応力領域A3、中応力領域A2及び高応力領域A1からなる応力集中部位が現われている。
 しかし、このようなピンボス14上のクーリングチャンネル2においては、図4(c)に示すように、内壁面16の上側部分においては際立った応力集中部位が現われていない。
Further, in the cooling channel 2 on the pin boss 14, as shown in FIG. 4 (c), a low stress region A3, medium stress is formed on the inner wall surface 16 formed on the inner peripheral side (the central axis side of the piston head 6). A stress concentration site consisting of a region A2 and a high stress region A1 appears.
However, in such a cooling channel 2 on the pin boss 14, as shown in FIG. 4C, a conspicuous stress concentration portion does not appear in the upper portion of the inner wall surface 16.
 また、周回するクーリングチャンネル2(図2参照)の内壁面16(図2参照)のうち、スカート8(図2参照)上のクーリングチャンネル2においては、図4(c)に示すように、内壁面16の上側部分に、低応力領域A3、中応力領域A2及び高応力領域A1からなる応力集中部位が現われている。 Of the inner wall surface 16 (see FIG. 2) of the circulating cooling channel 2 (see FIG. 2), in the cooling channel 2 on the skirt 8 (see FIG. 2), as shown in FIG. In the upper part of the wall surface 16, a stress concentration site consisting of a low stress region A 3, a medium stress region A 2 and a high stress region A 1 appears.
 しかし、このようなスカート8上のクーリングチャンネル2においては、図4(a)に示すように、内壁面16の下側部分(スカート8側の内壁面16)において、際立った応力集中部位が現われていない。
 なお、図4(a)、図4(b)及び図4(c)は、図2の紙面裏側に位置する半体におけるクーリングチャンネル2における応力分布を示しているが、図示しない図2の紙面表側に位置する半体においても、図4(a)、図4(b)及び図4(c)に示す応力集中部位に対して鏡像(線対称)の位置関係で応力集中部位が現われる。
However, in such a cooling channel 2 on the skirt 8, as shown in FIG. 4A, a conspicuous stress concentration portion appears in the lower portion of the inner wall surface 16 (the inner wall surface 16 on the skirt 8 side). Not.
4 (a), 4 (b) and 4 (c) show the stress distribution in the cooling channel 2 in the half located on the back side of the paper of FIG. 2, but the paper of FIG. Also in the half located on the front side, stress concentration sites appear in a mirror image (line symmetric) positional relationship with respect to the stress concentration sites shown in FIGS.
 本実施形態でのフィン3は、前記したように、応力集中部位を避ける位置に形成され、言い換えれば、際立った応力集中部位が現われていないクーリングチャンネル2の内壁面16に形成されている。
 具体的には、フィン3は、少なくともピストン1の頂面11とピンボス14との間で延びるクーリングチャンネル2のピンボス14側に形成される内壁面16、ピストン1の頂面11とピンボス14との間で延びるクーリングチャンネル2のピストンヘッド6の外周側及び内周側に形成される内壁面16、並びにピストン1の頂面11とスカート8との間で延びるクーリングチャンネル2の頂面11側の内壁面16を避ける位置に形成されている。
As described above, the fin 3 in the present embodiment is formed at a position that avoids the stress concentration portion, in other words, is formed on the inner wall surface 16 of the cooling channel 2 where no conspicuous stress concentration portion appears.
Specifically, the fin 3 includes at least an inner wall surface 16 formed on the pin boss 14 side of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14, and the top surface 11 of the piston 1 and the pin boss 14. An inner wall surface 16 formed on the outer peripheral side and inner peripheral side of the piston head 6 of the cooling channel 2 extending between them, and an inner surface on the top surface 11 side of the cooling channel 2 extending between the top surface 11 of the piston 1 and the skirt 8. It is formed at a position that avoids the wall surface 16.
 そして、本実施形態でのフィン3は、少なくとも一部が、次に説明するようにクーリングチャンネル中心軸X2(図5参照)周りに捻じれることで前記の応力集中部位を避けている。なお、このクーリングチャンネル中心軸X2とは、クーリングチャンネル2の延在方向(周回方向)に規定されるクーリングチャンネル2の中心軸を意味する。 And the fin 3 in this embodiment avoids the said stress concentration site | part by twisting around the cooling channel center axis | shaft X2 (refer FIG. 5) at least partially as demonstrated below. In addition, this cooling channel center axis | shaft X2 means the center axis | shaft of the cooling channel 2 prescribed | regulated in the extending direction (circumferential direction) of the cooling channel 2. FIG.
 図5は、応力集中部位を避けるようにフィン3が捻じれているピストン1の一態様を説明するための構成説明図である。図5中、ピストン1は仮想線(二点鎖線)で描いている。図5は、ピストン1の中心軸X1周りに周回するクーリングチャンネル2の所定の位相におけるクーリングチャンネル2の断面を示すことによってフィン3の捻じれる様子を表している。 FIG. 5 is a configuration explanatory diagram for explaining an aspect of the piston 1 in which the fins 3 are twisted so as to avoid stress concentration sites. In FIG. 5, the piston 1 is drawn with a virtual line (two-dot chain line). FIG. 5 shows a state in which the fin 3 is twisted by showing a cross section of the cooling channel 2 in a predetermined phase of the cooling channel 2 that goes around the central axis X <b> 1 of the piston 1.
 図5中、S1-S1断面及びS5-S5断面は、各スカート8(一方のスカートは図示を省略)の周方向中央部の上方におけるクーリングチャンネル2の断面を示している。図5中、S3-S3断面及びS7-S7断面は、各ピンボス14(一方のピンボスは図示を省略)の中心の上方におけるクーリングチャンネル2の断面を示している。図5中、S2-S2断面は、S1-S1断面からS3-S3断面に変化していく途中の断面を示しており、S1-S3間の周方向中央における断面を示している。 In FIG. 5, the S1-S1 cross section and the S5-S5 cross section indicate the cross section of the cooling channel 2 above the center in the circumferential direction of each skirt 8 (one skirt is not shown). In FIG. 5, the S3-S3 cross section and the S7-S7 cross section show the cross section of the cooling channel 2 above the center of each pin boss 14 (one pin boss is not shown). In FIG. 5, the S2-S2 cross section shows a cross section in the middle of changing from the S1-S1 cross section to the S3-S3 cross section, and shows a cross section at the center in the circumferential direction between S1-S3.
 図5中、S4-S4断面は、S3-S3断面からS5-S5断面に変化していく途中の断面を示しており、S3-S5間の周方向中央における断面を示している。図5中、S6-S6断面は、S5-S5断面からS7-S7断面に変化していく途中の断面を示しており、S5-S7間の周方向中央における断面を示している。図5中、S8-S8断面は、S7-S7断面からS1-S1断面に変化していく途中の断面を示しており、S7-S1間の周方向中央における断面を示している。 In FIG. 5, section S4-S4 shows a section in the middle of changing from section S3-S3 to section S5-S5, and shows a section at the center in the circumferential direction between S3-S5. In FIG. 5, the S6-S6 cross section shows a cross section in the middle of changing from the S5-S5 cross section to the S7-S7 cross section, and shows a cross section at the center in the circumferential direction between S5-S7. In FIG. 5, the section S8-S8 shows a section in the middle of changing from the section S7-S7 to the section S1-S1, and shows a section at the center in the circumferential direction between S7-S1.
 なお、図5における4つのクーリングチャンネル2の断面図のそれぞれは、紙面左側がピストンヘッド6の外周側を示しており、紙面上側がピストン1の頂面11側を示している。また、8つのクーリングチャンネル2の各断面図における矢印は、S1からS5を介してS1に戻るクーリングチャンネル2の周回方向を想定した場合に、クーリングチャンネル中心軸X2回りでフィン3が捻じれる方向を示している。この矢印に付記したS1からS8の記号は、断面の移行方向を示しており、例えば「S1→S2」は、S1からS2に向かってフィン3が捻じれる方向を表している。 In each of the sectional views of the four cooling channels 2 in FIG. 5, the left side of the drawing shows the outer peripheral side of the piston head 6, and the upper side of the drawing shows the top surface 11 side of the piston 1. Further, the arrows in the respective cross-sectional views of the eight cooling channels 2 indicate directions in which the fins 3 are twisted around the cooling channel central axis X2 when assuming the circulation direction of the cooling channel 2 returning from S1 to S1 through S5. Show. Symbols S1 to S8 appended to the arrow indicate the cross-sectional transition direction. For example, “S1 → S2” indicates a direction in which the fin 3 is twisted from S1 to S2.
 図5に示すように、本実施形態のピストン1におけるフィン3は、スカート8上のS1-S1断面及びS5-S5断面においては、内壁面16の上側(頂面11側)に現われる高応力領域A1(図4(c)参照)を避けるように、内壁面16の下側に形成されている。つまりフィン3は、際立った応力集中部位が現われていない内壁面16の下側に形成されている。 As shown in FIG. 5, the fin 3 in the piston 1 of the present embodiment is a high stress region that appears above the inner wall surface 16 (on the top surface 11 side) in the S1-S1 cross section and the S5-S5 cross section on the skirt 8. It is formed on the lower side of the inner wall surface 16 so as to avoid A1 (see FIG. 4C). That is, the fin 3 is formed on the lower side of the inner wall surface 16 where a conspicuous stress concentration site does not appear.
 また、フィン3は、ピンボス14上のS3-S3断面及びS7-S7断面においては、ピンボス14側の内壁面16における中応力領域A2(図4(a)参照)、及び外周側の内壁面16における中応力領域A2(図4(b)参照)を避けるように、上側(頂面11側)の内壁面16に形成されている。つまりフィン3は、際立った応力集中部位が現われていない内壁面16の上側に形成されている。 Further, the fin 3 has a medium stress region A2 on the inner wall surface 16 on the pin boss 14 side (see FIG. 4A) and an inner wall surface 16 on the outer peripheral side in the S3-S3 cross section and the S7-S7 cross section on the pin boss 14. Is formed on the inner wall surface 16 on the upper side (the top surface 11 side) so as to avoid the intermediate stress region A2 (see FIG. 4B). That is, the fin 3 is formed on the upper side of the inner wall surface 16 where a conspicuous stress concentration portion does not appear.
 また、S1-S1断面に示すフィン3は、クーリングチャンネル2の周回方向に進むにつれてS1-S1断面に付記した矢印方向に徐々に捻じれることでS2-S2断面に示すフィン3の位置となる。そしてフィン3は、S2-S2断面に付記した矢印方向に徐々に捻じれることでS3-S3断面に示すフィン3の位置となる。 Further, the fin 3 shown in the S1-S1 cross section is gradually twisted in the direction of the arrow attached to the S1-S1 cross section as the cooling channel 2 goes around, so that the fin 3 shown in the S2-S2 cross section becomes a position. Then, the fin 3 is gradually twisted in the direction of the arrow added to the S2-S2 cross section, thereby becoming the position of the fin 3 shown in the S3-S3 cross section.
 また、S3-S3断面に示すフィン3の位置からS5-S5断面に示すフィン3の位置への変位、S5-S5断面に示すフィン3の位置からS7-S7断面に示すフィン3の位置への変位、及びS7-S7断面に示すフィン3の位置からS1-S1断面に示すフィン3の位置への変位は、各断面図に付記した矢印方向にフィン3が徐々に捻じれることで行われる。 Further, the displacement from the position of the fin 3 shown in the S3-S3 cross section to the position of the fin 3 shown in the S5-S5 cross section, and the position of the fin 3 shown in the S5-S5 cross section to the position of the fin 3 shown in the S7-S7 cross section. The displacement and the displacement from the position of the fin 3 shown in the S7-S7 cross section to the position of the fin 3 shown in the S1-S1 cross section are performed by gradually twisting the fin 3 in the direction of the arrow attached to each cross-sectional view.
 また、本実施形態でのフィン3の捻じれの方向が、図5に示すように、S3-S3断面図の「S3→S4」、及びS7-S7断面図の「S7→S8」において反転しているのは、フィン3が、より確実に応力集中部位を回避するためである。 Further, as shown in FIG. 5, the twist direction of the fin 3 in this embodiment is reversed at “S3 → S4” in the S3-S3 sectional view and “S7 → S8” in the S7-S7 sectional view. This is because the fin 3 more reliably avoids the stress concentration site.
 ただし、この捻じれの方向の反転は必須ではなく、前記のようにフィン3は、少なくともピストン1の頂面11とピンボス14との間で延びるクーリングチャンネル2のピンボス14側に形成される内壁面16、ピストン1の頂面11とピンボス14との間で延びるクーリングチャンネル2のピストンヘッド6の外周側及び内周側に形成される内壁面16、並びにピストン1の頂面11とスカート8との間で延びるクーリングチャンネル2の頂面11側の内壁面16を避ける位置に形成されていればよい。 However, the reversal of the twist direction is not essential, and as described above, the fin 3 is formed at least on the inner wall surface formed on the pin boss 14 side of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14. 16, the inner wall surface 16 formed on the outer peripheral side and the inner peripheral side of the piston head 6 of the cooling channel 2 extending between the top surface 11 of the piston 1 and the pin boss 14, and the top surface 11 of the piston 1 and the skirt 8 What is necessary is just to be formed in the position which avoids the inner wall surface 16 by the side of the top surface 11 of the cooling channel 2 extended between.
<ピストンの製造方法>
 次に、本実施形態のピストン1(図1参照)の製造方法について説明する。
 図6は、ピストン1の製造に使用する金型20の構成説明図である。
 図6に示すように、金型20は、水平方向に移動可能な一対の側型21,21と、上方から側型21,21に組み合わせられる上型22と、下方から側型21,21に組み合わせられる下型23と、ピストン1(図1参照)のピン挿通孔13a,13bに対応する位置に配置される一対の中子ピン24a,24bとを主に備えて構成されている。
<Manufacturing method of piston>
Next, the manufacturing method of piston 1 (refer FIG. 1) of this embodiment is demonstrated.
FIG. 6 is a configuration explanatory view of the mold 20 used for manufacturing the piston 1.
As shown in FIG. 6, the mold 20 includes a pair of side molds 21, 21 that can move in the horizontal direction, an upper mold 22 that is combined with the side molds 21, 21 from above, and a side mold 21, 21 from below. The lower mold 23 to be combined and a pair of core pins 24a and 24b disposed at positions corresponding to the pin insertion holes 13a and 13b of the piston 1 (see FIG. 1) are mainly provided.
 閉じられた金型20内には、倒立状態のピストン1(図1の状態の天地を逆転させたピストン1)の形状を模ったキャビティ25が形成される。
 側型21,21には、溶湯が流れるランナ26が形成されている。このランナ26は、キャビティ25周りの所定箇所に複数形成されたゲート(図示を省略)を介してキャビティ25に連通している。
 側型21,21の上部には、キャビティ25の天井面に繋がる複数オーバーフロー出口(図示を省略)が形成され、これらのオーバーフロー出口は、オーバーフロー溜り27に繋がっている。このオーバーフロー溜り27には、所定のガス抜き装置28が設けられている。
A cavity 25 simulating the shape of the inverted piston 1 (piston 1 obtained by reversing the top and bottom of the state shown in FIG. 1) is formed in the closed mold 20.
The side molds 21 and 21 are formed with runners 26 through which the molten metal flows. The runner 26 communicates with the cavity 25 through a plurality of gates (not shown) formed at predetermined locations around the cavity 25.
A plurality of overflow outlets (not shown) connected to the ceiling surface of the cavity 25 are formed in the upper portions of the side molds 21 and 21, and these overflow outlets are connected to the overflow reservoir 27. The overflow reservoir 27 is provided with a predetermined degassing device 28.
 図6中、符号29は、クーリングチャンネル2(図1参照)に対応する位置に配置される塩中子である。
 この塩中子29は、環状のクーリングチャンネル2(図5参照)の形状を模って形成されており、下型23に設けられる支持部材(図示を省略)によってキャビティ25内に配置される。
 ちなみに、図6に示す塩中子29は、フィン3(図5参照)に対応する部分が欠損した断面視で略U字状を呈しているが、後に変形例として詳しく説明する第3中子としての複合中子33(図7(a)参照)とすることもできる。
In FIG. 6, the code | symbol 29 is the salt core arrange | positioned in the position corresponding to the cooling channel 2 (refer FIG. 1).
The salt core 29 is formed to resemble the shape of the annular cooling channel 2 (see FIG. 5), and is disposed in the cavity 25 by a support member (not shown) provided on the lower mold 23.
Incidentally, the salt core 29 shown in FIG. 6 is substantially U-shaped in a cross-sectional view in which a portion corresponding to the fin 3 (see FIG. 5) is missing, but a third core that will be described in detail later as a modified example. The composite core 33 (see FIG. 7A) can be used.
 上型22には、この上型22を上下方向に貫通する一対の支持ピン31,31が配置される。これらの支持ピン31,31は、上型22に対して上下方向に移動可能になっている。
 これらの支持ピン31,31は、上型22を貫通したキャビティ25内での先端部が、それぞれ入口通路4(図2参照)と出口通路5(図2参照)とに対応する位置に配置されている。そして支持ピン31,31の先端部のそれぞれは、キャビティ25内で塩中子29に当接している。
 図6中、符号32はキャビティ25内の溶湯を加圧するピストンである。
The upper mold 22 is provided with a pair of support pins 31 and 31 penetrating the upper mold 22 in the vertical direction. These support pins 31, 31 are movable in the vertical direction with respect to the upper mold 22.
These support pins 31, 31 are disposed at positions where the tip ends in the cavity 25 penetrating the upper mold 22 correspond to the inlet passage 4 (see FIG. 2) and the outlet passage 5 (see FIG. 2), respectively. ing. Each of the tips of the support pins 31, 31 is in contact with the salt core 29 in the cavity 25.
In FIG. 6, reference numeral 32 denotes a piston that pressurizes the molten metal in the cavity 25.
 本実施形態のピストン1の製造方法では、まずクーリングチャンネル2(図5参照)の形状を模った前記の塩中子29が形成される。
 この塩中子29は、塩を主成分として含む材料で形成されている。
 この塩としては、例えば塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化バリウムなどが挙げられる。
 また、これらの塩中子29の材料には、必要に応じて骨材(例えば人口砂、自然砂)、硬質粉末(例えばセラミック粉末)などを含めることができる。
 また、本実施形態での塩中子29の材料としては、市販品を使用することもできる。
In the manufacturing method of the piston 1 of this embodiment, first, the salt core 29 simulating the shape of the cooling channel 2 (see FIG. 5) is formed.
The salt core 29 is formed of a material containing salt as a main component.
Examples of the salt include sodium chloride, potassium chloride, calcium chloride, magnesium chloride, barium chloride and the like.
In addition, the material of the salt core 29 can include aggregates (for example, artificial sand and natural sand), hard powder (for example, ceramic powder) and the like as necessary.
Moreover, a commercial item can also be used as a material of the salt core 29 in this embodiment.
 次に、この製造方法では、前記の金型20の所定の位置に塩中子29が配置される。その後、金型20内に溶湯が注入されて、キャビティ25内で塩中子29が鋳包まれる。
 そして、金型20内の溶湯を冷却した後、型開きして金型20内のピストン基材(図示省略)が取り出される。この際、ピストン基材から中子ピン24a,24bが抜き取られた跡には、ピン挿通孔13a,13b(図1及び図2参照)が形成される。また、ピストン基材から支持ピン31,31が抜き取られた跡には、図2に示す入口通路4と出口通路5が形成される。
Next, in this manufacturing method, the salt core 29 is disposed at a predetermined position of the mold 20. Thereafter, molten metal is poured into the mold 20, and the salt core 29 is cast in the cavity 25.
Then, after the molten metal in the mold 20 is cooled, the mold is opened and the piston base material (not shown) in the mold 20 is taken out. At this time, pin insertion holes 13a and 13b (see FIGS. 1 and 2) are formed in the trace where the core pins 24a and 24b are extracted from the piston base material. Further, an inlet passage 4 and an outlet passage 5 shown in FIG. 2 are formed at the trace where the support pins 31 are extracted from the piston base material.
 また、ピストン基材内に残る塩中子29は、支持ピン31,31の抜き跡(図2の入口通路4、出口通路5に対応)を介して水洗やエアブローによって取り出される。これによりピストン基材には、塩中子29が取り出された跡としてクーリングチャンネル2(図5参照)が形成される。その後、切削、研磨などによるピストン基材に対する仕上げ加工が行われてピストン1の一連の製造工程は終了する。
 なお、本実施形態での製造方法は、前記の金型20を使用するものについて説明しているが、鋳造型は金型20に限定されるものでなく、また後記するようにこの鋳造法に限定されるものではない。
Further, the salt core 29 remaining in the piston base material is taken out by water washing or air blow through traces of the support pins 31 and 31 (corresponding to the inlet passage 4 and the outlet passage 5 in FIG. 2). As a result, the cooling channel 2 (see FIG. 5) is formed on the piston base material as a trace of the salt core 29 being taken out. Thereafter, finishing processing is performed on the piston base material by cutting, polishing, etc., and a series of manufacturing steps of the piston 1 is completed.
In addition, although the manufacturing method in this embodiment has demonstrated what uses the said metal mold | die 20, a casting mold is not limited to the metal mold | die 20, Moreover, as mentioned later, this casting method is used. It is not limited.
 次に、前記の変形例に係る複合中子33(図7参照)を使用したピストン1の製造方法について説明する。この製造方法は、塩中子29(図6参照)に代えて、次に説明する複合中子33を使用したこと以外は、前記の製造方法と同様に構成される。
 図7は、複合中子33を使用したピストン1の製造方法の工程説明図であり、(a)は複合中子33の断面を含む部分側面図、(b)は、溶湯34を金型20(図6参照)に注入した際の複合中子33の様子を示す断面を含む部分側面図、(c)は、鋳包まれた複合中子33の様子を示す断面を含む部分側面図である。なお、図7の複合中子33の部分側面図は、図6に示した塩中子29と同様に金型20内に配置された複合中子33を基礎として描いたものである。
Next, a method for manufacturing the piston 1 using the composite core 33 (see FIG. 7) according to the modification will be described. This manufacturing method is configured in the same manner as the manufacturing method described above except that a complex core 33 described below is used instead of the salt core 29 (see FIG. 6).
FIG. 7 is a process explanatory view of the manufacturing method of the piston 1 using the composite core 33, (a) is a partial side view including a cross section of the composite core 33, and (b) shows the molten metal 34 in the mold 20. FIG. 6 is a partial side view including a cross-section showing a state of the composite core 33 when injected into (see FIG. 6), and FIG. 6C is a partial side view including a cross-section showing a state of the cast-in composite core 33. . In addition, the partial side view of the composite core 33 of FIG. 7 is drawn on the basis of the composite core 33 arranged in the mold 20 like the salt core 29 shown in FIG.
 図7(a)に示すように、この製造方法で使用される複合中子33は、フィン3(図5参照)の形状を模った第1中子33aと、クーリングチャンネル2を模った第2中子33bと、の組み合わせで構成されている。
 第2中子33bは、前記の塩中子29(図6参照)と同様の形状及び材料で形成されたものである。
As shown in FIG. 7A, the composite core 33 used in this manufacturing method imitates the first core 33 a simulating the shape of the fin 3 (see FIG. 5) and the cooling channel 2. It is comprised with the 2nd core 33b.
The second core 33b is formed of the same shape and material as the salt core 29 (see FIG. 6).
 第1中子33aは、第2中子33bの断面視で略U字の内側に配置される。つまり、第1中子33aは、図5に示すように、環状のクーリングチャンネル2内で捻じれるように形成されるフィン3と同様に、環状の第2中子33bの周面において第2中子33bの周回方向に捻じれるように形成される。
 この第1中子33aは、金型20内に注入される溶湯34の熱で第2中子から除去される。
The first core 33a is disposed substantially inside the U shape in a cross-sectional view of the second core 33b. That is, as shown in FIG. 5, the first core 33a is formed on the peripheral surface of the annular second core 33b in the same manner as the fin 3 formed to be twisted in the annular cooling channel 2. It is formed so as to be twisted in the circumferential direction of the child 33b.
The first core 33 a is removed from the second core by the heat of the molten metal 34 injected into the mold 20.
 このような第1中子33aの材料(中子材料)としては、金型20内で溶湯34に接触して溶融し、又は気化するものが挙げられる。
 具体的な第1中子33aの材料としては、例えば、主成分はロウで、具体的には高級脂肪酸と1価又は2価の高級アルコールとのエステル(例えば、セロチン酸ミリシル、ミリシルアルコール、オレイン酸、セチルアルコール等)が挙げられるが、これらに限定されるものではない。
Examples of the material (core material) of the first core 33a include a material that contacts the molten metal 34 in the mold 20 and melts or vaporizes.
As a specific material of the first core 33a, for example, the main component is wax, specifically, an ester of a higher fatty acid and a monohydric or dihydric higher alcohol (for example, myricyl cellotate, myricyl alcohol, Oleic acid, cetyl alcohol and the like), but are not limited thereto.
 次に、この製造方法では、金型20内に複合中子33が配置されるとともに、この金型20内に溶湯34が注入される。
 これにより、複合中子33は、図7(b)に示すように、溶湯34と接触する。第1中子33aは、溶湯34によって第2中子33bから除去される一方で溶湯34に置き換えられていく。
 これにより塩中子29(図6参照)と同形状の第2中子33bは、溶湯34によって鋳包まれる。
 そして、溶湯34が冷却されると、塩中子29と同形状の第2中子33bの略U字の内側には、フィン3(図5参照)が形成される。
Next, in this manufacturing method, the composite core 33 is disposed in the mold 20, and the molten metal 34 is injected into the mold 20.
Thereby, the composite core 33 comes into contact with the molten metal 34 as shown in FIG. The first core 33 a is removed from the second core 33 b by the molten metal 34, while being replaced with the molten metal 34.
Thereby, the second core 33 b having the same shape as the salt core 29 (see FIG. 6) is cast by the molten metal 34.
When the molten metal 34 is cooled, the fins 3 (see FIG. 5) are formed inside the substantially U-shape of the second core 33b having the same shape as the salt core 29.
 その後、冷却されて型開きが行われ、第2中子33bは、前記の塩中子29と同様の方法で取り除かれて、クーリングチャンネル2が形成される。その後、切削、研磨などによるピストン基材の仕上げ加工が行われてピストン1の一連の製造工程は終了する。 Thereafter, the mold is opened by cooling, and the second core 33b is removed in the same manner as the salt core 29, and the cooling channel 2 is formed. Thereafter, the piston base material is finished by cutting, polishing, etc., and the series of manufacturing steps of the piston 1 is completed.
 本実施形態のピストン1は、以上のような製造方法によってクーリングチャンネル2内で捻じれたフィン3を鋳造法によって形成することができるが、この製造方法に限定されるものではない。他の製造方法としては、図示を省略するが、前記のように溶湯34によって第1中子33aを消失させるのではなく、溶湯34を注入する前に第1中子33aを除去してから金型20内に溶湯34を注入することもできる。また、3Dプロッタ(3Dプリンタ)によって形成した中子を金型30内に配置することもできる。また、ピストン1の形状に基づく三次元データを使用した3Dプロッタ(3Dプリンタ)による積み上げ法によっても製造することができる。この製造方法によれば、中子を省略することができる。 The piston 1 of this embodiment can form the fins 3 twisted in the cooling channel 2 by a manufacturing method as described above, but is not limited to this manufacturing method. Although not shown in the drawings as another manufacturing method, the first core 33a is not lost by the molten metal 34 as described above, but the first core 33a is removed before the molten metal 34 is injected, and then the gold is removed. The molten metal 34 can also be poured into the mold 20. Further, a core formed by a 3D plotter (3D printer) can be disposed in the mold 30. It can also be manufactured by a stacking method using a 3D plotter (3D printer) using three-dimensional data based on the shape of the piston 1. According to this manufacturing method, the core can be omitted.
 次に、本実施形態のピストン1及びその製造方法の奏する作用効果について説明する。
 従来のピストン(例えば、特許文献1参照)においては、前記のように、ピストンの冷却効率の向上を目的に、環状のクーリングチャンネルの天井面の全周にわたってフィンが設けられていた。ところが、環状のクーリングチャンネルの天井面の全周にわたってフィンが設けられると、前記のように、フィンの少なくとも一部は必ず応力集中部位に形成される。また、前記のような天井面だけに限らず、クーリングチャンネルの下側の内壁面の全周にわたって、又はクーリングチャンネルの外周側の内壁面の全周にわたってフィンが形成される場合にも、フィンの少なくとも一部は必ず応力集中部位に形成される。そして、フィンが応力集中部位に形成されると、フィンを有しない部位よりも疲労破壊や脆性破壊などの起点を形成しやすい。したがって、従来のピストンよりも信頼性の高いものが望まれる。
Next, the effect which the piston 1 of this embodiment and the manufacturing method show are demonstrated.
In the conventional piston (for example, refer to Patent Document 1), as described above, fins are provided over the entire circumference of the ceiling surface of the annular cooling channel in order to improve the cooling efficiency of the piston. However, when the fins are provided over the entire circumference of the ceiling surface of the annular cooling channel, as described above, at least a part of the fins is always formed at the stress concentration portion. Further, not only the above-described ceiling surface, but also when fins are formed over the entire circumference of the inner wall surface on the lower side of the cooling channel or over the entire circumference of the inner wall surface on the outer periphery side of the cooling channel, At least a portion is always formed at the stress concentration site. And if a fin is formed in a stress concentration part, it will be easier to form a starting point, such as fatigue fracture and brittle fracture, than a part which does not have a fin. Therefore, a thing more reliable than the conventional piston is desired.
 これに対して、本実施形態のピストン1におけるフィン3は、応力集中部位を避けるようにクーリングチャンネル2の内壁面16に形成されている。したがって、本実施形態のピストン1は、従来のピストンと比べて疲労破壊や脆性破壊などの起点を形成し難く、信頼性の高いものとなる。 On the other hand, the fins 3 in the piston 1 of the present embodiment are formed on the inner wall surface 16 of the cooling channel 2 so as to avoid stress concentration sites. Therefore, the piston 1 according to the present embodiment is less reliable than the conventional piston, and has a high reliability because it is difficult to form starting points such as fatigue fracture and brittle fracture.
 また、本実施形態のピストン1は、応力集中部位である前記のピンボス14側に形成される内壁面16(図4(a)参照)、前記のスカート8上での頂面11側の内壁面16(図4(b)参照)、及び前記のピンボス14上でピストンヘッド6の外周側に形成される内壁面16((図4(c)参照))を避けるようにフィン3が形成されている。
 したがって、本実施形態のピストン1は、より確実に疲労破壊や脆性破壊などの起点を形成し難く、より信頼性の高いものとなる。
Further, the piston 1 of the present embodiment includes an inner wall surface 16 (see FIG. 4A) formed on the pin boss 14 side which is a stress concentration portion, and an inner wall surface on the top surface 11 side on the skirt 8. 16 (see FIG. 4B), and the fin 3 is formed so as to avoid the inner wall surface 16 (see FIG. 4C) formed on the outer peripheral side of the piston head 6 on the pin boss 14. Yes.
Therefore, the piston 1 of the present embodiment is more reliable because it is harder to form a starting point such as fatigue fracture or brittle fracture more reliably.
 また、本実施形態のピストン1は、フィン3がクーリングチャンネル中心軸X2(図5参照)周りに捻じれることで応力集中部位を避けている。これによってフィン3は、クーリングチャンネル2におけるオイルの流れを妨げることなく応力集中部位を避けるように延在することができる。 In addition, the piston 1 of the present embodiment avoids a stress concentration site by the fin 3 being twisted around the cooling channel central axis X2 (see FIG. 5). This allows the fins 3 to extend so as to avoid stress concentration sites without disturbing the oil flow in the cooling channel 2.
 また、クーリングチャンネル2内で捻じれているフィン3は、捻じれていないフィンと比べてクーリングチャンネル2での長さが長くなる。つまり捻じれているフィン3を有する本実施形態のピストン1は、捻じれていないフィンを有するピストンと比べてクーリングチャンネル2内でのフィン5の伝熱面積が増大することで冷却性能が一段と向上する。 Also, the fin 3 twisted in the cooling channel 2 has a longer length in the cooling channel 2 than a fin that is not twisted. That is, the piston 1 of the present embodiment having the fin 3 that is twisted further improves the cooling performance by increasing the heat transfer area of the fin 5 in the cooling channel 2 as compared with the piston having the fin that is not twisted. To do.
 また、本実施形態のピストン1は、フィン3が捻じれていることで、フィン3に沿って流れるオイルは、捻じれていないフィンに沿って流れるオイルと比べて流れの行程が長くなる。したがって、クーリングチャンネル2内でのオイルの流速は高まって、オイルの流れは乱流状態を形成しやすくなる。フィン3とオイルとの熱交換効率は一段と向上する。 Also, in the piston 1 of the present embodiment, the fin 3 is twisted, so that the oil flowing along the fin 3 has a longer flow stroke than the oil flowing along the fin not twisted. Therefore, the oil flow rate in the cooling channel 2 is increased, and the oil flow easily forms a turbulent state. The heat exchange efficiency between the fins 3 and the oil is further improved.
 また、本実施形態のピストン1の製造方法は、捻じれるフィン3に対応する窪み(略U字の内側空間)を有する塩中子29を使用した鋳造法が採用される。これにより削り出しによる製造方法では極めて困難となる捻じれたフィン3の形成を容易に行うことができる。 Also, the manufacturing method of the piston 1 of the present embodiment employs a casting method using a salt core 29 having a recess (substantially U-shaped inner space) corresponding to the fin 3 to be twisted. As a result, the twisted fins 3 can be easily formed, which is extremely difficult in the manufacturing method by cutting.
 また、前記の複合中子33(第3中子)を使用した製造方法では、塩中子29に対応する第2中子33bの窪み(略U字の内側空間)に第1中子33aが配置されているので、複合中子33(第3中子)をハンドリングする際の形状保持性が、より良好となる。 Further, in the manufacturing method using the composite core 33 (third core), the first core 33a is disposed in the recess (substantially U-shaped inner space) of the second core 33b corresponding to the salt core 29. Since they are arranged, the shape retention when handling the composite core 33 (third core) becomes better.
 また、前記の複合中子33(第3中子)を使用した製造方法では、複合中子33(第3中子)の第1中子33aが溶湯34の熱によって第2中子33bから除去される材料で形成されている。フィン3は、前記のように、第1中子33aの除去跡に入り込んだ溶湯によって形成される。 In the manufacturing method using the composite core 33 (third core), the first core 33 a of the composite core 33 (third core) is removed from the second core 33 b by the heat of the molten metal 34. It is made of the material to be. As described above, the fin 3 is formed by the molten metal that has entered the removal trace of the first core 33a.
 一方、塩中子29では、予め塩中子29に形成した窪み(略U字の内側空間)に入り込んだ溶湯によって形成される。ところで、塩中子29は、フィン3が形成されたクーリングチャンネル2を模った型(図示を省略)内に前記の材料が充填されて形成される。したがって、フィン3に対応する塩中子29の窪み(略U字の内側空間)は、型抜き可能な形状(抜きテーパを有する形状)に限定される。これによりフィン3の形状も制限される。 On the other hand, the salt core 29 is formed by a molten metal that has entered a recess (substantially U-shaped inner space) formed in the salt core 29 in advance. By the way, the salt core 29 is formed by filling the above-mentioned material in a mold (not shown) simulating the cooling channel 2 in which the fins 3 are formed. Therefore, the depression (substantially U-shaped inner space) of the salt core 29 corresponding to the fin 3 is limited to a shape that can be punched (a shape having a punching taper). Thereby, the shape of the fin 3 is also restricted.
 これに対して、複合中子33(第3中子)を使用した製造方法では、第1中子33aが溶湯34の熱によって除去されるので、フィン3の形状が型抜き可能な形状に限定されることもない。よって、フィン3の形状の設計自由度が一段と向上するとともに、より表面積(伝熱面積)の大きいフィン3を形成することができる。 On the other hand, in the manufacturing method using the composite core 33 (third core), since the first core 33a is removed by the heat of the molten metal 34, the shape of the fin 3 is limited to a shape that can be punched. It is never done. Therefore, the design freedom of the shape of the fin 3 is further improved, and the fin 3 having a larger surface area (heat transfer area) can be formed.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、種々の形態で実施することができる。なお、以下の他の実施形態において、前記実施形態と同様の構成要素については同一の符号を付してその詳細な説明は省略する。
 前記実施形態では、図5に示すように、S1-S1断面図に示す位置のフィン3が、S2-S2断面図からS8-S8断面図までの各フィン3の位置となるようになだらかに捻じれるとともに、さらに捻じれて再びS1-S1断面図に示すフィン3の位置に戻るピストン1について説明した。しかし、本発明のピストン1は、応力集中部位を避ける位置にフィン3が形成されていればこれに限定されるものではない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, It can implement with a various form. In the following other embodiments, the same components as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
In the above embodiment, as shown in FIG. 5, the fin 3 at the position shown in the S1-S1 cross-sectional view is gently twisted so as to be the position of each fin 3 from the S2-S2 cross-sectional view to the S8-S8 cross-sectional view. In addition, the piston 1 that has been twisted and returned to the position of the fin 3 shown in the S1-S1 cross-sectional view has been described. However, the piston 1 of the present invention is not limited to this as long as the fin 3 is formed at a position avoiding the stress concentration site.
 図8は、クーリングチャンネル2の内壁面に形成されるフィン3の変形例1から変形例4を示す図表である。図8中、S1-S1断面、S2-S2断面、及びS3-S3断面のそれぞれは、図5のS1-S1断面、S2-S2断面、及びS3-S3断面のそれぞれに対応している。つまり、S1-S1断面は、スカート8上のクーリングチャンネル2の断面を表している。S3-S3断面は、ピンボス14上のクーリングチャンネル2の断面を表している。S2-S2断面は、S1とS3の中間位置であるS2位置におけるクーリングチャンネル2の断面を表している。また、図8の変形例1から変形例4までの各図において、紙面左側がピストンヘッド6の外周側を示しており、紙面右側がピストンヘッド6の内径側を示しており、紙面上側がピストン1の頂面11側を示している。 FIG. 8 is a chart showing modifications 1 to 4 of the fin 3 formed on the inner wall surface of the cooling channel 2. In FIG. 8, the S1-S1 cross section, the S2-S2 cross section, and the S3-S3 cross section respectively correspond to the S1-S1 cross section, the S2-S2 cross section, and the S3-S3 cross section in FIG. That is, the S1-S1 cross section represents the cross section of the cooling channel 2 on the skirt 8. The S3-S3 cross section represents a cross section of the cooling channel 2 on the pin boss 14. The S2-S2 cross section represents a cross section of the cooling channel 2 at the S2 position which is an intermediate position between S1 and S3. In each of the drawings from Modification 1 to Modification 4 of FIG. 8, the left side of the drawing shows the outer peripheral side of the piston head 6, the right side of the drawing shows the inner diameter side of the piston head 6, and the upper side of the drawing shows the piston. 1 shows the top surface 11 side.
 図8の変形例1から変形例4におけるS1-S1断面が示すように、スカート8上のクーリングチャンネル2におけるフィン3は、応力集中箇所が現われるクーリングチャンネル2の上面(図4(b)参照)を避けるようにフィン3が形成されている。つまり、変形例1及び変形例2では、フィン3はクーリングチャンネル2の内周側の内壁面16に形成されている。変形例3及び変形例4では、フィン3はクーリングチャンネル2の外周側の内壁面16に形成されている。 As shown in the S1-S1 cross section in Modification 1 to Modification 4 in FIG. 8, the fins 3 in the cooling channel 2 on the skirt 8 are on the top surface of the cooling channel 2 where stress concentration points appear (see FIG. 4B). The fins 3 are formed so as to avoid the above. That is, in the first and second modifications, the fin 3 is formed on the inner wall surface 16 on the inner peripheral side of the cooling channel 2. In the third modification and the fourth modification, the fins 3 are formed on the inner wall surface 16 on the outer peripheral side of the cooling channel 2.
 図8の変形例1から変形例4におけるS3-S3断面が示すように、ピンボス14上のクーリングチャンネル2におけるフィン3は、応力集中箇所が現われるクーリングチャンネル2の下側の内壁面16と、クーリングチャンネル2の外周側及び内周側の内壁面16とを避けるようにフィン3が形成されている。つまり、変形例1から変形例4では、フィン3はクーリングチャンネル2の上側の内壁面16に形成されている。 As shown in the S3-S3 cross section in Modification 1 to Modification 4 in FIG. 8, the fin 3 in the cooling channel 2 on the pin boss 14 is connected to the inner wall surface 16 on the lower side of the cooling channel 2 where the stress concentration portion appears, and the cooling. The fins 3 are formed so as to avoid the outer peripheral side and inner peripheral wall surface 16 of the channel 2. That is, in Modification 1 to Modification 4, the fin 3 is formed on the inner wall surface 16 on the upper side of the cooling channel 2.
 変形例1では、S1位置からフィン3が左回り(反時計回り)に捻じれており、S2位置では、フィン3は、クーリングチャンネル2の上側の内壁面16に形成されるようになっている。また、変形例1では、S2位置からS3位置へは、フィン3は捻じれずにそのまま延びている。 In the first modification, the fin 3 is twisted counterclockwise (counterclockwise) from the S1 position, and the fin 3 is formed on the inner wall surface 16 on the upper side of the cooling channel 2 at the S2 position. . Further, in the first modification, the fin 3 extends as it is without being twisted from the S2 position to the S3 position.
 変形例2では、S1位置からS2位置へは、フィン3は捻じれずにそのまま延びている。また、S2位置からS3位置へは、フィン3は、左回り(反時計回り)に捻じれて上側の内壁面16に形成されるようになっている。 In the second modification, the fin 3 extends without being twisted from the S1 position to the S2 position. Further, from the S2 position to the S3 position, the fin 3 is twisted counterclockwise (counterclockwise) and formed on the upper inner wall surface 16.
 変形例3では、S1位置からS2位置へは、フィン3は、右回り(時計回り)に捻じれて上側の内壁面16に形成されるようになっている。また、S2位置からS3位置へは、フィン3は捻じれずにそのまま延びている。 In Modification 3, from the S1 position to the S2 position, the fin 3 is twisted clockwise (clockwise) and formed on the upper inner wall surface 16. Further, the fin 3 extends without being twisted from the S2 position to the S3 position.
 変形例4では、S1位置からS2位置へは、フィン3は捻じれずにそのまま延びている。また、S2位置からS3位置へは、フィン3は、右回り(時計回り)に捻じれて内径側の内壁面16に形成されるようになっている。 In the modified example 4, the fin 3 extends without being twisted from the S1 position to the S2 position. Further, from the S2 position to the S3 position, the fin 3 is twisted clockwise (clockwise) and formed on the inner wall surface 16 on the inner diameter side.
 また、前記実施形態では、クーリングチャンネル2の全周にわたってフィン3が連続的に形成されているが、本発明は断続的にフィン3が形成されたものも許容される。つまり、本発明のピストン1におけるフィン3は、クーリングチャンネル2の全周にわたって応力集中部位を避ける位置に形成されていれば連続又は不連続のいずれであってもよい。 In the above embodiment, the fins 3 are continuously formed over the entire circumference of the cooling channel 2, but the present invention allows the fins 3 to be formed intermittently. That is, the fin 3 in the piston 1 of the present invention may be either continuous or discontinuous as long as it is formed at a position that avoids the stress concentration portion over the entire circumference of the cooling channel 2.
 また、前記実施形態では、一列でクーリングチャンネル2の周回方向に延びるフィン3を想定しているが、複数列のフィン3とすることもできる。 In the embodiment, the fins 3 extending in the circumferential direction of the cooling channel 2 in one row are assumed, but a plurality of rows of fins 3 may be used.
 1   ピストン
 2   クーリングチャンネル
 3   フィン
 6   ピストンヘッド
 7   サイドウォール
 7a  サイドウォール
 7b  サイドウォール
 8   スカート
 8a  スカート
 8b  スカート
 10  燃焼室
 11  頂面
 12a 第1リング溝
 12b 第2リング溝
 12c 第3リング溝
 13  ピン挿通孔
 13a ピン挿通孔
 13b ピン挿通孔
 14  ピンボス
 14a ピンボス
 14b ピンボス
 16  内壁面
 20  金型
 21  側型
 22  上型
 23  下型
 25  キャビティ
 26  ランナ
 29  塩中子
 31  支持ピン
 33  複合中子
 33a 第1中子
 33b 第2中子
 34  溶湯
 X2  クーリングチャンネル中心軸
DESCRIPTION OF SYMBOLS 1 Piston 2 Cooling channel 3 Fin 6 Piston head 7 Side wall 7a Side wall 7b Side wall 8 Skirt 8a Skirt 8b Skirt 10 Combustion chamber 11 Top surface 12a 1st ring groove 12b 2nd ring groove 12c 3rd ring groove 13 Pin insertion hole 13a Pin insertion hole 13b Pin insertion hole 14 Pin boss 14a Pin boss 14b Pin boss 16 Inner wall 20 Mold 21 Side mold 22 Upper mold 23 Lower mold 25 Cavity 26 Runner 29 Salt core 31 Support pin 33 Compound core 33a First core 33b Second core 34 Molten metal X2 Cooling channel central axis

Claims (11)

  1.  ピストンヘッドの外周に沿って前記ピストンヘッド内に環状に形成されるクーリングチャンネルと、
     前記クーリングチャンネルの延在方向に延びるように前記クーリングチャンネルの内壁面に形成されるフィンと、
    を備え、
     前記フィンは、前記クーリングチャンネル周りでのピストンヘッドの応力集中部位を避ける位置に形成されていることを特徴とする内燃機関のピストン。
    A cooling channel formed annularly in the piston head along the outer periphery of the piston head;
    Fins formed on the inner wall surface of the cooling channel so as to extend in the extending direction of the cooling channel;
    With
    The piston of an internal combustion engine, wherein the fin is formed at a position that avoids a stress concentration portion of the piston head around the cooling channel.
  2.  ピストンヘッドの外周に沿って前記ピストンヘッド内に環状に形成されるクーリングチャンネルと、
     前記クーリングチャンネルの延在方向に延びるように前記クーリングチャンネルの内壁面に形成されるフィンと、
    を備え、
     前記フィンは、少なくとも一部が前記クーリングチャンネルの延在方向に規定されるクーリングチャンネル中心軸周りに捻じれていることを特徴とする内燃機関のピストン。
    A cooling channel formed annularly in the piston head along the outer periphery of the piston head;
    Fins formed on the inner wall surface of the cooling channel so as to extend in the extending direction of the cooling channel;
    With
    The piston of the internal combustion engine, wherein at least a part of the fin is twisted around a cooling channel central axis defined in an extending direction of the cooling channel.
  3.  請求項1に記載の内燃機関のピストンにおいて、
     前記フィンは、少なくとも一部が前記クーリングチャンネルの延在方向に規定されるクーリングチャンネル中心軸周りに捻じれることで前記応力集中部位を避けていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 1,
    The piston of an internal combustion engine, wherein the fin avoids the stress concentration portion by being twisted around a central axis of the cooling channel defined in the extending direction of the cooling channel.
  4.  請求項3に記載の内燃機関のピストンにおいて、
     前記ピストンヘッドと一体に形成され、コネクティングロッドを連結する一対のピンボスを有し、
     前記フィンは、ピストンの頂面と前記ピンボスとの間で延びる前記クーリングチャンネルの前記ピンボス側に形成される内壁面を避ける位置に形成されていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    Formed integrally with the piston head and having a pair of pin bosses connecting the connecting rods;
    The piston of the internal combustion engine, wherein the fin is formed at a position avoiding an inner wall surface formed on the pin boss side of the cooling channel extending between a top surface of the piston and the pin boss.
  5.  請求項3に記載の内燃機関のピストンにおいて、
     前記ピストンヘッドと一体に形成され、コネクティングロッドを連結する一対のピンボスを有し、
     前記フィンは、ピストンの頂面と前記ピンボスとの間で延びる前記クーリングチャンネルの前記ピストンヘッドの外周側及び内周側に形成される内壁面を避ける位置に形成されていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    Formed integrally with the piston head and having a pair of pin bosses connecting the connecting rods;
    The internal combustion engine characterized in that the fin is formed at a position that avoids an inner wall surface formed on an outer peripheral side and an inner peripheral side of the piston head of the cooling channel extending between a top surface of a piston and the pin boss. Engine piston.
  6.  請求項3に記載の内燃機関のピストンにおいて、
     コネクティングロッドを連結する一対のピンボスと、前記ピストンヘッド側から延びて前記一対のピンボス間を繋いでいるスカートと、を有し、
     ピストンの頂面と前記スカートとの間で延びる前記クーリングチャンネルの頂面側の内壁面を避ける位置に形成されていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    A pair of pin bosses for connecting the connecting rods, and a skirt extending from the piston head side and connecting the pair of pin bosses;
    A piston for an internal combustion engine, wherein the piston is formed at a position avoiding an inner wall surface on a top surface side of the cooling channel extending between a top surface of the piston and the skirt.
  7.  請求項4に記載の内燃機関のピストンにおいて、
     前記フィンは、ピストンの頂面と前記ピンボスとの間で延びる前記クーリングチャンネルの内壁面の前記頂面側に形成されていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 4,
    The internal combustion engine piston according to claim 1, wherein the fin is formed on the top surface side of the inner wall surface of the cooling channel extending between the top surface of the piston and the pin boss.
  8.  請求項6に記載の内燃機関のピストンにおいて、
     前記フィンは、ピストンの頂面と前記スカートとの間で延びる前記クーリングチャンネルの内壁面の反頂面側に形成されていることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 6,
    The piston of an internal combustion engine, wherein the fin is formed on a side opposite to an inner wall surface of the cooling channel extending between a top surface of the piston and the skirt.
  9.  請求項3に記載の内燃機関のピストンにおいて、
     前記クーリングチャンネル中心軸周りに捻じれの方向が、途中で反転していることを特徴とする内燃機関のピストン。
    The piston of the internal combustion engine according to claim 3,
    A piston for an internal combustion engine, characterized in that the direction of twisting around the central axis of the cooling channel is reversed halfway.
  10.  請求項1に記載の内燃機関のピストンの製造方法であって、
     前記クーリングチャンネルの形状を模った部分を少なくとも含む中子をピストンの形状を模ったキャビティを有する型内の所定の位置に配置するとともに、前記型内に溶湯を注入する工程を有することを特徴とする内燃機関のピストンの製造方法。
    A method for manufacturing a piston of an internal combustion engine according to claim 1,
    Disposing a core including at least a portion simulating the shape of the cooling channel at a predetermined position in a mold having a cavity simulating the shape of a piston, and injecting molten metal into the mold. A method for manufacturing a piston of an internal combustion engine, which is characterized by the following.
  11.  請求項10に記載の内燃機関のピストンの製造方法において、
     前記中子は、前記フィンの形状を模り、溶湯の熱で除去される中子材料からなる第1中子と、前記クーリングチャンネルの形状を模った塩中子で形成される第2中子との組み合わせからなる複合中子であり、
     前記型内に溶湯を注入して前記第1中子を除去し前記第2中子を鋳包む工程を有することを特徴とする内燃機関のピストンの製造方法。
    In the manufacturing method of the piston of the internal-combustion engine according to claim 10,
    The core is formed of a first core made of a core material that mimics the shape of the fin and is removed by the heat of the molten metal, and a second core made of a salt core that mimics the shape of the cooling channel. A compound core consisting of a combination with children,
    A method for manufacturing a piston of an internal combustion engine, comprising: injecting molten metal into the mold, removing the first core, and casting the second core.
PCT/JP2017/006732 2016-03-02 2017-02-23 Piston of internal combustion engine and method for manufacturing same WO2017150321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016039556 2016-03-02
JP2016-039556 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150321A1 true WO2017150321A1 (en) 2017-09-08

Family

ID=59743837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006732 WO2017150321A1 (en) 2016-03-02 2017-02-23 Piston of internal combustion engine and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017150321A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045879A (en) * 2018-09-21 2020-03-26 日立オートモティブシステムズ株式会社 Manufacturing method of piston of internal combustion engine
CN113798419A (en) * 2020-06-17 2021-12-17 马勒国际有限公司 Method for manufacturing piston

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163643U (en) * 1980-05-02 1981-12-04
JPS5921019U (en) * 1982-07-30 1984-02-08 日野自動車株式会社 piston cooling device
JPH11257153A (en) * 1998-03-17 1999-09-21 Yanmar Diesel Engine Co Ltd Piston of internal combustion engine
JP2004232589A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Piston for internal combustion engine
JP2014520991A (en) * 2011-07-05 2014-08-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine
JP2015024412A (en) * 2013-07-24 2015-02-05 日立オートモティブシステムズ株式会社 Piston of internal combustion engine, manufacturing method, and manufacturing device of piston

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163643U (en) * 1980-05-02 1981-12-04
JPS5921019U (en) * 1982-07-30 1984-02-08 日野自動車株式会社 piston cooling device
JPH11257153A (en) * 1998-03-17 1999-09-21 Yanmar Diesel Engine Co Ltd Piston of internal combustion engine
JP2004232589A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Piston for internal combustion engine
JP2014520991A (en) * 2011-07-05 2014-08-25 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine
JP2015024412A (en) * 2013-07-24 2015-02-05 日立オートモティブシステムズ株式会社 Piston of internal combustion engine, manufacturing method, and manufacturing device of piston

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045879A (en) * 2018-09-21 2020-03-26 日立オートモティブシステムズ株式会社 Manufacturing method of piston of internal combustion engine
WO2020059371A1 (en) * 2018-09-21 2020-03-26 日立オートモティブシステムズ株式会社 Method for manufacturing piston for internal combustion engine
JP7011561B2 (en) 2018-09-21 2022-01-26 日立Astemo株式会社 Manufacturing method of piston of internal combustion engine
CN113798419A (en) * 2020-06-17 2021-12-17 马勒国际有限公司 Method for manufacturing piston
EP3926158A1 (en) * 2020-06-17 2021-12-22 MAHLE International GmbH Method for producing a piston
US11780009B2 (en) 2020-06-17 2023-10-10 Mahle International Gmbh Method for producing a piston

Similar Documents

Publication Publication Date Title
EP2829337A1 (en) Gravity casting mold
WO2017150321A1 (en) Piston of internal combustion engine and method for manufacturing same
CN113118384B (en) Engine cast from a single-piece core
CN108431392B (en) Piston for an internal combustion engine and method for manufacturing at least a part of such a piston
EP1239135A3 (en) Cooling structure of cylinder head and method for manufacturing cylinder head
JP2022505465A (en) Opposed piston engine base material bore cylinder block
JP2010525221A (en) Core for forming cooling passages in pistons manufactured by casting technology
JP6355839B2 (en) Die casting system with ceramic mold for forming components usable in gas turbine engines
KR101613585B1 (en) Method of simultaneously manufacturing a plurality of crankshafts
JP6050709B2 (en) Piston for internal combustion engine
JP2007309271A (en) Piston for internal combustion engine
JP4641015B2 (en) Multi-cylinder 4-cycle engine, crankcase and casting method thereof
CN107002593B (en) Piston for internal combustion engine, and apparatus and method for manufacturing the piston
CN107199312B (en) Rapid casting and forming method of integrated cylinder cover
JP2002349226A (en) Oil pan and its manufacturing method
CN109746392A (en) The method of die assembly and manufacture metal casting
JP2004232589A (en) Piston for internal combustion engine
JPH0426930B2 (en)
CN104912683A (en) Engine cylinder cooling structure and manufacturing technology thereof
CN107626890A (en) The method for manufacturing metal casting
WO2016088454A1 (en) Piston for internal combustion engine, and production method and production device for piston for internal combustion engine
JP5726985B2 (en) Mold for casting
JP5994995B2 (en) Manufacturing method of engine cylinder head
JP5549101B2 (en) Cylinder block, its casting mold and its casting method
US10486226B2 (en) Core for manufacturing a turbomachine blade

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759787

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP