EP2729662B1 - Raumbereitstellungssystem mit kompressionsvorrichtungen zur neuzuordnung von ressourcen zu neuen technologien, industriebrachen und entwicklungen auf der grünen wiese - Google Patents

Raumbereitstellungssystem mit kompressionsvorrichtungen zur neuzuordnung von ressourcen zu neuen technologien, industriebrachen und entwicklungen auf der grünen wiese Download PDF

Info

Publication number
EP2729662B1
EP2729662B1 EP12807648.6A EP12807648A EP2729662B1 EP 2729662 B1 EP2729662 B1 EP 2729662B1 EP 12807648 A EP12807648 A EP 12807648A EP 2729662 B1 EP2729662 B1 EP 2729662B1
Authority
EP
European Patent Office
Prior art keywords
rig
well
bore hole
opening member
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12807648.6A
Other languages
English (en)
French (fr)
Other versions
EP2729662A2 (de
EP2729662A4 (de
Inventor
Bruce A. Tunget
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1111482.4A external-priority patent/GB2484166B/en
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US2012/045626 external-priority patent/WO2013006735A2/en
Publication of EP2729662A2 publication Critical patent/EP2729662A2/de
Publication of EP2729662A4 publication Critical patent/EP2729662A4/de
Application granted granted Critical
Publication of EP2729662B1 publication Critical patent/EP2729662B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/20Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/117Shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction

Definitions

  • the present invention relates, generally, to systems and methods usable to form a geologic testing space within downhole conditions for proving the operation of an unproven downhole apparatus, within an aged geology and during the rig-less abandonment of an aging well, and for reallocating the operation of said unproven downhole apparatus, from an unproven to a proven state, which can occur in an environment with lower failure consequences to, in use, provide new technology that is proven across relevant geologic periods and epochs of practice.
  • the present invention relates, generally, to apparatus and methods usable for rig-less abandonment and the forming of a geologic testing space that can be usable to reallocate the use of, for example, drilling rigs, for performing well abandonments and testing or proving new technology to other uses, including using the proven technology with said drilling rigs for the further development of Brownfield and Greenfield subterranean deposits.
  • Patent Application Number GB1111482.4 can be usable to, for example, provide a four (4) dimensional space by including the extra dimension of geologic time.
  • Patent Application Number GB 1011290.2 discloses methods and systems usable to provide a three (3) dimensional usable space within a well
  • Patent Application Number GB1116098.3 discloses a method usable to, for example, test the sealing of three and/or four dimensional spaces, which are sealed with cement or a settable material.
  • a bore hole piston apparatus comprising a rig-less bore hole opening member that can be driven by hydraulics, explosions, a cable, or combinations thereof, for the formation of a geologic testing space.
  • the embodiments of the present application include apparatus and methods for using the geologic testing space to prove one or more unproven downhole apparatus, for operation within a proximally similarly aged geology of an aging well, another aging well (79), a new well (80), or a field of wells (79, 80), generally referred to as Brownfields (79) and Greenfields (80).
  • embodiments of the present application claiming priority to GB 1121741.1 , provide apparatus and methods of forming a hydrodynamic bearing motor, usable to, for example, drive a milling surface on an arm of a milling arrangement or form the shock and vibration reducing part of fluid and/or electric motors, which can be usable by the present invention during the forming of a subterranean space.
  • Some of the more frequently reported structural integrity problems include a lack of production tubing centralization leading to conduit erosion from thermal cycled movement; corrosion within the well conduit system; e.g., from biological organisms or H2S forming leaks through or destroying conduits or equipment; and/or valve failures associated with subsurface safety valves, gas lift valves, annuli valves and other such equipment.
  • Other common issues include unexplained annulus pressure, connector failures, scale, wear of casings from drilling operations, wellhead growth or shrinkage and Xmas or valve tree malfunctions or leaks at surface or subsea.
  • Such issues comprise areas where operators are able to, or chose to, test, and there are others (such as the internals of a conductor) which they cannot, or do not test, and which may represent a serious risk to economic viability and the environment.
  • Problems within various portions of a well, in particular the annuli cannot be conventionally accessed without significant intervention or breaking of well barriers, e.g., with a drilling rig.
  • these significant operations are an expensive cost and considerable safety risk to operators, who are unsuitable for conventional rig-less operations.
  • a primary advantage, of using drilling specification rigs for well intervention, is the removal of conduits and access to annuli during well intervention and abandonment, wherein the ability to access and determine the condition of the annuli casing and primary cement behind the production conduit or tubing can be used to make key decisions regarding the future production and/or abandonment. If well casings are corroded or lack an outer cement sheath, remedial action, e.g . casing milling, may be taken by a drilling rig to provide a permanent barrier.
  • Various method embodiments of the present invention can be usable for benchmarking, developing, testing and improving new technology relating to, for example, the gathering of empirical information that conventional rig-less operations cannot, by providing access and/or space for both measurement devices and sealing materials. Once such information is gathered, still other method embodiments can be usable for benchmarking, developing, testing and improving rig-lessly placed barriers, and milling or shredding conduits and/or casings to expose and bridge across hard impermeable strata, or cap rock formations, for placement of permanent barriers, without imbedding equipment in cement, to ensure structural integrity.
  • age is believed to be the primary cause of structural well integrity problems.
  • the combination of erosion, corrosion and general fatigue failures associated with prolonged field life, particularly within wells exceeding their design lives, together with the poor design, installation and integrity assurance standards associated with the aging well stock, is generally responsible for increased frequency of problems over time. These problems can be further exacerbated by, e.g., increasing levels of water cut, production stimulation, and gas lift later in field life.
  • the embodiments of the present invention provides lower cost rig-less methods usable for benchmarking, developing, testing and improving the accessing of annuli and for selectively placing pressure bearing conduits and well barrier elements at required subterranean depths, between annuli, when intervening in, maintaining and/or abandoning portions of a well to isolated portions affected by erosion and corrosion. This, in turn, extends the well life to fully deplete a reservoir and, further, to reduce the risk associated with well barrier element placement and the pollution liability from an improperly abandoned well.
  • the risk-adverse major oil and gas companies generally prefer such operations as asset disposal and replacement, rather than remediation, and favour the sale of aging well assets to smaller companies with lower overheads and higher risk tolerances.
  • Smaller companies, requiring a lower profit margin to cover marginal cost are generally eager to acquire such marginal assets but, in future, may be unable to afford well abandonment, thus putting the liability back to the original owner and preventing sale or creating a false economy for the seller.
  • Low cost reliable rig-less placements of well barrier elements, to delay or perform abandonment is critical to large and small companies if aging assets are to be bought and sold and/or to avoid such false economies.
  • the rig-less methods and members of the present invention, usable to place and verify well barrier elements for reliable abandonment are important to all companies operating, selling and/or buying aging wells.
  • the structural integrity of producing and abandoning wells is critical because the liability of well abandonment cannot be passed on if a well ultimately leaks pollutants to the surface, water tables or ocean environments, because most governments hold all previous owners of a well liable for its abandonment and environmental impacts associated with subsequent pollution.
  • the sale of a well liability does not necessarily end the risk, when the asset is sold or abandoned, unless the final abandonment provides permanent structural integrity.
  • Method embodiments of the present invention are usable for benchmarking, developing, testing and improving of rig-less well intervention and maintenance, to extend the life of a well, by placing well barrier elements to isolate or abandon a portion of a well; and then, operating another portion of the well until no further economic production exists or well integrity prevents further extraction or storage operations. Thereafter, the well may be completely and permanently abandoned for an indefinite period of time, using embodiments of the present invention to rig-lessly and selectively access annuli for both placement and verification of well barriers, including barriers that provide a geologic testing space for said benchmarking, developing, testing and improving of new technology.
  • a related need also exists for apparatus and methods usable for benchmarking, developing, testing and improving new technology usable for working, within a closed pressure controlled envelope, to prevent exposing both operating personnel and the environment to the risk of losing control of subterranean pressures if a well intervention kill weight fluid column is lost to, e.g., subterranean fractures.
  • the embodiments of the present invention can be considered to create a new market from an existing market, this generalization can be evident in several significantly important prior inventions, for example, the invention of the steam engine, which resulted in the formation of a new market that has been historically summarized as the industrial revolution; the invention of a logging while drilling apparatus, which has formed a directional drilling market; and the invention of a positive displacement mud motor, which has formed a horizontal drilling market, wherein the conventional and prior art apparatuses of the existing markets, at the time of each of these inventions, could not meet the same required needs.
  • the present invention may result in the formation of a market for testing unproven downhole apparatuses, simply because no such market for the downhole testing of apparatus presently exists.
  • the present invention not only provides an important solution to the need for downhole testing and proving of apparatus, it provides a new market in downhole testing that is necessary because conventionally operating a down hole apparatus is, in practice, more art than science.
  • Science can be considered to be literally “as blind as a bat,” because, for example, it relies entirely upon surface indications and subterraneanly transmitted and reflected signals of downhole tools, which are located within a hazardous geologic environment that is subject to extreme forces, substances, pressures and temperatures, miles below the surface of the earth.
  • practitioners generally rely more on empirically proved operations than on scientific theories of operation.
  • Substances, pressures and temperatures associated with the alternating layers of permeable and non-permeable subterranean strata are not foreseeable by using the bouncing of reflected signals upon subterranean reflectors of the geology, geologic fractures, and an almost infinite number of sub-seismic resolution events, stratigraphy and lithology.
  • a geologic environment cannot be scientifically predicted to the accuracy of empirical downhole apparatus operating data from said geology.
  • the present invention relates, generally, to space provision systems and methods usable to form a geologic testing space, for example, within an abandonment liability well, for proving the operation of an unproven downhole apparatus (i.e., new technology) by using, for example, a hydrodynamic bearing boring apparatus (1A, 1E, 1BM, 9AA, 92D) or a bore hole piston apparatus (1A, 1AF, 92A-92C, 92E-92G), wherein both of these apparatus comprise a rig-less bore hole opening member (92), which can be driven, in part, by hydraulics.
  • the bore hole opening members can be further drivable by an explosion, a cable, or combinations thereof.
  • Embodiments of the present application provide significant improvements to the existing art, wherein the geologic testing of the present invention is usable to empirically prove any new or unproven downhole apparatus within a geologic environment, including, but not limited to, apparatus or new technologies of the present inventor, for proven use on wells with similar geologic conditions.
  • the embodiments are usable in isolation, or can be combined, for example, with various technologies and methods of the present inventor to provide systems and methods for using a rig-less apparatus to convert the tangible well liability of abandonment into the tangible asset of a geologic test well, which can be usable to prove the rig-less or rig operation of an unproven downhole apparatus, such as a hydrodynamic bearing that may be used within any rotary drill string, and which could potentially improve the efficiency of all rotary drilling operations by reducing the effects of adverse shocks, vibration, whirl and harmonic resonance of rotary operations.
  • an unproven downhole apparatus such as a hydrodynamic bearing that may be used within any rotary drill string
  • Preferred embodiments of the present invention can provide a space provision system of apparatus and method (10, 10A-10H) for forming a geologic testing space for proving an operation of at least one unproven downhole apparatus (78, 92), within an aged geology and during the rig-less abandonment of an aging well to, in use, reallocate operation of said at least one unproven downhole apparatus, from unproven to proven operation, within a proximally similarly aged geology of said aging well, another aging well (79), a new well (80), or a field of said wells (79, 80)
  • Preferred embodiments may comprise at least one hydrodynamic bearing boring apparatus (1A, 1E, 1BM, 9AA, 92D) or a bore hole piston apparatus (1A, 1AF, 92A-92C, 92E-92G), wherein the at least one unproven downhole apparatus can comprise a rig-less bore hole opening member (92) that can be driven, in part, by hydraulics, wherein the rig-less bore hole opening member can be further drivable by an explosion, a cable, or combinations thereof, and can be deployable through an upper end of said aging well, within one or more conduits having at least an inner bore hole within a wall of at least one concentric surrounding bore that is engagable by said rig-less bore hole opening member, during abandonment of a lower end of said aging well, such that the rig-less bore hole opening member can open said inner bore hole axially along, and radially into, the wall of the at least one concentric surrounding bore.
  • the at least one unproven downhole apparatus can comprise a
  • Debris (91), from the opening of said inner bore can be disposed and compressed within the lower end of the aging well for placement of a settable pressure sealing material.
  • the settable pressure sealing material can be placed axially above the debris and within the wall of the at least one concentric surrounding bore, at the lower end of the aging well, to provide a proximal geology above the settable pressure sealing material that is comparable to at least one portion of a geology of the aging well, a geology of another aging well, a geology of a new well or a geology of the field of wells to form, in use, the geologic testing space.
  • Preferred embodiments further provide a geologic testing space usable to empirically measure operating parameters of the at least one unproven downhole apparatus (78, 92), wherein the geologic testing space comprises at least one unproven down hole apparatus (78) to provide empirical data for adapting or proving the at least one unproven downhole apparatus to, in use, reallocate operation of the at least one unproven downhole apparatus, from unproven to proven operation, within the geologic testing space for use within a similar geologic environment of the aging well, the another aging well, the new well, or the field of said wells.
  • the geologic testing space comprises at least one unproven down hole apparatus (78) to provide empirical data for adapting or proving the at least one unproven downhole apparatus to, in use, reallocate operation of the at least one unproven downhole apparatus, from unproven to proven operation, within the geologic testing space for use within a similar geologic environment of the aging well, the another aging well, the new well, or the field of said wells.
  • Various embodiments may provide a rig-less bore hole opening member (92) comprising a rig-less cutting apparatus to disengage debris (91) from engagements that prevent disposal and compression of said debris within a lower end of an aging well.
  • a rig-less bore hole opening member (92, 1A,1E, 1BM, 92D), comprising at least one hydrodynamic bearing (1) that is disposed about a shaft (2) and an outer wall (5) of a cutting structure (112) and positioned within said wall of said concentric surrounding bore (7), with at least one periphery arced wall (4) radially extending from, and arranged about, a circumference of a conduit shaft housing (14, 14A), and about at least one inner wall (6) that is adjacent to at least one associated hydrodynamic profiled wall (3).
  • the rig-less bore hole opening member can be rotatable by or about the shaft to displace fluid axially along said at least one inner wall that is anchored by combined frictional engagements of the fluid, at least one associated hydrodynamic profiled wall (3), at least one inner wall (6), at least one periphery arced wall (4), and/or the wall of the at least one concentric surrounding bore (7) to force the fluid between an adjacent set of at least two of said walls.
  • the embodiments include fluids that can be displaced to form a pressurized (8) cushion that is fluidly communicated to and from a set of at least two walls to, in use, operate cutting structures (112, 116) to form the debris (91), while lubricating and dampening associated rotational shocks and vibrations with a shearing of frictional engagements when bearing the shaft, during rotation of the cutting structures within the wall of the at least one concentric surrounding bore.
  • Various embodiments may provide a rig-less bore hole opening member (92), comprising a plug, a diaphragm, or combinations thereof, wherein a rig-less bore hole opening member (92) can be placed adjacent to debris (91) for disposal and compression of said debris within the lower end of an aging well, by using differential fluid pressure across a bore hole piston apparatus.
  • the embodiments can include injecting fluid into one or more conduits to form a high pressure region, at a first side of said bore hole piston apparatus, and a lower pressure region, at a second side of said bore hole piston apparatus, to operate said rig-less bore hole opening member axially along and radially into the wall of at least one concentric surrounding bore.
  • a rig-less bore hole opening member (92) comprising a hydraulic jar, an explosive, or combinations thereof, for urging the disposal and compression of debris (91) within a lower end of an aging well.
  • a rig-less bore hole opening member (92) that comprises a firing gun (92A), which can be placeable by deployment string, for explosively firing a piston (95) from a housing (96), wherein said piston can be adaptable with an orifice, valve, or combinations thereof, to relieve trapped pressure from beneath said piston when fired.
  • Still other embodiments may provide a rig-less bore hole opening member (92) comprising a cable tension compression device (92B, 92E 92F, 92G) for buckling (99) one or more conduits to form debris (91), by using a tensionable cable (67) that can be anchored (102, 103) with a pulley (105) at one or more ends, thereof, to axially compress said debris relative to said pulley.
  • Related embodiments may provide a cable passing through at least one eccentric orifice (100) of a plurality of plates (101) that are spaced within one or more conduits, and wherein tensioning cable alignments of said eccentric orifices can urge the plurality of plates radially into an inner bore to buckle (99) said one or more conduits axially along, and radially into, the wall of at least one concentric surrounding bore to form the debris.
  • Various embodiments provide a rig-less bore hole opening member (92) that can compress debris axially along or radially into the wall of at least one concentric surrounding bore.
  • FIG. 1 may depict a logging tool apparatus having a transponder, receiver, or combinations thereof, wherein the logging tool apparatus can be placed in the rig-less bore hole opening member (92), the downhole apparatus (78), a wellhead, the geologic testing space, the settable pressure sealing material, or combinations thereof, and wherein said transponder or receiver can be placeable within a shock and compression resistant enclosure to send signals through fluids or casings of said aging well.
  • Related embodiments may provide a logging tool apparatus that can empirically measure (93) operating parameters of at least one unproven downhole apparatus to form at least one measurement, comprising tolerances, rotary speeds, shocks, vibrations, stick-slip, whirl, harmonic resonances, or combinations thereof, for operation of the at least one unproven downhole apparatus (78) within subterranean substances, pressures and temperatures of said aged geology.
  • Other related embodiments may provide a logging tool apparatus that empirically measures (93) and provides associated empirical data of subterranean strata geologic periods and epochs, that can be similar to another aging well, a new well or a field of wells.
  • Other embodiments may provide a production infrastructure for hydraulically operating the rig-less bore hole opening member (92) and for fluidly accessing said aging well through one or more conduits.
  • Various related embodiments may provide a production infrastructure usable to extract production from a subterranean resource.
  • inventions may side-track an aging well using a rig-less bore hole opening member (92) or an unproven downhole apparatus (78).
  • Various other embodiments may prove an unproven downhole apparatus (78), which can be deployable and operable within one or more conduits, and a geologic testing space, that is provided by a rig-less bore hole opening member (92), for proven use across a plurality of proximally similar geologic environments of another aging well (79), a new well (80) and/or a field of said wells (79, 80).
  • a rig-less bore hole opening member 92
  • FIG. 1 a flow chart of a space provision system (10) embodiment (10A) is depicted, showing the identification of wells available for abandonment (82) and consummation of an agreement (83) representing, for example, a contractual rental or sale agreement (84) between a technology (85) and abandonment liability owner (86) for space usage rights (87) and optionally infrastructure usage rights (88), for the purposes of forming a geologic testing space for proving the operation of an unproven downhole apparatus (78, 92) within an aged geology, during the rig-less abandonment of an aging well.
  • an agreement representing, for example, a contractual rental or sale agreement (84) between a technology (85) and abandonment liability owner (86) for space usage rights (87) and optionally infrastructure usage rights (88), for the purposes of forming a geologic testing space for proving the operation of an unproven downhole apparatus (78, 92) within an aged geology, during the rig-less abandonment of an aging well.
  • a space provision system can be usable to compress well apparatuses and debris (91) with a compression device (92) for forming a usable geologic space for placement of an abandonment plug (89), to satisfy an abandonment liability and provide integrity for developing new technology (78), for example further space formation devices (92) to reduce the resources required for abandonment, or side-tracking drilling (59) and milling assemblies (9) or hydrodynamic bearings (1) to for example, more effective exploit Brownfields (79) and Greenfields (80) with less resources, to the benefit of the regional and global private and public benefit (90).
  • Empirical measurements (93) may be taken with logging tools or a transponder may be placed in a protective shock absorbent housing (66 of Figure 22 ) to provide empirical data to design, redesign, test and field prove new technology (78) in the development of Greenfield (80) and Brownfield (79) wells (57).
  • the resource cost of drilling rig (58A of Figure 18 ) and even some rig-less operations (58C of Figure 19 ) is, generally, such that a usable space for testing and field proving of downhole tools, deployable within the realistic environments provided during the abandonment of wells (57) and with significantly less resource intensive rig-less jointed pipe (58B of Figure 17 ) and coiled string (58D of Figure 20 ) operations, represents a significant improvement in the development of new technology and hence is marketable.
  • a company owning the usage right for the usable space formed during the abandonment may offer to test and field prove technologies in exchange for a participating ownership in such technologies or for monetary gain.
  • FIG. 17 to 21 illustrating various elevation views of rigs (58) usable with the system and method of the present invention, and showing what is conventionally described as drilling rig (58A) and rig-less (58B, 58C and 58D) arrangements above example slices through subterranean wells (57) and strata (60).
  • Drilling rigs (58A) require the most resources for operation, with a large derrick (94) and associated hoisting equipment often capable of lifting over a million pounds, with associated large fluid pumping and storage capacity resources. While either coiled or jointed pipe conduit string may be used on a drilling rig (58A), high strength and torque jointed conduits are generally used.
  • drilling rigs In general, drilling rigs have the most rugged and robust equipment specification that may be orders of magnitude difference resource operations costs compared to coiled string and other rig-less arrangements.
  • Coiled tubing rigs generally termed as drilling “rig-less,” generally require significantly less resources than drilling rigs, but considerably more than, for example, jointed string rig-less arrangements (58B) and cable rig-less arrangements (58D). Consequently, when well abandonment and boring string operations use rig-less arrangements, said operations require less resources.
  • Drilling rigs are generally efficient for quickly boring and constructing a well into the geologic periods and epochs, miles and kilometres below the earth's surface.
  • resource usage generally, exceeds what is required for well abandonment, testing and development of new technology.
  • rig-less arrangements are more resource efficient than drilling rigs (58A) if said well is already constructed and the objective is to place a permanent abandonment plug (89), and test and develop new technology within regional subterranean environments, similar to those where developed tools will be used.
  • the present space provision system will approach and potentially become the lowest resource usage system and method within the industry for abandoning wells and testing downhole tools, thus freeing resources for reallocation to further new technology (78), Brownfield (79) and/or Greenfield (80) development.
  • Figure 17 depicts an isometric view of a rig-less jointed pipe (72, 72A) handling (58B) rig-like (58) arrangement, wherein the rig (58) is located above sea level (63) or ground level (60) and handles individual (72A) jointed pipe (72) to form a rig-less jointed pipe string (67A) operable within a well (57) bore (7) through an associated wellhead (61).
  • rig-less pipe handling systems are usable to prove unproven (78) rotary string (67) apparatuses.
  • FIG. 18 an elevation view with a slice through strata and the well removed is depicted.
  • the Figure shows a rig (58), and includes a drilling nature (58A) with a derrick (94), fluid or mud pits (123), pumps (124) and a control room, conventionally called a dog house (125).
  • the well comprises a Greenfield (80) development using a chamber junction (119) and simultaneous flow string chamber junction (122 shown in Figs. 26 and 27 ) which has been proven in an abandoned well previously, wherein said technology is particularly useful for fracturing operations, for example shale gas fractures.
  • Figure 19 shows an elevation view of a slice through a well and strata, illustrating a coiled string (67F) and a coiled tubing rig (58C) with an injector head (126) and derrick (94), working on a brownfield (79) to prove unproven technology after abandoning the lower end of the well.
  • the Figure shows an elevation view through a slice through the well and strata, showing a cable rig (58D) arrangement using a coiled string (67) cable (67S) through a lubricator (130), blow out preventer (131) wellhead (61) and casing (56A, 56B, 56C, 56D) to deploy a pendulum boring piston (73, 73G) with a motor (17L) and jointed directable pendulum string (9, 9H), having a hydrodynamic bearing (1, 1U) usable to reduce the friction, shock and vibration associated with cable rotary tool boring.
  • FIG 21 illustrates a schematic of a mud pit (123) arrangement usable with a coiled string arrangement, for example (58D) of Figure 20 or (58C) of Figure 19 , wherein fluid returned (129) in a pressure controlled manner may be run through a separator (132) to remove hydrocarbons or gases (133), disposing of debris (91) and returning (129) circulated fluid to a mud pit (123) or closed tank system, for pumping (124) back to the boring operations. Underbalanced drilling may be accomplished in this manner using rig-less operations, to further improve both penetration rates of boring and productivity from subterranean production resources, providing another example opportunity for reducing resource costs with a space provision system of the present invention.
  • fluid returned (129) in a pressure controlled manner may be run through a separator (132) to remove hydrocarbons or gases (133), disposing of debris (91) and returning (129) circulated fluid to a mud pit (123) or closed tank system, for pumping (124) back to the boring operations.
  • Underbalanced drilling may be accomplished in
  • Embodiments of the present space provision system can be operated with rigs (58B-58D) to form a geologic testing space for proving an unproven downhole apparatus (78, 92) within an aged geology, during the rig-less abandonment of an aging well to, in use, reallocate operation of said unproven downhole apparatus from unproven to proven operation with rigs (58A-58D) within a proximally similarly aged geology of said aging well, another aging well (79), a new well (80), or a field of said wells (79, 80), typically referred to as Brownfields (79) and Greenfields (80).
  • Figures 2, 2A and 3 show various diagrammatic elevation views of a subterranean slice through various example wells (57) and strata types applicable to the present invention.
  • subterranean wells (57 of Figure 2 ) have many components, simplified well schematics (e.g. 57 of Figures 2A and 3 ) are conventionally used to provide focus upon communicated aspects.
  • a schematic well diagram e.g. 57 of Figure 2A
  • a more detailed well diagram e.g. 57 of Figure 2 , below the section line A1-A1
  • each of the wells described in Figures 3 to 16 are similar to Figure 2 , except where noted.
  • a well's (57) architecture comprises various cemented (64) and uncemented casing (56A to 56D) and strata (60A to 60M) bores (7).
  • Casings may comprise various sizes, for example, (56D) may represent a 7" liner, (56C) a 30" conductor, (56B) a 13 3/8" casing, and (56A) a 9 5/8" production casing, within which an uncemented annulus and production conduit (56E) may exist.
  • devices may be used to compress, for example, the production conduit (56E) forming debris and potentially containing or covered with engaged debris, e.g. NORM or LSA scale, wherein the conduit (56E) and other associated apparatuses and debris may be compressed within the uncemented annulus of the production conduit (56A) to form a usable space within said production conduit.
  • the presently described space provision system can be usable to test and field prove new technologies, like hydrodynamic bearings (1) and directable hydrodynamic bearing pendulum boring strings (9), tested within the controlled environment of a subterranean well, wherein the lower end has been made relatively safe through said space provision system abandonment, leaving room within the well to test new technology in close to actual conditions.
  • strata below the Figure 2, Figure 2A, and Figure 3 line A1-A1 represents any of the Quaternary and Neogene period epochs, with the strata below line A2-A2 representing any of the Paleogene period Oligocene, Eocene and Paleocene epochs, and strata below A3-A3 represents any Cretaceous, Jurassic, Triassic, Permian or Carboniferous period late, middle and early epochs.
  • the strata below lines A-A of Figure 17 , B-B of Figure 18 , C-C of Figure 19 , and D-D of Figure 20 represents any of the lines A1-A1, A2-A2 or A3-A3 geologic period epochs.
  • Figures 2 and 2A show an elevation slice through the well and schematic views, respectively, of a well (57) with a valve tree (62), and illustrate a slice through said well's subterranean portions and wellhead (61), securing casing (56A-56C) cemented (64) below strata level (60), which may be either a ground level or mud line below sea level (63).
  • valve tree (62) may be adapted for subsea use, wherein the conventional valve tree configuration represents a primary (61B) and secondary (61A) master valve, usable with the production valve (62C) to flow production through the flow line (62F).
  • the tree cap (62E) is removed and a rig (e.g. 58D of Figure 20 ) is erected to the tree's upper end, the swab valve (62D) and master valves (62A, 62B) may be opened to access the production conduit (56D) through the safety valve (65), wherein said safety valve may be operated with a control line (65A).
  • a conventional wellhead (61) generally uses multiple annulus valves (61A, 61B) to access annulus between the various well conduits (56A, 56B, 56C) with larger shallow annuli exposed to normally pressured formations left open or without valves (61C).
  • the strata (60) access by any well (57) bore may be generally classified by mineral and chemical composition, by the texture of the constituent particles and by the processes that formed them, which separate rocks into igneous, sedimentary, and metamorphic.
  • Igneous rocks may comprise, e.g., granite and basalt, which are particularly hard to bore through. While granite is often bored within wells, the majority of strata targeted for boring comprises sedimentary rocks formed at or near the earth's surface by deposition of either clastic sediments, organic matter, or chemical precipitates (evaporites), followed by compaction of the particulate matter and cementation during diagenesis.
  • Sedimentary rocks may comprise, for example, mud rocks, such as mudstone, shale, claystone, siltstone or sandstones and carbonate rocks such as limestone or dolomite.
  • Metamorphic rocks are formed by subjecting any rock type (including previously formed metamorphic rock) to different temperature and pressure conditions than those in which the original rock was formed, and hence may be prevalent in many well bores.
  • FIG. 3 the Figure illustrates using a space providing system (10) embodiment (10H), shown as a compressing device (92) comprising a slideable piston annular blockage bypass straddle (92C), and used to compress debris (91), for example scale chemically removed and hydraulically jarred into the well and strata prior to placing an abandonment plug (89) to allow the side-tracking of the well of Figure 2A , using a coiled pendulum drill string (67, 67A), comprising a boring piston (73) embodiment (73A) with a reactive torque tractor (74) directable boring string (9, 9A), using a motor (17L) to rotate a wireline deployable jointed string (75, 75G) and a second in-line motor (17) to rotate an upper and lower cutting structures (112), which can be usable to bore said side-track (59) embodiment (59A), which can be placeable, retrievable and operable via said tensionable coiled string (67) and can pump pressure through said previously formed bore (7), with fluid pressure applied through
  • the space provision system (10) can be usable to bore a second side-track (59B) and optionally to produce from any marginal production resources found prior to placing a final abandonment plug to permanently isolate said side-tracks (59A, 59B). Further shown in Figure 3 are hydrodynamic bearings (1, 1B, 1C, and 1C).
  • Figures 1, 8 to 12 and 22 the Figures include space provision system (10) members (10D, 10E, 55, 66) and prior art (51, 52).
  • Figures 8 and 9 show isometric views of a prior art shotgun (51) and shotgun shell (52) components, respectively, illustrating a shell (52) with casing (52A) placeable in the gun's chamber (51B).
  • the wad (92) may: compress conduit (56E) within the barrel conduit (56A), compress conduit (56A) with the barrel conduit (56B), and so on and so forth.
  • a pinning arrangement may be used to anchor various well conduits during explosive compression or milling as described in Figure 12 .
  • various compression devices (92) may use cables to enlarge a bore by compressing debris into a well's lower end as described. Additionally, empirical measurements may be made during and after compression and/or during the downhole proving of unproven apparatuses using various embodiments.
  • FIG 22 showing an isometric view of shock absorbing apparatus (66) of the present inventor and usable to place a transmitter within a well bore for measurements about or below components, compressed by a space provision system of the present invention (e.g . those described in Figures 5-7 and 10-11).
  • the transmitter may be engaged within a transmitter housing (66D), which may be placed in contact with casing (e.g. 56A-56D of Figure 2 and 2A ) through a cover (66C) or the housing (66A), wherein said contact may remain when the sensor is cushioned (66B) from adverse shocks and forces when, for example, compressing well components using space provision system operations, thus allowing transmission of empirical data through casings to a surface wellhead.
  • casing e.g. 56A-56D of Figure 2 and 2A
  • a sensor and/or transponder may be separated from compression and jarring forces by at least one shock absorbing frame, spring, moveable bearing arrangement, gelatinous material or protective stabiliser providing, in use, continuous ultrasonic or electrical contact with the conduit wall extending to the wellhead conductor for transmission of a signal through said conduit wall while inhibiting stresses transmitted to said sensor or transponder, from, e.g., crushing of conduits below a annulus conduit crushing piston, usable to expose the production casing for logging of primary cementation behind, placement of a well barrier element, and/or benchmarking, developing, testing and improving of new technology.
  • Various method embodiments of the present invention are usable to form a geologic space where logging, to confirm primary cementation adjacent to conduits, may occur. Signals may, e.g., be broadcast from the logging tool with reflected signals collected by a different portion of the logging tool, or signals may be passed between the wellhead, surface or subsea location and a downhole transmitter or receiver.
  • measurement signals can be engaged with the circumference of the conduit walls to provide sonic, acoustic or various other signals forms measuring, e.g., the response time of signals passing through bonded and unbonded conduit cementation to measure the degree of bonding and/or cementation present.
  • the process may be visualized as ringing or pinging a glass and measuring the sound or vibration received to determine if the glass is free standing within a liquid or tightly cemented in place.
  • Signal transmitters and/or receivers are engagable with conduits or annulus fluids through penetrations or through annulus wellhead openings.
  • a signal may be sent from the wellhead or from and an external transmitter which functions in a similar manner to a VSP logging tool used to calibrate seismic data, wherein it can be usable to see the existence of primary cementation adjacent to the strata bore and can be calibrated with logging data carried out during and/or after construction of a well.
  • various other members of the present invention system of members are usable to place temporary or permanent well barrier elements within the well at the appropriate subterranean depths to meet industry best practices to avoid potential future leak paths and/or simulate a rig abandonment by placing cement plugs across casings.
  • embodiments may be cable string compatible and are thus usable with either the rig-less arrangement or the minimalistic pressure controlled arrangements for permanently abandoning a subterranean well in a rig-less manner.
  • Figure 12 illustrates a diagrammatic elevation view of a conduit pinning arrangement (55), with only a portion of the well (57) bore (7) elevation radial cross section shown below an upper right hand transverse side view elevation cross section of the pinning shaft member's (55A, 55B, 55C) diameters, in differing left hand side and right hand pinning shaft configurations, shown in the upper right.
  • a flexible shaft (55A) and boring bit (55D) may be used to bore through various casing (56) conduits (56A, 56B, 56C), with the flexible shaft (55A) usable as a spine for linked pinning conduit (55C) arrangement (55), that may be combined with securing and/or stiffening partial conduit member (55B) to anchor conduits (55A, 55B and 55C) together.
  • Such pinning arrangements can be usable in, for example, the drilling, milling and space provision operations shown in Figures 3 to 7 and gun like compression of Figure 10 .
  • Figures 10 and 11 illustrate diagrammatic elevation slices through a subterranean well, showing example space provision system (10) explosive member compression device (92) embodiment (10D), and cable member embodiment (10E), respectively.
  • example space provision system (10) explosive member compression device (92) embodiment (10D) explosive member compression device embodiment (10D)
  • cable member embodiment (10E) cable member embodiment
  • GB1011290.2 space provision system (10) explosive member compression device (92) embodiment
  • PCT GB2010/051108 e.g. axial compression and/or radial compression plug and/or diaphragm piston compression devices (92) or hydraulic jar and/or explosive compression devices (92)
  • axial compression and/or radial compression plug and/or diaphragm piston compression devices (92) or hydraulic jar and/or explosive compression devices (92) for forming low resource cost usable subterranean spaces, thus reallocating resources that would have otherwise been used for satisfying an abandonment liability.
  • the Figure illustrates an elevation diagrammatic view of a slice through a subterranean well (57) bore (7) and shows an explosive piston space provision system (10) member compression device (92) embodiment (10D).
  • the member housing (96) is shown engagable to a jointed or coiled string of a rig or rig-less arrangement and contains an explosive that may be initiated by a firing head (98) to launch an piston (95) of an expandable type (95B), for example a bladder, diaphragm, or wad variety, which can be usable to compress the severed portion of the deployment conduit (56E, 56A, 56B), uncemented within a surrounding conduit (56A, 56B, 56C, respective to the severed deployment conduit).
  • an expandable type for example a bladder, diaphragm, or wad variety
  • An orifice or one way-valve (97) can be usable to release trapped fluid below the piston (95B) compression device (92), of a jarring type (92A), as it moves within the containing conduit.
  • the upper end of deployment conduit (56E, 56A, 56B) to be severed may be anchored with a pinning arrangement (55) to allow the explosive to severe said conduit and move it axially downward relative to its anchored portion holding the member housing (96) and joint or coiled string deployment string. Alternatively, the deployment may be severed before being compressed axially downward to form debris (91).
  • Figure 11 depicts left and right side diagrammatic plan above elevation cross section slices through a subterranean well (57) bore (7), and the Figure shows a space provision system (10) compression device (92) cable type (92B) embodiment (10E), before activation on the left side, and after activation on the right side.
  • space provision system (10) compression device (92) cable type (92B) embodiment (10E) before activation on the left side, and after activation on the right side.
  • the compression device (92B) can be deployed via a cable (67) of a conduit buckling (99) type (67AD) and anchored (102) at its lower end, passing through a plurality of eccentric orifice (100) plates (101) that can be spaced within a compressible uncemented conduit within a containing conduit, wherein tensioning said cable can buckle said uncemented conduit by aligning the orifices (100) with the axis of the tension cable (67AD), thus allowing axial compression relative to the anchor of said buckled (99) conduit.
  • Debris (91) can be formed by buckling and plastically deforming the conduit.
  • a cable compression device (92B) may be combined with, for example, an explosive device (92A) of the present invention and/or axial compression and/or radial compression plug and/or diaphragm piston compression devices (92) or hydraulic jar and/or explosive compression devices (92) of the present inventor to further buckle and compress the buckled conduit.
  • an explosive device (92A) of the present invention and/or axial compression and/or radial compression plug and/or diaphragm piston compression devices (92) or hydraulic jar and/or explosive compression devices (92) of the present inventor to further buckle and compress the buckled conduit.
  • FIG. 4 showing a compression device (92) embodiment (92D) and directable hole opening boring string (9) embodiment (9B) in Figure 4 , with cable compressing device (92) embodiments (92E), (92F) and (92G) in Figures 5, 6 and 7 , respectively.
  • Figure 4 illustrates a diagrammatic elevation slice view through a well's bores and casings depicting a compression device (92) embodiment (92D) and hole opening boring (9) embodiment (9B), which can comprise a cable (67B) deployable piston string (73) embodiment (73B) using a reactive torque tractor (74), that can be operated with a motor (17F) to rotate the pendulum solid shafts of a milling motor (17) embodiment (17A) similar to the milling arrangement (9AA) of Figures 13 to 16 .
  • a compression device (92) embodiment (92D) and hole opening boring (9) embodiment (9B) which can comprise a cable (67B) deployable piston string (73) embodiment (73B) using a reactive torque tractor (74), that can be operated with a motor (17F) to rotate the pendulum solid shafts of a milling motor (17) embodiment (17A) similar to the milling arrangement (9AA) of Figures 13 to 16 .
  • Tension of the cable (67B) and the tractor (74) provide upward movement in excess of the downward fluid pressure applied to the piston string (73B), wherein conduits may be pinned (55) in place to prevent adverse lateral movement and stabilizing arced walls (4), comprising elbowed screw extendable arms that may be radially extended to cut conduits with associated knife and/or wheeled cutting structures (112) on said arms to assist and stabilize said hole opening boring assembly (9) milling strata and/or casing.
  • Debris (91) may be compressed into the lower end of said well by said milling of well apparatuses into smaller particles that may be compressed downward with pressure from above.
  • the Figure shows a diagrammatic elevation cross section slice view of a milling string (9AA of Figures 14 to 16 ) motor (17E) arrangement, which can pivotally deflect to engage successive larger bores (7) at ever increasing effective rotating diameters (23A) to mill conduits (56E, 56D, 56A, 57B, 56C), wherein the outer wall (5) has cutting surfaces (112) which also act as arched walls (4).
  • Figures 14, 15 and 16 illustrate a plan view with line E-E, an elevation cross section along line E-E, and an isometric section projection along line E-E, respectively, and show a fluid bearing (1) embodiment (IBM) with and outer wall (11AE) bearing sleeve (12AD) journal (69) bearing with an upper end pivotal (71) bearing, wherein fluid (23) enters (32) between profiles (3AB) and (6AG) to rotate the sleeve (12) about the shaft (2).
  • Discharge orifices (33) are shown in Figure 15 .
  • a motor (17) embodiment (17E) is achieved by using the fluid flow (23) through a passageway (22) within the pivotal bearing (71) to rotate the sleeve's outer wall (5) and associated arched surface (4), comprising a milling cutting structure (112) that can be usable to perform milling operations (9AA of Figure 13 ).
  • the sleeve (12) is illustrated to show the profiles (3AB) and (6AG), wherein, in practice, said sleeve extends to a sealable engagement at the pivot bearing (71).
  • FIG. 5 a diagrammatic elevation slice view through a well's bores and casings is shown and the Figure depicts a compression device (92) embodiment (92E) that can be usable with a tensionable cable (67C) anchored (102, 103) at both ends, with a pulley (105) at the lower end.
  • a compression device (92) embodiment (92E) that can be usable with a tensionable cable (67C) anchored (102, 103) at both ends, with a pulley (105) at the lower end.
  • the conduit (56E) may be pinned (55) to the surrounding conduit (56A) and tension may be applied to a cable head (77) at the upper anchor (103) using a cable connector (77A) to, for example, engage the cable head, tension the associated cables, part a coupling (106), and buckle the deployment conduit (56E) below said parted coupling, using the lower end cable pulley (105) to tension the cable between the upper (103) and lower (102) anchors. Compression may occur either upward or downward depending on the arrangement of the pulley (105) at the upper or lower anchor, respectively, with associated pinning (55) and parting (55) or, for example explosive, chemical or mechanical cutting of the uncemented conduit (56E) being compressed within the surrounding conduits.
  • Figures 6 and 7 show diagrammatic elevation slice views through a well's bores and casings depicting compression device (92) embodiments (92F, 92G, respectively), which can be usable with a tensionable cable (67D) anchored (102, 103) at both ends with a pulley (105) at the lower end of a conduit, which is also shown pinned (105) to a surrounding conduit (56A).
  • the deployment conduit (56E) and any associated engaged apparatus or debris (91) using the tension of the cable (67D) between the anchors (102, 103) and pulley (105) to urge the buckled conduit and debris, formed by or engaged with said buckled conduit, within an uncemented space with tension applied to the cable head (77) and cable engagement (77A).
  • the compression device (92) of a cable and explosive type (92F) may comprise a housing (96A) about an explosive charge that, when fired, tensions the cable between the upper (103) and lower (102) anchors to part the lower cut or weakened conduit (106A) and compress the conduit (56A) axially upward, wherein the cable engagement (77A) may be disconnected and the deployment conduit (56E) above the compressed portion between the anchors may be cut, allowing the compressed debris to fall downward, or be pushed by a piston compressing device.
  • the compressing device (92) of a cable and piston type (92G) may comprise using and inflatable diaphragm type (107) piston (95) with debris and fluid (104), with a deployable diameter similar to the explosive housing (96A) shown, to radially burst and axially buckle (99) the deployment conduit (56E) between the anchors (102, 103) by pulling on the pulley (105) with cable engagement (77A) and cable head (77) with the cable (67D), thus applying buckling tension between said anchors.
  • Figures 17 to 19 and 23-25 illustrate various boring arrangements for casing boring and placement with dual fluid gradient management pressure strings and chamber junctions of the present inventor, with a drilling rig (58A) or jointed pipe rig (58B), wherein small scale empirical testing may be carried out with, for example, jointed pipe rig-less arrangements (58B) or coiled tubing rigs (58C) using a coiled string (67F) with the present space provision system.
  • a drilling rig 58A
  • jointed pipe rig-less arrangements 58B
  • coiled tubing rigs 58C
  • a coiled string 67F
  • FIG. 19 shows a side-tracking and drilling assembly (9) embodiment (9C), which includes an in-line motor (17I) for rotating the cutting structure (112),
  • FIGS. 23 and 24 the Figures illustrate elevation views of managed pressure drilling upper (117) and lower (118) slurry passageway tools, with upper and lower rotary connections adaptable for piston pendulum arrangements (73) and inclusion of hydrodynamic bearings (1BP, 1BQ), wherein fluid circulation may occur through a plurality of passageways within the strings (67N) and (670).
  • FIG. 25 the Figure shows an isometric section view through the well and strata, depicting a chamber junction (119), from which exit bores (120) may be bored, wherein this new technology may be tested and/or proved in the upper end of a well abandoned at its lower end.
  • Figures 26 and 27 show a plan view with line F-F and a cross section elevation through line F-F, respectively, depicting a simultaneous flow chamber junction (122) usable as a dual conduit, for example (56E) and (56A), wherein the new technology may be tested in, for example, the multi-flow arrangement and bore selector and removable whipstock (128) of Figure 28 and 29 side-track (59D) using the present space provision system (10) embodiment (10F).
  • a simultaneous flow chamber junction (122) usable as a dual conduit, for example (56E) and (56A)
  • the new technology may be tested in, for example, the multi-flow arrangement and bore selector and removable whipstock (128) of Figure 28 and 29 side-track (59D) using the present space provision system (10) embodiment (10F).
  • FIG. 28 and 29 depict a elevation cross section through the well and strata with line G and an associated magnified detail view within line G, respectively, showing a pendulum piston assembly (73) embodiment (73E) with a tractor (74) with hydrodynamic bearing (1, 1AF), comprising a motor (17, 17J) and bearings (1AG), comprising a fluid pump (18, 18F) with a pivotal hydrodynamic bearing (1AU) above a cutting structure (112), similar to Figure 106 hydrodynamic bearing (1BL).
  • the jointed conduit pendulum boring string (9, 9F) forms part of the piston (73E) driven by a motor (17, 17K) with a tractor (74), suspendable from a cable head (77).
  • Reactive torque tractors (74) may also be modified with fluid bearing (1).
  • Figure 29 shows, in detail, a hydrodynamic bearing (1) that is disposed about a shaft (2), with at least one periphery arced wall (4, 4H) extending from a circumference of a conduit shaft housing (14D).
  • an abandonment plug (89) was placed after a space provision system (10) embodiment (10F) involving the compression of debris (91) to form a usable space for said plug (89) and side-track (59D) new technology (78) empirical testing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Claims (32)

  1. Raumbereitstellungssystem (10, 10A-10H) zum Ausbilden eines geologischen Prüfraums für den Nachweis der Arbeitsweise wenigstens einer unnachgewiesenen Downhole-Einrichtung (78, 92) in einer gealterten Geologie während der Rigless-Auflassung eines alternden Bohrlochs, um bei Verwendung die Arbeitsweise der wenigstens einen unnachgewiesenen Downhole-Einrichtung von der unnachgewiesenen zur nachgewiesenen Arbeitsweise in einer proximal ähnlich gealterten Geologie dieses alternden Bohrlochs, eines anderen alternden Bohrlochs (79), eines neuen Bohrlochs (80) oder eines Felds dieser Bohrlöcher (79, 80) umzuwidmen, wobei das Raumbereitstellungssystem wie folgt gekennzeichnet ist und umfasst:
    die wenigstens eine unnachgewiesene Downhole-Einrichtung, die wenigstens eine hydrodynamisch gelagerte Bohreinrichtung (1A, 1E, 1BM, 9AA, 92D) oder eine Bohrlochkolbeneinrichtung (1A, 1AF, 92A-92C, 92E-92G) umfasst, wobei die wenigstens eine unnachgewiesene Downhole-Einrichtung ein Rigless-Bohrlochöffnungselement (92) umfasst, das teilweise durch Hydraulik getrieben wird, wobei das Rigless-Bohrlochöffnungselement ferner durch eine Explosion, ein Seil oder Kombinationen derselben getrieben werden kann und durch ein oberes Ende des alternden Bohrlochs einsetzbar ist, innerhalb eines oder mehrerer Rohre, die wenigstens ein inneres Bohrloch in einer Wand wenigstens einer konzentrischen umgebenden Bohrung aufweisen, in die das Rigless-Bohrlochöffnungselement während der Auflassung eines unteren Endes des alternden Bohrlochs eingreifen kann, so dass das Rigless-Bohrlochöffnungselement das innere Bohrloch axial an der, und radial in die, Wand dieser wenigstens einen konzentrischen umgebenden Bohrung öffnet, wobei Trümmer (91) aus dem Öffnen der inneren Bohrung im unteren Ende des alternden Bohrlochs für den Einbau eines verfestigbaren druckdichtenden Materials entsorgt und verdichtet werden, wobei das verfestigbare druckdichtende Material axial über den Trümmern und innerhalb der Wand der wenigstens einen konzentrischen umgebenden Bohrung am unteren Ende des alternden Bohrlochs eingebaut wird, um oberhalb des verfestigbaren druckdichtenden Materials eine proximale Geologie bereitzustellen, die vergleichbar ist mit wenigstens einem Teilabschnitt einer Geologie des alternden Bohrlochs, einer Geologie des anderen alternden Bohrlochs, einer Geologie des neuen Bohrlochs oder einer Geologie des Feldes von Bohrlöchern, um bei Verwendung den geologischen Prüfraum auszubilden; und
    wobei der geologische Prüfraum verwendbar ist, um Betriebsparameter der wenigstens einen unnachgewiesenen Downhole-Einrichtung (78, 92) empirisch zu messen, wobei der geologische Prüfraum wenigstens eine unnachgewiesene Downhole-Einrichtung (78) umfasst, um empirische Daten für das Anpassen oder Nachweisen der wenigstens einen unnachgewiesenen Downhole-Einrichtung bereitzustellen, um bei Verwendung die Arbeitsweise der wenigstens einen unnachgewiesenen Downhole-Einrichtung von der unnachgewiesenen zur nachgewiesenen Arbeitsweise im geologischen Prüfraum zur Verwendung in einer ähnlichen geologischen Umgebung des alternden Bohrlochs, des anderen alternden Bohrlochs, des neuen Bohrlochs oder des Feldes dieser Bohrlöcher umzuwidmen.
  2. Raumbereitstellungssystem nach Anspruch 1, wobei das Rigless-Bohrlochöffnungselement (92) eine Rigless-Schneideinrichtung umfasst, um die Trümmer (91) aus Eingriffen zu befreien, die eine Entsorgung und Verdichtung der Trümmer im unteren Ende des alternden Bohrlochs verhindern.
  3. Raumbereitstellungssystem nach Anspruch 2, wobei das Rigless-Bohrlochöffnungselement (92, 1A, 1E, 1BM, 92D) wenigstens ein hydrodynamisches Lager (1) umfasst, das um eine Welle (2) und eine Außenwand (5) einer Schneidstruktur (112) angeordnet ist und innerhalb der Wand der konzentrischen umgebenden Bohrung (7) positioniert ist, wobei wenigstens eine gewölbte Umfangswand (4) radial aus einem Umfang eines Leitungsschachtgehäuses (14) herausragt und an diesem Umfang und um wenigstens eine innere Wand (6), die an wenigstens eine verbundene hydrodynamische Profilwand (3) angrenzt, angeordnet ist, wobei das Rigless-Bohrlochöffnungselement durch die oder um die Welle drehbar ist, um ein Fluid entlang der wenigstens einen Innenwand, die durch kombinierte Reibungseingriffe des Fluids verankert ist, der wenigstens einen verbundenen hydrodynamischen Profilwand (3), der wenigstens einen Innenwand (6), der wenigstens einen gekrümmten Umfangswand (4) und der Wand der wenigstens einen konzentrischen umgebenden Bohrung (7) axial zu verdrängen und das Fluid zwischen einem benachbarten Satz von wenigstens zweien dieser Wände hindurchzudrücken, wobei die Fluidverdrängung ein druckbeaufschlagtes (8) Polster bildet, das mit dem Satz der wenigstens zwei Wände fluidtechnisch beidseitig kommuniziert, zum Betreiben der Schneidstrukturen (112) bei Verwendung zum Erzeugen der Trümmer (91) bei gleichzeitiger Schmierung und Dämpfung verbundener Drehstöße und Drehschwingungen mit Scheren der Reibungseingriffe bei Lagerung der Welle während der Rotation der Schneidstrukturen innerhalb der Wand der wenigstens einen konzentrischen umgebenden Bohrung.
  4. Raumbereitstellungssystem nach einem der vorhergehenden Ansprüche, wobei das Rigless-Bohrlochöffnungselement (92) einen Pfropfen, eine Membran oder Kombinationen derselben umfasst und wobei, durch Nutzung eines Fluid-Differenzdrucks über die Bohrlochkolbeneinrichtung hinweg, das Rigless-Bohrlochöffnungselement (92) für die Entsorgung und Verdichtung der Trümmer im unteren Ende des alternden Bohrlochs angrenzend zu den Trümmern (91) platziert wird, wobei Fluid in das eine oder die mehreren Rohre eingespritzt wird, um einen Hochdruckbereich an einer ersten Seite der Bohrlochkolbeneinrichtung und einen Niederdruckbereich an einer zweiten Seite der Bohrlochkolbeneinrichtung auszubilden, um das Rigless-Bohrlochöffnungselement axial entlang der, und radial in die, Wand der wenigstens einen konzentrischen umgebenden Bohrung zu treiben.
  5. Raumbereitstellungssystem nach Anspruch 4, wobei das Rigless-Bohrlochöffnungselement (92) ein Hydraulikgefäß, einen Sprengstoff oder Kombinationen derselben umfasst, um die Entsorgung und Verdichtung der Trümmer (91) im unteren Ende des alternden Bohrlochs zwangszubewirken.
  6. Raumbereitstellungssystem nach Anspruch 5, wobei das Rigless-Bohrlochöffnungselement (92) eine per Einsatzstrang platzierbare Zündkanone (92A) für die explosive Abfeuerung eines Kolbens (95) aus einem Gehäuse (96) umfasst, wobei der Kolben mit einer Öffnung, einem Ventil oder Kombinationen derselben anpassbar ist, um bei Abfeuerung einen unterhalb des Kolbens aufgebauten Druck zu entlasten.
  7. Raumbereitstellungssystem nach einem der vorhergehenden Ansprüche, wobei das Rigless-Bohrlochöffnungselement (92) zur Ausbildung der Trümmer (91) eine Seilspanndruckvorrichtung (92B, 92E, 92F, 92G) zur Ausbauchung (99) des einen oder der mehreren Rohre durch Verwendung eines spannbaren Seils (67) umfasst, das an einem oder an mehreren Enden mit einer Seilscheibe (105) verankert (102, 103) ist, um die Trümmer im Verhältnis zur Seilscheibe axial zu verdichten.
  8. Raumbereitstellungssystem nach Anspruch 7, wobei das Seil wenigstens eine exzentrische Öffnung (100) mehrerer Platten (101) durchläuft, die sich abständig innerhalb des einen bzw. der mehreren Rohre befinden, und wobei das Spannen der Seilfluchten der exzentrischen Öffnungen bewirkt, dass zur Ausbildung der Trümmer die mehreren Platten radial in die Innenbohrung gezwungen werden und das eine oder die mehreren Rohre entlang der, und radial in die, Wand der wenigstens einen konzentrischen umgebenden Bohrung ausgebaucht (99) werden.
  9. Raumbereitstellungssystem nach einem der vorhergehenden Ansprüche, wobei das Rigless-Bohrlochöffnungselement (92) die Trümmer axial entlang der, oder radial in die, Seitenwand der wenigstens einen konzentrischen umgebenden Bohrung verdichtet.
  10. Raumbereitstellungssystem nach einem der vorhergehenden Ansprüche, ferner umfassend: eine Logging-Tool-Einrichtung, die einen Transponder, einen Empfänger oder Kombinationen derselben aufweist, wobei die Logging-Tool-Einrichtung in das Rigless-Bohrlochöffnungselement (92), die Downhole-Einrichtung (78), einen Bohrlochkopf, den geologischen Prüfraum, das verfestigbare druckdichtende Material oder deren Kombinationen platziert wird, und wobei der Transponder oder Empfänger in eine stoß- und druckfesten Einhausung platzierbar ist, um Signale durch Fluide oder Verrohrungen des alternden Bohrlochs zu senden.
  11. Raumbereitstellungssystem nach Anspruch 10, wobei die Logging-Tool-Einrichtung die Betriebsparameter der wenigstens einen unnachgewiesenen Downhole-Einrichtung empirisch misst (93) und wenigstens eine Messung bildet, die Toleranzen, Drehzahlen, Stöße, Schwingungen, Haftgleiteffekte, Wirbel, harmonische Resonanzen oder Kombinationen derselben umfasst, um die wenigstens eine unnachgewiesene Downhole-Einrichtung (78) in unterirdischen Substanzen, Drücken und Temperaturen der gealterten Geologie zu betreiben.
  12. Raumbereitstellungssystem nach Anspruch 10, wobei die Logging-Tool-Einrichtung empirisch misst (93) und verbundene empirische Daten unterirdischer schichtgeologischer Zeiträume und Epochen bereitstellt, die dem anderen alternden Bohrloch, dem neuen Bohrloch oder dem Feld dieser Bohrlöcher ähnlich sind.
  13. Raumbereitstellungssystem nach Anspruch 1, ferner umfassend: Produktionsinfrastruktur zum hydraulischen Betreiben des Rigless-Bohrlochöffnungselements (92) und zum fluidtechnischen Zugang zum alternden Bohrloch durch das eine oder die mehreren Rohre.
  14. Raumbereitstellungssystem nach Anspruch 13, wobei die Produktionsinfrastruktur zum Produktionsabbau einer unterirdischen Lagerstätte verwendbar ist.
  15. Raumbereitstellungssystem nach einem der vorhergehenden Ansprüche, wobei das alternde Bohrloch mit Hilfe des Rigless-Bohrlochöffnungselements (92) oder der wenigstens einen unnachgewiesenen Downhole-Einrichtung (78) im Side-Tracking abgelenkt wird.
  16. Raumbereitstellungssystem nach Anspruch 1, wobei nachgewiesen wird, dass die wenigstens eine unnachgewiesene Downhole-Einrichtung (78) innerhalb des einen oder der mehreren Rohre und des geologischen Prüfraums, der durch das Rigless-Bohrlochöffnungselement (92) bereitgestellt wird, für eine nachgewiesene Verwendung über mehrere proximal ähnliche geologische Umgebungen eines anderen alternden Bohrlochs (79), des neuen Bohrlochs (80), des Feldes dieser Bohrlöcher (79, 80), oder von Kombinationen derselben, einsetzbar und betreibbar ist.
  17. Verfahren (10, 10A-10H) zum Ausbilden eines geologischen Prüfraums zum Nachweisen einer Arbeitsweise einer unnachgewiesenen Downhole-Einrichtung (78, 92) in einer gealterten Geologie während einer Rigless-Auflassung eines alternden Bohrlochs, um bei Verwendung die Arbeitsweise der wenigstens einen unnachgewiesenen Downhole-Einrichtung von der unnachgewiesenen zur nachgewiesenen Arbeitsweise in einer proximal ähnlich gealterten Geologie dieses alternden Bohrlochs, eines anderen alternden Bohrlochs (79), eines neuen Bohrlochs (80) oder eines Felds dieser Bohrlöcher (79, 80) umzuwidmen, wobei das Verfahren wie folgt gekennzeichnet ist und die Schritte umfasst:
    empirisches Messen (93) eines Betriebsparameters einer unnachgewiesenen Downhole-Einrichtung, die wenigstens eine hydrodynamisch gelagerte Bohreinrichtung (1A, 1E, 1BM, 9AA, 92D) oder eine Bohrlochkolbeneinrichtung (1A, 1AF, 92A-92C, 92E-92G) umfasst, wobei die unnachgewiesene Downhole-Einrichtung ein Rigless-Bohrlochöffnungselement (92) umfasst, das teilweise durch Hydraulik und weiterhin durch eine Explosion, ein Seil oder Kombinationen derselben getrieben wird;
    Einsetzen des Rigless-Bohrlochöffnungselements durch ein oberes Ende des alternden Bohrlochs in ein oder mehrere Rohre, die wenigstens ein inneres Bohrloch in einer Wand wenigstens einer konzentrischen umgebenden Bohrung aufweisen, in welche das Rigless-Bohrlochöffnungselement während der Auflassung eines unteren Endes des alternden Bohrlochs eingreifen kann;
    Verwenden des Rigless-Bohrlochöffnungselements zum Öffnen des inneren Bohrlochs axial entlang der, und radial in die, Wand der wenigstens einen konzentrischen umgebenden Bohrung, wobei Trümmer (91) aus dem Öffnen der inneren Bohrung im unteren Ende des alternden Bohrlochs entsorgt und verdichtet werden;
    axiales Einbauen eines verfestigbaren druckdichtenden Materials über den Trümmern und in der Wand der wenigstens einen konzentrischen umgebenden Bohrung am unteren Ende des alternden Bohrlochs zum Bereitstellen einer proximalen Geologie über dem verfestigbaren druckdichtenden Material, die wenigstens teilweise mit einem Teilabschnitt einer Geologie des alternden Bohrlochs, einer Geologie des anderen alternden Bohrlochs, einer Geologie des neuen Bohrlochs oder einer Geologie des Feldes dieser Bohrlöcher vergleichbar ist, um bei Verwendung den geologischen Prüfraum auszubilden; und
    Verwenden des geologischen Prüfraums zum empirischen Messen der Betriebsparameter der unnachgewiesenen Downhole-Einrichtung (78, 92) zum Bereitstellen von empirischen Daten zum Anpassen oder Nachweisen der unnachgewiesenen Downhole-Einrichtung, um bei Verwendung die Arbeitsweise der unnachgewiesenen Downhole-Einrichtung von der unnachgewiesenen zur nachgewiesenen Arbeitsweise im geologischen Prüfraum zur Verwendung in einer ähnlichen geologischen Umgebung des alternden Bohrlochs, des anderen alternden Bohrlochs, des neuen Bohrlochs oder des Feldes dieser Bohrlöcher umzuwidmen.
  18. Verfahren nach Anspruch 17, ferner umfassend die Schritte: Ausstatten des Rigless-Bohrlochöffnungselements (92) mit einer Rigless-Schneideinrichtung und Verwenden der Rigless-Schneideinrichtung zum Befreien der Trümmer (91) aus Eingriffen, die eine Entsorgung und Verdichtung der Trümmer im unteren Ende des alternden Bohrlochs verhindern.
  19. Verfahren nach Anspruch 18, ferner umfassend die Schritte:
    Ausstatten des Rigless-Bohröffnungselements (92, 1A, 1E, 1BM, 92D) mit wenigstens einem hydrodynamischen Lager (1), das um eine Welle (2) und eine Außenwand(5)-Schneidstruktur (112), die innerhalb der Wand der wenigstens einen konzentrischen umgebenden Bohrung (7) positioniert ist, angeordnet ist, wobei wenigstens eine gekrümmte Umfangswand (4) radial überstehend um den Umfang eines Rohrschachtgehäuses (14) und um wenigstens eine Innenwand (6), die an die wenigstens eine verbundene hydrodynamische Profilwand (3) angrenzt, angeordnet ist, drehbar durch oder um die Welle; und
    axiales Verdrängen eines Fluids entlang der wenigstens einen Innenwand, die durch die kombinierten Reibeingriffe des Fluids verankert ist, der wenigstens einen verbundenen hydrodynamischen Profilwand (3), der wenigstens einen Innenwand (6), der wenigstens einen gekrümmten Umfangswand (4) und der Wand der wenigstens einen umgebenden konzentrischen Bohrung (7), um das Fluid zwischen einem benachbarten Satz von wenigstens zweien dieser Wände hindurchzudrücken, wobei die Fluidverdrängung ein druckbeaufschlagtes (8) Polster bildet, das mit dem Satz der wenigstens zwei Wände fluidtechnisch beidseitig kommuniziert, zum Betreiben der Schneidstrukturen (112) bei Verwendung zum Erzeugen der Trümmer (91) bei gleichzeitiger Schmierung und Dämpfung verbundener Drehstöße und Drehschwingungen mit einem Scheren der Reibungseingriffe bei Lagerung der Welle während der Rotation der Schneidstrukturen innerhalb der Wand der wenigstens einen konzentrischen umgebenden Bohrung.
  20. Verfahren nach einem der Ansprüche 17 bis 19, ferner umfassend die Schritte:
    Ausstatten des Rigless-Bohrlochöffnungselements mit einem Pfropfen, einer Membran oder Kombinationen derselben;
    Platzieren des Rigless-Bohrlochöffnungselements (92) angrenzend zu den Trümmern (91) zum Entsorgen und Verdichten der Trümmer im unteren Ende des alternden Bohrlochs durch Verwendung eines Fluid-Differenzdrucks über die Bohrlochkolbeneinrichtung hinweg; und
    Einspritzen von Fluid in das eine oder die mehreren Rohre zum Ausbilden eines Hochdruckbereichs an einer ersten Seite der Bohrlochkolbeneinrichtung und eines Niederdruckbereichs an einer zweiten Seite der Bohrlochkolbeneinrichtung, um das Rigless-Bohrlochöffnungselement axial entlang der, und radial in die, Wand der wenigstens einen konzentrischen umgebenden Bohrung zu treiben.
  21. Verfahren nach einem der Ansprüche 17 bis 20, ferner umfassend den Schritt: Ausstatten des Rigless-Bohrlochöffnungselements mit einem Hydraulikgefäß, einem Sprengstoff oder Kombinationen derselben zum Zwangsbewirken der Entsorgung und Verdichtung der Trümmer (91) im unteren Ende des alternden Bohrlochs.
  22. Verfahren nach Anspruch 21, ferner umfassend die Schritte: Ausstatten des Rigless-Bohrlochöffnungselements mit einer per Einsatzstrang platzierbaren Zündkanone (92A); und explosives Abfeuern eines Kolbens (95) aus einem Gehäuse (96) mit Hilfe einer Explosion, wobei der Kolben mit einer Öffnung, einem Ventil oder Kombinationen derselben anpassbar ist, um bei Abfeuerung einen unterhalb des Kolbens gefangenen Druck zu entlasten.
  23. Verfahren nach einem der Ansprüche 17 bis 22, ferner umfassend den Schritt: Ausstatten des Rigless-Bohrlochöffnungselements (92) mit einer Seilspanndruckvorrichtung (92B, 92E, 92F, 92G) zum Ausbauchen (99) des einen oder der mehreren Rohre zur Ausbildung der Trümmer (91) durch Verwendung eines spannbaren Seils (67), das an einem oder mehreren Enden mit einer Seilscheibe (105) verankert (102, 103) ist, um die Trümmer im Verhältnis zur Seilscheibe axial zu verdichten.
  24. Verfahren nach Anspruch 23, ferner umfassend die Schritte: Durchführen des Seils durch wenigstens eine exzentrische Öffnung (100) mehrerer Platten (101), die innerhalb des einen oder der mehreren Rohre abständig vorgesehen sind; und Spannen des Seils, um die mehreren Platten radial in die Innenbohrung hineinzuzwingen und das eine oder die mehreren Rohre entlang der, und radial in die, Wand der wenigstens einen konzentrischen umgebenden Bohrung auszubauchen (99) und so die Trümmer auszubilden.
  25. Verfahren nach einem der Ansprüche 17 bis 24, ferner umfassend den Schritt: Verwenden des Rigless-Bohrlochöffnungselements (92) zum axialen Verdichten der Trümmer entlang der, oder radial in die, Seitenwand der wenigstens einen konzentrischen umgebenden Bohrung.
  26. Verfahren nach einem der Ansprüche 17 bis 25, ferner umfassend den Schritt: Platzieren einer Logging-Tool-Einrichtung, die einen Transponder, einen Empfänger oder Kombinationen derselben aufweist, in das Rigless-Bohrlochöffnungselement (92), die Downhole-Einrichtung (78), einen Bohrlochkopf, den geologischen Prüfraum, das verfestigbare druckdichtende Material, oder Kombinationen derselben, wobei der Transponder oder Empfänger in eine stoß- und druckfeste Einhausung platzierbar ist, um Signale durch Fluide oder Verrohrungen des alternden Bohrlochs zu senden.
  27. Verfahren nach Anspruch 26, ferner umfassend den Schritt: Verwenden der Logging-Tool-Einrichtung zum empirischen Messen (93) der Betriebsparameter der unnachgewiesenen Downhole-Einrichtung zum Bilden wenigstens einer Messung, die Toleranzen, Drehzahlen, Stöße, Schwingungen, Haftgleiteffekte, Wirbel, harmonische Resonanzen oder Kombinationen derselben umfasst, um die unnachgewiesene Downhole-Einrichtung in unterirdischen Substanzen, Drücken und Temperaturen der gealterten Geologie zu betreiben.
  28. Verfahren nach Anspruch 26, ferner umfassend den Schritt: Verwenden der Logging-Tool-Einrichtung zum Bereitstellen empirischer Messungen (93) und verbundener empirischer Daten unterirdischer schichtgeologischer Zeiträume und Epochen, die dem anderen alternden Bohrloch, dem neuen Bohrloch oder dem Feld dieser Bohrlöcher ähnlich sind.
  29. Verfahren nach Anspruch 17 bis 28, ferner umfassend den Schritt: Verwenden der Produktionsinfrastruktur zum hydraulischen Betreiben des Rigless-Bohrlochöffnungselements (92) und zum fluidtechnischen Zugang zum alternden Bohrloch durch das eine oder die mehreren Rohre.
  30. Verfahren nach Anspruch 29, ferner umfassend den Schritt: Verwenden der Produktionsinfrastruktur zum Produktionsabbau einer unterirdischen Lagerstätte.
  31. Verfahren nach einem der Ansprüche 17 bis 18, ferner umfassend den Schritt: Ablenken des alternden Bohrlochs zu einer unterirdischen Lagerstätte mit Hilfe des Rigless-Bohrlochöffnungselements (92) oder der unnachgewiesenen Downhole-Einrichtung (78).
  32. Verfahren nach Anspruch 17, umfassend den Schritt: Nachweisen der unnachgewiesenen Downhole-Einrichtung (78) innerhalb des geologischen Prüfraums, der durch das Rigless-Bohrlochöffnungselement (92) vorgesehen wird, zur nachgewiesenen Verwendung über mehrere proximal ähnliche geologische Umgebungen eines anderen alternden Bohrlochs (79), des neuen Bohrlochs (80) oder des Feldes dieser Bohrlöcher (79, 80).
EP12807648.6A 2011-07-05 2012-07-05 Raumbereitstellungssystem mit kompressionsvorrichtungen zur neuzuordnung von ressourcen zu neuen technologien, industriebrachen und entwicklungen auf der grünen wiese Active EP2729662B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1111482.4A GB2484166B (en) 2010-07-05 2011-07-05 Cable compatible rig-less operatable annuli engagable system for using and abandoning a subterranean well
GB1121742.9A GB2487274B (en) 2010-12-16 2011-12-16 A space provision system using compression devices for the reallocation of resources to new technology, brownfield and greenfield developments
PCT/US2012/045626 WO2013006735A2 (en) 2011-07-05 2012-07-05 A space provision system using compression devices for the reallocation of resources to new technology, brownfield and greenfield developments

Publications (3)

Publication Number Publication Date
EP2729662A2 EP2729662A2 (de) 2014-05-14
EP2729662A4 EP2729662A4 (de) 2016-05-18
EP2729662B1 true EP2729662B1 (de) 2017-10-04

Family

ID=46785832

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12807648.6A Active EP2729662B1 (de) 2011-07-05 2012-07-05 Raumbereitstellungssystem mit kompressionsvorrichtungen zur neuzuordnung von ressourcen zu neuen technologien, industriebrachen und entwicklungen auf der grünen wiese
EP12807166.9A Active EP2729657B1 (de) 2011-07-05 2012-07-05 Kabelkompatibles gerätelos bedienbares system in einem bohrannulus zum verwenden und aufgeben einer unterirdischen bohrung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12807166.9A Active EP2729657B1 (de) 2011-07-05 2012-07-05 Kabelkompatibles gerätelos bedienbares system in einem bohrannulus zum verwenden und aufgeben einer unterirdischen bohrung

Country Status (9)

Country Link
EP (2) EP2729662B1 (de)
CN (1) CN103764940B (de)
AU (2) AU2012278973B2 (de)
BR (1) BR112014001623B1 (de)
CA (1) CA2841144C (de)
GB (1) GB2492663B (de)
MX (2) MX354003B (de)
MY (1) MY185136A (de)
WO (1) WO2013006208A2 (de)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518248B (zh) 2013-07-05 2019-09-24 布鲁斯·A.·通盖特 用于培养井下表面的设备和方法
RU2536302C1 (ru) * 2013-07-23 2014-12-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Динамический виброгаситель крутильных колебаний (варианты)
WO2016068719A1 (en) * 2014-10-29 2016-05-06 Norhard Oil & Gas As Apparatus for hydrocarbon well plugging
SG11201807564SA (en) * 2016-03-04 2018-10-30 Transocean Innovation Labs Ltd Methods, apparatuses, and systems for human machine interface (hmi) operations
CN106351583B (zh) * 2016-11-16 2018-07-24 山东烟台鑫泰黄金矿业有限责任公司 一种矿用钻井扩张设备
US20180230767A1 (en) * 2017-02-16 2018-08-16 Saudi Arabian Oil Company Method and Apparatus for Reducing Downhole Losses in Drilling Operations, Sticking Prevention, and Hole Cleaning Enhancement
CN107178330A (zh) * 2017-07-27 2017-09-19 中国科学技术大学 一种井下桥塞冲击加载装置
RU184421U9 (ru) * 2017-12-27 2018-11-21 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для очистки стенок эксплуатационной колонны и скважинной жидкости
CN108331575B (zh) * 2018-01-18 2021-03-26 中国石油天然气股份有限公司 一种利用试井曲线评价报废井报废质量方法和系统
CN108150131B (zh) * 2018-02-12 2023-10-20 中国地质大学(北京) 一种用于位置定位的压力波发生器及固井装置
CN108397198A (zh) * 2018-05-16 2018-08-14 北京中地盾构工程技术研究院有限公司 用于地下竖井的装配回收式预应力支护组件
CN109538122B (zh) * 2018-12-29 2024-05-24 中国石油大学(北京) 深水下导管装置及系统
CN110566166B (zh) * 2019-09-25 2024-03-22 重庆科技学院 一种预储能式可回收多分支增产工具
CN110566132A (zh) * 2019-10-24 2019-12-13 三一集团有限公司湖南分公司 一种指梁间距调节装置及钻修井机二层台
US11136849B2 (en) 2019-11-05 2021-10-05 Saudi Arabian Oil Company Dual string fluid management devices for oil and gas applications
US11230904B2 (en) 2019-11-11 2022-01-25 Saudi Arabian Oil Company Setting and unsetting a production packer
US11255177B2 (en) * 2019-12-06 2022-02-22 Halliburton Energy Services, Inc. Characterization of downhole gas handling systems
US11125046B2 (en) * 2019-12-10 2021-09-21 Saudi Arabian Oil Company Deploying wellbore patch for mitigating lost circulation
RU2722678C1 (ru) * 2019-12-17 2020-06-03 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Способ виброгашения бурильной колонны (варианты), виброгаситель (варианты) и привод микроперемещений (варианты) для осуществления способа виброгашения
US11156052B2 (en) 2019-12-30 2021-10-26 Saudi Arabian Oil Company Wellbore tool assembly to open collapsed tubing
US11260351B2 (en) 2020-02-14 2022-03-01 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
CN111827881B (zh) * 2020-07-31 2022-05-27 长江大学 一种往复蠕动式无钻机钻探器
US11655685B2 (en) 2020-08-10 2023-05-23 Saudi Arabian Oil Company Downhole welding tools and related methods
CN111852358B (zh) * 2020-08-25 2024-03-19 重庆科技学院 一种多分支增产钻井增程爬行工具
US11549329B2 (en) 2020-12-22 2023-01-10 Saudi Arabian Oil Company Downhole casing-casing annulus sealant injection
US11828128B2 (en) 2021-01-04 2023-11-28 Saudi Arabian Oil Company Convertible bell nipple for wellbore operations
US11598178B2 (en) 2021-01-08 2023-03-07 Saudi Arabian Oil Company Wellbore mud pit safety system
CN113073956B (zh) * 2021-04-06 2022-10-18 青岛宏新石油科技有限公司 井下电动液压油管打孔装置
US11448026B1 (en) 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
US11859815B2 (en) 2021-05-18 2024-01-02 Saudi Arabian Oil Company Flare control at well sites
CN113266306B (zh) * 2021-06-25 2022-04-29 洲际海峡能源科技有限公司 固井用自动打开水泥伞及其使用方法
US11905791B2 (en) 2021-08-18 2024-02-20 Saudi Arabian Oil Company Float valve for drilling and workover operations
CN114033423A (zh) * 2021-10-22 2022-02-11 济南轨道交通集团建设投资有限公司 一种用于盾构机二次注浆的装置、方法及盾构机
US11913298B2 (en) 2021-10-25 2024-02-27 Saudi Arabian Oil Company Downhole milling system
CN114635670B (zh) * 2022-02-25 2023-02-10 中国矿业大学 一种井下现用水文钻孔地质套管断裂预防方法
US11993992B2 (en) 2022-08-29 2024-05-28 Saudi Arabian Oil Company Modified cement retainer with milling assembly
CN115492550B (zh) * 2022-09-19 2023-09-19 吕梁学院 一种井下水力压裂钻孔的注浆封孔装置
CN116427880B (zh) * 2023-04-17 2023-10-24 西南石油大学 一种超深井一体式多卡瓦侧钻坐封器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495808A (en) * 1982-09-13 1985-01-29 Shell Oil Company Parachute profiler
FR2647500B1 (fr) * 1989-05-24 1996-08-09 Schlumberger Prospection Appareil d'essai d'un puits de forage petrolier et procede correspondant
US5655602A (en) * 1992-08-28 1997-08-12 Marathon Oil Company Apparatus and process for drilling and completing multiple wells
US5944107A (en) * 1996-03-11 1999-08-31 Schlumberger Technology Corporation Method and apparatus for establishing branch wells at a node of a parent well
US6148664A (en) * 1997-05-02 2000-11-21 Testing Drill Collar, Ltd. Method and apparatus for shutting in a well while leaving drill stem in the borehole
US6938689B2 (en) * 1998-10-27 2005-09-06 Schumberger Technology Corp. Communicating with a tool
MY132567A (en) * 2000-02-15 2007-10-31 Exxonmobil Upstream Res Co Method and apparatus for stimulation of multiple formation intervals
US6474415B1 (en) * 2000-11-15 2002-11-05 Schlumberger Technology Corporation Method and apparatus for milling openings in downhole structures
GB0218836D0 (en) 2002-08-14 2002-09-18 Well Worx Ltd Apparatus and method
US8056628B2 (en) * 2006-12-04 2011-11-15 Schlumberger Technology Corporation System and method for facilitating downhole operations
US20090308605A1 (en) * 2008-06-14 2009-12-17 Mcafee Wesley Mark Methodolgy and apparatus for programmable robotic rotary mill cutting of multiple nested tubulars
US8397819B2 (en) * 2008-11-21 2013-03-19 Bruce Tunget Systems and methods for operating a plurality of wells through a single bore
US8256991B2 (en) 2008-10-20 2012-09-04 Seqenergy, Llc Engineered, scalable underground storage system and method
GB0911672D0 (en) * 2009-07-06 2009-08-12 Tunget Bruce A Through tubing cable rotary system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
MX341411B (es) 2016-08-19
CN103764940B (zh) 2020-10-16
BR112014001623B1 (pt) 2021-07-13
EP2729657A4 (de) 2016-05-11
MX354003B (es) 2018-02-08
WO2013006208A2 (en) 2013-01-10
EP2729657B1 (de) 2019-09-04
EP2729662A2 (de) 2014-05-14
WO2013006208A3 (en) 2013-04-25
GB201212008D0 (en) 2012-08-22
MX2014000079A (es) 2014-05-01
AU2012278973A1 (en) 2014-02-06
GB2492663B (en) 2014-01-29
EP2729657A2 (de) 2014-05-14
CA2841144C (en) 2019-06-04
BR112014001623A2 (pt) 2017-02-21
EP2729662A4 (de) 2016-05-18
GB2492663A (en) 2013-01-09
AU2012279476B2 (en) 2017-08-31
AU2012278973B2 (en) 2016-07-28
AU2012279476A1 (en) 2014-02-06
CA2841144A1 (en) 2013-01-10
CN103764940A (zh) 2014-04-30
MY185136A (en) 2021-04-30
MX2014000080A (es) 2014-05-01

Similar Documents

Publication Publication Date Title
EP2729662B1 (de) Raumbereitstellungssystem mit kompressionsvorrichtungen zur neuzuordnung von ressourcen zu neuen technologien, industriebrachen und entwicklungen auf der grünen wiese
GB2487274A (en) Wellbore test space creation system
US9797240B2 (en) Apparatus and method of concentric cement bonding operations before and after cementation
US9518426B2 (en) Rotary stick, slip and vibration reduction drilling stabilizers with hydrodynamic fluid bearings and homogenizers
Buchanan et al. Two Decades of Wireline Tractor Experience–One Operator Perspective From the Norwegian Continental Shelf
GB2494780A (en) Apparatus and method of measuring cement bonding before and after the cementation process
Sperber et al. Drilling into geothermal reservoirs
Arshad et al. Understanding the Key Factors Affecting Well Integrity in Horizontal Well Multistage Hydraulic Fracturing
CA2841841C (en) A space provision system using compression devices for the reallocation of resources to new technology, brownfield and greenfield developments
US9200504B2 (en) Space provision system using compression devices for the reallocation of resourced to new technology, brownfield and greenfield developments
Blanc et al. New OCTG developments to overcome challenges in unconventional plays
EP2748422B1 (de) Vorrichtung und verfahren zum konzentrischen binden von zement vor und nach der zementierung
Stokka et al. Long reach well concept
GB2486592A (en) Steering system for a down-hole shaft comprising a hydrodynamic bearing system
Kunning et al. Non-Retrievable Rotating Liner Drilling System Successfully Deployed to Overcome Challenging Highly Stressed Rubble Zone in a GOM Ultra-Deepwater Sub-Salt Application
Burdin et al. Gas shutoff treatment in mega rich horizontal well with coiled tubing inflatable packer for North Caspian
Panferov et al. Maximize Efficiency of Coiled Tubing-Conveyed Perforation with Advanced Gun Deployment System and Real-Time Correlation in High-H2S/High-Pressure Wells
Njå P&A of Valhall DP wells
Tejo et al. A Unique Completion Design Using Perforated Drill Pipe in the Onshore Southern Sumatra Basin
Summers et al. The use of coiled tubing during the Wytch Farm extended reach drilling project
Alnughaimish et al. SS-Extended Reach Drilling and Causeway Utilization in the Development Of a Shallow Water Oil Field
Molero et al. Coiled-Tubing-Conveyed Perforating for High-Pressure/High-Temperature Environment in Mexico Marine
Teodoriu Construction and completion of multifractured horizontal wells
Walker et al. Sakhalin-1: Technologies to Efficiently Drill and Develop Resources While Expanding the ERD Envelope
Barton et al. Genesis Project: Development Well Planning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20160414

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 47/00 20120101AFI20160408BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012038192

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 934245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012038192

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012038192

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190705

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200705

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230710

Year of fee payment: 12