EP2723994A1 - Gas turbine with pyrometer - Google Patents

Gas turbine with pyrometer

Info

Publication number
EP2723994A1
EP2723994A1 EP12726080.0A EP12726080A EP2723994A1 EP 2723994 A1 EP2723994 A1 EP 2723994A1 EP 12726080 A EP12726080 A EP 12726080A EP 2723994 A1 EP2723994 A1 EP 2723994A1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
optical waveguide
radiation
collimator
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12726080.0A
Other languages
German (de)
French (fr)
Inventor
Thomas Bosselmann
Michael Willsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2723994A1 publication Critical patent/EP2723994A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • F01D17/085Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0088Radiation pyrometry, e.g. infrared or optical thermometry in turbines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • Gas turbine pyrometer The invention relates to a gas turbine with at least one stationary guide blade and at least one rotor blade in operation ro ⁇ -mountable.
  • the efficiency of modern gas turbines is constantly being worked on. An increased efficiency can always be achieved by an increased operating temperature.
  • the operating temperature is constantly approaching the limits of the temperature resistance of the materials used in the blades.
  • the temperature of individual components of a gas turbine is monitored.
  • pyrometers are used, for example, which record the thermal radiation of individual components, conduct it to a detector and evaluate it, thereby determining the temperature of the component.
  • a plurality of temperature measurement points, and temperature measuring equipment is used.
  • the stationary vanes have greater inhomogeneities in temperature distribution than the rotating vanes due to their fixed position relative to the burners.
  • the temperature distribution in the guide vanes is therefore of great interest. So far, the temperature of the vanes is measured at points with a limited number of stationary thermocouples.
  • the gas turbine according to the invention comprises at least one ste ⁇ immediate vane and at least one rotatable rotor blade during operation. Furthermore, at least one embedded in a first blade optical waveguide is present, which is aligned so that thermal radiation of a first Leit ⁇ scoop is received by the optical waveguide.
  • the gas turbine according to the invention further includes an off ⁇ values facility for evaluation of thermal radiation.
  • the evaluation device is configured to determine the temperature of at least the first guide vane, wherein the temperature can be determined along a path from which the thermal radiation is recorded during the rotation of the first moving blade and thus of the optical waveguide.
  • the region of the vane whose thermal radiation is absorbed depends on the optical waveguide and on the distance of the optical waveguide end from the vane. In other words, the pyrometer rotates through the
  • Optical waveguide is represented, in the invention with a blade with, and is on a vane court ⁇ tet.
  • the first blade comprises a photodetector for converting the heat radiation into electrical signals.
  • the photodetector is expediently coupled to the optical waveguide in order to be able to absorb the thermal radiation which comes from the first vane after passing through the optical waveguide.
  • the photodetector may in this case be supplied for example by a wire ⁇ energy transfer.
  • the Photodetector be powered by a battery. Advantage ⁇ way is thus largely realized the pyrometer in the blade itself. The determined data can then be recorded or forwarded by telemetry or by a co-rotating data recorder.
  • the optical waveguide is guided into the shaft of the first blade and ends there.
  • Parts of the gas turbine are delivered. It can be easily recorded and processed there. It is advantageous if the end of the optical waveguide in the Wel ⁇ le is provided with a collimator. In this way, according to an advantageous embodiment of the invention, the exiting heat radiation can be emitted in an axial parallel beam. This makes it possible to absorb the radiation as far as possible without attenuation after passing through a short air gap.
  • the radiation coming from the collimator is picked up by a recording device, wherein the receiving region of the recording device is designed over such a large area that essentially all radiation coming from the collimator can be received.
  • the relatively large surface area configuration of the recording ⁇ device makes it possible to take the heat radiation lossless and further processing. This preserves the accuracy of the measurement.
  • the receiving device is an optical waveguide, in particular an optical waveguide with a comparatively large cross section, or a bundle of optical fibers.
  • the one or more optical waveguides serve to forward the radiation in a stationary part of the gas turbine to a photodetector.
  • optical waveguides By using optical waveguides as a recording device, it is possible to realize the detector in a thermally less stressed region of the gas turbine.
  • the receiving device can also be the photodetector directly. This is then provided to turn gen possible for a lossless recording of thermal radiation to sor ⁇ preferably with a sufficiently large detector surface.
  • the optical waveguide may be designed to be tappered at its corresponding end. This makes it possible to control the area of the surface of the vane from which heat radiation is absorbed.
  • FIG. 2 Variants of the receiving collimator on the sliding display.
  • FIG. 1 shows a section of a gas turbine 10. Here, only parts of the components are shown schematically.
  • the gas turbine 10 comprises a rotor blade 11 and Leitschau- fine 12.
  • the rotor blade 11 is rotatably mounted on a shaft 17.
  • the vanes 12 are fixed to the housing ⁇ arranged and do not rotate during operation.
  • a glass fiber 13 is embedded in the blade 11. It runs from one to the surface of the blade
  • a lens collimator 14 located end into the shaft 17 inside. The end located on the surface of the blade 11 points in the direction of the guide vanes 12. At the end of the optical waveguide 13 there is provided a lens collimator 14.
  • the other end of the glass fiber 13 lies on a surface of the shaft 17.
  • the glass fiber 13 terminates there with a second collimator 18.
  • the second collimator 18 is designed so that the emitted radiation exits in an axial Pa ⁇ rallelstrahl.
  • the radiation thus emitted impinges on a photodetector 20, the receiving surface of which is designed over a large area in comparison to the cross section of the glass fiber 13.
  • FIG. 2 shows variants for the termination of the glass fiber 13 which points in the direction of the guide vanes 12.
  • the optical fiber 13 may be terminated with the lens collimator 14.
  • Another possibility and alternative is to terminate the fiberglass
  • the glass fiber has a taped end 22 on ⁇ .
  • Another alternative is to use a low aperture glass fiber 13. Then this end 21 of the glass fiber 13 without special design.
  • an area 16 sends a vane
  • the region 16 is small compared to the size of the guide blade 12.
  • the thermal radiation enters the glass fiber 13 via the lens collimator 14. It is routed there to its other end and enters the photodetector 20 through the second collimator 18 and the following air gap.
  • the electrical signals which are triggered by the radiation 19 are evaluated and the temperature of the region 16 thus determined.
  • the rotor blade 11 rotates.
  • the glass fiber 13 of course rotates with it.
  • the area 16 of the vane 12 thereby travels around the shaft 17 in a circular path. Since this movement is relatively fast, the temperature of each region 16 of the vane 12 lying on the circular path can be viewed virtually at all times. For this purpose, it is only necessary to wait for a single sweep of the blade 11 over the desired region 16.
  • the temporal resolution of the evaluation determines which angular section of the circular path is ultimately regarded as area 16.

Abstract

The invention relates to a gas turbine with at least one stationary stator blade and at least one rotor blade that can be rotated during operation. The gas turbine has at least one optical waveguide embedded into a first rotor blade. The optical waveguide is oriented such that thermal radiation of a region of the first stator blade can be detected by the optical waveguide. An analyzing device is designed to analyze the thermal radiation and to ascertain the temperature of the region of the first stator blade, the temperature being ascertainable along a path from which the radiation is emitted during the rotation of the first rotor blade.

Description

Beschreibung description
Gasturbine mit Pyrometer Die Erfindung betrifft eine Gasturbine mit wenigstens einer stehenden Leitschaufel und wenigstens einer im Betrieb ro¬ tierbaren Laufschaufei . Gas turbine pyrometer The invention relates to a gas turbine with at least one stationary guide blade and at least one rotor blade in operation ro ¬-mountable.
An der Effizienz von modernen Gasturbinen wird ständig gear- beitet. Eine erhöhte Effizienz kann dabei stets durch eine erhöhte Betriebstemperatur erreicht werden. Dabei nähert sich die Betriebstemperatur stetig den Grenzen der Temperaturfestigkeit der verwendeten Materialien der Schaufeln. Um Überlastungen zu vermeiden, wird die Temperatur einzelner Kompo- nenten einer Gasturbine überwacht. Dazu werden beispielsweise Pyrometer eingesetzt, die die Wärmestrahlung einzelner Komponenten aufnehmen, zu einem Detektor leiten und dort auswerten und so die Temperatur der Komponente bestimmen. Um lokale Va¬ riationen der Temperatur messen zu können, wird eine Vielzahl von Temperaturmesspunkten und Temperaturmesseinrichtungen verwendet . The efficiency of modern gas turbines is constantly being worked on. An increased efficiency can always be achieved by an increased operating temperature. The operating temperature is constantly approaching the limits of the temperature resistance of the materials used in the blades. To avoid overloading, the temperature of individual components of a gas turbine is monitored. For this purpose, pyrometers are used, for example, which record the thermal radiation of individual components, conduct it to a detector and evaluate it, thereby determining the temperature of the component. In order to measure local Va ¬ riationen temperature, a plurality of temperature measurement points, and temperature measuring equipment is used.
Die stehenden Schaufeln, Leitschaufeln genannt, haben aufgrund ihrer festen Position relativ zu den Brennern größere Inhomogenitäten in der Temperaturverteilung als die sich im Betrieb drehenden Laufschaufeln . Die Temperaturverteilung in den Leitschaufeln ist daher von großem Interesse. Bisher wird die Temperatur der Leitschaufeln punktuell mit einer begrenzten Zahl an stationären Thermoelementen gemessen. The stationary vanes, called vanes, have greater inhomogeneities in temperature distribution than the rotating vanes due to their fixed position relative to the burners. The temperature distribution in the guide vanes is therefore of great interest. So far, the temperature of the vanes is measured at points with a limited number of stationary thermocouples.
Es ist Aufgabe der vorliegenden Erfindung, eine Gasturbine anzugeben, bei der die Temperaturverteilung in den Leitschaufeln genauer erfasst werden kann. Diese Aufgabe wird durch eine Gasturbine mit den Merkmalen von Anspruch 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Ausgestaltungen der Gasturbine. Die erfindungsgemäße Gasturbine umfasst wenigstens eine ste¬ hende Leitschaufel und wenigstens eine im Betrieb rotierbare Laufschaufei . Weiterhin ist wenigstens ein in eine erste Laufschaufel eingebetteter Lichtwellenleiter vorhanden, der so ausgerichtet ist, dass Wärmestrahlung einer ersten Leit¬ schaufel vom Lichtwellenleiter aufnehmbar ist. It is an object of the present invention to provide a gas turbine in which the temperature distribution in the vanes can be detected more accurately. This object is achieved by a gas turbine with the features of claim 1. The dependent claims relate to advantageous embodiments of the gas turbine. The gas turbine according to the invention comprises at least one ste ¬ immediate vane and at least one rotatable rotor blade during operation. Furthermore, at least one embedded in a first blade optical waveguide is present, which is aligned so that thermal radiation of a first Leit ¬ scoop is received by the optical waveguide.
Die erfindungsgemäße Gasturbine umfasst weiterhin eine Aus¬ werteeinrichtung zur Auswertung von Wärmestrahlung. Die Aus- Werteeinrichtung ist ausgestaltet zur Ermittlung der Temperatur wenigstens der ersten Leitschaufel, wobei die Temperatur entlang eines Weges ermittelbar ist, von dem die Wärmestrahlung im Zuge der Rotation der ersten Laufschaufel und damit des Lichtwellenleiters aufgenommen wird. The gas turbine according to the invention further includes an off ¬ values facility for evaluation of thermal radiation. The evaluation device is configured to determine the temperature of at least the first guide vane, wherein the temperature can be determined along a path from which the thermal radiation is recorded during the rotation of the first moving blade and thus of the optical waveguide.
Der Bereich der Leitschaufel, dessen Wärmestrahlung aufgenommen wird, hängt dabei vom Lichtwellenleiter und vom Abstand des Lichtwellenleiterendes von der Leitschaufel ab. Mit anderen Worten rotiert das Pyrometer, das durch den The region of the vane whose thermal radiation is absorbed depends on the optical waveguide and on the distance of the optical waveguide end from the vane. In other words, the pyrometer rotates through the
Lichtwellenleiter repräsentiert wird, in der Erfindung mit einer Laufschaufel mit, und ist auf eine Leitschaufel gerich¬ tet. Damit kann vorteilhaft die Temperatur der Leitschaufel nicht mehr nur an festen Punkten ermittelt werden, an denen Thermoelemente vorgesehen sind, sondern an jedem Punkt einer Kreisbahn, die sich durch die Bewegung der Laufschaufel gegenüber der Leitschaufel ergibt. Die Temperaturverteilung der Leitschaufel kann also deutlich genauer als bisher erfasst werden . Optical waveguide is represented, in the invention with a blade with, and is on a vane court ¬ tet. Thus, advantageously, the temperature of the vane can no longer be determined only at fixed points at which thermocouples are provided, but at each point of a circular path resulting from the movement of the blade relative to the vane. The temperature distribution of the vane can thus be detected much more accurately than before.
In einer Ausgestaltung und Weiterbildung der Erfindung umfasst die erste Laufschaufel einen Photodetektor zur Wandlung der Wärmestrahlung in elektrische Signale. Der Photodetektor ist dabei zweckmäßig mit dem Lichtwellenleiter gekoppelt, um die Wärmestrahlung, die von der ersten Leitschaufel kommt, nach Durchlaufen des Lichtwellenleiters aufnehmen zu können. Der Photodetektor kann dabei beispielsweise durch eine draht¬ lose Energieübertragung gespeist sein. Alternativ kann der Photodetektor mittels einer Batterie gespeist sein. Vorteil¬ haft ist damit das Pyrometer weitgehend in der Laufschaufel selbst realisiert. Die ermittelten Daten können dann per Telemetrie oder durch einen mitrotierenden Datenschreiber auf- genommen bzw. weitergeleitet werden. In one embodiment and development of the invention, the first blade comprises a photodetector for converting the heat radiation into electrical signals. The photodetector is expediently coupled to the optical waveguide in order to be able to absorb the thermal radiation which comes from the first vane after passing through the optical waveguide. The photodetector may in this case be supplied for example by a wire ¬ energy transfer. Alternatively, the Photodetector be powered by a battery. Advantage ¬ way is thus largely realized the pyrometer in the blade itself. The determined data can then be recorded or forwarded by telemetry or by a co-rotating data recorder.
In einer weiteren Ausgestaltung und Weiterbildung der Erfindung ist der Lichtwellenleiter in die Welle der ersten Laufschaufel geführt und endet dort. Durch diese Ausgestaltung kann die aufgenommene Wärmestrahlung in Richtung stehenderIn a further embodiment and development of the invention, the optical waveguide is guided into the shaft of the first blade and ends there. By this configuration, the absorbed heat radiation in the direction of standing
Teile der Gasturbine abgegeben werden. Sie kann dort vereinfacht aufgenommen und weiterverarbeitet werden. Vorteilhaft ist es dann, wenn das Ende des Lichtwellenleiters in der Wel¬ le mit einem Kollimator versehen ist. Hierdurch kann gemäß einer vorteilhaften Ausgestaltung der Erfindung die austretende Wärmestrahlung in einem axialen Parallelstrahl ausgesandt werden. Dadurch wird ermöglicht, die Strahlung so weit als möglich dämpfungsfrei nach Durchlaufen eines kurzen Luftspaltes aufzunehmen. Parts of the gas turbine are delivered. It can be easily recorded and processed there. It is advantageous if the end of the optical waveguide in the Wel ¬ le is provided with a collimator. In this way, according to an advantageous embodiment of the invention, the exiting heat radiation can be emitted in an axial parallel beam. This makes it possible to absorb the radiation as far as possible without attenuation after passing through a short air gap.
In einer vorteilhaften Ausgestaltung der Erfindung wird die vom Kollimator kommende Strahlung mit einer Aufnahmeeinrich- tung aufgenommen, wobei der Empfangsbereich der Aufnahmeeinrichtung derart großflächig gestaltet ist, dass im Wesentli- chen alle vom Kollimator kommende Strahlung aufnehmbar ist. Die vergleichsweise großflächige Ausgestaltung der Aufnahme¬ einrichtung ermöglicht es, die Wärmestrahlung dämpfungsfrei aufzunehmen und weiterzuverarbeiten . Dadurch wird die Genauigkeit der Messung bewahrt. In an advantageous embodiment of the invention, the radiation coming from the collimator is picked up by a recording device, wherein the receiving region of the recording device is designed over such a large area that essentially all radiation coming from the collimator can be received. The relatively large surface area configuration of the recording ¬ device makes it possible to take the heat radiation lossless and further processing. This preserves the accuracy of the measurement.
Um die Aufnahmeeinrichtung vom Umgebungslicht zu trennen und somit eine Aufnahme von Umgebungslicht zu verringern oder zu vermeiden, ist es vorteilhaft, eine Blende oder Hülse im Be¬ reich der Aufnahmeeinrichtung vorzusehen. In order to separate the receiving device from the ambient light and thus to reduce or avoid a recording of ambient light, it is advantageous to provide a diaphragm or sleeve in Be ¬ rich the receiving device.
In einer Ausgestaltung der Erfindung ist die Aufnahmeeinrichtung ein Lichtwellenleiter, insbesondere ein Lichtwellenleiter mit vergleichsweise großem Querschnitt, oder ein Bündel von Lichtwellenleitern. Der oder die Lichtwellenleiter dienen zur Weiterleitung der Strahlung in einem stehenden Teil der Gasturbine zu einem Photodetektor. Durch die Verwendung von Lichtwellenleitern als Aufnahmeeinrichtung ist es möglich, den Detektor in einem thermisch weniger beanspruchten Bereich der Gasturbine zu realisieren. In one embodiment of the invention, the receiving device is an optical waveguide, in particular an optical waveguide with a comparatively large cross section, or a bundle of optical fibers. The one or more optical waveguides serve to forward the radiation in a stationary part of the gas turbine to a photodetector. By using optical waveguides as a recording device, it is possible to realize the detector in a thermally less stressed region of the gas turbine.
Alternativ kann die Aufnahmeeinrichtung auch direkt der Photodetektor sein. Dieser ist dann bevorzugt mit einer ausrei- chend großen Detektorfläche versehen, um wiederum möglichst für eine dämpfungsfreie Aufnahme der Wärmestrahlung zu sor¬ gen . Alternatively, the receiving device can also be the photodetector directly. This is then provided to turn gen possible for a lossless recording of thermal radiation to sor ¬ preferably with a sufficiently large detector surface.
In einer vorteilhaften Ausgestaltung und Weiterbildung der Erfindung ist im Bereich des zur ersten Leitschaufel reichenden Endes des Lichtwellenleiters ein Linsenkollimator vorge¬ sehen. Alternativ kann der Lichtwellenleiter an seinem entsprechenden Ende getapert ausgestaltet sein. Dadurch wird der Bereich der Oberfläche der Leitschaufel, von dem Wärmestrah- lung aufgenommen wird, kontrollierbar. In an advantageous embodiment of the invention, and further in the field of reaching to the first vane end of the optical waveguide is a Linsenkollimator see pre ¬. Alternatively, the optical waveguide may be designed to be tappered at its corresponding end. This makes it possible to control the area of the surface of the vane from which heat radiation is absorbed.
Bevorzugte, jedoch keinesfalls einschränkende Ausführungsbei¬ spiele für die Erfindung werden nunmehr anhand der Figuren der Zeichnung näher erläutert. Dabei sind die Merkmale sche- matisiert dargestellt. Es zeigen Preferred, but in no way limiting Ausführungsbei ¬ games for the invention will now be explained in more detail with reference to the figures of the drawing. The features are shown schematically. Show it
Figur 1 eine prinzipielle Anordnung des rotierenden Pyrome¬ ters, 1 shows a basic arrangement of the rotating Pyrome ¬ ters,
Figur 2 Varianten des Empfangskollimators auf der Laufschau- fei.  FIG. 2 Variants of the receiving collimator on the sliding display.
Figur 1 zeigt einen Ausschnitt einer Gasturbine 10. Hierbei sind nur Teile der Komponenten schematisch dargestellt. Die Gasturbine 10 umfasst eine Laufschaufel 11 sowie Leitschau- fein 12. Die Laufschaufei 11 ist rotierbar an einer Welle 17 angeordnet. Die Leitschaufeln 12 sind fix zum Gehäuse ange¬ ordnet und drehen im Betrieb nicht. Eine Glasfaser 13 ist in die Laufschaufel 11 eingebettet. Sie verläuft darin von einem an der Oberfläche der LaufschaufelFigure 1 shows a section of a gas turbine 10. Here, only parts of the components are shown schematically. The gas turbine 10 comprises a rotor blade 11 and Leitschau- fine 12. The rotor blade 11 is rotatably mounted on a shaft 17. The vanes 12 are fixed to the housing ¬ arranged and do not rotate during operation. A glass fiber 13 is embedded in the blade 11. It runs from one to the surface of the blade
11 gelegenen Ende bis in die Welle 17 hinein. Das an der Oberfläche der Laufschaufel 11 gelegene Ende weist in Rich- tung der Leitschaufeln 12. Am Ende des Lichtwellenleiters 13 ist dort ein Linsenkollimator 14 vorgesehen. 11 located end into the shaft 17 inside. The end located on the surface of the blade 11 points in the direction of the guide vanes 12. At the end of the optical waveguide 13 there is provided a lens collimator 14.
Das andere Ende der Glasfaser 13 liegt an einer Oberfläche der Welle 17. Die Glasfaser 13 schließt dort mit einem zwei- ten Kollimator 18 ab. Der zweite Kollimator 18 ist dabei so gestaltet, dass die abgegebene Strahlung in einem axialen Pa¬ rallelstrahl austritt. Die so abgegebene Strahlung trifft in einen Photodetektor 20, dessen Empfangsfläche großflächig im Vergleich zum Querschnitt der Glasfaser 13 gestaltet ist. The other end of the glass fiber 13 lies on a surface of the shaft 17. The glass fiber 13 terminates there with a second collimator 18. The second collimator 18 is designed so that the emitted radiation exits in an axial Pa ¬ rallelstrahl. The radiation thus emitted impinges on a photodetector 20, the receiving surface of which is designed over a large area in comparison to the cross section of the glass fiber 13.
Die Figur 2 zeigt Varianten für den Abschluss der Glasfaser 13, der in Richtung der Leitschaufeln 12 weist. So kann wie in diesem Ausführungsbeispiel angegeben, die Glasfaser 13 mit dem Linsenkollimator 14 abgeschlossen sein. Eine weitere Mög- lichkeit und Alternative besteht im Abschluss der GlasfaserFIG. 2 shows variants for the termination of the glass fiber 13 which points in the direction of the guide vanes 12. Thus, as indicated in this embodiment, the optical fiber 13 may be terminated with the lens collimator 14. Another possibility and alternative is to terminate the fiberglass
13 dergestalt, dass die Glasfaser ein getapertes Ende 22 auf¬ weist. Eine weitere Alternative besteht darin, dass eine Glasfaser 13 niederer Apertur verwendet wird. Dann ist dieses Ende 21 der Glasfaser 13 ohne besondere Ausgestaltung. 13 in such a way that the glass fiber has a taped end 22 on ¬ . Another alternative is to use a low aperture glass fiber 13. Then this end 21 of the glass fiber 13 without special design.
Im laufenden Betrieb sendet ein Bereich 16 einer LeitschaufelDuring operation, an area 16 sends a vane
12 Wärmestrahlung entsprechend seiner Temperatur aus. Der Bereich 16 ist dabei klein im Vergleich zur Größe der Leitschaufel 12. Die Wärmestrahlung tritt über den Linsenkollima- tor 14 in die Glasfaser 13 ein. Sie wird dort bis zu ihrem anderen Ende geleitet und tritt durch den zweiten Kollimator 18 und dem folgenden Luftspalt in den Photodetektor 20 ein. Die elektrischen Signale, die von der Strahlung 19 ausgelöst werden, werden ausgewertet und die Temperatur des Bereichs 16 somit bestimmt. 12 heat radiation according to its temperature. The region 16 is small compared to the size of the guide blade 12. The thermal radiation enters the glass fiber 13 via the lens collimator 14. It is routed there to its other end and enters the photodetector 20 through the second collimator 18 and the following air gap. The electrical signals which are triggered by the radiation 19 are evaluated and the temperature of the region 16 thus determined.
Im laufenden Betrieb dreht sich die Laufschaufei 11. Die Glasfaser 13 dreht hierbei selbstverständlich mit. Der be- trachtete Bereich 16 der Leitschaufel 12 wandert dadurch auf einer kreisförmigen Bahn um die Welle 17 herum. Da diese Bewegung relativ schnell ist, kann praktisch zu jeder Zeit die Temperatur jedes Bereichs 16 der Leitschaufel 12, der auf der kreisförmigen Bahn liegt, betrachtet werden. Es muss hierzu lediglich das einmalige Überstreichen der Laufschaufel 11 über den gewünschten Bereich 16 abgewartet werden. Die zeitliche Auflösung der Auswertung bestimmt hierbei, welcher Winkelabschnitt der Kreisbahn letztlich als Bereich 16 betrach- tet wird. During operation, the rotor blade 11 rotates. The glass fiber 13 of course rotates with it. The The area 16 of the vane 12 thereby travels around the shaft 17 in a circular path. Since this movement is relatively fast, the temperature of each region 16 of the vane 12 lying on the circular path can be viewed virtually at all times. For this purpose, it is only necessary to wait for a single sweep of the blade 11 over the desired region 16. The temporal resolution of the evaluation determines which angular section of the circular path is ultimately regarded as area 16.

Claims

Patentansprüche claims
1. Gasturbine (10) mit 1st gas turbine (10) with
- wenigstens einer stehenden Leitschaufel (12) und wenigstens einer im Betrieb rotierbaren Laufschaufel (11),  at least one stationary vane (12) and at least one rotor (11) rotatable during operation,
- wenigstens einem in eine erste Laufschaufel (11) eingebet¬ teten Lichtwellenleiter (13), der so ausgerichtet ist, dass Wärmestrahlung eines Bereichs (16) der ersten Leitschaufel (12) vom Lichtwellenleiter (13) aufnehmbar ist, - at least eingebet a into a first blade (11) ¬ ended optical waveguide (13) which is oriented so that radiation from a region (16) is receivable of the first vane (12) from the optical waveguide (13),
- einer Auswerteeinrichtung zur Auswertung der Wärmestrahlung, ausgestaltet zur Ermittlung der Temperatur des Bereichs (16) der ersten Leitschaufel (12), wobei die Tempe¬ ratur entlang eines Weges ermittelbar ist, von dem die Wärmestrahlung im Zuge der Rotation der ersten Laufschaufel (11) ausgeht. - an evaluation device for evaluation of the thermal radiation, adapted to determine the temperature of the region (16) of the first vane (12), said Tempe ¬ temperature can be determined along a path of the thermal radiation in the course of rotation of the first blade (11) emanates.
2. Gasturbine (10) gemäß Anspruch 1, bei der die erste Lauf¬ schaufel (11) einen Fotodetektor (20) zur Wandlung der Wärmestrahlung in elektrische Signale umfasst. 2. Gas turbine (10) according to claim 1, wherein the first run ¬ scoop (11) comprises a photodetector (20) for converting the heat radiation into electrical signals.
3. Gasturbine (10) gemäß Anspruch 2, bei der der Fotodetektor (20) durch eine drahtlose Energieübertragung gespeist ist. 3. A gas turbine (10) according to claim 2, wherein the photodetector (20) is powered by a wireless power transmission.
4. Gasturbine (10) gemäß einem der vorangehenden Ansprüche, bei der der Lichtwellenleiter (13) in die Welle (17) der ersten Laufschaufei (11) geführt ist und dort endet. 4. Gas turbine (10) according to one of the preceding claims, wherein the optical waveguide (13) in the shaft (17) of the first rotor blade (11) is guided and ends there.
5. Gasturbine (10) gemäß Anspruch 4, bei der das Ende des Lichtwellenleiters (13) in der Welle (17) mit einem Kollima- tor (18) versehen ist. 5. Gas turbine (10) according to claim 4, wherein the end of the optical waveguide (13) in the shaft (17) with a collimator (18) is provided.
6. Gasturbine (10) gemäß Anspruch 5, bei der der Kollimator (18) ausgestaltet ist, die austretende Strahlung in einem axialen Parallelstrahl auszusenden. 6. Gas turbine (10) according to claim 5, wherein the collimator (18) is adapted to emit the exiting radiation in an axial parallel beam.
7. Gasturbine (10) gemäß Anspruch 4 oder 5, bei der die vom Kollimator (18) kommende Strahlung mit einer Aufnahmeeinrich- tung aufgenommen wird, wobei der Empfangsbereich der Aufnah- meeinrichtung so großflächig gestaltet ist, dass im Wesentli¬ chen alle vom Kollimator (18) kommende Strahlung aufnehmbar ist . 7. Gas turbine (10) according to claim 4 or 5, in which the radiation coming from the collimator (18) is recorded with a recording device, the reception range of the recording Means is designed so large area that essenli ¬ Chen all of the collimator (18) coming radiation is received.
8. Gasturbine (10) gemäß Anspruch 7, bei der die Aufnahmeein¬ richtung eine Blende oder Hülse zur Vermeidung der Einstreuung von Umgebungslicht aufweist. 8. Gas turbine (10) according to claim 7, wherein the Aufnahmeein ¬ direction has a diaphragm or sleeve to avoid the interference of ambient light.
9. Gasturbine (10) gemäß Anspruch 7 oder 8, bei der die Auf- nahmeeinrichtung ein Lichtwellenleiter oder ein Bündel von9. Gas turbine (10) according to claim 7 or 8, wherein the receiving device is an optical waveguide or a bundle of
Lichtwellenleitern zur Weiterleitung der Strahlung zu einem Fotodetektor (20) ist. Optical waveguides for forwarding the radiation to a photodetector (20).
10. Gasturbine (10) gemäß Anspruch 7 oder 8, bei der die Auf- nahmeeinrichtung ein Fotodetektor (20) ist. 10. Gas turbine (10) according to claim 7 or 8, wherein the receiving device is a photodetector (20).
11. Gasturbine (10) gemäß einem der vorangehenden Ansprüche, bei der im Bereich des zur ersten Leitschaufel (12) weisenden Endes des Lichtwellenleiters (13) ein Linsenkollimator (14) vorgesehen ist. 11. Gas turbine (10) according to one of the preceding claims, wherein in the region of the first guide vane (12) facing the end of the optical waveguide (13) a lens collimator (14) is provided.
12. Gasturbine (10) gemäß einem der vorangehenden Ansprüche, bei der der Lichtwellenleiter (13) an seinem Ende getapert ist . 12. Gas turbine (10) according to one of the preceding claims, wherein the optical waveguide (13) is taped at its end.
EP12726080.0A 2011-06-21 2012-05-31 Gas turbine with pyrometer Withdrawn EP2723994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011077908A DE102011077908A1 (en) 2011-06-21 2011-06-21 Gas turbine with pyrometer
PCT/EP2012/060209 WO2012175302A1 (en) 2011-06-21 2012-05-31 Gas turbine with pyrometer

Publications (1)

Publication Number Publication Date
EP2723994A1 true EP2723994A1 (en) 2014-04-30

Family

ID=46210236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12726080.0A Withdrawn EP2723994A1 (en) 2011-06-21 2012-05-31 Gas turbine with pyrometer

Country Status (5)

Country Link
US (1) US20140133994A1 (en)
EP (1) EP2723994A1 (en)
JP (1) JP2014522964A (en)
DE (1) DE102011077908A1 (en)
WO (1) WO2012175302A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016010402A1 (en) 2015-09-01 2017-03-02 Sew-Eurodrive Gmbh & Co Kg Arrangement for determining the surface temperature
US10830132B2 (en) * 2016-04-29 2020-11-10 General Electric Company Micro thermal imaging system for turbine engines
EP3336497A1 (en) 2016-12-13 2018-06-20 Siemens Aktiengesellschaft Gas turbine blade with integrated pyrometer probe

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972394A (en) * 1962-01-10 1964-10-14 Rolls Royce Gas turbine engine
US3623368A (en) * 1970-03-09 1971-11-30 Comstock & Wescott Turbine engine blade pyrometer
JPS5920843B2 (en) * 1980-12-12 1984-05-16 工業技術院長 Turbine rotor blade abnormality detection device
GB2134251B (en) * 1982-12-24 1986-09-17 Rolls Royce Optical radiation pyrometer
JPS61200437A (en) * 1985-03-01 1986-09-05 Hitachi Ltd Apparatus for measuring temperature of turbine rotor
GB9018457D0 (en) * 1990-08-22 1990-10-03 Rolls Royce Plc Flow control means
JP3484477B2 (en) * 1993-03-16 2004-01-06 川崎重工業株式会社 Temperature detection method and temperature detection device for gas turbine engine
JPH0683928U (en) * 1993-05-13 1994-12-02 石川島播磨重工業株式会社 Turbine vane cooling control device
JPH0815042A (en) * 1994-06-28 1996-01-19 Toshiba Corp Operation gas temperature measuring device for gas turbine
JP3569000B2 (en) * 1994-09-12 2004-09-22 株式会社東芝 Gas turbine blade abnormality monitoring system
DE19736276B4 (en) * 1997-08-21 2006-07-27 Alstom Technology Ltd Optical pyrometer for gas turbines
US6364524B1 (en) * 1998-04-14 2002-04-02 Advanced Fuel Research, Inc High speed infrared radiation thermometer, system, and method
GB2370632B (en) * 2000-11-30 2004-11-17 Rolls Royce Plc A gas turbine engine guide vane and temperature monitor therefor
JP2002303103A (en) * 2001-03-30 2002-10-18 Toshiba Corp Soundness monitoring device for power generating plant
JP2005214661A (en) * 2004-01-27 2005-08-11 Toshiba Corp Monitoring system of power generating apparatus
JP4474989B2 (en) * 2004-04-26 2010-06-09 株式会社Ihi Turbine nozzle and turbine nozzle segment
US7095221B2 (en) * 2004-05-27 2006-08-22 Siemens Aktiengesellschaft Doppler radar sensing system for monitoring turbine generator components
KR100760510B1 (en) * 2006-05-26 2007-09-20 한국과학기술연구원 Monitoring device for rotating body
US7527471B2 (en) * 2006-07-31 2009-05-05 General Electric Company Stator vane and gas turbine engine assembly including same
DE102007020059B4 (en) * 2007-04-27 2014-10-09 Siemens Aktiengesellschaft Method and device for determining the position of at least part of a medical instrument
DE102008022571A1 (en) * 2008-05-07 2010-02-25 Siemens Aktiengesellschaft Temperature measurement on parts of a turbomachine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012175302A1 *

Also Published As

Publication number Publication date
US20140133994A1 (en) 2014-05-15
WO2012175302A1 (en) 2012-12-27
DE102011077908A1 (en) 2012-12-27
JP2014522964A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
DE102006054667B4 (en) Collision Warning System for a Wind Turbine
DE102006002708B4 (en) Rotor of a wind turbine
EP1994371B1 (en) Flowmeter for determining a flow direction
EP2059765B1 (en) Optical device for monitoring a rotatable shaft with an orientated axis
DE102006041461A1 (en) Wind energy plant comprises measuring device, which has measuring element with fiber optic cable provided with optical sensor and electrical heating element
DE60123700T2 (en) Temperature measuring system and optical switch used therein
WO2012175302A1 (en) Gas turbine with pyrometer
DE102017115927A1 (en) Strain and vibration measuring system for monitoring rotor blades
DE102016122862A1 (en) Measuring system and a measuring method for measuring a stator of a gearless wind turbine
DE102009009272A1 (en) Quality inspection for rotor blades of a wind energy plant
WO2016074773A1 (en) Optical gas sensor comprising an led emitter for the emission of light of a narrow bandwidth
EP3055671B1 (en) Sensor unit for determining properties of a lubricant and machine element and machine assembly
DE102008022571A1 (en) Temperature measurement on parts of a turbomachine
WO2009065727A1 (en) Adjustment device for coupled optics for measuring using fiber optic sensors on rotating parts
EP1994372B1 (en) Flowmeter for determining a flow direction
EP1711784B1 (en) Method and device for detection of vibrations on a rotating vane of a turbine
DE102009017796A1 (en) Optical probe for light barrier for turbine for gas turbine plant for aircraft, has transfer location aligning light transfer surface to end of optical fiber, and optical component for optical coupling of transfer location with spatial area
AT512155B1 (en) Device for detecting an ice covering on the rotor blades of a wind turbine
EP3120020B1 (en) Wind-turbine rotor blade and heating unit for a wind-turbine rotor blade
EP3032278B1 (en) Optoelectronic sensor
DE102011077736A1 (en) distance sensor
DE102016217687A1 (en) Apparatus and method for measuring a rotational movement of a rotatable component, in particular a rotational direction
DE202007001136U1 (en) Rotor blades collision warning system for wind energy system, has distance sensors to measure distance of blades to point of system, and circuit to evaluate distance data and to release collision warning during reduced distance
DE102008014720A1 (en) Measuring device and arrangement for detecting changes in position
WO2016139257A1 (en) Pyrometric temperature sensor and method for pyrometric detection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202