EP1994371B1 - Flowmeter for determining a flow direction - Google Patents

Flowmeter for determining a flow direction Download PDF

Info

Publication number
EP1994371B1
EP1994371B1 EP07704311A EP07704311A EP1994371B1 EP 1994371 B1 EP1994371 B1 EP 1994371B1 EP 07704311 A EP07704311 A EP 07704311A EP 07704311 A EP07704311 A EP 07704311A EP 1994371 B1 EP1994371 B1 EP 1994371B1
Authority
EP
European Patent Office
Prior art keywords
flow
optical waveguides
fluid
measuring element
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07704311A
Other languages
German (de)
French (fr)
Other versions
EP1994371A1 (en
Inventor
Thomas Bosselmann
Michael Willsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL07704311T priority Critical patent/PL1994371T3/en
Publication of EP1994371A1 publication Critical patent/EP1994371A1/en
Application granted granted Critical
Publication of EP1994371B1 publication Critical patent/EP1994371B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6884Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element making use of temperature dependence of optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Definitions

  • the present invention relates to a flow measuring device for determining a flow direction of a fluid.
  • the flow measuring device in this case has a measuring element with at least two optical waveguides and at least one adjacent to the optical waveguides electrical heating element, a control unit and an evaluation unit. Furthermore, the invention relates to a method for determining a flow direction of a fluid and to an electrical machine with the flow measuring device.
  • air-cooled machines such as generators or motors, in particular with powers below 300 MVA, are known in which cooling takes place by means of a comparatively large air flow.
  • This air flow can in particular be conducted through a line system comprising numerous flow channels (cf., for example, US Pat DE 42 42 132 A1 or the EP 0 853 370 A1 ). It can be pressed through the stator of the machine, for example, through the flow channels of the duct system air from outside to inside.
  • a flow measuring device for determining a flow velocity of a fluid flowing around a measuring element of the flow measuring device, such as a gas flow, with an optical waveguide having a plurality of fiber Bragg gratings and at least one electrical heating element arranged adjacently to the conductor.
  • the flow velocity along the longitudinal extension of the measuring element can be determined from the influence of an electromagnetic wave fed into the optical waveguide by the temperature of the conductor.
  • the optical waveguide can be heated by the electric heating element with constant application of heat, whereby a temperature distribution in the longitudinal extent corresponding to the local flow velocity results on the measuring element.
  • This flow measuring device is thus suitable for determining a multiplicity of local flow velocities with only one single measuring element. Determining the direction in which the fluid flows relative to the measuring element, however, is not possible.
  • the present invention is therefore based on the object to provide a flow measuring device and a method with which the flow direction of a fluid can be determined, and to provide an electrical machine in which the flow direction of a cooling fluid can be monitored.
  • the measuring element which is arranged in its longitudinal extent preferably perpendicular to the flow direction of the fluid in this, has over the circumference of its cross-section, which is in particular circular, different local flow conditions.
  • the heat transfer across the surface of the measuring element does not take place uniformly over the circumference of the cross section due to the spatially different flow velocities of the fluid.
  • a different heat flow in the direction of the optical waveguides which are dependent on the position of the optical waveguides in the measuring element, is established in the measuring element for constant application of power to the at least one heating element.
  • different temperatures can thus be set at the respective location of the optical waveguide. From the determination of the corresponding temperature differences, it is finally possible to deduce the flow direction of the fluid flowing around the measuring element.
  • the optical waveguides each comprise at least one fiber Bragg grating and the at least one electromagnetic wave which can be coupled into the optical waveguides can be influenced at the location of the at least two fiber Bragg gratings in accordance with the respective temperature of the optical waveguides.
  • a sensor type is characterized by its special multiplexing capability, so that a sensor network can be realized in a simple manner.
  • Another advantage of the fiber Bragg grating technology is the possibility of a practically punctiform, so a locally very narrow measurement. This makes it possible, if a higher, in particular spatially resolved measurement accuracy along the measuring element is required, to arrange a plurality of fiber Bragg gratings close to one another in the respective optical waveguides one after the other.
  • the fiber Bragg gratings arranged in an optical waveguide preferably each have a different centroid wavelength.
  • a portion determined by the respective center of gravity wavelength is reflected back by the at least one fed-in electromagnetic wave.
  • the center of gravity wavelength changes with the influencing variable prevailing at the measuring location, here in particular the temperature of the optical waveguide.
  • This change in the wavelength content (or wavelength spectrum) of the respective back-reflected part of the fed-in at least one electromagnetic wave will be used as a measure of the influencing variable to be detected.
  • a broadband light source such as For example, an LED (light-emitting diode, engl .: L ight E mitting D iode) with a bandwidth of about 45 nm, an SLD (super luminescent diode, engl .: S uper L uminescence D iode) with a bandwidth of about 20 nm or a tunable laser with a bandwidth of about 100 nm, are used.
  • the measuring element is rod-shaped.
  • the measuring element is easy to assemble and can be introduced, for example, through an opening in the flow channel. Furthermore, it can be achieved that a maintenance of the measuring element is made possible with low assembly costs. For this purpose, the corresponding fasteners are released and the measuring element pulled out through the opening.
  • the measuring element can of course have any other shape.
  • the measuring element may be circular or designed as an Archimedean spiral
  • the measuring element is elastic.
  • the measuring element can be preformed at short notice depending on the application, whereby the number of different measuring element shapes can be reduced. Storage costs can be saved.
  • the at least one heating element is formed from metal. Thus, a uniform heating along the heating elements is ensured.
  • the at least one heating element is formed by a common electrically conductive coating of the optical waveguides, wherein the optical waveguides are in contact in the longitudinal direction.
  • the heating element can thus be connected in a simple manner in each case in one piece with the conductors which are in contact with one another, so that in addition to a cost-effective production, a protective function of the conductors can also be achieved by the heating elements.
  • the conductive coating may be, for example be formed of a metal such as tungsten or of an alloy such as steel or the like.
  • the at least one heating element has a constant specific electrical resistance.
  • the measuring element is uniformly exposed to heat over its longitudinal extent.
  • Specific electrical resistance in the context of this application is to be understood as the electrical resistance per unit length.
  • the specific resistance in the operating temperature range is largely independent of temperature. It can thus be achieved that the respective heat supply directed by the at least one heating element in the direction of the optical waveguide is substantially independent of the current local temperature along the longitudinal extent of the measuring element.
  • the measurement accuracy as well as the reliability of the measurement can be increased.
  • the at least one heating element may be formed, for example, from a material such as constantan or the like.
  • the measuring element has a casing.
  • the measuring element can thus be protected against chemical attack, for example.
  • the sheath allows mechanical protection, for example during assembly.
  • the sheath consists of a ceramic material.
  • the ceramic jacket can advantageously be formed a measuring element for a high temperature stress.
  • the sheath is formed by a metal sleeve.
  • the measuring element can be protected, for example against electrostatic charge by the metal sleeve is connected to a ground potential.
  • the sheath (8) at the same time having at least one heating element (6, 7). Components and costs can be further reduced.
  • the optical waveguides each comprise at least one fiber Bragg grating and the at least one electromagnetic wave is influenced as a function of the different, local temperatures at the location of the respective at least one fiber Bragg grating.
  • the at least one electromagnetic wave is formed by at least one electromagnetic pulse.
  • the electromagnetic pulse can be generated for example by a pulsed laser, which is coupled via suitable known coupling means in the optical waveguide.
  • the measuring element is heated in its longitudinal extent by the at least one heating element. From a temperature variation along the measuring element due to the fluid flow can advantageously be determined, the flow velocity along the measuring element.
  • the at least one heating element is acted upon by a constant electrical power.
  • a constant application of heat can thus be achieved in each case in accordance with Ohm's law. This can be done by means of direct current or alternating current.
  • the heating effect of the at least one heating element can be influenced when the frequency moves within a range in which current displacement effects take effect.
  • the fluid used is a gas, in particular air, or a liquid, in particular water or liquid nitrogen, for cooling an electrical machine, in particular a generator or a motor.
  • the measuring element according to the flow measuring device according to the invention can cost to the physical and / or chemical requirements in the flow channel of a cooling device of the generator or of the engine. An accurate measurement of a flow distribution in the cross section of a flow channel can also be achieved.
  • an arranged in a flow channel of the conduit system measuring element of the flow measuring device for measuring the flow direction of the fluid is provided in the flow channel.
  • an efficient cooling of the machine can be achieved by the flow direction of the cooling fluid, such as air, is monitored in the flow channels of the cooling device.
  • An occurring flow arrest due to unfavorably superimposed flows can be detected early enough so that appropriate measures can be taken to prevent local overheating and damage to the machine.
  • the reliability of an operation of the turbomachine can be increased.
  • the measuring element is arranged radially to the cross section of the flow channel.
  • the flow direction can be determined as a function of the radius of the flow channel cross section with a plurality of successively arranged fiber Bragg gratings.
  • a plurality of measuring elements can also be provided in the flow channel in order to be able to determine the direction of flow at different circumferential positions of the flow channel.
  • a plurality of measuring elements are arranged axially spaced apart in the flow channel.
  • advantageously axial changes in the flow direction can be detected and evaluated.
  • a plurality of differently shaped measuring elements in order to obtain the desired information about the course of the flow.
  • radial, rod-shaped measuring elements can be combined with measuring elements arranged along a circular line in the flow channel.
  • the measuring elements are operated in accordance with the method according to the invention.
  • FIG. 1 shows a side view of a measuring element 1a, 1b, 1c, 2, 3 or 31 of the flow measuring device according to the invention with a plug-in connection 15 attached to one end of the measuring element 1a, 1b, 1c, 2, 3 or 31 for connecting the measuring element 1a, 1b, 1c, 2, 3 or 31 to a control unit 20 and an evaluation unit 23 (see FIG FIGS. 8 to 12 and FIG. 14 ).
  • the measuring element 1a, 1b, 1c, 2, 3 or 31 is rod-shaped.
  • the measuring element 1a, 1b, 1c, 2, 3 or 31 can be made elastic, so that the geometric shape can be adapted to the given requirements.
  • a coordinate system 80 is associated with an x, y and z axis for a better overview.
  • the fluid 22 flowing in the x direction is indicated by arrows pointing in the x direction.
  • the fluid flow is in particular a turbulent flow. Different flow velocities are set on the surface 9 of the measuring element 1a, 1b, 1c, 2, 3 or 31.
  • the length of the arrows indicates the amount of fluid velocity at the location shown.
  • the velocities are highest at that part of the measuring element surface 9 which is directed substantially in the direction of flow, it is lowest at that part of the measuring element surface 9 which points substantially in the flow direction.
  • the heat transfer through the measuring element surface 9 takes place inhomogeneous depending on the local flow velocity.
  • the heat transfer at that part of the measuring element surface 9, which is directed substantially opposite to the flow direction greater than at that part of the measuring element surface 9, which has substantially in the flow direction.
  • the at least one heating element 5, 6 or 7 for example, in the center of the cross-sectional area of the measuring element 1a, 1b, 1c, 2, 3 or 31, at least with respect of its cross section in a thermal equilibrium, while it is acted upon by means of the at least one heating element 5, 6 or 7 with heat, an optical waveguide 4a arranged at or closer to that part of the measuring element surface 9, which is directed substantially in the direction of flow, becomes a lower one Have temperature, as an at or closer to that part of the measuring element surface 9, which faces substantially in the flow direction, arranged optical waveguide 4b.
  • the optical waveguide 4a arranged at or closer to that part of the measuring element surface 9 which is directed essentially in the direction of flow is exposed to a lower heat flow 10a from the direction of the at least one heating element 5, 6 or 7 than at or closer to that part of the measuring element surface 9, which points substantially in the flow direction, arranged optical waveguide 4b.
  • the heat flow associated with this optical waveguide 4b is indicated by 10b.
  • the arrows pointing from the at least one heating element 5, 6 or 7 in the direction of the respective optical waveguides 4a, 4b indicate the corresponding heat flow 10a, 10b, the amount of which is reflected in the respective arrow length.
  • FIG. 2, FIG. 3 and FIG. 4 show three embodiments of a measuring element 1a, 1b and 1c of the flow measuring device according to the invention.
  • FIG. 2 are two optical waveguides 4a, 4b and an interposed heating element 5 embedded in a ceramic material in the measuring element 1a included.
  • FIG. 3 are two optical waveguides 4a, 4b and two interposed heating elements 5 embedded in the ceramic material in the measuring element 1b.
  • an optical waveguide 4a is arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b is positioned close to that part of the measuring element surface 9 which is directed substantially in the flow direction.
  • the one Heating element 5 in FIG. 2 and both heating elements 5 in FIG. 3 are on an axis of symmetry 30 of the measuring element 1a and 1b, which simultaneously represents the mirror axis with respect to both optical fibers 4a, 4b, arranged such that their respective distances to the two optical fibers 4a, 4b correspond to each other.
  • the embodiment in FIG. 4 are four optical waveguides 4a, 4b and an interposed heating elements 5 embedded in the ceramic material contained in the measuring element 1c.
  • the four optical waveguides 4a, 4b are arranged in pairs near that part of the measuring element surface 9 which is directed substantially in the direction of flow or near that part of the measuring element surface 9 which is directed substantially in the direction of flow.
  • the heating element 5 is arranged on an axis of symmetry 30 of the measuring element 1c, which simultaneously represents the mirror axis with respect to the optical waveguide pairs 4a, 4b, such that their distances from the respective optical waveguides 4a, 4b correspond to one another.
  • the optical waveguides 4a, 4b are for example glass or plastic fibers.
  • the at least one heating element 5 and the optical waveguides 4a, 4b are embedded in a ceramic body, in particular a cylindrical body 16, which in turn is surrounded by a passivating jacket 8.
  • the one (cf. Figures 2 and 4 ) or the two (cf. FIG. 3 ) Heating elements 5 are formed for example as heating wires.
  • the sheath 8 can also be designed to be electrically conductive from a metal (cf. FIGS. 8 and 10 ).
  • FIG. 5 shows a further embodiment of a measuring element 2 of the flow measuring device according to the invention with two optical waveguides 4a and 4b, which are surrounded by a ceramic material consisting in particular cylindrical body 16.
  • An optical waveguide 4a is arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b is located close to that part of the measuring element surface 9 which is essentially in the flow direction is directed, is positioned.
  • a heating element 6 is arranged such that it surrounds the measuring element 2. In particular, the heating element 6 simultaneously forms a sleeve-shaped casing 8 of the measuring element 2.
  • FIG. 6 FIG. 2 illustrates another embodiment of a measuring element 31 of the flow measuring device according to the invention with two optical waveguides 4a and 4b.
  • Each optical waveguide 4a, 4b is surrounded by a corresponding heating element 6a, 6b or 7a, 7b in the form of a sleeve 6a, 6b or a coating 7a, 7b.
  • the heating elements 6a, 6b or 7a, 7b are in turn surrounded by a ceramic material consisting in particular cylindrical body 16.
  • An optical waveguide 4a with associated heating element 6a or 7a are arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b with associated heating element 6b or 7b near that part of the measuring element surface 9, which is substantially in Direction of flow is directed, are positioned.
  • the ceramic body 16 itself is in turn surrounded by a sleeve-shaped passivating jacket 8 of the measuring element 31.
  • FIG. 7 is a section through a measuring element 3 of the flow measuring device according to the invention, wherein two adjacent optical fibers 4a, 4b are vapor-deposited with a metal layers 7a, 7b, which also represents a heating element 7 of the measuring element 3.
  • the metal layer 7 forms a common jacket 8 of the optical fibers 4a, 4b.
  • This embodiment is characterized by an elasticity, so that the measuring element 3 can be adjusted as needed in its spatial extent.
  • the measuring element 3 is distinguished by a particularly simple production method, in which the optical waveguide pair 4a, 4b is coated in a coating process of a conventional, known type with a suitable electrically conductive material.
  • the embodiment is characterized further by from that they have a particularly low heat capacity compared to the embodiments of the measuring element 1a, 1b, 1c, 2 or 31 according to the FIGS. 1 to 6 and thus reacts faster to changing flow conditions.
  • the heating elements 5, 6 and 7 used in the aforementioned embodiments are preferably formed of a metal or of a metal alloy.
  • a metal alloy for example steel, copper, aluminum, bronze, constantan or the like can be used.
  • a coating with a metal for example in the flow channel of a gas turbine, a coating with a metal such as tungsten or the like is preferable.
  • conductive polymers can be used.
  • the material of the heating elements 5, 6 and 7 each have a constant electrical resistance. In particular, the resistance in the operating temperature range is largely independent of the temperature.
  • FIGS. 8 to 12 show exemplary embodiments of the flow measuring device according to the invention in block diagrams.
  • the flow measuring device in FIG. 8 comprises the measuring element 1a according to FIG. 2
  • the flow measuring device in FIG. 9 comprises the measuring element 1b according to FIG. 3
  • the flow measuring device in FIG. 10 includes the measuring element 1c according to FIG. 4
  • the flow measuring device in FIG. 11 includes the measuring element 31 according to FIG. 6
  • the flow measuring device in FIG. 12 includes the measuring element 2 or 3 according to FIG. 5 respectively.
  • FIG. 7 All mentioned embodiments the flow measuring device according to the invention further comprise a control unit 20 and an evaluation unit 23.
  • the respective measuring element 1a, 1b, 1c, 2, 3 or 31 extends in its longitudinal axis in the y-direction.
  • the measuring element 2 or 3 of the flow measuring device according to the FIG. 12 is at its respective ends with its heating element 6 or 7 electrically connected to the control unit 20 and at one of the two ends optically connected to the evaluation unit 23.
  • the two optical waveguides 4a and 4b are connected in common to the evaluation unit 23 via a respective optical connecting fiber 25a, 25b.
  • the measuring element 1a, 1b, 1c or 31 of the flow measuring device according to the FIGS. 8 to 11 is electrically connected at one end to the control unit 20 and optically connected to the evaluation unit 23, while the other end of the measuring element 1 is freely available.
  • One of the optical waveguides 4a, 4b of the measuring element 1a, 1b, 1c or 31 is connected via an optical connecting fiber 25 to the evaluation unit 23, wherein the optical waveguides 4a, 4b are interconnected in series.
  • the individual optical fibers 4a, 4b can also be analogous to FIG. 12 be individually connected to the evaluation unit 23 without having to connect to each other.
  • the control unit 20 has an electrical energy source 21.
  • the power source 21 having two terminals is connected to the heating elements 5, 6 or 7 according to the embodiments such that the heating element 5, 6 or 7 is supplied with electric power and generates heat.
  • the electrical energy source 21 is in particular a current source, via which a constant direct current can be predetermined.
  • the measuring element 1a, 1b, 1c, 2, 3 or 31 flows around the fluid 22, wherein the fluid flow along the longitudinal extension of the measuring element 1a, 1b, 1c, 2, 3 or 31 may have a different flow velocity indicated through the arrows of different lengths.
  • the flow direction of the fluid 22 has, for simplicity, in the x-direction, as already stated above.
  • the heating element 5, 6 or 7 of the measuring element 1a, 1b, 1c, 2, 3 and 31 is supplied with electrical power, so that this heats up.
  • the heating process should last at least until a thermal equilibrium has been established in the measuring element 1a, 1b, 1c, 2, 3 or 31. He can also be chosen shorter.
  • the evaluation unit 23 which has a light source, a detector and an analyzing means
  • light in the form of a continuous laser beam or in the form of laser pulses, is transmitted via the optical connecting fiber 25 into the optical waveguides 4a, 4b of the measuring element 1a, 1b, 1c, 2 , 3 or 31 coupled and analyzed backscattered light with the analysis means.
  • the effect is exploited that an electromagnetic wave, which is coupled into an optical waveguide 4a, 4b, is scattered when passing through the optical waveguide 4a, 4b. A part of the scattered light is scattered in the opposite direction, so that it can be detected at the entrance of the optical waveguide 4a, 4b.
  • the backscattered light signal consists of different components that are different in terms of measurement requirements.
  • the backscattered signal contains a Raman scattered portion.
  • the laser light is generated in known manner with prior art devices. Depending on the temperature, part of the laser light in the optical waveguides 4a, 4b is scattered back by fiber Bragg gratings 13. This backscattered Light signal is supplied via the optical connecting fiber 25 of the evaluation unit 23, which determines therefrom the temperature at the location of the fiber Bragg gratings 13 in the optical waveguide 4.
  • the corresponding individual optical waveguides 4a, 4b associated temperatures within the measuring element 1a, 1b, 1c, 2, 3 or 31 are determined.
  • different temperatures occur at the location of the optical waveguides 4a, 4b in the measuring element 1, 2 or 3 in a flowing fluid 22 with directed flow.
  • the different temperatures are compared with each other, for example by subtraction in one of the evaluation unit 23 associated computer unit, and from which determines the flow direction of the fluid 22.
  • the flow velocity with the flow velocity distribution of the fluid 22 can be determined from the temperature distribution along the measuring element 1a, 1b, 1c, 2, 3 or 31.
  • the measuring element 1a has a heating element 5 designed, for example, as a heating wire.
  • the energy source 21 is connected to the heating element 5 by one connection and to the electrically conductive jacket 8 of the measuring element 1a by the other connection.
  • the heating element 5 is also connected to the electrically conductive sheath 8 at the opposite end of the measuring element 1a.
  • the measuring element 1b has two parallel For example, designed as heating wires heating elements 5, wherein the two heating wires are connected together at one end of the measuring element 1b with an electrical connection conductor. At the other end of the measuring element 1b while one of the two heating elements 5 are connected to one terminal of the power source 21 and the other heating element 5 to the other terminal of the power source 21. Likewise, at one end of the measuring element 1 b, the two parallel optical waveguides 4 a, 4 b are interconnected with an optical connecting fiber, while at the other end measuring element 1 b only one of the two optical waveguides 4 a, 4 b is connected to the evaluation unit 23 via an optical connecting fiber 25.
  • the measuring element 1 has a total of four parallel optical waveguides 4a, 4b. Between the optical waveguides designed as a heating wire heating elements 5 is arranged.
  • the energy source 21 is connected to the heating element 5 with one connection and to the electrically conductive jacket 8 of the measuring element 1c via the other connection.
  • the heating element 5 is also connected to the electrically conductive sheath 8 at the opposite end of the measuring element 1c.
  • the four optical waveguides 4a, 4b are connected to one another in series by means of optical connecting fibers at the measuring element ends, so that only one of the optical waveguides 4a, 4b is connected directly to the evaluation unit 23.
  • measuring element 1c with numerous optical waveguides 4a, 4b, which are arranged, for example, in a circle around the heating element 5 arranged in the cross-sectional center of the measuring element 1c, allows an even more accurate determination of the flow direction of the fluid 22.
  • the measuring element 31 has two parallel heating elements 5 formed, for example, as electrically conductive sleeves or coatings, the two on one end of the measuring element 31 are joined together. At the other end of the measuring element 31 while one of the two heating elements 5 are connected to one terminal of the power source 21 and the other heating element 5 to the other terminal of the power source 21. Likewise, at one end of the measuring element 1 b, the two parallel optical waveguides 4 a, 4 b are interconnected with an optical connecting fiber, while at the other end measuring element 1 b only one of the two optical waveguides 4 a, 4 b is connected to the evaluation unit 23 via an optical connecting fiber 25.
  • both heating elements 5 must be connectable together with one and the same connection of the energy source 21.
  • FIG. 12 is a connection of the power source 21 at one end of the measuring element 2 or 3 with the electrically conductive sleeve 8 (FIG. FIG. 5 ) or as an electrically conductive coating ( FIG. 7 ) formed heating element 6 or 7 connected.
  • the second terminal of the power source 21 is connected at the other end of the measuring element 2 or 3 by means of an electrical line to the heating element 6 or 7.
  • FIG. 9 shows a circular cross section of a flow channel 14 through which a fluid 22 flows in the x direction.
  • the flow channel 14 is provided as an example with two with respect to the flow channel cross-section radially arranged measuring elements 1a, 1b, 1c, 2, 3 or 31.
  • the two measuring elements 1a, 1b, 1c, 2, 3 or 31 are connected via an electrical connection line 26 with the control unit 20 and an optical connection fiber 25 is connected to the evaluation unit 23.
  • a generator is shown schematically as an electrical machine.
  • the generator has a stationary stator 19 fixedly connected to a housing 28 and a rotor 18 movably mounted on a rotor shaft 17.
  • the generator is cooled by means of a cooling device with, for example, air as cooling fluid 22.
  • the cooling device has two fans 27, which conduct the cooling air 22 through the generator by means of a line system.
  • the line system has numerous flow channels, in particular also in the stator 19.
  • the cooling air 22 is conducted in the illustrated embodiment from outside to inside in the direction of rotor 18 through the stator 19 and further transported by a gap between stator 19 and rotor 18 gap to the outside.
  • the flow direction in the flow channels is monitored by means of the flow measuring device according to the invention.
  • two flow channels, each with a measuring element 1a, 1b, 1c, 2, 3 or 31 of the flow measuring device according to the invention are provided as an example at two points of the generator. Both measuring elements 1a, 1b, 1c, 2, 3 or 31 are connected to the associated control unit 20 and evaluation unit 23. In the case of irregularities in the flow of cooling air, it is therefore possible to react promptly and to take appropriate protective measures.
  • cooling fluid 22 may also be a cooling liquid, such as water or even in cryogenic cooling, a liquid noble gas or liquid nitrogen may be provided.
  • the flow measuring device according to the invention can also be used in a turbine, such as a steam turbine or a gas turbine.
  • a turbine such as a steam turbine or a gas turbine.
  • flow directions can be measured, in particular in turbulent flow regions in the associated cooling air system, in the associated compressor, at the associated compressor inlet and / or in the corresponding exhaust gas flow.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die vorliegende Erfindung betrifft ein Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung eines Fluids. Die Strömungsmessvorrichtung weist dabei ein Messelement mit mindestens zwei Lichtwellenleitern und mindestens einem zu den Lichtwellenleitern benachbart angeordneten elektrischen Heizelement, eine Steuerungseinheit und eine Auswerteeinheit auf. Ferner betrifft die Erfindung ein Verfahren zum Bestimmen einer Strömungsrichtung eines Fluids sowie eine elektrische Maschine mit der Strömungsmessvorrichtung.The present invention relates to a flow measuring device for determining a flow direction of a fluid. The flow measuring device in this case has a measuring element with at least two optical waveguides and at least one adjacent to the optical waveguides electrical heating element, a control unit and an evaluation unit. Furthermore, the invention relates to a method for determining a flow direction of a fluid and to an electrical machine with the flow measuring device.

In elektrischen Maschinen aller Leistungsklassen, insbesondere aber mit höherer Leistung, wird eine erhebliche Wärme entwickelt, die im Hinblick auf eine verbesserte Maschineneffizienz und/oder höherer Lebensdauer mittels kühltechnischer Maßnahmen abzuführen ist. So sind beispielsweise luftgekühlte Maschinen wie Generatoren oder Motoren, insbesondere mit Leistungen unter 300 MVA, bekannt, bei denen eine Kühlung durch einen vergleichsweise großen Luftstrom erfolgt. Dieser Luftstrom kann insbesondere durch ein zahlreiche Strömungskanäle umfassendes Leitungssystem geleitet werden (vgl. z.B. die DE 42 42 132 A1 oder die EP 0 853 370 A1 ). Es kann beispielsweise durch die Strömungskanäle des Leitungssystems Luft von außen nach innen durch den Stator der Maschine gepresst werden. Gleichzeitig wird jedoch vom Rotor der Maschine Luft angesaugt und von innen nach außen in umgekehrte Richtung durch den Stator gepresst. Wenn sich beide Luftströme ungünstig überlagern, kommt es innerhalb des Leitungssystems zum Strömungsstillstand und somit gegebenenfalls zu einer örtlichen Überhitzung und Beschädigung der Maschine.In electric machines of all power classes, but in particular with higher power, a considerable heat is developed, which is dissipated in terms of improved machine efficiency and / or longer life by means of cooling measures. For example, air-cooled machines such as generators or motors, in particular with powers below 300 MVA, are known in which cooling takes place by means of a comparatively large air flow. This air flow can in particular be conducted through a line system comprising numerous flow channels (cf., for example, US Pat DE 42 42 132 A1 or the EP 0 853 370 A1 ). It can be pressed through the stator of the machine, for example, through the flow channels of the duct system air from outside to inside. At the same time, however, air is sucked in by the rotor of the machine and pressed from the inside to the outside in the opposite direction by the stator. If both air streams interfere unfavorably, there will be a flow arrest within the piping system and thus, possibly, a local overheating and damage to the machine.

Aus dem Dokument C.Jewart et al., "X-probe flow sensor using self-powered active fiber Bragg gratings", Sensors and Actuators A 127 (2006), 63-68 ist eine Anordnung bekannt, bei mittels eines Kreuzes aus zwei Faser-Bragg-Gittern eine Strömungsgeschwindigkeit ermittelt wird, wobei die Lichtwellenleiter mit den Faser-Bragg-Gittern durch hindurchgeleitetes Licht beheizt werden.From the document C.Jewart et al., "X-probe flow sensor using self-powered active fiber Bragg gratings", Sensors and Actuators A 127 (2006), 63-68 An arrangement is known in by means of a cross of two fiber Bragg gratings a flow velocity is determined, wherein the optical waveguides are heated with the fiber Bragg gratings by light passed through.

Aus der GB 2 079 470 A ist eine Möglichkeit zur Bestimmung der Fließcharakteristik eines Fluids durch ein flüssigkeitsdurchlässigen Feststoff bekannt, bei der ein Heizelement eine lokale Aufheizung des Feststoffs und Fluids bewirkt und an anderen Stellen um das Heizelement herum die Temperatur gemessen wird.From the GB 2 079 470 A For example, one way to determine the flow characteristics of a fluid through a liquid-permeable solid is known in which a heating element causes local heating of the solid and fluid and at other locations around the heating element the temperature is measured.

In der WO 2004/042326 A2 ist eine Strömungsmessvorrichtung zur Bestimmung einer Strömungsgeschwindigkeit eines ein Messelement der Strömungsmessvorrichtung umströmenden Fluids, wie beispielsweise eines Gasstroms, mit einem mehrere Faser-Bragg-Gitter aufweisenden Lichtwellenleiter und wenigstens einem zum Leiter benachbart angeordneten, elektrischen Heizelement angegeben. Hiermit kann aus einer Beeinflussung einer in den Lichtwellenleiter eingespeisten elektromagnetischen Welle durch die Temperatur des Leiters die Strömungsgeschwindigkeit entlang der Längserstreckung des Messelements ermittelt werden. Der Lichtwellenleiter ist über das elektrische Heizelement mit konstanter Wärmebeaufschlagung beheizbar, wobei sich am Messelement eine Temperaturverteilung in Längserstreckung entsprechend der lokalen Strömungsgeschwindigkeit ergibt. Diese Strömungsmessvorrichtung ist somit geeignet, mit nur einem einzigen Messelement eine Vielzahl von lokalen Strömungsgeschwindigkeiten zu ermitteln. Die Ermittlung der Richtung, in welche das Fluid relativ zum Messelement fließt, ist jedoch nicht möglich.In the WO 2004/042326 A2 a flow measuring device is provided for determining a flow velocity of a fluid flowing around a measuring element of the flow measuring device, such as a gas flow, with an optical waveguide having a plurality of fiber Bragg gratings and at least one electrical heating element arranged adjacently to the conductor. Hereby, the flow velocity along the longitudinal extension of the measuring element can be determined from the influence of an electromagnetic wave fed into the optical waveguide by the temperature of the conductor. The optical waveguide can be heated by the electric heating element with constant application of heat, whereby a temperature distribution in the longitudinal extent corresponding to the local flow velocity results on the measuring element. This flow measuring device is thus suitable for determining a multiplicity of local flow velocities with only one single measuring element. Determining the direction in which the fluid flows relative to the measuring element, however, is not possible.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Strömungsmessvorrichtung sowie ein Verfahren bereitzustellen, mit welchen die Strömungsrichtung eines Fluids ermittelbar ist, als auch eine elektrische Maschine anzugeben, bei welcher die Strömungsrichtung eines Kühlfluids überwacht werden kann.The present invention is therefore based on the object to provide a flow measuring device and a method with which the flow direction of a fluid can be determined, and to provide an electrical machine in which the flow direction of a cooling fluid can be monitored.

Zur Lösung der Aufgabe wird eine Strömungsmessvorrichtung entsprechend den Merkmalen des unabhängigen Patentanspruchs 1 angegeben.To achieve the object, a flow measuring device according to the features of independent claim 1 is given.

Bei der erfindungsgemäßen Strömungsmessvorrichtung handelt es sich um eine Strömungsmessvorrichtung zur Bestimmung einer Strömungsrichtung eines Fluids, aufweisend

  • ein von dem Fluid umströmbares Messelement mit mindestens zwei Lichtwellenleitern und mindestens einem zu den Lichtwellenleitern benachbart angeordneten elektrischen Heizelement, wobei
    • die Lichtwellenleiter über jeweils einen vom mindestens einen Heizelementen zu den jeweiligen Lichtwellenleitern gerichteten Wärmestrom mit Wärme beaufschlagbar ist,
    • die Richtungen der Wärmeströme zumindest anteilig entgegengesetzt sind,
    • die einzelnen Wärmeströme unterschiedlich stark mit der Strömungsrichtung des Fluids korreliert sind, und
    • wenigstens eine in die Lichtwellenleiter einkoppelbare elektromagnetische Welle entsprechend der jeweiligen Temperatur der Lichtwellenleiter beeinflussbar ist,
  • eine Steuerungseinheit, mit welcher dem zumindest einen Heizelement elektrischen Leistung zuführbar ist, und
  • eine Auswerteeinheit, mit welcher die von den einzelnen Wärmeströmen ausgehende Temperaturbeeinflussung der mindestens einen elektromagnetischen Welle auswertbar und die Strömungsrichtung des Fluids bestimmbar ist.
The flow measuring device according to the invention is a flow measuring device for determining a flow direction of a fluid, comprising
  • one of the fluid flow around the measuring element with at least two optical waveguides and at least one adjacent to the optical waveguides electrical heating element, wherein
    • the optical waveguides can be acted upon by heat in each case via a heat flow directed by the at least one heating elements to the respective optical waveguides,
    • the directions of the heat flows are at least partially opposite,
    • the individual heat flows are correlated to different degrees with the flow direction of the fluid, and
    • at least one can be coupled into the optical waveguide electromagnetic wave corresponding to the respective temperature of the optical waveguide can be influenced,
  • a control unit with which the at least one heating element electrical power is supplied, and
  • an evaluation unit with which the temperature influence of the at least one electromagnetic wave emanating from the individual heat flows can be evaluated and the flow direction of the fluid can be determined.

Das Messelement, das in seine Längserstreckung vorzugsweise senkrecht zur Strömungsrichtung des Fluids in diesem angeordnet ist, weist über den Umfang seines Querschnittes, welcher insbesondere kreisförmig ist, unterschiedliche örtliche Strömungsverhältnisse auf. So erfolgt der Wärmetransport über die Oberfläche des Messelements aufgrund der örtlich unterschiedlichen Strömungsgeschwindigkeiten des Fluids nicht gleichmäβig über den Umfang des Querschnitts. Im Messelement stellt sich aus diesem Grunde bei konstanter Leistungsbeaufschlagung des mindestens einen Heizelements betragsmäßig jeweils ein unterschiedlicher Wärmestrom in Richtung der Lichtwellenleiter ein, welche abhängig von der Position der Lichtwellenleiter im Messelement sind. Abhängig von der Anordnung der Lichtwellenleiter relativ zur Strömungsrichtung können sich somit am jeweiligen Ort der Lichtwellenleiter unterschiedliche Temperaturen einstellen. Aus der Bestimmung der entsprechenden Temperaturunterschiede kann schließlich auf die Strömungsrichtung des das Messelement umströmenden Fluids geschlossen werden.The measuring element, which is arranged in its longitudinal extent preferably perpendicular to the flow direction of the fluid in this, has over the circumference of its cross-section, which is in particular circular, different local flow conditions. Thus, the heat transfer across the surface of the measuring element does not take place uniformly over the circumference of the cross section due to the spatially different flow velocities of the fluid. For this reason, a different heat flow in the direction of the optical waveguides, which are dependent on the position of the optical waveguides in the measuring element, is established in the measuring element for constant application of power to the at least one heating element. Depending on the arrangement of the optical waveguides relative to the flow direction, different temperatures can thus be set at the respective location of the optical waveguide. From the determination of the corresponding temperature differences, it is finally possible to deduce the flow direction of the fluid flowing around the measuring element.

Vorteilhafte Ausgestaltungen der Strömungsmessvorrichtung gemäß der Erfindung ergeben sich aus den von Anspruch 1 abhängigen Ansprüchen.Advantageous embodiments of the flow measuring device according to the invention will become apparent from the dependent claims of claim 1.

So ist es günstig, wenn die Lichtwellenleiter jeweils zumindest ein Faser-Bragg-Gitter umfassen und die wenigstens eine in die Lichtwellenleiter einkoppelbare elektromagnetische Welle entsprechend der jeweiligen Temperatur der Lichtwellenleiter am Ort der mindestens zwei Faser-Bragg-Gitters beeinflussbar ist. Ein solcher Sensortyp zeichnet sich durch seine besondere Multiplexfähigkeit aus, so dass auf einfache Weise ein Sensornetzwerk realisiert werden kann. Ein weiterer Vorteil der Faser-Bragg-Gitter-Technologie ist die Möglichkeit einer praktisch punktförmigen, also einer lokal sehr eng begrenzten Messung. Damit ist es möglich, bei Notwendigkeit einer höheren, insbesondere ortsaufgelösten Messgenauigkeit entlang des Messelements mehrere Faser-Bragg-Gitter nahe beieinander in den jeweiligen Lichtwellenleitern nacheinander anzuordnen.Thus, it is favorable if the optical waveguides each comprise at least one fiber Bragg grating and the at least one electromagnetic wave which can be coupled into the optical waveguides can be influenced at the location of the at least two fiber Bragg gratings in accordance with the respective temperature of the optical waveguides. Such a sensor type is characterized by its special multiplexing capability, so that a sensor network can be realized in a simple manner. Another advantage of the fiber Bragg grating technology is the possibility of a practically punctiform, so a locally very narrow measurement. This makes it possible, if a higher, in particular spatially resolved measurement accuracy along the measuring element is required, to arrange a plurality of fiber Bragg gratings close to one another in the respective optical waveguides one after the other.

Zur besseren Unterscheidbarkeit haben die in einem Lichtwellenleiter angeordneten Faser-Bragg-Gitter vorzugsweise jeweils eine voneinander verschiedene Schwerpunktwellenlänge. In jedem Faser-Bragg-Gitter wird von der mindestens einen eingespeisten elektromagnetischen Welle ein durch die jeweilige Schwerpunktswellenlänge bestimmter Anteil zurückreflektiert. Die Schwerpunktswellenlänge ändert sich mit der am Messort herrschenden Einflussgröße, hier insbesondere der Temperatur des Lichtwellenleiters. Diese Veränderung im Wellenlängengehalt (oder Wellenlängenspektrum) des jeweiligen zurückreflektierten Teils der eingespeisten mindestens einen elektromagnetischen Welle wird als Maß für die zu erfassende Einflussgröße verwendet werden. Es ist prinzipiell aber auch möglich, den transmittierten Teil der eingespeisten mindestens einen elektromagnetischen Welle auf die Veränderung im Wellenlängenspektrum zu untersuchen. Zur Abfrage der Faser-Bragg-Gitter mittels der mindestens einen elektromagnetischen Welle kann insbesondere eine breitbandige Lichtquelle, wie beispielsweise eine LED (Leuchtdiode, engl.: Light Emitting Diode) mit einer Bandbreite von etwa 45 nm, eine SLD (Superlumineszenzdiode, engl.: Super Luminescence Diode) mit einer Bandbreite von etwa 20 nm oder ein durchstimmbarer Laser mit einer Bandbreite von etwa 100 nm, zum Einsatz kommen.For better distinctness, the fiber Bragg gratings arranged in an optical waveguide preferably each have a different centroid wavelength. In each fiber Bragg grating, a portion determined by the respective center of gravity wavelength is reflected back by the at least one fed-in electromagnetic wave. The center of gravity wavelength changes with the influencing variable prevailing at the measuring location, here in particular the temperature of the optical waveguide. This change in the wavelength content (or wavelength spectrum) of the respective back-reflected part of the fed-in at least one electromagnetic wave will be used as a measure of the influencing variable to be detected. In principle, however, it is also possible to examine the transmitted part of the fed-in at least one electromagnetic wave for the change in the wavelength spectrum. To query the fiber Bragg gratings by means of the at least one electromagnetic wave, in particular a broadband light source, such as For example, an LED (light-emitting diode, engl .: L ight E mitting D iode) with a bandwidth of about 45 nm, an SLD (super luminescent diode, engl .: S uper L uminescence D iode) with a bandwidth of about 20 nm or a tunable laser with a bandwidth of about 100 nm, are used.

Es wird vorgeschlagen, dass das Messelement stabförmig ausgebildet ist. Vorteilhaft ist das Messelement einfach zu montieren und kann beispielsweise durch eine Öffnung in den Strömungskanal eingeführt werden. Ferner kann erreicht werden, dass mit geringem Montageaufwand eine Wartung des Messelements ermöglicht wird. Dazu werden die entsprechenden Befestigungen gelöst und das Messelement durch die Öffnung herausgezogen. Daneben kann das Messelement natürlich jede beliebige andere Form aufweisen. Beispielsweise kann das Messelement kreisförmig oder auch als archimedische Spirale ausgebildet seinIt is proposed that the measuring element is rod-shaped. Advantageously, the measuring element is easy to assemble and can be introduced, for example, through an opening in the flow channel. Furthermore, it can be achieved that a maintenance of the measuring element is made possible with low assembly costs. For this purpose, the corresponding fasteners are released and the measuring element pulled out through the opening. In addition, the measuring element can of course have any other shape. For example, the measuring element may be circular or designed as an Archimedean spiral

In einer weiteren Ausgestaltung wird vorgeschlagen, dass das Messelement elastisch ist. So kann vorteilhaft das Messelement je nach Einsatz kurzfristig vorgeformt werden, wodurch die Anzahl der verschiedenen Messelementformen reduziert werden kann. Kosten für Lagerhaltung können eingespart werden.In a further embodiment, it is proposed that the measuring element is elastic. Thus, advantageously, the measuring element can be preformed at short notice depending on the application, whereby the number of different measuring element shapes can be reduced. Storage costs can be saved.

Es ist günstig, wenn das mindestens eine Heizelement aus Metall gebildet ist. Somit ist eine gleichmäßige Erwärmung längs der Heizelemente gewährleistet.It is favorable if the at least one heating element is formed from metal. Thus, a uniform heating along the heating elements is ensured.

Weiterhin wird vorgeschlagen, dass das mindestens eine Heizelement durch eine gemeinsame elektrisch leitfähige Beschichtung der Lichtwellenleiter gebildet ist, wobei die Lichtwellenleiter in Längsrichtung in Kontakt sind. So kann die Bauform des Messelements weiter vereinfacht werden. Das Heizelement kann so auf einfache Weise jeweils einstückig mit den miteinander in Kontakt stehenden Leitern verbunden sein, so dass neben einer kostengünstigen Herstellung auch eine Schutzfunktion der Leiter durch die Heizelemente erreicht werden kann. Die leitfähige Beschichtung kann beispielsweise aus einem Metall wie Wolfram oder auch aus einer Legierung wie beispielsweise Stahl oder dergleichen gebildet sein.Furthermore, it is proposed that the at least one heating element is formed by a common electrically conductive coating of the optical waveguides, wherein the optical waveguides are in contact in the longitudinal direction. Thus, the design of the measuring element can be further simplified. The heating element can thus be connected in a simple manner in each case in one piece with the conductors which are in contact with one another, so that in addition to a cost-effective production, a protective function of the conductors can also be achieved by the heating elements. The conductive coating may be, for example be formed of a metal such as tungsten or of an alloy such as steel or the like.

Es wird ferner vorgeschlagen, dass das mindestens eine Heizelement einen konstanten spezifischen elektrischen Widerstand aufweist. So kann vorteilhaft erreicht werden, dass das Messelement über seine Längserstreckung gleichmäßig mit Wärme beaufschlagt wird. Unter spezifischem elektrischem Widerstand ist im Rahmen dieser Anmeldung der elektrische Widerstand pro Längeneinheit zu verstehen.It is further proposed that the at least one heating element has a constant specific electrical resistance. Thus, it can advantageously be achieved that the measuring element is uniformly exposed to heat over its longitudinal extent. Specific electrical resistance in the context of this application is to be understood as the electrical resistance per unit length.

Darüber hinaus wird vorgeschlagen, dass der spezifische Widerstand im Betriebstemperaturbereich weitgehend temperaturunabhängig ist. So kann erreicht werden, dass die jeweilige vom mindestens einen Heizelement in Richtung der Lichtwellenleiter gerichtete Wärmezufuhr entlang der Längserstreckung des Messelements im Wesentlichen unabhängig von der aktuellen lokalen Temperatur ist. Die Messgenauigkeit sowie auch die Zuverlässigkeit der Messung kann erhöht werden. Dazu kann das mindestens eine Heizelement beispielsweise aus einem Werkstoff wie Konstantan oder dergleichen gebildet sein.In addition, it is proposed that the specific resistance in the operating temperature range is largely independent of temperature. It can thus be achieved that the respective heat supply directed by the at least one heating element in the direction of the optical waveguide is substantially independent of the current local temperature along the longitudinal extent of the measuring element. The measurement accuracy as well as the reliability of the measurement can be increased. For this purpose, the at least one heating element may be formed, for example, from a material such as constantan or the like.

In einer vorteilhaften Weiterbildung wird vorgeschlagen, dass das Messelement eine Ummantelung aufweist. Das Messelement kann so beispielsweise gegen eine chemische Beanspruchung geschützt werden. Darüber hinaus ermöglicht die Ummantelung einen mechanischen Schutz, beispielsweise während der Montage.In an advantageous development, it is proposed that the measuring element has a casing. The measuring element can thus be protected against chemical attack, for example. In addition, the sheath allows mechanical protection, for example during assembly.

Es wird ferner vorgeschlagen, dass die Ummantelung aus einem keramischen Werkstoff besteht. Mit der keramischen Ummantelung kann vorteilhaft ein Messelement für eine hohe Temperaturbeanspruchung gebildet werden.It is further proposed that the sheath consists of a ceramic material. With the ceramic jacket can advantageously be formed a measuring element for a high temperature stress.

Daneben wird vorgeschlagen, dass die Ummantelung durch eine Metallhülse gebildet ist. So kann vorteilhaft das Messelement beispielsweise gegen eine elektrostatische Aufladung geschützt werden, indem die Metallhülse mit einem Erdpotential verbindbar ist.In addition, it is proposed that the sheath is formed by a metal sleeve. Thus, advantageously, the measuring element can be protected, for example against electrostatic charge by the metal sleeve is connected to a ground potential.

Darüber hinaus wird vorgeschlagen, dass die Ummantelung (8) zugleich das mindestens eine Heizelement (6, 7) aufweist. Bauteile und Kosten können weiter reduziert werden.In addition, it is proposed that the sheath (8) at the same time having at least one heating element (6, 7). Components and costs can be further reduced.

Zur weiteren Lösung der Aufgabe wird ein Verfahren entsprechend den Merkmalen des unabhängigen Anspruchs 12 angegeben.To further achieve the object, a method according to the features of independent claim 12 is given.

Bei dem erfindungsgemäßen Verfahren handelt es sich um ein Verfahren zum Bestimmen einer Strömungsrichtung eines Fluids mit einer Strömungsmessvorrichtung, wobei

  • mindestens eine elektromagnetische Welle in mindestens zwei Lichtwellenleiter eines vom Fluid umströmten Messelements eingekoppelt wird,
  • zumindest einem Heizelement des Messelements derart elektrischen Leistung zugeführt wird, dass
    • die Lichtwellenleiter von den Heizelementen mit Wärme beaufschlagt und
    • die mindestens eine elektromagnetische Welle in Abhängigkeit von der unterschiedlichen lokalen Temperatur in den zumindest zwei Lichtwellenleitern unterschiedlich stark beeinflusst wird,
  • die unterschiedlichen Beeinflussungen der mindestens einen elektromagnetischen Welle ermittelt und daraus die Strömungsrichtung des Fluids senkrecht zur Längserstreckung des Messelements bestimmt wird.
The inventive method is a method for determining a flow direction of a fluid with a flow measuring device, wherein
  • at least one electromagnetic wave is coupled into at least two optical waveguides of a measuring element surrounded by the fluid,
  • at least one heating element of the measuring element is supplied in such an electric power that
    • the optical fibers from the heating elements with heat and
    • the at least one electromagnetic wave is influenced differently depending on the different local temperature in the at least two optical waveguides,
  • determines the different influences of the at least one electromagnetic wave and from this the flow direction of the fluid is determined perpendicular to the longitudinal extent of the measuring element.

Bei dem erfindungsgemäßen Verfahren ergeben sich die vorstehend für die erfindungsgemäße Strömungsmessvorrichtung erläuterten Vorteile.In the method according to the invention, the advantages explained above for the flow measuring device according to the invention result.

So ist es auch günstig, wenn die Lichtwellenleiter jeweils mindestens ein Faser-Bragg-Gitter umfassen und die mindestens eine elektromagnetische Welle in Abhängigkeit von den unterschiedlichen, lokalen Temperaturen am Ort des jeweiligen mindestens einen Faser-Bragg-Gitters beeinflusst wird.Thus, it is also advantageous if the optical waveguides each comprise at least one fiber Bragg grating and the at least one electromagnetic wave is influenced as a function of the different, local temperatures at the location of the respective at least one fiber Bragg grating.

Darüber hinaus wird vorgeschlagen, dass die mindestens eine elektromagnetische Welle durch mindestens einen elektromagnetischen Impuls gebildet ist. Vorteilhaft kann Energie eingespart sowie die Messgenauigkeit erhöht werden. Der elektromagnetische Impuls kann beispielsweise durch einen gepulsten Laser erzeugt werden, der über geeignete bekannte Kopplungsmittel in die Lichtwellenleiter eingekoppelt wird.In addition, it is proposed that the at least one electromagnetic wave is formed by at least one electromagnetic pulse. Advantageously, energy can be saved and the measurement accuracy can be increased. The electromagnetic pulse can be generated for example by a pulsed laser, which is coupled via suitable known coupling means in the optical waveguide.

Ferner wird vorgeschlagen, dass das Messelement in seiner Längserstreckung durch das mindestens eine Heizelement erwärmt wird. Aus einer Temperaturvariation längs des Messelementes aufgrund der Fluidströmung kann vorteilhaft auch die Strömungsgeschwindigkeit entlang des Messelementes ermittelt werden.It is also proposed that the measuring element is heated in its longitudinal extent by the at least one heating element. From a temperature variation along the measuring element due to the fluid flow can advantageously be determined, the flow velocity along the measuring element.

Vorteilhaft ist, dass das mindestens eine Heizelement mit einer konstanten elektrischen Leistung beaufschlagt wird. Insbesondere bei einem über die Längserstreckung des Messelements konstanten Widerstandsverlauf kann somit gemäß dem ohmschen Gesetz jeweils eine konstante Wärmebeaufschlagung erreicht werden. Dies kann mittels Gleichstrom oder auch Wechselstrom erfolgen. Insbesondere kann durch Variation der Wechselstromfrequenz die Heizwirkung des mindestens einen Heizelements beeinflusst werden, wenn sich die Frequenz in einen Bereich bewegt, in dem Stromverdrängungseffekte wirksam werden.It is advantageous that the at least one heating element is acted upon by a constant electrical power. In particular, in the case of a resistance course which is constant over the longitudinal extension of the measuring element, a constant application of heat can thus be achieved in each case in accordance with Ohm's law. This can be done by means of direct current or alternating current. In particular, by varying the AC frequency, the heating effect of the at least one heating element can be influenced when the frequency moves within a range in which current displacement effects take effect.

In einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass mehrere Messungen mit unterschiedlicher Leistungsbeaufschlagung durchgeführt werden. So kann die Messgenauigkeit weiter erhöht werden.In an advantageous development of the method according to the invention, it is proposed that a plurality of measurements be carried out with different power application. Thus, the measurement accuracy can be further increased.

Weiterhin wird vorgeschlagen, dass als Fluid ein Gas, insbesondere Luft, oder eine Flüssigkeit, insbesondere Wasser oder flüssiger Stickstoff, zur Kühlung einer elektrischen Maschine, insbesondere eines Generators oder eines Motors, verwendet wird. Das Messelement gemäß der erfindungsgemäßen Strömungsmessvorrichtung kann dabei kostengünstig an die physikalischen und/oder chemischen Anforderungen im Strömungskanal einer Kühleinrichtung des Generators bzw. des Motors angepasst werden. Eine genaue Messung einer Strömungsverteilung im Querschnitt eines Strömungskanals kann zudem ebenfalls erreicht werden.It is also proposed that the fluid used is a gas, in particular air, or a liquid, in particular water or liquid nitrogen, for cooling an electrical machine, in particular a generator or a motor. The measuring element according to the flow measuring device according to the invention can cost to the physical and / or chemical requirements in the flow channel of a cooling device of the generator or of the engine. An accurate measurement of a flow distribution in the cross section of a flow channel can also be achieved.

Ferner wird zur weiteren Lösung der Aufgabe mit der Erfindung eine elektrische Maschine mit

  • einem drehbar gelagerten Läufer,
  • einem zugeordneten, ortsfesten Stator in einem Maschinengehäuse,
  • einer Einrichtung zur Kühlung von Teilen mittels eines Fluids innerhalb des Maschinengehäuses, wobei die Kühleinrichtung ein Leitungssystem enthält, und
  • einer erfindungsgemäßen Strömungsmessvorrichtung vorgeschlagen.
Further, to further solve the problem with the invention, an electric machine with
  • a rotatably mounted runner,
  • an associated, fixed stator in a machine housing,
  • a device for cooling parts by means of a fluid within the machine housing, wherein the cooling device includes a conduit system, and
  • proposed a flow measuring device according to the invention.

Dabei ist ein in einem Strömungskanal des Leitungssystems angeordnetes Messelement der Strömungsmessvorrichtung zur Messung der Strömungsrichtung des Fluids im Strömungskanal vorgesehen.In this case, an arranged in a flow channel of the conduit system measuring element of the flow measuring device for measuring the flow direction of the fluid is provided in the flow channel.

Bei der erfindungsgemäßen elektrischen Maschine ergeben sich die vorstehend für die erfindungsgemäße Strömungsmessvorrichtung erläuterten Vorteile.In the case of the electric machine according to the invention, the advantages explained above for the flow measuring device according to the invention result.

Mit der erfindungsgemäßen Strömungsmessvorrichtung kann eine effiziente Kühlung der Maschine erreicht werden, indem in den Strömungskanälen der Kühleinrichtung die Strömungsrichtung des Kühlfluids, wie beispielsweise Luft, überwacht wird. Ein auftretender Strömungsstillstand durch ungünstig überlagerte Strömungen kann dabei früh genug erkannt werden, so dass geeignete Maßnahmen eingeleitet werden können, um eine örtlichen Überhitzung und Beschädigung der Maschine zu vermeiden. So kann die Zuverlässigkeit eines Betriebs der Strömungsmaschine erhöht werden.With the flow measuring device according to the invention, an efficient cooling of the machine can be achieved by the flow direction of the cooling fluid, such as air, is monitored in the flow channels of the cooling device. An occurring flow arrest due to unfavorably superimposed flows can be detected early enough so that appropriate measures can be taken to prevent local overheating and damage to the machine. Thus, the reliability of an operation of the turbomachine can be increased.

Es wird vorgeschlagen, dass das Messelement radial zum Querschnitt des Strömungskanals angeordnet ist. Vorteilhaft kann dabei mit mehreren nacheinander angeordneten Faser-Bragg-Gittern die Strömungsrichtung in Abhängigkeit des Radius des Strömungskanalquerschnitts ermittelt werden. Selbstverständlich können im Strömungskanal auch mehrere Messelemente vorgesehen sein, um die Strömurigsrichtung an unterschiedlichen Umfangspositionen des Strömungskanals ermitteln zu können.It is proposed that the measuring element is arranged radially to the cross section of the flow channel. Advantageously, the flow direction can be determined as a function of the radius of the flow channel cross section with a plurality of successively arranged fiber Bragg gratings. Of course, a plurality of measuring elements can also be provided in the flow channel in order to be able to determine the direction of flow at different circumferential positions of the flow channel.

Es wird ferner vorgeschlagen, dass im Strömungskanal axial beabstandet mehrere Messelemente angeordnet sind. So können vorteilhaft axiale Änderungen der Strömungsrichtung erfasst und ausgewertet werden. Es können auch mehrere unterschiedlich geformte Messelemente verwendet werden, um die gewünschten Informationen über den Strömungsverlauf zu erhalten. So können beispielsweise radiale, stabförmige Messelemente mit entlang einer Kreislinie im Strömungskanal angeordneten Messelementen kombiniert werden. Insbesondere wird vorgeschlagen, dass die Messelemente gemäß dem erfindungsgemäßen Verfahren betrieben werden.It is further proposed that a plurality of measuring elements are arranged axially spaced apart in the flow channel. Thus, advantageously axial changes in the flow direction can be detected and evaluated. It is also possible to use a plurality of differently shaped measuring elements in order to obtain the desired information about the course of the flow. For example, radial, rod-shaped measuring elements can be combined with measuring elements arranged along a circular line in the flow channel. In particular, it is proposed that the measuring elements are operated in accordance with the method according to the invention.

Bevorzugte, jedoch keinesfalls einschränkende Ausführungsbeispiele der Erfindung werden nunmehr anhand der Zeichnung näher erläutert. Zur Verdeutlichung ist die Zeichnung nicht maßstäblich ausgeführt, und gewisse Aspekte sind schematisiert dargestellt. Im Einzelnen zeigen die

Figur 1
eine Seitenansicht eines Messelements der erfin- dungsgemäßen Strömungsmessvorrichtung in stabförmi- ger Ausführung mit einem Anschlussstecker an einem Ende,
Figur 2
einen Schnitt durch eine Ausgestaltung eines Mess- elements mit einem Heizleiter sowie zwei parallel dazu angeordneten Lichtwellenleitern,
Figur 3
einen Schnitt durch eine Ausgestaltung eines Mess- elements mit zwei Heizleitern sowie zwei parallel dazu angeordneten Lichtwellenleitern,
Figur 4
einen Schnitt durch eine Ausgestaltung eines Mess- elements mit einem Heizleiter sowie vier parallel dazu angeordneten Lichtwellenleitern,
Figur 5
einen Schnitt durch eine weitere Ausgestaltung eines Messelements mit einem zwei Lichtwellenleiter umgebenden Heizelement,
Figur 6
einen Schnitt durch eine Ausgestaltung eines Mess- elements mit zwei parallel angeordneten und von je- weils einem Heizelement umgebenden Lichtwellenlei- tern,
Figur 7
einen Schnitt durch eine weitere Ausgestaltung ei- nes Messelements mit einem direkt auf den Oberflä- chen zweier sich berührenden Lichtwellenleiter auf- gebrachten Heizelement,
Figur 8
eine Prinzipschaltbild einer Ausführungsform der erfindungsgemäßen Strömungsmessvorrichtung mit dem Messelement gemäß Figur 2,
Figur 9
eine Prinzipschaltbild einer Ausführungsform der erfindungsgemäßen Strömungsmessvorrichtung mit dem Messelement gemäß Figur 3
Figur 10
eine Prinzipschaltbild einer Ausführungsform der erfindungsgemäßen Strömungsmessvorrichtung mit dem Messelement gemäß Figur 4
Figur 11
eine Prinzipschaltbild einer Ausführungsform der erfindungsgemäßen Strömungsmessvorrichtung mit dem Messelement gemäß Figur 6
Figur 12
eine Prinzipschaltbild einer Ausführungsform der erfindungsgemäßen Strömungsmessvorrichtung mit dem Messelement gemäß Figur 5 oder 7
Figur 13
Querschnitt eines Strömungskanals einer Kühlein- richtung mit einem Messelement der erfindungsgemä- ßen Strömungsmessvorrichtung,
Figur 14
einen Schnitt durch einen Generator mit mehreren Messelementen der erfindungsgemäßen Strömungsmess- vorrichtung.
Preferred, but by no means limiting embodiments of the invention will now be explained in more detail with reference to the drawing. For clarity, the drawing is not drawn to scale, and certain aspects are shown in schematic form. In detail, the show
FIG. 1
3 a side view of a measuring element of the flow measuring device according to the invention in a rod-shaped design with a connection plug at one end,
FIG. 2
1 a section through an embodiment of a measuring element with a heating conductor and two optical waveguides arranged parallel thereto,
FIG. 3
a section through an embodiment of a measuring element with two heating conductors and two parallel optical waveguides,
FIG. 4
3 shows a section through an embodiment of a measuring element with a heating conductor and four optical waveguides arranged parallel thereto, FIG.
FIG. 5
a section through a further embodiment of a measuring element with a heating element surrounding two optical waveguide,
FIG. 6
3 a section through an embodiment of a measuring element with two light waveguides arranged in parallel and surrounded by a respective heating element,
FIG. 7
3 a section through a further embodiment of a measuring element with a heating element applied directly to the surface of two contacting optical waveguides,
FIG. 8
a schematic diagram of an embodiment of the flow measuring device according to the invention with the measuring element according to FIG. 2 .
FIG. 9
a schematic diagram of an embodiment of the flow measuring device according to the invention with the measuring element according to FIG. 3
FIG. 10
a schematic diagram of an embodiment of the flow measuring device according to the invention with the measuring element according to FIG. 4
FIG. 11
a schematic diagram of an embodiment of the flow measuring device according to the invention with the measuring element according to FIG. 6
FIG. 12
a schematic diagram of an embodiment of the flow measuring device according to the invention with the measuring element according to FIG. 5 or 7
FIG. 13
Cross section of a flow channel of a cooling device with a measuring element of the flow measuring device according to the invention,
FIG. 14
a section through a generator with a plurality of measuring elements of the flow measuring device according to the invention.

Figur 1 zeigt eine Seitenansicht eines Messelements 1a, 1b, 1c, 2, 3 oder 31 der erfindungsgemäßen Strömungsmessvorrichtung mit einer an einem Ende des Messelements 1a, 1b, 1c, 2, 3 oder 31 angebrachten Steckverbindung 15 zum Anschluss des Messelements 1a, 1b, 1c, 2, 3 oder 31 an eine Steuerungseinheit 20 und eine Auswerteeinheit 23 (siehe Figuren 8 bis 12 und Figur 14). Das Messelement 1a, 1b, 1c, 2, 3 oder 31 ist stabförmig ausgebildet. Zudem kann das Messelement 1a, 1b, 1c, 2, 3 oder 31 elastisch ausgeführt sein, so dass die geometrische Form den vorgegebenen Anforderungen angepasst werden kann. FIG. 1 shows a side view of a measuring element 1a, 1b, 1c, 2, 3 or 31 of the flow measuring device according to the invention with a plug-in connection 15 attached to one end of the measuring element 1a, 1b, 1c, 2, 3 or 31 for connecting the measuring element 1a, 1b, 1c, 2, 3 or 31 to a control unit 20 and an evaluation unit 23 (see FIG FIGS. 8 to 12 and FIG. 14 ). The measuring element 1a, 1b, 1c, 2, 3 or 31 is rod-shaped. In addition, the measuring element 1a, 1b, 1c, 2, 3 or 31 can be made elastic, so that the geometric shape can be adapted to the given requirements.

In den Figuren 2 bis 13 ist jeweils ein Koordinatensystem 80 mit einer x-, y- und z-Achse zur besseren Übersicht zugeordnet. Der Einfachheit halber und nicht einschränkend wird angenommen, dass das zu untersuchende Fluid 22 in x-Richtung strömt. Das in x-Richtung strömende Fluid 22 ist dabei durch in x-Richtung weisende Pfeile angedeutet. Das Fluid 22, welches in x-Richtung strömt und auf das sich in y-Richtung erstreckende Messelement 1a, 1b, 1c, 2, 3 oder 31 trifft, umströmt dieses. Bei der Fluidströmung handelt es sich insbesondere um eine turbulente Strömung. Es stellen sich unterschiedliche Strömungsgeschwindigkeiten auf der Oberfläche 9 des Messelementes 1a, 1b, 1c, 2, 3 oder 31 ein. Die Länge der Pfeile gibt dabei den Betrag der Fluidgeschwindigkeit am gezeichneten Ort wieder. Während die Geschwindigkeiten an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, am höchsten ist, ist sie an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung weist, am geringsten. Der Wärmetransport durch die Messelementoberfläche 9 erfolgt dabei abhängig von der lokalen Strömungsgeschwindigkeit inhomogen. So ist der Wärmetransport an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, größer als an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung weist. Befindet sich das Messelement 1a, 1b, 1c, 2, 3 oder 31, das mindestens ein Heizelement 5, 6 oder 7 beispielsweise im Zentrum der Querschnittsfläche des Messelements 1a, 1b, 1c, 2, 3 oder 31 aufweist, zumindest bezüglich seines Querschnitts in einem thermischen Gleichgewicht, während es mittels des mindestens einen Heizelements 5, 6 oder 7 mit Wärme beaufschlagt wird, wird ein an oder näher an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, angeordneter Lichtwellenleiter 4a eine niedrigere Temperatur aufweisen, als ein an oder näher an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung weist, angeordneter Lichtwellenleiter 4b. Der an oder näher an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, angeordnete Lichtwellenleiter 4a ist einem geringeren Wärmestrom 10a aus Richtung des mindestens einen Heizelements 5, 6 oder 7 ausgesetzt als ein an oder näher an demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung weist, angeordneter Lichtwellenleiter 4b. Der diesem Lichtwellenleiter 4b zugeordnete Wärmestrom ist mit 10b gekennzeichnet. Die ausgehend von dem mindestens einen Heizelement 5, 6 oder 7 in Richtung der jeweiligen Lichtwellenleiter 4a, 4b weisenden Pfeile deuten dabei den entsprechenden Wärmestrom 10a, 10b an, dessen Betrag sich in der jeweiligen Pfeillänge widerspiegelt.In the FIGS. 2 to 13 In each case, a coordinate system 80 is associated with an x, y and z axis for a better overview. For the sake of simplicity and not limitation, it is assumed that the fluid 22 to be examined flows in the x-direction. The fluid 22 flowing in the x direction is indicated by arrows pointing in the x direction. The fluid 22, which flows in the x direction and strikes the measuring element 1a, 1b, 1c, 2, 3 or 31 extending in the y direction, flows around the latter. The fluid flow is in particular a turbulent flow. Different flow velocities are set on the surface 9 of the measuring element 1a, 1b, 1c, 2, 3 or 31. The length of the arrows indicates the amount of fluid velocity at the location shown. While the velocities are highest at that part of the measuring element surface 9 which is directed substantially in the direction of flow, it is lowest at that part of the measuring element surface 9 which points substantially in the flow direction. The heat transfer through the measuring element surface 9 takes place inhomogeneous depending on the local flow velocity. Thus, the heat transfer at that part of the measuring element surface 9, which is directed substantially opposite to the flow direction, greater than at that part of the measuring element surface 9, which has substantially in the flow direction. Is the measuring element 1a, 1b, 1c, 2, 3 or 31, the at least one heating element 5, 6 or 7, for example, in the center of the cross-sectional area of the measuring element 1a, 1b, 1c, 2, 3 or 31, at least with respect of its cross section in a thermal equilibrium, while it is acted upon by means of the at least one heating element 5, 6 or 7 with heat, an optical waveguide 4a arranged at or closer to that part of the measuring element surface 9, which is directed substantially in the direction of flow, becomes a lower one Have temperature, as an at or closer to that part of the measuring element surface 9, which faces substantially in the flow direction, arranged optical waveguide 4b. The optical waveguide 4a arranged at or closer to that part of the measuring element surface 9 which is directed essentially in the direction of flow is exposed to a lower heat flow 10a from the direction of the at least one heating element 5, 6 or 7 than at or closer to that part of the measuring element surface 9, which points substantially in the flow direction, arranged optical waveguide 4b. The heat flow associated with this optical waveguide 4b is indicated by 10b. The arrows pointing from the at least one heating element 5, 6 or 7 in the direction of the respective optical waveguides 4a, 4b indicate the corresponding heat flow 10a, 10b, the amount of which is reflected in the respective arrow length.

Figur 2, Figur 3 und Figur 4 zeigen drei Ausgestaltungen eines Messelements 1a, 1b bzw. 1c der erfindungsgemäßen Strömungsmessvorrichtung. Gemäß dem Ausführungsbeispiel in Figur 2 sind zwei Lichtwellenleiter 4a, 4b und ein dazwischen angeordnetes Heizelement 5 in einem keramischen Werkstoff eingebettet im Messelement 1a enthalten. Gemäß dem Ausführungsbeispiel in Figur 3 sind zwei Lichtwellenleiter 4a, 4b und zwei dazwischen angeordnetes Heizelemente 5 in dem keramischen Werkstoff eingebettet im Messelement 1b enthalten. In den jeweiligen Figuren 2 und 3 ist ein Lichtwellenleiter 4a nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, angeordnet, während der andere Lichtwellenleiter 4b nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung gerichtet ist, positioniert ist. Das eine Heizelement 5 in Figur 2 und beiden Heizelemente 5 in Figur 3 sind auf einer Symmetrieachse 30 des Messelements 1a bzw. 1b, welche gleichzeitig die Spiegelachse bezüglich beider Lichtwellenleiter 4a, 4b darstellt, derart angeordnet, dass deren jeweilige Abstände zu den beiden Lichtwellenleitern 4a, 4b einander entsprechen. Gemäß dem Ausführungsbeispiel in Figur 4 sind vier Lichtwellenleiter 4a, 4b und ein dazwischen angeordnetes Heizelemente 5 in dem keramischen Werkstoff eingebettet im Messelement 1c enthalten. Die vier Lichtwellenleiter 4a, 4b sind paarweise nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, bzw. nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung gerichtet ist, angeordnet. Das Heizelement 5 ist auf einer Symmetrieachse 30 des Messelements 1c, welche gleichzeitig die Spiegelachse bezüglich der Lichtwellenleiterpaare 4a, 4b darstellt, derart angeordnet, dass dessen Abstände zu den jeweiligen Lichtwellenleitern 4a, 4b einander entsprechen. Die Lichtwellenleiter 4a, 4b sind beispielsweise Glas- oder Kunststofffasern. Das mindestens eine Heizelement 5 und die Lichtwellenleiter 4a, 4b sind in einem aus keramischem Werkstoff bestehenden insbesondere zylindrischen Körper 16 eingebettet, der seinerseits von einer passivierenden Ummantelung 8 umgeben ist. Das eine (vgl. Figuren 2 und 4) bzw. die beiden (vgl. Figur 3) Heizelemente 5 sind beispielsweise als Heizdrähte ausgebildet. Die Ummantelung 8 kann in einer Ausführungsform zudem elektrisch leitend aus einem Metall ausgebildet sein (vgl. Figuren 8 und 10). FIG. 2, FIG. 3 and FIG. 4 show three embodiments of a measuring element 1a, 1b and 1c of the flow measuring device according to the invention. According to the embodiment in FIG. 2 are two optical waveguides 4a, 4b and an interposed heating element 5 embedded in a ceramic material in the measuring element 1a included. According to the embodiment in FIG. 3 are two optical waveguides 4a, 4b and two interposed heating elements 5 embedded in the ceramic material in the measuring element 1b. In the respective FIGS. 2 and 3 For example, an optical waveguide 4a is arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b is positioned close to that part of the measuring element surface 9 which is directed substantially in the flow direction. The one Heating element 5 in FIG. 2 and both heating elements 5 in FIG. 3 are on an axis of symmetry 30 of the measuring element 1a and 1b, which simultaneously represents the mirror axis with respect to both optical fibers 4a, 4b, arranged such that their respective distances to the two optical fibers 4a, 4b correspond to each other. According to the embodiment in FIG. 4 are four optical waveguides 4a, 4b and an interposed heating elements 5 embedded in the ceramic material contained in the measuring element 1c. The four optical waveguides 4a, 4b are arranged in pairs near that part of the measuring element surface 9 which is directed substantially in the direction of flow or near that part of the measuring element surface 9 which is directed substantially in the direction of flow. The heating element 5 is arranged on an axis of symmetry 30 of the measuring element 1c, which simultaneously represents the mirror axis with respect to the optical waveguide pairs 4a, 4b, such that their distances from the respective optical waveguides 4a, 4b correspond to one another. The optical waveguides 4a, 4b are for example glass or plastic fibers. The at least one heating element 5 and the optical waveguides 4a, 4b are embedded in a ceramic body, in particular a cylindrical body 16, which in turn is surrounded by a passivating jacket 8. The one (cf. Figures 2 and 4 ) or the two (cf. FIG. 3 ) Heating elements 5 are formed for example as heating wires. In one embodiment, the sheath 8 can also be designed to be electrically conductive from a metal (cf. FIGS. 8 and 10 ).

Figur 5 zeigt eine weitere Ausgestaltung eines Messelements 2 der erfindungsgemäßen Strömungsmessvorrichtung mit zwei Lichtwellenleitern 4a und 4b, die von einem aus keramischem Werkstoff bestehenden insbesondere zylindrischen Körper 16 umgeben sind. Ein Lichtwellenleiter 4a ist nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, angeordnet, während der andere Lichtwellenleiter 4b nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung gerichtet ist, positioniert ist. Um den keramischen Körper 16 ist ein Heizelement 6 derart angeordnet, dass es das Messelement 2 umgibt. Insbesondere bildet das Heizelement 6 zugleich eine hülsenförmige Ummantelung 8 des Messelements 2 aus. FIG. 5 shows a further embodiment of a measuring element 2 of the flow measuring device according to the invention with two optical waveguides 4a and 4b, which are surrounded by a ceramic material consisting in particular cylindrical body 16. An optical waveguide 4a is arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b is located close to that part of the measuring element surface 9 which is essentially in the flow direction is directed, is positioned. Around the ceramic body 16, a heating element 6 is arranged such that it surrounds the measuring element 2. In particular, the heating element 6 simultaneously forms a sleeve-shaped casing 8 of the measuring element 2.

Figur 6 stellt eine weitere Ausgestaltung eines Messelements 31 der erfindungsgemäßen Strömungsmessvorrichtung mit zwei Lichtwellenleitern 4a und 4b dar. Jeder Lichtwellenleiter 4a, 4b ist von einem entsprechende Heizelement 6a, 6b oder 7a, 7b in Form einer Hülse 6a, 6b oder einer Beschichtung 7a, 7b umgeben. Die Heizelemente 6a, 6b oder 7a, 7b sind wiederum von einem aus keramischem Werkstoff bestehenden insbesondere zylindrischen Körper 16 umgeben sind. Ein Lichtwellenleiter 4a mit zugeordnetem Heizelement 6a oder 7a sind nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen entgegen der Strömungsrichtung gerichtet ist, angeordnet, während der andere Lichtwellenleiter 4b mit zugeordnetem Heizelement 6b oder 7b nahe demjenigen Teil der Messelementoberfläche 9, der im Wesentlichen in Strömungsrichtung gerichtet ist, positioniert sind. Der keramische Körper 16 selbst ist wiederum von einer hülsenförmigen passivierenden Ummantelung 8 des Messelements 31 umgeben. FIG. 6 FIG. 2 illustrates another embodiment of a measuring element 31 of the flow measuring device according to the invention with two optical waveguides 4a and 4b. Each optical waveguide 4a, 4b is surrounded by a corresponding heating element 6a, 6b or 7a, 7b in the form of a sleeve 6a, 6b or a coating 7a, 7b. The heating elements 6a, 6b or 7a, 7b are in turn surrounded by a ceramic material consisting in particular cylindrical body 16. An optical waveguide 4a with associated heating element 6a or 7a are arranged close to that part of the measuring element surface 9 which is directed substantially in the direction of flow, while the other optical waveguide 4b with associated heating element 6b or 7b near that part of the measuring element surface 9, which is substantially in Direction of flow is directed, are positioned. The ceramic body 16 itself is in turn surrounded by a sleeve-shaped passivating jacket 8 of the measuring element 31.

In Figur 7 ist ein Schnitt durch ein Messelement 3 der erfindungsgemäßen Strömungsmessvorrichtung dargestellt, wobei zwei aneinander anliegende Lichtwellenleiter 4a, 4b mit einer Metallschichten 7a, 7b bedampft sind, welche zugleich ein Heizelement 7 des Messelements 3 darstellt. Die Metallschicht 7 bildet eine gemeinsame Ummantelung 8 der Lichtwellenleiter 4a, 4b aus. Diese Ausgestaltung zeichnet sich durch eine Elastizität aus, so dass das Messelement 3 in seiner räumlichen Ausdehnung bedarfsgerecht angepasst werden kann. Zudem zeichnet sich das Messelement 3 durch ein besonders einfaches Herstellverfahren aus, in dem das Lichtwellenleiterpaar 4a, 4b in einem Beschichtungsprozess konventioneller, bekannter Art mit einem geeigneten elektrisch leitfähigen Material beschichtet wird. Die Ausgestaltung zeichnet sich weiter dadurch aus, dass sie eine besonders geringe Wärmekapazität gegenüber den Ausführungsbeispielen des Messelements 1a, 1b, 1c, 2 oder 31 gemäß der Figuren 1 bis 6 aufweist und somit schneller auf sich ändernde Strömungsverhältnisse reagiert.In FIG. 7 is a section through a measuring element 3 of the flow measuring device according to the invention, wherein two adjacent optical fibers 4a, 4b are vapor-deposited with a metal layers 7a, 7b, which also represents a heating element 7 of the measuring element 3. The metal layer 7 forms a common jacket 8 of the optical fibers 4a, 4b. This embodiment is characterized by an elasticity, so that the measuring element 3 can be adjusted as needed in its spatial extent. In addition, the measuring element 3 is distinguished by a particularly simple production method, in which the optical waveguide pair 4a, 4b is coated in a coating process of a conventional, known type with a suitable electrically conductive material. The embodiment is characterized further by from that they have a particularly low heat capacity compared to the embodiments of the measuring element 1a, 1b, 1c, 2 or 31 according to the FIGS. 1 to 6 and thus reacts faster to changing flow conditions.

Die in den vorgenannten Ausgestaltungen verwendeten Heizelemente 5, 6 und 7 sind vorzugsweise aus einem Metall gebildet oder aus einer Metalllegierung. In Abhängigkeit von der physikalischen und/oder chemischen Beanspruchung können beispielsweise Stahl, Kupfer, Aluminium, Bronze, Konstantan oder dergleichen verwendet werden. Für Hochtemperaturanwendungen beispielsweise im Strömungskanal einer Gasturbine ist eine Beschichtung mit einem Metall wie Wolfram oder dergleichen vorzuziehen. Für Anwendungen bei niedrigen Temperaturen in einer chemisch aggressiven Umgebung können beispielsweise auch leitfähige Polymere eingesetzt werden. In den hier dargestellten Ausführungsbeispielen weist das Material der Heizelemente 5, 6 und 7 jeweils einen konstanten elektrischen Widerstand auf. Insbesondere ist der Widerstand im Betriebstemperaturbereich weitgehend unabhängig von der Temperatur. Eine Beaufschlagung des Heizelements 5, 6 und 7 mit einem konstanten Strom bzw. mit einem Wechselstrom mit konstantem Effektivwert führt somit zu einer über die Länge der Heizelemente 5, 6 und 7 gleichmäßigen Leistungszuführung, so dass das entsprechende Heizelement 5, 6 oder 7 über die Längserstreckung des jeweiligen Messelements 1a, 1b, 1c, 2, 3 oder 31 gleichmäßig mit Wärme beaufschlagt wird.The heating elements 5, 6 and 7 used in the aforementioned embodiments are preferably formed of a metal or of a metal alloy. Depending on the physical and / or chemical stress, for example steel, copper, aluminum, bronze, constantan or the like can be used. For high temperature applications, for example in the flow channel of a gas turbine, a coating with a metal such as tungsten or the like is preferable. For applications at low temperatures in a chemically aggressive environment, for example, conductive polymers can be used. In the embodiments illustrated here, the material of the heating elements 5, 6 and 7 each have a constant electrical resistance. In particular, the resistance in the operating temperature range is largely independent of the temperature. Applying the heating element 5, 6 and 7 with a constant current or with an alternating current with a constant effective value thus leads to a uniform over the length of the heating elements 5, 6 and 7 power supply, so that the corresponding heating element 5, 6 or 7 on the Longitudinal extent of the respective measuring element 1a, 1b, 1c, 2, 3 or 31 is applied uniformly with heat.

Die Figuren 8 bis 12 zeigen Ausführungsbeispiele der erfindungsgemäße Strömungsmessvorrichtung in Prinzipschaltbildern. Die Strömungsmessvorrichtung in Figur 8 umfasst dabei das Messelement 1a gemäß Figur 2, die Strömungsmessvorrichtung in Figur 9 umfasst das Messelement 1b gemäß Figur 3, die Strömungsmessvorrichtung in Figur 10 umfasst das Messelement 1c gemäß Figur 4, die Strömungsmessvorrichtung in Figur 11 umfasst das Messelement 31 gemäß Figur 6 und die Strömungsmessvorrichtung in Figur 12 umfasst das Messelement 2 oder 3 gemäß Figur 5 bzw. Figur 7. Alle genannten Ausführungsbeispiele der erfindungsgemäße Strömungsmessvorrichtung weisen weiter eine Steuerungseinheit 20 und eine Auswerteeinheit 23 auf. Das jeweilige Messelement 1a, 1b, 1c, 2, 3 oder 31 erstreckt sich in seiner Längsachse in y-Richtung. Das Messelement 2 oder 3 der Strömungsmessvorrichtung gemäß der Figur 12 ist an seinen jeweiligen Enden mit seinem Heizelement 6 oder 7 elektrisch mit der Steuerungseinheit 20 und an einem der beiden Enden optisch mit der Auswerteeinheit 23 verbunden. Hierbei sind die beiden Lichtwellenleiter 4a und 4b gemeinsam über jeweils eine optische Verbindungsfaser 25a, 25b mit der Auswerteeinheit 23 verbunden. Das Messelement 1a, 1b, 1c oder 31 der Strömungsmessvorrichtung gemäß der Figuren 8 bis 11 ist an einem Ende elektrisch mit der Steuerungseinheit 20 und optisch mit der Auswerteeinheit 23 verbunden, während das andere Ende des Messelements 1 frei verfügbar ist. Hiermit kann eine besonders einfache Montage und/oder Handhabung des Messelements 1a, 1b, 1c oder 31 erreicht werden. Einer der Lichtwellenleiter 4a, 4b des Messelements 1a, 1b, 1c oder 31 ist über eine optische Verbindungsfaser 25 mit der Auswerteeinheit 23 verbunden, wobei die Lichtwellenleiter 4a, 4b untereinander in Serie miteinander verbunden sind. Die einzelnen Lichtwellenleiter 4a, 4b können aber auch analog zu Figur 12 einzeln mit der Auswerteeinheit 23 verbunden sein, ohne dass untereinander eine Verbindung bestehen muss.The FIGS. 8 to 12 show exemplary embodiments of the flow measuring device according to the invention in block diagrams. The flow measuring device in FIG. 8 comprises the measuring element 1a according to FIG. 2 , the flow measuring device in FIG. 9 comprises the measuring element 1b according to FIG. 3 , the flow measuring device in FIG. 10 includes the measuring element 1c according to FIG. 4 , the flow measuring device in FIG. 11 includes the measuring element 31 according to FIG. 6 and the flow measuring device in FIG. 12 includes the measuring element 2 or 3 according to FIG. 5 respectively. FIG. 7 , All mentioned embodiments the flow measuring device according to the invention further comprise a control unit 20 and an evaluation unit 23. The respective measuring element 1a, 1b, 1c, 2, 3 or 31 extends in its longitudinal axis in the y-direction. The measuring element 2 or 3 of the flow measuring device according to the FIG. 12 is at its respective ends with its heating element 6 or 7 electrically connected to the control unit 20 and at one of the two ends optically connected to the evaluation unit 23. In this case, the two optical waveguides 4a and 4b are connected in common to the evaluation unit 23 via a respective optical connecting fiber 25a, 25b. The measuring element 1a, 1b, 1c or 31 of the flow measuring device according to the FIGS. 8 to 11 is electrically connected at one end to the control unit 20 and optically connected to the evaluation unit 23, while the other end of the measuring element 1 is freely available. Hereby, a particularly simple assembly and / or handling of the measuring element 1a, 1b, 1c or 31 can be achieved. One of the optical waveguides 4a, 4b of the measuring element 1a, 1b, 1c or 31 is connected via an optical connecting fiber 25 to the evaluation unit 23, wherein the optical waveguides 4a, 4b are interconnected in series. The individual optical fibers 4a, 4b can also be analogous to FIG. 12 be individually connected to the evaluation unit 23 without having to connect to each other.

Die Steuerungseinheit 20 weist eine elektrische Energiequelle 21 auf. Die Energiequelle 21, welche zwei Anschlüsse aufweist, ist gemäß der Ausführungsbeispiele derart mit dem Heizelemente 5, 6 oder 7 verbunden, dass das Heizelement 5, 6 oder 7 mit elektrischer Leistung beaufschlagt wird und Wärme erzeugt. Die elektrische Energiequelle 21 ist insbesondere eine Stromquelle, über die ein konstanter Gleichstrom vorgebbar ist.The control unit 20 has an electrical energy source 21. The power source 21 having two terminals is connected to the heating elements 5, 6 or 7 according to the embodiments such that the heating element 5, 6 or 7 is supplied with electric power and generates heat. The electrical energy source 21 is in particular a current source, via which a constant direct current can be predetermined.

Das Messelement 1a, 1b, 1c, 2, 3 oder 31 wird von dem Fluid 22 umströmt, wobei die Fluidströmung entlang der Längserstreckung des Messelements 1a, 1b, 1c, 2, 3 oder 31 eine unterschiedliche Strömungsgeschwindigkeit aufweisen kann, angedeutet durch die unterschiedlich langen Pfeile. Die Strömungsrichtung des Fluids 22 weist der Einfachheit halber, wie bereits zuvor angegeben, in x-Richtung. Für eine Messung der Strömungsrichtung des Fluids 22 wird das Heizelement 5, 6 oder 7 des Messelements 1a, 1b, 1c, 2, 3 bzw. 31 mit elektrischer Leistung beaufschlagt, so dass sich dieses erwärmt. Der Heizvorgang sollte dabei mindestens solange dauern, bis sich ein thermisches Gleichgewicht im Messelement 1a, 1b, 1c, 2, 3 oder 31 eingestellt hat. Er kann aber auch kürzer gewählt werden.The measuring element 1a, 1b, 1c, 2, 3 or 31 flows around the fluid 22, wherein the fluid flow along the longitudinal extension of the measuring element 1a, 1b, 1c, 2, 3 or 31 may have a different flow velocity indicated through the arrows of different lengths. The flow direction of the fluid 22 has, for simplicity, in the x-direction, as already stated above. For a measurement of the flow direction of the fluid 22, the heating element 5, 6 or 7 of the measuring element 1a, 1b, 1c, 2, 3 and 31 is supplied with electrical power, so that this heats up. The heating process should last at least until a thermal equilibrium has been established in the measuring element 1a, 1b, 1c, 2, 3 or 31. He can also be chosen shorter.

Mittels der Auswerteeinheit 23, welche eine Lichtquelle, einen Detektor und ein Analysemittel aufweist, wird Licht, in Form eines kontinuierlichen Laserstrahls oder in Form von Laserimpulsen, über die optische Verbindungsfaser 25 in die Lichtwellenleiter 4a, 4b des Messelements 1a, 1b, 1c, 2, 3 oder 31 eingekoppelt und rückgestreutes Licht mit dem Analysemittel analysiert. Für die Messung wird der Effekt ausgenutzt, dass eine elektromagnetische Welle, die in einen Lichtwellenleiter 4a, 4b eingekoppelt wird, beim Durchlauf durch den Lichtwellenleiter 4a, 4b gestreut wird. Ein Teil des gestreuten Lichts wird in die Gegenrichtung gestreut, so dass es am Eingang des Lichtwellenleiters 4a, 4b erfasst werden kann. Durch die Temperaturabhängigkeit dieses Streueffekts lässt sich auf die Temperatur des Lichtwellenleiters 4a, 4b schließen. Das zurückgestreute Lichtsignal besteht aus unterschiedlichen Komponenten, die hinsichtlich der Messanforderungen unterschiedlich geeignet sind. Beispielsweise enthält das zurückgestreute Signal einen Raman-gestreuten Anteil. Mit der Faser-Bragg-Gitter-Technologie ist im Vergleich zur Raman-Technologie eine höhere Ortsauflösung erreichbar, die insbesondere für den Einsatz der Temperaturmessung in Maschinen vorzuziehen ist.By means of the evaluation unit 23, which has a light source, a detector and an analyzing means, light, in the form of a continuous laser beam or in the form of laser pulses, is transmitted via the optical connecting fiber 25 into the optical waveguides 4a, 4b of the measuring element 1a, 1b, 1c, 2 , 3 or 31 coupled and analyzed backscattered light with the analysis means. For the measurement, the effect is exploited that an electromagnetic wave, which is coupled into an optical waveguide 4a, 4b, is scattered when passing through the optical waveguide 4a, 4b. A part of the scattered light is scattered in the opposite direction, so that it can be detected at the entrance of the optical waveguide 4a, 4b. Due to the temperature dependence of this scattering effect can be close to the temperature of the optical waveguide 4a, 4b. The backscattered light signal consists of different components that are different in terms of measurement requirements. For example, the backscattered signal contains a Raman scattered portion. With the fiber Bragg grating technology, a higher spatial resolution can be achieved compared to the Raman technology, which is preferable in particular for the use of temperature measurement in machines.

Das Laserlicht wird auf bekannte Weise mit Geräten des Stands der Technik erzeugt. In Abhängigkeit von der Temperatur wird ein Teil des Laserlichts in den Lichtwellenleitern 4a, 4b von Faser-Bragg-Gittern 13 zurückgestreut. Dieses zurückgestreute Lichtsignal wird über die optische Verbindungsfaser 25 der Auswerteeinheit 23 zugeführt, die daraus die Temperatur am Ort der Faser-Bragg-Gitter 13 im Lichtwellenleiters 4 ermittelt.The laser light is generated in known manner with prior art devices. Depending on the temperature, part of the laser light in the optical waveguides 4a, 4b is scattered back by fiber Bragg gratings 13. This backscattered Light signal is supplied via the optical connecting fiber 25 of the evaluation unit 23, which determines therefrom the temperature at the location of the fiber Bragg gratings 13 in the optical waveguide 4.

Mittels der Auswerteeinheit 23 werden die entsprechende den einzelnen Lichtwellenleitern 4a, 4b zugeordneten Temperaturen innerhalb des Messelements 1a, 1b, 1c, 2, 3 oder 31 ermittelt. Abhängig von der relativen Lage des jeweiligen Lichtwellenleiters 4a, 4b stellen sich in einem strömenden Fluid 22 mit gerichteter Strömung unterschiedliche Temperaturen am Ort der Lichtwellenleiter 4a, 4b im Messelement 1, 2 oder 3 ein. Mittels der Auswerteeinheit 23 werden die verschiedenen Temperaturen miteinander verglichen, beispielsweise durch Differenzbildung in einer der Auswerteeinheit 23 zugeordneten Rechnereinheit, und hieraus die die Strömungsrichtung des Fluids 22 ermittelt.By means of the evaluation unit 23, the corresponding individual optical waveguides 4a, 4b associated temperatures within the measuring element 1a, 1b, 1c, 2, 3 or 31 are determined. Depending on the relative position of the respective optical waveguide 4a, 4b, different temperatures occur at the location of the optical waveguides 4a, 4b in the measuring element 1, 2 or 3 in a flowing fluid 22 with directed flow. By means of the evaluation unit 23, the different temperatures are compared with each other, for example by subtraction in one of the evaluation unit 23 associated computer unit, and from which determines the flow direction of the fluid 22.

Weist das Messelement 1a, 1b, 1c, 2, 3 oder 31 mehrere Faser-Bragg-Gitter 13 entlang der Lichtwellenleiter 4a, 4b auf, wie in den Ausführungsbeispielen in Figur 8 bis Figur 12 angedeutet, kann aus der Temperaturverteilung entlang des Messelements 1a, 1b, 1c, 2, 3 oder 31 die Strömungsgeschwindigkeit mit der Strömungsgeschwindigkeitsverteilung des Fluids 22 bestimmt werden.Does the measuring element 1a, 1b, 1c, 2, 3 or 31 a plurality of fiber Bragg gratings 13 along the optical waveguides 4a, 4b, as in the embodiments in FIG. 8 to FIG. 12 indicated, the flow velocity with the flow velocity distribution of the fluid 22 can be determined from the temperature distribution along the measuring element 1a, 1b, 1c, 2, 3 or 31.

Im Ausführungsbeispiel der erfindungsgemäßen Strömungsmessvorrichtung nach Figur 8 weist das Messelement 1a ein beispielsweise als Heizdraht ausgebildetes Heizelement 5 auf. Die Energiequelle 21 ist mit einem Anschluss mit dem Heizelement 5 und mit dem anderen Anschluss mit der elektrisch leitfähigen Ummantelung 8 des Messelements 1a verbunden. Das Heizelement 5 ist dabei am gegenüberliegenden Ende des Messelements 1a ebenfalls mit der elektrisch leitenden Ummantelung 8 verbunden.In the embodiment of the flow measuring device according to the invention FIG. 8 For example, the measuring element 1a has a heating element 5 designed, for example, as a heating wire. The energy source 21 is connected to the heating element 5 by one connection and to the electrically conductive jacket 8 of the measuring element 1a by the other connection. The heating element 5 is also connected to the electrically conductive sheath 8 at the opposite end of the measuring element 1a.

Im Ausführungsbeispiel der erfindungsgemäßen Strömungsmessvorrichtung nach Figur 9 weist das Messelement 1b zwei parallele beispielsweise als Heizdrähte ausgebildete Heizelemente 5 auf, wobei die beiden Heizdrähte an einem Ende des Messelements 1b mit einem elektrischen Verbindungsleiter zusammengeschlossen sind. Am anderen Ende des Messelements 1b sind dabei eines der beiden Heizelemente 5 mit einem Anschluss der Energiequelle 21 und das andere Heizelement 5 mit dem anderen Anschluss der Energiequelle 21 verbunden. Ebenso sind an einem Ende des Messelements 1b die beiden parallel verlaufenden Lichtwellenleiter 4a, 4b mit einer optischen Verbindungsfaser miteinander verbunden, während am anderen Ende Messelements 1b nur einer der beiden Lichtwellenleiter 4a, 4b über eine optische Verbindungsfaser 25 an die Auswerteeinheit 23 angeschlossen ist.In the embodiment of the flow measuring device according to the invention FIG. 9 the measuring element 1b has two parallel For example, designed as heating wires heating elements 5, wherein the two heating wires are connected together at one end of the measuring element 1b with an electrical connection conductor. At the other end of the measuring element 1b while one of the two heating elements 5 are connected to one terminal of the power source 21 and the other heating element 5 to the other terminal of the power source 21. Likewise, at one end of the measuring element 1 b, the two parallel optical waveguides 4 a, 4 b are interconnected with an optical connecting fiber, while at the other end measuring element 1 b only one of the two optical waveguides 4 a, 4 b is connected to the evaluation unit 23 via an optical connecting fiber 25.

Im Ausführungsbeispiel der erfindungsgemäßen Strömungsmessvorrichtung nach Figur 10 weist das Messelement 1 insgesamt vier parallele Lichtwellenleiter 4a, 4b auf. Zwischen den Lichtwellenleitern ist ein als Heizdraht ausgebildetes Heizelemente 5 angeordnet. Die Energiequelle 21 ist mit einem Anschluss mit dem Heizelement 5 und mit dem anderen Anschluss mit der elektrisch leitfähigen Ummantelung 8 des Messelements 1c verbunden. Das Heizelement 5 ist dabei am gegenüberliegenden Ende des Messelements 1c ebenfalls mit der elektrisch leitenden Ummantelung 8 verbunden. Die vier Lichtwellenleiter 4a, 4b sind mittels optischer Verbindungsfasern an den Messelementenden in Serie miteinander verbunden, so dass lediglich einer der Lichtwellenleiter 4a, 4b direkt an der Auswerteeinheit 23 angeschlossen ist. Die Verwendung eines derartigen Messelements 1c mit zahlreichen Lichtwellenleitern 4a, 4b, die beispielsweise kreisförmig um das im Querschnittszentrum des Messelements 1c angeordnete Heizelement 5 angeordnet sind, ermöglicht eine noch genaueren Bestimmung der Strömungsrichtung des Fluids 22.In the embodiment of the flow measuring device according to the invention FIG. 10 the measuring element 1 has a total of four parallel optical waveguides 4a, 4b. Between the optical waveguides designed as a heating wire heating elements 5 is arranged. The energy source 21 is connected to the heating element 5 with one connection and to the electrically conductive jacket 8 of the measuring element 1c via the other connection. The heating element 5 is also connected to the electrically conductive sheath 8 at the opposite end of the measuring element 1c. The four optical waveguides 4a, 4b are connected to one another in series by means of optical connecting fibers at the measuring element ends, so that only one of the optical waveguides 4a, 4b is connected directly to the evaluation unit 23. The use of such a measuring element 1c with numerous optical waveguides 4a, 4b, which are arranged, for example, in a circle around the heating element 5 arranged in the cross-sectional center of the measuring element 1c, allows an even more accurate determination of the flow direction of the fluid 22.

Im Ausführungsbeispiel der erfindungsgemäßen Strömungsmessvorrichtung nach Figur 11 weist das Messelement 31 zwei parallele beispielsweise als elektrisch leitende Hülsen oder Beschichtungen ausgebildete Heizelemente 5 auf, die beiden an einem Ende des Messelements 31 zusammengeschlossen sind. Am anderen Ende des Messelements 31 sind dabei eines der beiden Heizelemente 5 mit einem Anschluss der Energiequelle 21 und das andere Heizelement 5 mit dem anderen Anschluss der Energiequelle 21 verbunden. Ebenso sind an einem Ende des Messelements 1b die beiden parallel verlaufenden Lichtwellenleiter 4a, 4b mit einer optischen Verbindungsfaser miteinander verbunden, während am anderen Ende Messelements 1b nur einer der beiden Lichtwellenleiter 4a, 4b über eine optische Verbindungsfaser 25 an die Auswerteeinheit 23 angeschlossen ist.In the embodiment of the flow measuring device according to the invention FIG. 11 For example, the measuring element 31 has two parallel heating elements 5 formed, for example, as electrically conductive sleeves or coatings, the two on one end of the measuring element 31 are joined together. At the other end of the measuring element 31 while one of the two heating elements 5 are connected to one terminal of the power source 21 and the other heating element 5 to the other terminal of the power source 21. Likewise, at one end of the measuring element 1 b, the two parallel optical waveguides 4 a, 4 b are interconnected with an optical connecting fiber, while at the other end measuring element 1 b only one of the two optical waveguides 4 a, 4 b is connected to the evaluation unit 23 via an optical connecting fiber 25.

Es ist aber auch denkbar, analog zu Figur 8 und Figur 10, die beiden Heizelemente 5 aus Figur 9 und Figur 11 an einem Ende zusammen mit der Ummantelung 8, die in diesem Fall elektrisch leitend ausgeführt ist, gemeinsam zu verbinden, so dass die Energiequelle 21 am anderen Ende des Messelements 1b bzw. 31 ebenfalls an die Ummantelung 8 angeschlossen werden kann. Bei diesem nicht dargestellten Ausgestaltungsbeispiel müssen beide Heizelemente 5 gemeinsam mit ein und demselben Anschluss der Energiequelle 21 verbindbar sein.But it is also conceivable, analogous to FIG. 8 and FIG. 10 , the two heating elements 5 off FIG. 9 and FIG. 11 connected together at one end together with the casing 8, which is designed to be electrically conductive in this case, so that the energy source 21 at the other end of the measuring element 1b and 31 can also be connected to the casing 8. In this exemplary embodiment, not shown, both heating elements 5 must be connectable together with one and the same connection of the energy source 21.

Im Ausführungsbeispiel der erfindungsgemäßen Strömungsmessvorrichtung nach Figur 12 ist ein Anschluss der Energiequelle 21 an einem Ende des Messelementes 2 oder 3 mit dem als elektrisch leitende Hülse 8 (Figur 5) oder als elektrisch leitende Beschichtung (Figur 7) ausgebildeten Heizelement 6 oder 7 verbunden. Der zweite Anschluss der Energiequelle 21 ist am anderen Ende des Messelementes 2 oder 3 mittels einer elektrischen Leitung mit dem Heizelement 6 oder 7 verbunden.In the embodiment of the flow measuring device according to the invention FIG. 12 is a connection of the power source 21 at one end of the measuring element 2 or 3 with the electrically conductive sleeve 8 (FIG. FIG. 5 ) or as an electrically conductive coating ( FIG. 7 ) formed heating element 6 or 7 connected. The second terminal of the power source 21 is connected at the other end of the measuring element 2 or 3 by means of an electrical line to the heating element 6 or 7.

Figur 9 zeigt einen runden Querschnitt eines Strömungskanals 14, durch welchen ein Fluid 22 in x-Richtung strömt. Der Strömungskanal 14 ist dabei als Beispiel mit zwei bezüglich des Strömungskanalquerschnitts radial angeordneten Messelementen 1a, 1b, 1c, 2, 3 oder 31 versehen. Die beiden Messelemente 1a, 1b, 1c, 2, 3 oder 31 sind über eine elektrische Verbindungsleitung 26 mit der Steuerungseinheit 20 und über eine optische Verbindungsfaser 25 mit der Auswerteeinheit 23 verbunden. FIG. 9 shows a circular cross section of a flow channel 14 through which a fluid 22 flows in the x direction. The flow channel 14 is provided as an example with two with respect to the flow channel cross-section radially arranged measuring elements 1a, 1b, 1c, 2, 3 or 31. The two measuring elements 1a, 1b, 1c, 2, 3 or 31 are connected via an electrical connection line 26 with the control unit 20 and an optical connection fiber 25 is connected to the evaluation unit 23.

In Figur 10 ist ein Generator als elektrische Maschine schematisch dargestellt. Der Generator weist einen mit einem Gehäuse 28 fest verbundenen feststehenden Stator 19 und einen auf einer Rotorwelle 17 beweglich gelagerten Läufer 18 auf. Der Generator wird mittels einer Kühleinrichtung mit beispielsweise Luft als kühlendes Fluid 22 gekühlt. Die Kühleinrichtung weist hierfür zwei Lüfter 27 auf, die mittels eines Leitungssystems die Kühlluft 22 durch den Generator leiten. Das Leitungssystem weist hierfür zahlreiche Strömungskanäle, insbesondere auch im Stator 19, auf. Die Kühlluft 22 wird im dargestellten Ausführungsbeispiel von außen nach innen in Richtung Läufer 18 durch den Stator 19 geleitet und weiter durch einen zwischen Stator 19 und Läufer 18 angeordneten Spalt nach außen transportiert. Gleichzeitig kann jedoch vom Rotor des Generators Luft 22 angesaugt und von innen nach auβen in umgekehrte Richtung durch den Stator 19 gepresst werden. Wenn sich beide Luftströme ungünstig überlagern, kommt es innerhalb des Leitungssystems zum Strömungsstillstand und somit gegebenenfalls zu einer örtlichen Überhitzung und Beschädigung des Generators. Um dies zu vermeiden, wird mittels der erfindungsgemäßen Strömungsmessvorrichtung die Strömungsrichtung in den Strömungskanälen überwacht. In diesem Ausführungsbeispiel sind als Beispiel an zwei Stellen des Generators zwei Strömungskanäle mit jeweils einem Messelement 1a, 1b, 1c, 2, 3 oder 31 der erfindungsgemäßen Strömungsmessvorrichtung versehen. Beide Messelemente 1a, 1b, 1c, 2, 3 oder 31 sind dabei mit der zugehörigen Steuerungseinheit 20 und Auswerteeinheit 23 verbunden. Bei Unregelmäßigkeiten in der Kühlluftströmung ist somit die Möglichkeit gegeben, zeitnah zu reagieren und geeignete Schutzmassnahmen einzuleiten.In FIG. 10 a generator is shown schematically as an electrical machine. The generator has a stationary stator 19 fixedly connected to a housing 28 and a rotor 18 movably mounted on a rotor shaft 17. The generator is cooled by means of a cooling device with, for example, air as cooling fluid 22. For this purpose, the cooling device has two fans 27, which conduct the cooling air 22 through the generator by means of a line system. For this purpose, the line system has numerous flow channels, in particular also in the stator 19. The cooling air 22 is conducted in the illustrated embodiment from outside to inside in the direction of rotor 18 through the stator 19 and further transported by a gap between stator 19 and rotor 18 gap to the outside. At the same time, however, air can be sucked in by the rotor of the generator 22 and pressed from the inside to the outside in the opposite direction by the stator 19. If both air streams interfere unfavorably, there will be a flow arrest within the piping system and thus, possibly, a local overheating and damage to the generator. To avoid this, the flow direction in the flow channels is monitored by means of the flow measuring device according to the invention. In this embodiment, two flow channels, each with a measuring element 1a, 1b, 1c, 2, 3 or 31 of the flow measuring device according to the invention are provided as an example at two points of the generator. Both measuring elements 1a, 1b, 1c, 2, 3 or 31 are connected to the associated control unit 20 and evaluation unit 23. In the case of irregularities in the flow of cooling air, it is therefore possible to react promptly and to take appropriate protective measures.

Der Einsatz der erfindungsgemäßen Strömungsmessvorrichtung in einem luftgekühlten Generator dient hier nur als Beispiel. Es ist auch möglich die erfindungsgemäßen Strömungsmessvorrichtung in elektrischen Maschinen zu Verwenden, die mit H2-Gas einem Edelgas oder einem beliebigen anderen Gas als Fluid 22 gekühlt werden. Als kühlendes Fluids 22 kann auch eine Kühlflüssigkeit, wie Wasser oder auch bei kryogener Kühlung ein flüssiges Edelgas oder flüssiger Stickstoff vorgesehen sein.The use of the flow measuring device according to the invention in an air-cooled generator is used here only as an example. It is also possible to use the flow measuring device according to the invention in electrical machines with H 2 gas a noble gas or any gas other than fluid 22 are cooled. As cooling fluid 22 may also be a cooling liquid, such as water or even in cryogenic cooling, a liquid noble gas or liquid nitrogen may be provided.

Die erfindungsgemäße Strömungsmessvorrichtung kann auch in einer Turbinen, wie beispielsweise einer Dampf- oder einer Gasturbinen, eingesetzt werde. So können mittels der erfindungsgemäßen Strömungsmessvorrichtung Strömungsrichtungen insbesondere in turbulenten Strömungsbereichen im zugeordneten Kühlluftsystem, im zugeordneten Kompressor, am zugeordneten Kompressoreinlass und/oder im entsprechenden Abgasstrom gemessen werden.The flow measuring device according to the invention can also be used in a turbine, such as a steam turbine or a gas turbine. Thus, by means of the flow measuring device according to the invention, flow directions can be measured, in particular in turbulent flow regions in the associated cooling air system, in the associated compressor, at the associated compressor inlet and / or in the corresponding exhaust gas flow.

Die in den Figuren dargestellten Ausführungsbeispiele dienen lediglich der Erläuterung der Erfindung und sind für diese nicht beschränkend. So kann insbesondere die Art des Messelements 1a, 1b, 1c, 2, 3 oder 31 insbesondere seine geometrische Ausformung, variieren, ohne den Schutzbereich der Erfindung zu verlassen. Darüber hinaus können natürlich auch mehrere Elemente zusammengeschaltet werden, um bestimmte Änderungen der Strömungsrichtung genauer untersuchen zu können.The exemplary embodiments illustrated in the figures merely serve to explain the invention and are not restrictive of it. Thus, in particular the type of the measuring element 1a, 1b, 1c, 2, 3 or 31, in particular its geometric shape, vary without departing from the scope of the invention. In addition, of course, several elements can be interconnected in order to investigate certain changes in the flow direction in more detail.

Claims (21)

  1. Flowmeter for determining a flow direction of a fluid (22), having
    - a measurement element (1a, 1b, 1c, 2, 3, 31) around which the fluid (22) can flow and having at least two optical waveguides (4a, 4b), each of which comprises at least one fibre Bragg grating (13a, 13b), and having at least one electrical heating element (5, 6, 7), which is arranged adjacent to the optical waveguides (4), in which
    - heat can be applied to the optical waveguides (4a, 4b) via a respective heat flow (10a, 10b), which is directed from the at least one heating element (5, 6, 7) to the respective optical waveguides (4a, 4b),
    - at least a proportion of the directions of the heat flows (10a, 10b) is in opposite directions,
    - the individual heat flows (10a, 10b) are correlated to different extents with the flow direction of the fluid (22),
    and
    - at least one electromagnetic wave, which can be injected into the optical waveguides (4a, 4b), can be influenced in accordance with the respective temperature of the optical waveguides (4a, 4b) at the location of the at least two fibre Bragg gratings (13a, 13b),
    - a control unit by means of which electrical power can be supplied to the at least one heating element (5, 6, 7),
    and
    - an evaluation unit (23), by means of which it is possible to evaluate the temperature influence, originating from the individual heat flows, on the at least one electromagnetic wave, and to determine the flow direction of the fluid (22).
  2. Flowmeter according to Claim 1, characterized in that the measurement element (1a, 1b, 1c, 2, 3, 31) is in the form of a rod.
  3. Flowmeter according to Claim 1 or 2, characterized in that the measurement element (1a, 1b, 1c, 2, 3, 31) is elastic.
  4. Flowmeter according to one of Claims 1 to 3, characterized in that the at least one heating element (5, 6, 7) is formed from metal.
  5. Flowmeter according to one of Claims 1 to 4, characterized in that the at least one heating element (7) is formed by a common electrically conductive coating on the optical waveguides (4a, 4b), with the optical waveguides being in contact in the longitudinal direction.
  6. Flowmeter according to one of Claims 1 to 5, characterized in that the at least one heating element (5, 6, 7) has a constant electrical resistivity.
  7. Flowmeter according to Claim 6, characterized in that the resistivity in the operating temperature range is largely independent of temperature.
  8. Flowmeter according to one of Claims 1 to 5, characterized by a sheath (8) for the measurement element (1a, 1b, 1c, 2, 3, 31).
  9. Flowmeter according to Claim 8, characterized in that the sheath (8) is composed of a ceramic material.
  10. Flowmeter according to Claim 8, characterized in that the sheath (8) is formed by a metal sleeve.
  11. Flowmeter according to Claim 10, characterized in that the sheath (8) also has the at least one heating element (6, 7).
  12. Method for determining a flow direction of a fluid (22) by means of a flowmeter, in which
    - at least one electromagnetic wave is injected into at least two optical waveguides (4a, 4b) of a measurement element (1a, 1b, 1c, 2, 3, 31) around which the fluid (22) flows, the optical waveguides (4a, 4b) each comprising at least one fibre Bragg grating (13a, 13b)
    - at least one heating element (5, 6, 7) for the measurement element (1a, 1b, 1c, 2, 3, 31) is supplied with electrical power such that
    - heat is applied by the heating elements (5, 6, 7) to the optical waveguides (4a, 4b), and
    - the at least one electromagnetic wave is influenced to a different extent as a function of the different local temperature in the at least two optical waveguides (4a, 4b) at the location of the respective at least one fibre Bragg grating (13a, 13b),
    - the different influences on the at least one electromagnetic wave are determined and the flow direction of the fluid (22) at right angles to the longitudinal extent of the measurement element (1a, 1b, 1c, 2, 3, 31) is determined from this.
  13. Method according to Claim 11 or 12, characterized in that the at least one electromagnetic wave is formed by at least one electromagnetic pulse.
  14. Method according to one of Claims 11 to 13, characterized in that the measurement element (1a, 1b, 1c, 2, 3, 31) is heated in its longitudinal extent by the at least one heating element (5, 6, 7).
  15. Method according to one of Claims 11 to 14, characterized in that the at least one heating element (5, 6, 7) has a constant electrical power applied to it.
  16. Method according to one of Claims 11 to 15, characterized in that a plurality of measurements are carried out with a different power applied.
  17. Method according to one of Claims 11 to 16, characterized in that a gas or a liquid is used as the fluid (22) for cooling an electrical machine (9), in particular a generator or a motor.
  18. Electrical machine having
    - a rotor (18) which is mounted such that it can rotate,
    - an associated fixed-position stator (19) in a machine housing (28),
    - a device for cooling parts by means of a fluid (22) within the machine housing (28), with the cooling device (27, 14) containing a line system,
    and
    - a flowmeter according to one of Claims 1 to 11,
    with a measurement element (1a, 1b, 1c, 2, 3, 31) which is arranged in a flow channel (14) of the line system, of the flowmeter being provided in order to measure the flow direction of the fluid (22) in the flow channel (14).
  19. Electrical machine according to Claim 18, characterized in that the measurement element (1a, 1b, 1c, 2, 3, 31) is arranged radially with respect to the cross section of the flow channel (14).
  20. Electrical machine according to one of Claims 18 or 19, characterized in that a plurality of measurement elements (1a, 1b, 1c, 2, 3, 31) are arranged at a distance from one another axially in the flow channel (14).
  21. Method according to one of Claims 12 to 17, characterized in that the flow direction of a fluid (22) in a cooling line system of an electrical machine is determined according to one of Claims 18 to 20.
EP07704311A 2006-03-16 2007-02-01 Flowmeter for determining a flow direction Not-in-force EP1994371B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07704311T PL1994371T3 (en) 2006-03-16 2007-02-01 Flowmeter for determining a flow direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012229A DE102006012229B3 (en) 2006-03-16 2006-03-16 Cooling fluid`s flow measuring device for electric machine, has measuring unit with optical fiber cables, and evaluating unit evaluating temperature influence of shaft depending on individual heat flow directed from heating unit to cables
PCT/EP2007/050990 WO2007104605A1 (en) 2006-03-16 2007-02-01 Flowmeter for determining a flow direction

Publications (2)

Publication Number Publication Date
EP1994371A1 EP1994371A1 (en) 2008-11-26
EP1994371B1 true EP1994371B1 (en) 2010-04-07

Family

ID=37845361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704311A Not-in-force EP1994371B1 (en) 2006-03-16 2007-02-01 Flowmeter for determining a flow direction

Country Status (9)

Country Link
US (1) US8217333B2 (en)
EP (1) EP1994371B1 (en)
JP (1) JP4959730B2 (en)
CN (1) CN101405579B (en)
DE (2) DE102006012229B3 (en)
ES (1) ES2342686T3 (en)
PL (1) PL1994371T3 (en)
RU (1) RU2434231C2 (en)
WO (1) WO2007104605A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2483642T3 (en) 2009-09-29 2013-11-25 Siemens Ag Flue gas-provision apparatus
DE102009043345A1 (en) * 2009-09-29 2011-05-12 Siemens Aktiengesellschaft Exhaust gas generating device, in particular ship, with an exhaust volume determination
CN102221632B (en) * 2011-03-07 2012-12-05 河海大学 Piston type Maglev transmission direct-reading multifunctional anemograph
RU2491523C1 (en) * 2011-12-19 2013-08-27 Общество с ограниченной ответственностью "Инновационное предприятие "НЦВО-ФОТОНИКА" (ООО ИП "НЦВО-Фотоника") Fibre-optic thermometer
KR101333224B1 (en) 2012-10-18 2013-11-26 한국해양대학교 산학협력단 Gas flow measuring apparatus using heat coil type fiber bragg grating sensor
WO2015099762A1 (en) * 2013-12-27 2015-07-02 Halliburton Energy Services, Inc. Multi-phase fluid flow profile measurement
RU2697137C1 (en) * 2018-12-28 2019-08-12 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" Electrolyte movement direction determining device in aluminum electrolysis cell
CN110006544B (en) * 2019-04-11 2021-08-24 西安培华学院 Telescopic temperature sensor
DE102019205665B4 (en) 2019-04-18 2023-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for measuring a local flow rate of a fluid
CN110174527A (en) * 2019-07-01 2019-08-27 哈尔滨理工大学 A kind of hot type fiber grating wind speed wind direction sensor and detection method
CN110174526A (en) * 2019-07-01 2019-08-27 哈尔滨理工大学 A kind of hot type optical fiber tri-dimensional wind speed wind direction sensor and detection method
JP7484367B2 (en) 2020-04-16 2024-05-16 マツダ株式会社 Flow direction measurement system and flow direction measurement method using optical fiber

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO155217C (en) 1980-06-28 1987-02-25 Kv Assoc Inc PROCEDURE AND DEVICE FOR MEASURING FLUID FEATURES FOR A FLUIDUM.
JPH05180860A (en) 1992-01-06 1993-07-23 Takuwa:Kk Method and device for measuring flow direction of fluid
DE4242132A1 (en) * 1992-12-14 1994-06-16 Siemens Ag Totally enclosed electrical machine - has inner ventilators at ends of rotor shaft creating circulation of cooling medium in cooling channels in rotor plate packages
US5517862A (en) * 1995-02-06 1996-05-21 Westinghouse Electric Corporation Apparatus and method for measuring ventilation flow exiting a spinning rotor
JPH10178754A (en) * 1996-12-18 1998-06-30 Mitsubishi Electric Corp Rotary electric machine
WO1999060360A1 (en) * 1998-05-15 1999-11-25 GESO Gesellschaft für Sensorik, Geotechnischen Umweltschutz und Mathematische Modellierung mbH Jena Method and device for monitoring temperature distributions on the basis of distributed fiber-optic sensing, and use of same
JPH11326359A (en) 1998-05-21 1999-11-26 Arekku Denshi Kk Measuring apparatus for flow direction and flow velocity of ground water
JP4474771B2 (en) * 2000-12-20 2010-06-09 株式会社デンソー Flow measuring device
DE10251701B4 (en) * 2002-11-06 2006-05-04 Siemens Ag Measuring element for determining a flow velocity
AU2003264863A1 (en) * 2003-02-03 2004-08-30 Indian Institute Of Science Method for measurement of gas flow velocity, method for energy conversion using gas flow over solid material, and device therefor
GB2401430B (en) * 2003-04-23 2005-09-21 Sensor Highway Ltd Fluid flow measurement
JP2005172713A (en) 2003-12-12 2005-06-30 Hitachi Cable Ltd Flow velocity sensor, flow direction determination method, and flow velocity determination method
EP1591627A1 (en) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Controlling arrangement for a compressor and use of a Bragg grating sensor in a controlling arrangement
DE102006012230B3 (en) * 2006-03-16 2007-06-14 Siemens Ag Fluid e.g. gas, flow measuring device for use in e.g. generator, has evaluation unit that is provided for evaluation of temperature going out from individual heat flow and influencing electromagnetic waves

Also Published As

Publication number Publication date
WO2007104605A1 (en) 2007-09-20
RU2434231C2 (en) 2011-11-20
JP4959730B2 (en) 2012-06-27
US20090165551A1 (en) 2009-07-02
DE102006012229B3 (en) 2007-06-14
CN101405579B (en) 2010-12-15
US8217333B2 (en) 2012-07-10
PL1994371T3 (en) 2010-09-30
EP1994371A1 (en) 2008-11-26
DE502007003402D1 (en) 2010-05-20
ES2342686T3 (en) 2010-07-12
CN101405579A (en) 2009-04-08
RU2008140937A (en) 2010-04-27
JP2009529687A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
EP1994371B1 (en) Flowmeter for determining a flow direction
EP2483642B1 (en) Exhaust gas volume determination device
EP1994372B1 (en) Flowmeter for determining a flow direction
DE10251701B4 (en) Measuring element for determining a flow velocity
DE102006041461A1 (en) Wind energy plant comprises measuring device, which has measuring element with fiber optic cable provided with optical sensor and electrical heating element
EP2067001B1 (en) Device for determining the distance between a rotor blade and a wall of a turbine engine, surrounding said rotor blade
EP2059765B1 (en) Optical device for monitoring a rotatable shaft with an orientated axis
EP2580434B1 (en) Method for positioning a radial clearance existing between rotary blade tips of a rotor blade and a channel wall and device for measuring a radial clearance of a turbo machine with axial flow
DE112006003144T5 (en) Monitoring device for a rotating body
DE60123700T2 (en) Temperature measuring system and optical switch used therein
DE102011054047A1 (en) System and method for monitoring electrical machine components
DE102017115927A1 (en) Strain and vibration measuring system for monitoring rotor blades
EP0553675A1 (en) Method and device for control of the temperature of a turbine component
DE102014119556A1 (en) Thermal flowmeter
EP0325917B1 (en) Apparatus for measuring and transmitting the combustion radiation in the combustion chamber of combustion engines
DE102009039259B4 (en) Monitoring of roller bearings
DE102009045958A1 (en) Thermal flowmeter
EP2289152B1 (en) Arrangement having an electrical machine and method for operating an electrical machine
DE102012214441B4 (en) Measuring method
DE102018130261A1 (en) Process for fiber optic temperature measurement in an optical waveguide, temperature sensor, cooling system and charging system
DE102015101608A1 (en) Signal transmission method and apparatus with an optical fiber
WO2012175302A1 (en) Gas turbine with pyrometer
DE102011077736A1 (en) distance sensor
DE202007001719U1 (en) Temperature measuring device, has printed circuit boards that cross along their respective center lines, where printed circuit boards have several lines for producing connection between temperature sensor and connection cable
DE102019205665B4 (en) Method and device for measuring a local flow rate of a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI PL

17Q First examination report despatched

Effective date: 20090121

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES GB IT LI PL

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502007003402

Country of ref document: DE

Date of ref document: 20100520

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2342686

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130510

Year of fee payment: 7

Ref country code: DE

Payment date: 20130419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140123

Year of fee payment: 8

Ref country code: ES

Payment date: 20140305

Year of fee payment: 8

Ref country code: IT

Payment date: 20140227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140210

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003402

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003402

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180710