EP2710564B1 - Method and apparatus for verifying security documents using white light interferometry - Google Patents

Method and apparatus for verifying security documents using white light interferometry Download PDF

Info

Publication number
EP2710564B1
EP2710564B1 EP12720181.2A EP12720181A EP2710564B1 EP 2710564 B1 EP2710564 B1 EP 2710564B1 EP 12720181 A EP12720181 A EP 12720181A EP 2710564 B1 EP2710564 B1 EP 2710564B1
Authority
EP
European Patent Office
Prior art keywords
security document
depth
document
examination
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12720181.2A
Other languages
German (de)
French (fr)
Other versions
EP2710564A1 (en
Inventor
Andreas Wolf
Martin Cobernuss
Uwe Rabeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP2710564A1 publication Critical patent/EP2710564A1/en
Application granted granted Critical
Publication of EP2710564B1 publication Critical patent/EP2710564B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/16Testing the dimensions
    • G07D7/164Thickness
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • G07D7/202Testing patterns thereon using pattern matching

Definitions

  • the invention relates to a method for the verification of security documents and a verification device for security documents which carry out and use white light interferometry in order to verify security features present in a security document.
  • Security features can thus be all features which make duplication, unauthorized production, falsification or other types of manipulation of a document or object difficult, impossible or at least make these undesirable actions detectable during a precise examination.
  • Security documents are all documents that have at least one feature that makes duplication, imitation, falsification or other manipulation difficult or impossible.
  • Security documents include, for example, passports, ID cards, driver's licenses, access cards, visas, but also labels for high-quality products, such as software, entrance tickets, but also bank cards, credit cards, phone cards or the like, as well as documents that embody a value, such as stocks, securities, banknotes, Postage stamps, customs stamps and more, to name just a few examples.
  • security features can be used as security features.
  • the material composition of a document can serve as a security feature.
  • security papers such as those used, for example, in ID or banknote printing.
  • the different printing processes which in part or in combination are difficult to imitate or rework for a forger or manipulator, can also serve as security features.
  • almost all common printing processes for example intaglio printing processes, letterpress printing processes, but also inkjet printing processes or offset printing processes, are used in their various forms. These usually show one Typical characteristic print image, which can be distinguished from the print images generated by other printing processes, at least during a microscopic examination.
  • Diffractive structures, relief structures, special colors and the like are used as further security features.
  • security documents which comprise a document body made from one or more plastic materials
  • a large number of different security features can be integrated into a security document.
  • technical progress which makes it possible to integrate new and more complex security features that are more difficult to forge, especially in security documents produced in large series, such as banknotes or identity papers
  • the ability of counterfeiters to imitate and / or falsify security elements also increases. It is therefore necessary to create ever more sophisticated methods and devices for verifying security features which enable a reliable differentiation between genuine security documents and counterfeit or falsified security documents. Such a procedure is called verification.
  • a device for validating sheets, in particular bank notes is known.
  • a self-service payment terminal is described.
  • Each bank note is individually guided along an interferometer, which is connected to a control unit.
  • the output of the control unit is used as input for a data processing device which generates a value which indicates the surface roughness of the bank note.
  • the value of the roughness is compared with at least one stored reference value for real bank notes.
  • the data processing device decides exclusively on the basis of this comparison or in connection with the output of other validity checking means whether the examined bank note is invalid.
  • an authentication device and an authentication method which authenticate an object as a function of determining whether a section of the object has one or more predetermined features.
  • the predetermined features include either the thickness of the portion of the object or the thickness of one or more layers within the portion of the object or both thicknesses, which are determined by means of an optically based measuring apparatus.
  • the examined objects can, for example, be a security document or a page of a security document.
  • Such a system comprises (a) a lighting unit for generating and sending electromagnetic radiation onto authentication tokens of the authentication object to form a number of illuminated authentication tokens; (b) a hyper-spectral imaging unit for optically detecting the affected energy or the emitted beam emanating from the illuminated authentication tokens and for generating optical shapes of hyper-spectral images of the illuminated authentication tokens; (c) a hyper-spectral image conversion unit for converting the optical forms of the hyper-spectral images into corresponding electronic forms of hyper-spectral images; and (d) a central programming and control / data information signal processing unit.
  • the US 6,584,214 B1 describes the verification of objects using three-dimensional structural features as the basis for a physical hash function.
  • a verification method that uses white light interferometry to examine a surface structure and an internal structure of documents non-destructively.
  • a verification can be carried out with a verification device which comprises a white light interferometer which is designed to create a depth profile of the security document for at least several positions on a surface of a security document. This does not necessarily have to extend over an entire extent along an examination direction of the security document. This means that a depth profile does not have to penetrate the entire document. This is for example, in the case of documents which comprise opaque layers or metallically reflective layers, it is not possible using white light interferometry.
  • Such a method can be implemented with a verification device according to claim 7.
  • any optical interferometric device which interferes with broadband light with spatial coherence and evaluates this interference is regarded as a white light interferometer. It is irrelevant here whether this light spectrum is completely or partially arranged in the visible wavelength range, infrared wavelength range or UV wavelength range.
  • Measured values of a physical variable that are assigned to different depths along an examination direction, the examination direction extending into the interior, ie the volume, of a body, for example a document, are regarded as depth profiles.
  • a depth profile begins outside or on the surface of the object into which the examination direction or route extends.
  • a depth profile is a position on a surface of the examined object, for example a security document, assigned. The position is that on the surface at which a straight line indicating the direction of examination intersects the surface.
  • Depth values are the distances along an examination direction along which a depth profile is created, based on a reference value.
  • the point of intersection of a straight line indicating the direction of examination with the surface of the document support or any other surface perpendicular to the direction of light propagation in the measuring arm can be used as the reference value.
  • the direction of examination is the direction along which the light strikes the surface of the object to be examined. Local unevenness of the surface is not taken into account.
  • the measurement information derived from the interference values assigned to a depth value is referred to as the intensity value.
  • Deriving a feature is understood to mean deriving a quantity or any abstract or mathematical object or construct, for example a vector of intensity values or a group of depth value-intensity value tuples.
  • a change in intensity value is a value that is assigned to a depth value of a depth profile and which is determined via a comparison with one or more intensity values that correspond to spatial areas of the examined object that are adjacent to the area determined by the position and the depth value (as well as the uniform examination direction) is defined for all jointly recorded depth profiles.
  • the change in intensity value is determined by a comparison with the intensity value which is or is specified for the adjacent depth value or the adjacent depth values in the same depth profile.
  • the intensity values of neighboring surface positions and the same or neighboring depth values can also be taken into account.
  • the invention offers the advantage that structures occurring on the surface or in the interior of a security document, which can occur transversely to the surface at different depths of the document, can be verified. For example, it can be determined in which plane of a document body made of transparent plastic material information that is perceptible as blackening for a human observer is stored.
  • different methods by which the information can be stored in the document body differ with regard to the spatial configuration of the information-bearing components of the security document. If the information is, for example, printed on a substrate layer which is then laminated with further substrate layers to form a document body, the information is located in the vicinity of an at least originally existing layer boundary.
  • the information is introduced via a laser marking process
  • a larger volume area is usually colored via a partial carbonization of the plastic material.
  • the depth profile shows the depth at which the information is marked, so that a printing process can be distinguished from a laser marking process.
  • Laser marking processes are sometimes also referred to as laser engraving processes.
  • the depth values at which intensity values or changes in intensity values, which are each determined by comparing an intensity value with the intensity value of an adjacent spatial area in the security document or by comparing the intensity value with the intensity values of adjacent spatial positions in the security document are above a threshold value or within a an upper threshold value and a lower threshold value of a limited range of values occur, evaluated with regard to their frequency in order to determine deviations and / or out-of-match results from one or more expected statistical distributions and to derive the verification decision therefrom. If, for example, the intensity values that characterize a certain layer transition or are typical for a certain printing process are evaluated in this way, an indication is obtained of the depths at which this type of transition or information introduced in this way by printing technology can be found. In the case of a manipulated document, such a depth value distribution is for one Layer transition, for example, broadened because the layer transition occurs at different depths due to the manipulation.
  • the security document is preferably oriented so that the direction of examination, which is determined by the white light of the white light interferometer impinging on the security document , is oriented perpendicular to a surface of the security document.
  • the surface is the examination surface, which is generally the surface of the security document that has the largest two-dimensional extent.
  • such an orientation can be achieved simply in that the document receptacle is designed in such a way that a security document arranged on or in it is automatically oriented with its surface perpendicular to the direction of examination.
  • the document receptacle can be designed as a support surface which, for example, has almost no Absorption in the wavelength range having, transparent, plane-parallel plate is formed, on which the security document is placed flat with its surface to be examined or pressed. Pressing on ensures that the security document rests optimally on the support surface along its entire or a larger partial area of its surface. This is particularly advantageous for security documents which are deformed during use.
  • a white light interferometer comprises a light source, a beam splitter, a detector, a reflector mounted on a controllable linear actuator and a control and data acquisition device, the light source generating broadband light having spatial coherence and being arranged with respect to the beam splitter in such a way that the beam splitter guides part of the light into a measuring arm in which the object holder is located, and guides part of the light into a reference arm in which the reflector is arranged in such a way that it reflects the light back onto the beam splitter and is superimposed there with the light which is reflected back to the beam splitter on a security document arranged in or on the document receptacle, the detector being arranged in such a way that it interferes with the reflected light of the reference arm when the reflected light of the measuring arm is superimposed can detect nzsignal, wherein the control and detection device is coupled to the linear actuator in order to vary a reference arm length via a linear displacement of the reflector during the detection of the interference
  • a reference arm length of the interferometer is thus varied by varying the reflector position.
  • the light in the measuring arm strikes the surface of the object to be examined, ie the security document, and also at least partially penetrates the security document. Both on the surface and along the path of propagation of the light along the direction of examination in the security document, portions of the examination light in the measuring arm are reflected back into the interferometer, depending on the nature of the security document or the features contained therein.
  • the length of the reference arm which is determined by the position of the reflector (for example a reference mirror), it is determined which portions of the light that are along the Examination direction in the security document are reflected back into the interferometer, lead to a constructive interference at the detector.
  • the reflector position in the reference arm thus determines the depth that is scanned by the resulting interference.
  • the resulting interference pattern is much more complex.
  • computing algorithms are known from the prior art which make it possible to derive a depth profile along the examination direction from the interference signals obtained one after the other, which are recorded during the variation of the reference arm length. Such algorithms are also used in optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • OCT optical coherence tomography
  • OTC optical coherence tomography
  • the white light interferometer is thus preferably designed as an optical coherence tomograph.
  • the depth profiles are detected at the same time for the multiple locations that are arranged together along a route on the surface of the security document, or for the multiple locations that are arranged in a surface area of the surface of the security document.
  • a light beam of broadband, spatial coherence having light that is widened along one direction is sent to the beam splitter and illuminates the security document along a line, ie a path, on the surface of the security document and thus across the Surface, preferably perpendicular to the surface, a depth profile is recorded at the same time at the illuminated locations.
  • the detector comprises a light-sensitive detection element for each of the locations to be detected in order to be able to detect the interferences assigned to the individual locations and to be able to derive the corresponding depth profiles for the individual locations. If the light is expanded along two spatial directions, it is possible to record the depth profiles for locations in an area at the same time. In this case, the detector doesn't just need one linear array of photosensitive sensors, but a flat arrangement of photosensitive detection elements, which can each detect the interference signal for the corresponding locations in the area during the variation of the reflector position.
  • At least one cross-sectional area of the security document determined from the detected depth profiles is displayed on the display device, which is spanned by the examination direction and the route or a contour lying in the surface area.
  • the depth profiles shown next to one another in the cross-sectional area also correspond to points that are arranged spatially adjacent to one another on the surface.
  • cross-sectional area representation which for example shows a cross-section through a volume area inside the document transversely to the surface of the document
  • layers or layer transitions present in the document can be recognized, for example.
  • Modern security documents are often assembled from several substrate layers in a lamination process. It is not possible in all cases to carry out this lamination process in such a way that there is a monolithic document body in which the original layer boundaries in the solid body are no longer detectable as phase transitions, even by measurement.
  • a visual check of such a cross-sectional area representation thus enables verification personnel to easily find documents on which manipulations have been made.
  • Different printing processes can be identified in a similar way. If, for example, a letterpress process is used, pinches occurring during printing can be seen on the edge of the embossed letters or characters.
  • a pressure layer produced by means of high pressure thus shows characteristic height profile properties that can be derived from the cross-sectional profile. The same applies to printing elements produced by intaglio printing.
  • inkjet printing processes are used, the ink of which is produced on the basis of the plastic material from which the substrate layers are made to which the inkjet print is applied.
  • These printing layers have the advantage that they can also be implemented over a large area without creating a possibility of delamination on the printed area, since the ink material optimally bonds with that of the adjacent substrate layers during the lamination step.
  • the colorants used do not necessarily remain on the printed surface, depending on the specific composition of the printing ink used, but instead diffuse in a targeted manner into the substrate layer to which the print is applied. When examining the depth profile, printing areas generated by means of such an inkjet printing method can thus be clearly distinguished from other printing areas.
  • depth profiles or cross-sectional areas formed from these can be stored as specifications in a database or a memory as specifications. A verification is possible by comparing the determined depth profiles and cross-sectional profiles with the specifications.
  • the intensity values and / or intensity value changes corresponding to individual depth values or depth ranges are statistically evaluated with regard to frequency in order to determine a deviation from an expected statistical distribution as an indication of manipulation or forgery.
  • a region adjacent to a layer transition in the document can be selected as the depth region in which, in the case of a security document that has not been manipulated, no intensity values characterizing the transition and / or intensity value changes occur.
  • the layer transition or associated characteristic intensity values or changes in intensity values also occur in the case of manipulated security documents with depth values that do not exactly correspond to the depth of the layer transition, in such an evaluation, for example in a forged security document, intensity values that indicate a layer transition are generated with a greater frequency than in Original documents found. It is also possible to evaluate the depth region of the layer transition and to find an accumulation of intensity values or changes in intensity values in the region of the layer transition in a manipulated security document that do not correspond to a layer transition.
  • the depth values to which intensity values of a value range are assigned, or depth values to which intensity value changes of a value range are assigned, with respect to their assigned positions along the at least one route or curve can be approximated by a predetermined parameterized function of the position and the verification decision is made on the basis of the parameters derived during the approximation.
  • a display device which is coupled to the evaluation device, on which a cross-sectional area formed from the at least one depth profile and further depth profiles for further positions on the surface of the security document can be displayed, is preferably designed so that it offers such a colored representation. It is noted that the colors are not correlated with the colors with which the security features are possibly stored in the security document. They only serve to make it easier to distinguish between the different intensity values determined.
  • a verification device 1 is shown schematically.
  • the white light interferometer 2 includes a light source 3 which emits broadband light 4 with spatial coherence.
  • the light 4 is first expanded via an optical element 5.
  • This strikes a beam splitter 6.
  • the beam splitter allows part of the light 4r to enter a reference arm 7, at the end 8 of which a mirror 9 is located as a reflector.
  • This is movably mounted on an actuator 10.
  • the actuator 10 can displace the mirror 9 linearly so that a length I r of the reference arm can be varied.
  • a further part of the light 4m is directed into a measuring arm 11.
  • a security document 13 is arranged as a measuring object on a document receptacle 12 designed, for example, as a glass plate.
  • the light 4mR reflected back into the measuring arm 11 on the surface 15 and in the volume 16 inside the security document 13 is superimposed on the beam splitter 6 with the light 4rR reflected back by the mirror 9 from the reference arm 7 and guided to a detector 14.
  • the detector 14 has a plurality of light-sensitive sensor elements (not shown).
  • the beam guidance for three positions P1, P2, P3 on a surface 15 of the security document 13 is shown as an example.
  • the light 4mR reflected back at the surface positions P1, P2, P3 or inside the security document 13 along the directions of propagation of the light 4m of the measuring arm 11 impinging on the surface 15 is superimposed on a sensor element of the detector 14 with the corresponding light 4rR reflected back in the reference arm 7 and recorded as an interference signal.
  • the length I r of the reference arm 7 is varied during the measurement.
  • Corresponding measuring arm lengths I m of equal length extend from the surface 15 into the volume 16 of the security document 13.
  • the time-resolved interference signals are fed to a control and data acquisition device 17 which, based on the measured values of each measuring element, creates a depth profile for the corresponding position P1, P2, P3 determined along examination directions 19-1 to 19-3.
  • the examination directions 19-1 to 19-3 are determined by the direction of the light 4m at the corresponding positions P1 to P3. It goes without saying that, depending on the illumination of the document 13 and a resolution of the detector 14, depth profiles for more positions along a path 20 or, if the light 4 is widened over an area, for positions distributed over an area can be detected and evaluated at the same time.
  • the control and data acquisition device 17 controls the actuator 10 during the acquisition of the measured data, with which the mirror 9 is linearly displaced in order to vary the reference arm length I r and thus the corresponding measuring arm length I m.
  • the acquired measurement data which represent interference signals, are evaluated by the control and data acquisition device 17 in order to create the associated depth profiles for the individual positions P1 to P3. This is done according to algorithms that are known for optical coherence tomography.
  • a depth profile for a position includes the associated intensity values for the depth values along the examination direction, which represent a measure for the reflection of the area of the examined security document which is defined by the position and the corresponding depth value.
  • the depth profiles are then evaluated in an evaluation device 21.
  • the control and data acquisition device 17 can be combined with the evaluation device 21 in one device. Both can be designed individually or together as a program-controlled device. Alternatively, at least the control and detection device 17 can be implemented purely in hardware.
  • the verification device comprises 1
  • a display device 23 which comprises a freely programmable display area 24 on which, for example, a cross-sectional area 25 derived from depth profiles is displayed.
  • the verification device can include a storage device 26 in which default data, for example for certain depth profiles, statistical key figures or exemplary cross-sectional areas, are stored, which can be used for comparison with determined depth profiles, cross-sectional areas or static evaluations in order to verify the security document being examined.
  • the evaluation device can include an interface 27, via which default values can be called up from a database. It is also possible to output measurement results and / or a verification decision via the interface 27, which can be designed as a wired interface or as a radio interface, etc.
  • a section of a security document 12 is shown schematically, which is formed from three different substrate layers 31, 32, 33.
  • information is encoded by means of an inkjet printing.
  • Three printing pixels 34, 35, 36 are printed on the middle substrate layer 32.
  • part of the printing ink has diffused into the middle substrate layer 32 and the substrate layer 33 located below it.
  • the substrate layers 31 to 33 are joined together to form a document body 40, for example in a lamination process.
  • the clear expansion is perceptible not only in the lateral direction 37, but also in the perpendicular direction 38, which is oriented perpendicular to the substrate layer surface 39 of the substrate layer 32.
  • the information stored in the document body 40 can thus be differentiated from information that is applied using a different printing method in which no diffusion or a less pronounced diffusion of the colorants into the substrate layers 32, 33 takes place.
  • FIGs 3a and 3b further details of a document body 40 are shown schematically.
  • a cone-like recess 41 is first made in the document body 40.
  • the individual substrate layers 31 to 33 are preferably all made transparent and provided here by means of different hatchings merely for the sake of simplifying the illustration. The However, substrate layers can have different refractive indices.
  • the finished document body is shown in which the cone-like recess 41 is filled with a preferably likewise transparent filling material 42.
  • a refractive index of the filler material 42 preferably deviates slightly from the refractive indices of the materials from which the substrate layers 31 to 33 are made.
  • a cross-sectional area 25 formed on the basis of a plurality of depth profiles arranged next to one another is shown schematically.
  • the different positions are plotted along the X axis and the different depths are plotted along the Y axis.
  • the assigned intensity values are graded according to color or gray level.
  • the intensity values assigned to a position for the different depth values represent a depth profile. In the example shown, for the sake of simplicity, only intensity values are shown which are characteristic of transitions from one material layer to the other material layer. An intensity value of zero is assigned here to the remaining depth values at which no boundary surface is recognized.
  • the boundary layers 44 and 45 and the outer surface 15 can be clearly seen in the illustrated cross-sectional area 25 derived from the depth profiles.
  • intensity values which correspond to characteristic substrate transitions can be seen at those edges which delimit the introduced and filled recess 41.
  • cross-sectional area representation differs significantly from a cross-sectional area representation as shown in Fig. 5 is shown, in which a representation for a similar security document is shown by way of example, which does not include the filled cone-like recess.
  • the surface 15 and the two layer boundaries 44, 45, which are not modified, can be clearly seen.
  • the invention provides for statistical evaluations to be carried out. If, for example, the frequency is plotted for a selected intensity value or an intensity value range as a function of the assigned depth value, then for the document without the filled recess one obtains, for example, a view as shown in FIG Fig. 6 is shown. You can see three sharply delimited local peaks 53-55, the all have approximately the same frequency and can be assigned to the surface 15 and the layer transitions 44, 45.
  • Fig. 7 the same statistical evaluation is shown for the security document with the filled cone-like recess.
  • the three elevations 53-55 associated with the surface 15 and the layer boundaries 44, 45 can again be seen, but a finite number 57 of intensity values can also be recognized over a wide depth value range 56, which is caused by the conical walls 43 running obliquely through the document are (cf. Figure 3b ).
  • a depth value range 71 (cf. Fig. 4 ), to which intensity values or intensity value changes above a threshold value or within a value range are assigned, are plotted against the corresponding position.
  • a resulting graph is shown.
  • a parameterized function 72 of the position f (x, t1, t2, a, b, c) is adapted to the depth values.
  • the function 72 is shown as a solid line. If the function 72 is optimally adapted, the parameters t1, t2, a, b, c characterize the tip of the recess 41. b indicates the center position.
  • ⁇ t t2-t1 indicates the depth of the tip and the difference ac indicates a width of the tip at the boundary layer at depth t1. A verification is thus possible by comparing the parameter values with specifications.

Description

Die Erfindung betrifft ein Verfahren zur Verifikation von Sicherheitsdokumenten sowie eine Verifikationsvorrichtung für Sicherheitsdokumente, welche eine Weißlichtinterferometrie ausführen und nutzen, um in einem Sicherheitsdokument vorhandene Sicherheitsmerkmale zu verifizieren.The invention relates to a method for the verification of security documents and a verification device for security documents which carry out and use white light interferometry in order to verify security features present in a security document.

Im Stand der Technik sind eine Vielzahl von Merkmalen bekannt, die genutzt werden, um Dokumente dahingehend abzusichern, dass diese nicht unautorisiert hergestellt, verfälscht oder manipuliert werden können. Sicherheitsmerkmale können somit alle Merkmale sein, welche ein Duplizieren, unautorisiertes Herstellen, Verfälschen oder andersartiges Manipulieren eines Dokuments oder Gegenstands erschweren, unmöglich machen oder zumindest bei einer genauen Prüfung diese unerwünschten Handlungen nachweisbar machen.A large number of features are known in the prior art which are used to secure documents in such a way that they cannot be produced, falsified or manipulated in an unauthorized manner. Security features can thus be all features which make duplication, unauthorized production, falsification or other types of manipulation of a document or object difficult, impossible or at least make these undesirable actions detectable during a precise examination.

Als Sicherheitsdokumente werden alle Dokumente bezeichnet, die mindestens ein Merkmal aufweisen, welches ein Duplizieren, Nachahmen, Verfälschen oder eine sonstige Manipulation erschweren oder unmöglich machen. Sicherheitsdokumente umfassen beispielsweise Reisepässe, Personalausweise, Führerscheine, Zugangskarten, Visa, aber auch Etiketten für hochwertige Produkte, beispielsweise Software, Eintrittskarten, aber auch Bankkarten, Kreditkarten, Telefonkarten oder Ähnliches, sowie Dokumente, welche einen Wert verkörpern, beispielsweise Aktien, Wertpapiere, Banknoten, Postwertzeichen, Zollmarken und Weiteres, um nur einige Beispiele exemplarisch zu nennen.Security documents are all documents that have at least one feature that makes duplication, imitation, falsification or other manipulation difficult or impossible. Security documents include, for example, passports, ID cards, driver's licenses, access cards, visas, but also labels for high-quality products, such as software, entrance tickets, but also bank cards, credit cards, phone cards or the like, as well as documents that embody a value, such as stocks, securities, banknotes, Postage stamps, customs stamps and more, to name just a few examples.

Als Sicherheitsmerkmale können die unterschiedlichsten Merkmale verwendet werden. Beispielsweise kann die Materialzusammensetzung eines Dokuments als Sicherheitsmerkmal dienen. Beispielhaft sei hier auf Sicherheitspapiere hingewiesen, wie sie beispielsweise im Ausweis- oder Banknotendruck verwendet werden. Auch die unterschiedlichen Druckverfahren, welche zum Teil oder auch in Kombination für einen Fälscher oder Manipulateur nur schwer nachahmbar oder nacharbeitbar sind, können als Sicherheitsmerkmale dienen. Bei der Herstellung von Sicherheitsdokumenten werden nahezu alle gängigen Druckverfahren, beispielsweise Stichtiefdruckverfahren, Hochdruckverfahren, aber auch Tintenstrahldruckverfahren oder Offsetdruckverfahren, in ihren unterschiedlichen Ausprägungen verwendet. Diese zeigen in der Regel ein typisches charakteristisches Druckbild, welches sich von den durch andere Druckverfahren erzeugten Druckbildern zumindest bei einer mikroskopischen Untersuchung unterscheiden lässt.The most varied of features can be used as security features. For example, the material composition of a document can serve as a security feature. As an example, reference should be made here to security papers, such as those used, for example, in ID or banknote printing. The different printing processes, which in part or in combination are difficult to imitate or rework for a forger or manipulator, can also serve as security features. In the production of security documents, almost all common printing processes, for example intaglio printing processes, letterpress printing processes, but also inkjet printing processes or offset printing processes, are used in their various forms. These usually show one Typical characteristic print image, which can be distinguished from the print images generated by other printing processes, at least during a microscopic examination.

Als weitere Sicherheitsmerkmale werden beugende Strukturen, Reliefstrukturen, spezielle Farben und Ähnliches verwendet. Insbesondere bei modernen Sicherheitsdokumenten, welche einen aus einem oder mehreren Kunststoffmaterialien gefertigten Dokumentkörper umfassen, kann eine Vielzahl von unterschiedlichen Sicherheitsmerkmalen in ein Sicherheitsdokument integriert werden. Mit dem technischen Fortschritt, der es ermöglicht, neuartige und komplexere, schwerer zu fälschende Sicherheitsmerkmale insbesondere in in Großserien gefertigte Sicherheitsdokumente, wie beispielsweise Banknoten oder Ausweispapiere zu integrieren, steigt jedoch auch die Fähigkeit der Fälscher, Sicherheitselemente nachzuahmen und/oder zu verfälschen. Daher ist es notwendig, immer ausgefeiltere Verfahren und Vorrichtungen zum Verifizieren von Sicherheitsmerkmalen zu schaffen, die eine zuverlässige Unterscheidung zwischen echten Sicherheitsdokumenten und nachgeahmten bzw. verfälschten Sicherheitsdokumenten ermöglichen. Ein solches Vorgehen wird als Verifikation bezeichnet.Diffractive structures, relief structures, special colors and the like are used as further security features. In particular in the case of modern security documents which comprise a document body made from one or more plastic materials, a large number of different security features can be integrated into a security document. With technical progress, which makes it possible to integrate new and more complex security features that are more difficult to forge, especially in security documents produced in large series, such as banknotes or identity papers, the ability of counterfeiters to imitate and / or falsify security elements also increases. It is therefore necessary to create ever more sophisticated methods and devices for verifying security features which enable a reliable differentiation between genuine security documents and counterfeit or falsified security documents. Such a procedure is called verification.

Aus der WO 2010/142392 A2 sind ein Verfahren zur Identifizierung und/oder Authentifizierung von Gegenständen anhand ihrer Oberflächenbeschaffenheit sowie ein Sensor zur Abtastung einer Oberfläche bekannt.From the WO 2010/142392 A2 a method for identifying and / or authenticating objects on the basis of their surface properties and a sensor for scanning a surface are known.

Aus der EP 0 892 971 A1 ist eine Vorrichtung zum Validieren von Bögen, insbesondere von Banknoten, bekannt. Beschrieben wird ein Selbstbedienungseinzahlungsterminal. Jede Banknote wird individuell an einem Interferometer entlang geführt, welches mit einer Steuereinheit verbunden ist. Die Ausgabe der Steuereinheit wird als Eingabe für eine Datenverarbeitungseinrichtung genutzt, welche einen Wert erzeugt, der die Oberflächenrauigkeit der Banknote anzeigt. Der Wert der Rauigkeit wird mit mindestens einem gespeicherten Referenzwert für echte Banknoten verglichen. Die Datenverarbeitungseinrichtung entscheidet ausschließlich auf Basis dieses Vergleichs oder in Verbindung mit der Ausgabe von anderen Gültigkeitsprüfmitteln, ob die untersuchte Banknote ungültig ist.From the EP 0 892 971 A1 a device for validating sheets, in particular bank notes, is known. A self-service payment terminal is described. Each bank note is individually guided along an interferometer, which is connected to a control unit. The output of the control unit is used as input for a data processing device which generates a value which indicates the surface roughness of the bank note. The value of the roughness is compared with at least one stored reference value for real bank notes. The data processing device decides exclusively on the basis of this comparison or in connection with the output of other validity checking means whether the examined bank note is invalid.

Aus der WO 2010/001165 A1 sind eine Authentifizierungsvorrichtung und ein Authentifizierungsverfahren bekannt, die einen Gegenstand abhängig von dem Ermitteln, ob ein Abschnitt des Gegenstands ein oder mehrere vorbestimmte Merkmale aufweist, authentifiziert. Die vorbestimmten Merkmale umfassen entweder die Dicke des Abschnitts des Gegenstands oder die Dicke von einer oder mehreren Schichten innerhalb des Abschnitts des Gegenstands oder beide Dicken, die mittels eines optisch basierten Messapparats bestimmt werden. Bei den untersuchten Gegenständen kann es sich beispielsweise um ein Sicherheitsdokument oder eine Seite eines Sicherheitsdokuments handeln.From the WO 2010/001165 A1 For example, an authentication device and an authentication method are known which authenticate an object as a function of determining whether a section of the object has one or more predetermined features. The predetermined features include either the thickness of the portion of the object or the thickness of one or more layers within the portion of the object or both thicknesses, which are determined by means of an optically based measuring apparatus. The examined objects can, for example, be a security document or a page of a security document.

Aus der WO 2006/123341 A1 ist ein sogenanntes Hyper-Spektral- Abbildungs- und Analysesystem zum Authentifizieren von Authentifizierungsgegenständen beschrieben. Ein solches System umfasst (a) eine Beleuchtungseinheit zum Erzeugen und Schicken von elektromagnetischer Strahlung auf Authentifizierungsmarken des Authentifizierungsgegenstands zum Ausbilden einer Anzahl von beleuchteten Authentifizierungsmarken; (b) eine Hyper-Spektral-Abbildungseinheit zum optischen Erfassen der beeinflussten Energie oder des emittierten Strahls, der von den beleuchteten Authentifizierungsmarken ausgeht und zum Erzeugen optischer Formen von Hyper-Spektral-Abbildungen der beleuchteten Authentifizierungsmarken; (c) eine Hyper-Spektral-Abbildungskonvertierungseinheit zum Konvertieren der optischen Formen der Hyper-Spektral-Abbildungen in entsprechende elektronische Formen von Hyper-Spektral-Abbildungen; und (d) eine zentrale Programmierungs- und Kontroll/Daten-Informationssignalverarbeitungseinheit.From the WO 2006/123341 A1 a so-called hyper-spectral imaging and analysis system for authenticating authentication objects is described. Such a system comprises (a) a lighting unit for generating and sending electromagnetic radiation onto authentication tokens of the authentication object to form a number of illuminated authentication tokens; (b) a hyper-spectral imaging unit for optically detecting the affected energy or the emitted beam emanating from the illuminated authentication tokens and for generating optical shapes of hyper-spectral images of the illuminated authentication tokens; (c) a hyper-spectral image conversion unit for converting the optical forms of the hyper-spectral images into corresponding electronic forms of hyper-spectral images; and (d) a central programming and control / data information signal processing unit.

Shoude Chang et al. beschreiben in dem Artikel "Full-field optical coherence tomography used for security and document identity",in Optics and Photonics for Counter-Terrorism and Crime Fighting II, herausgegeben von Colin Leweis and Gari P. Owen, Proc of SPIE Bd. 6402, 28. September 2006 (2006-09-27), Seite 64020Q, DOI: 10.1117/12.692733 die Anwendung von Optischer-Vollfeld-Kohärenz-Tomographie bei der Untersuchung von Sicherheitsdoku menten. Shoude Chang et al. describe in the article "Full-field optical coherence tomography used for security and document identity", in Optics and Photonics for Counter-Terrorism and Crime Fighting II, edited by Colin Leweis and Gari P. Owen, Proc of SPIE Vol. 6402, 28 September 2006 (2006-09-27), page 64020Q, DOI: 10.1117 / 12.692733 the application of full-field optical coherence tomography in the examination of security documents.

Stifter beschreibt in " Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography", Applied Physics B ; Lasers And Optics, Springer, Berlin, Bd. 88, Nr. 3, 10. August 2007 (2007-08-10), Seiten 337-357 , die Entwicklung und alternative Anwendung der Optischen-Kohärenz-Tomographie außerhalb der Biomedizin.Stifter describes in " Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography ", Applied Physics B; Lasers And Optics, Springer, Berlin, Vol. 88, No. 3, August 10, 2007 (2007-08-10), pages 337 -357 , the Development and alternative application of optical coherence tomography outside of biomedicine.

Die US 6,584,214 B1 beschreibt die Verifikation von Objekten unter Verwendung von dreidimensionalen strukturellen Merkmalen als Basis für eine physische Streuwertfunktion (hash-function).The US 6,584,214 B1 describes the verification of objects using three-dimensional structural features as the basis for a physical hash function.

Aus dem Stand der Technik sind unterschiedliche Verifikationsverfahren und Verifikationsvorrichtungen bekannt, die in der Regel an spezielle Sicherheitsmerkmale angepasst und zu deren Verifikation vorgesehen sind. Wünschenswert ist es, neue Verifikationsverfahren und Verifikationsvorrichtungen zu schaffen, die für eine Vielzahl von Sicherheitsmerkmalen und/oder Sicherheitsdokumenten einsetzbar sind, um diese hinsichtlich ihrer Echtheit und Unverfälschtheit zu verifizieren.Different verification methods and verification devices are known from the prior art, which are usually adapted to special security features and are provided for their verification. It is desirable to create new verification methods and verification devices that can be used for a large number of security features and / or security documents in order to verify these with regard to their authenticity and authenticity.

Die technische Aufgabe wird durch ein Verifikationsverfahren gelöst, welches eine Weißlichtinterferometrie anwendet, um eine Oberflächenstruktur sowie eine innere Struktur von Dokumenten zerstörungsfrei zu untersuchen. Eine Verifikation lässt sich mit einer Verifikationsvorrichtung ausführen, die ein Weißlichtinterferometer umfasst, welches ausgebildet ist, für mindestens mehrere Positionen auf einer Oberfläche eines Sicherheitsdokuments jeweils ein Tiefenprofil des Sicherheitsdokuments zu erstellen. Dieses muss sich nicht notwendigerweise über eine gesamte Ausdehnung entlang einer Untersuchungsrichtung des Sicherheitsdokuments erstrecken. Dies bedeutet, dass ein Tiefenprofil nicht das gesamte Dokument durchdringen muss. Dies ist beispielsweise bei Dokumenten, welche opake Schichten oder metallisch reflektierende Schichten umfassen, mittels einer Weißlichtinterferometrie nicht möglich.The technical problem is solved by a verification method that uses white light interferometry to examine a surface structure and an internal structure of documents non-destructively. A verification can be carried out with a verification device which comprises a white light interferometer which is designed to create a depth profile of the security document for at least several positions on a surface of a security document. This does not necessarily have to extend over an entire extent along an examination direction of the security document. This means that a depth profile does not have to penetrate the entire document. This is for example, in the case of documents which comprise opaque layers or metallically reflective layers, it is not possible using white light interferometry.

Dieser Grundidee folgend wird ein Verfahren zur Verifikation eines Sicherheitsdokuments gemäß Anspruch 1 bereitgestellt.Following this basic idea, a method for verifying a security document according to claim 1 is provided.

Ein solches Verfahren lässt sich mit einer Verifikationsvorrichtung gemäß Anspruch 7 umsetzen.Such a method can be implemented with a verification device according to claim 7.

DefinitionenDefinitions

Als Weißlichtinterferometer wird jede optische interferometrische Einrichtung angesehen, welche breitbandiges Licht mit räumlicher Kohärenz zur Interferenz bringt und diese Interferenz auswertet. Hierbei ist es unerheblich, ob dieses Lichtspektrum im sichtbaren Wellenlängenbereich, infraroten Wellenlängenbereich oder UV-Wellenlängenbereich ganz oder teilweise angeordnet ist.Any optical interferometric device which interferes with broadband light with spatial coherence and evaluates this interference is regarded as a white light interferometer. It is irrelevant here whether this light spectrum is completely or partially arranged in the visible wavelength range, infrared wavelength range or UV wavelength range.

Als Tiefenprofil werden Messwerte einer physikalischen Größe angesehen, die unterschiedlichen Tiefen entlang einer Untersuchungsrichtung zugeordnet sind, wobei sich die Untersuchungsrichtung in ein Inneres, d.h. das Volumen, eines Körpers, beispielsweise eines Dokuments, erstreckt. In der Regel beginnt ein Tiefenprofil außerhalb oder an der Oberfläche des Gegenstands, in den hinein sich die Untersuchungsrichtung bzw. Strecke erstreckt. Ein Tiefenprofil ist einer Position an einer Oberfläche des untersuchten Objekts, beispielsweise eines Sicherheitsdokuments, zugeordnet. Die Position ist jene an der Oberfläche, an der eine die Untersuchungsrichtung anzeigende Gerade die Oberfläche schneidet.Measured values of a physical variable that are assigned to different depths along an examination direction, the examination direction extending into the interior, ie the volume, of a body, for example a document, are regarded as depth profiles. As a rule, a depth profile begins outside or on the surface of the object into which the examination direction or route extends. A depth profile is a position on a surface of the examined object, for example a security document, assigned. The position is that on the surface at which a straight line indicating the direction of examination intersects the surface.

Tiefenwerte sind die Abstände entlang einer Untersuchungsrichtung, entlang derer ein Tiefenprofil erstellt ist, bezogen auf einen Referenzwert. Als Referenzwert kann der Schnittpunkt einer die Untersuchungsrichtung anzeigenden Geraden mit der Oberfläche der Dokumentenauflage oder einer beliebigen anderen Fläche senkrecht zur Lichtausbreitungsrichtung im Messarm sein.Depth values are the distances along an examination direction along which a depth profile is created, based on a reference value. The point of intersection of a straight line indicating the direction of examination with the surface of the document support or any other surface perpendicular to the direction of light propagation in the measuring arm can be used as the reference value.

Als Untersuchungsrichtung wird die Richtung bezeichnet, entlang derer das Licht auf die Oberfläche des zu untersuchenden Objekts auftrifft. Hierbei werden lokale Unebenheiten der Oberfläche unberücksichtigt gelassen.The direction of examination is the direction along which the light strikes the surface of the object to be examined. Local unevenness of the surface is not taken into account.

Die einem Tiefenwert zugeordnete aus den Interferenzwerten abgeleitete Messinformation wird als Intensitätswert bezeichnet.The measurement information derived from the interference values assigned to a depth value is referred to as the intensity value.

Unter dem Ableiten eines Merkmals wird ein Ableiten einer Größe oder eines beliebigen abstrakten oder mathematischen Objekts oder Konstrukts, beispielsweise eines Vektors von Intensitätswerten oder eine Gruppe von Tiefenwert-Intensitätswert-Tupeln, verstanden. Die Gesamtheit von Tiefenwerten und Intensitätswerten oder eine Auswahl hiervon stellt ebenso wie ein aus einer statistischen Auswertung hervorgehender Wert eine Ableitung eines Merkmals dar.Deriving a feature is understood to mean deriving a quantity or any abstract or mathematical object or construct, for example a vector of intensity values or a group of depth value-intensity value tuples. The totality of depth values and intensity values or a selection thereof, like a value resulting from a statistical evaluation, represents a derivation of a feature.

Eine Intensitätswertänderung ist Wert, der einem Tiefenwert eines Tiefenprofils zugewiesen wird und welcher über einen Vergleich mit einem oder mehreren Intensitätswerten ermittelt ist, welche mit Raumbereichen des untersuchten Objekts korrespondieren, die benachbart zu dem Bereich sind, der durch die Position und den Tiefenwert (sowie die für alle gemeinsam erfassten Tiefenprofile einheitliche Untersuchungsrichtung) festgelegt ist. Bei der einfachsten Ausführungsform wird die Intensitätswertänderung durch einen Vergleich mit dem Intensitätswert ermittelt, der für den benachbarten Tiefenwert oder die benachbarten Tiefenwerte in demselben Tiefenprofil angegeben ist oder sind. Bei anderen Ausführungsformen können auch die Intensitätswerte benachbarter Oberflächenpositionen und gleicher oder benachbarter Tiefenwerte mit berücksichtigt werden.A change in intensity value is a value that is assigned to a depth value of a depth profile and which is determined via a comparison with one or more intensity values that correspond to spatial areas of the examined object that are adjacent to the area determined by the position and the depth value (as well as the uniform examination direction) is defined for all jointly recorded depth profiles. In the simplest embodiment, the change in intensity value is determined by a comparison with the intensity value which is or is specified for the adjacent depth value or the adjacent depth values in the same depth profile. In other embodiments, the intensity values of neighboring surface positions and the same or neighboring depth values can also be taken into account.

Bevorzugte AusführungsformenPreferred Embodiments

Die Erfindung gemäß ihrer Grundidee bietet den Vorteil, dass an der Oberfläche oder im Innern eines Sicherheitsdokuments auftretende Strukturen, welche quer zur Oberfläche in unterschiedlichen Tiefen des Dokuments auftreten können, verifiziert werden können. Beispielsweise kann ermittelt werden, in welcher Ebene eines aus transparentem Kunststoffmaterial gefertigten Dokumentkörpers eine als Schwärzung für einen menschlichen Betrachter wahrnehmbare Information gespeichert ist. Hierbei unterscheiden sich unterschiedliche Verfahren, über die die Information in dem Dokumentkörper gespeichert werden kann, hinsichtlich der räumlichen Ausgestaltung der die Information tragenden Bestandteile des Sicherheitsdokuments. Ist die Information beispielsweise auf eine Substratschicht aufgedruckt, welche anschließend mit weiteren Substratschichten zu einem Dokumentkörper laminiert ist, so befindet sich die Information in der Nähe einer zumindest ursprünglich existenten Schichtengrenze. Ist hingegen die Information über ein Lasermarkierungsverfahren eingebracht, so ist in der Regel ein größerer Volumenbereich über eine teilweise Carbonisierung des Kunststoffmaterials eingefärbt. Im Tiefenprofil lässt sich erkennen, in welcher Tiefe die Information markiert ist, so dass ein Druckverfahren von einem Lasermarkierungsverfahren unterschieden werden kann. Lasermarkierungsverfahren werden teilweise auch als Lasergravurverfahren bezeichnet.The invention according to its basic idea offers the advantage that structures occurring on the surface or in the interior of a security document, which can occur transversely to the surface at different depths of the document, can be verified. For example, it can be determined in which plane of a document body made of transparent plastic material information that is perceptible as blackening for a human observer is stored. Here, different methods by which the information can be stored in the document body differ with regard to the spatial configuration of the information-bearing components of the security document. If the information is, for example, printed on a substrate layer which is then laminated with further substrate layers to form a document body, the information is located in the vicinity of an at least originally existing layer boundary. If, on the other hand, the information is introduced via a laser marking process, a larger volume area is usually colored via a partial carbonization of the plastic material. The depth profile shows the depth at which the information is marked, so that a printing process can be distinguished from a laser marking process. Laser marking processes are sometimes also referred to as laser engraving processes.

Erfindungsgemäß werden die Tiefenwerte, an denen Intensitätswerte oder Intensitätswertänderungen, welche jeweils über einen Vergleich eines Intensitätswerts mit dem Intensitätswert eines benachbarten Raumbereichs in dem Sicherheitsdokument oder über einen Vergleich des Intensitätswerts mit den Intensitätswerten benachbarter Raumpositionen im Sicherheitsdokument ermittelt werden, oberhalb eines Schwellwerts oder innerhalb eines durch einen oberen Schwellenwert und einen unteren Schwellenwert eingegrenzten Wertebereichs auftreten, hinsichtlich ihrer Häufigkeit ausgewertet, um Abweichungen und/oder Überstimmung von einer oder mehreren erwarteten statistischen Verteilungen zu ermitteln und hieraus die Verifikationsentscheidung abzuleiten. Werden beispielsweise die Intensitätswerte, welche einen bestimmten Schichtenübergang charakterisieren oder typisch für ein bestimmtes Druckverfahren sind, auf diese Weise ausgewertet, so erhält man eine Angabe, in welchen Tiefen diese Art von Übergängen bzw. auf diese Art und Weise drucktechnisch eingebrachte Informationen aufzufinden sind. Bei einem manipulierten Dokument ist eine solche Tiefenwerteverteilung für einen Schichtenübergang beispielsweise verbreitert, da der Schichtenübergang in abweichenden Tiefen aufgrund der Manipulation auftritt.According to the invention, the depth values at which intensity values or changes in intensity values, which are each determined by comparing an intensity value with the intensity value of an adjacent spatial area in the security document or by comparing the intensity value with the intensity values of adjacent spatial positions in the security document, are above a threshold value or within a an upper threshold value and a lower threshold value of a limited range of values occur, evaluated with regard to their frequency in order to determine deviations and / or out-of-match results from one or more expected statistical distributions and to derive the verification decision therefrom. If, for example, the intensity values that characterize a certain layer transition or are typical for a certain printing process are evaluated in this way, an indication is obtained of the depths at which this type of transition or information introduced in this way by printing technology can be found. In the case of a manipulated document, such a depth value distribution is for one Layer transition, for example, broadened because the layer transition occurs at different depths due to the manipulation.

Um insbesondere bei Sicherheitsdokumenten, die einen auf Kunststoffbasis hergestellten transparenten oder teilweisen transparenten Dokumentkörper aufweisen, an der Dokumentoberfläche möglicherweise auftretende Beugungseffekte weitestgehend zu minimieren, wird das Sicherheitsdokument vorzugsweise so orientiert, dass die Untersuchungsrichtung, welche durch das auf das Sicherheitsdokument auftreffende Weißlicht des Weißlichtinterferometers festgelegt ist, senkrecht zu einer Oberfläche des Sicherheitsdokuments orientiert ist. Die Oberfläche ist hierbei die Untersuchungsoberfläche, welches in der Regel die Oberfläche des Sicherheitsdokuments ist, welche die größte flächige Ausdehnung aufweist. Bei einer Verifikationsvorrichtung kann eine solche Orientierung einfach dadurch erreicht werden, dass die Dokumentaufnahme so ausgestaltet wird, dass ein darauf oder darin angeordnetes Sicherheitsdokument automatisch mit seiner Oberfläche senkrecht zur Untersuchungsrichtung orientiert wird. Beispielsweise kann die Dokumentaufnahme als Auflagefläche ausgestaltet sein, welche beispielsweise durch eine nahezu keine Absorption in dem Wellenlängenbereich aufweisende, transparente, planparallele Platte ausgebildet ist, auf die das Sicherheitsdokument flach mit seiner zu untersuchenden Oberfläche aufgelegt oder aufgepresst wird. Ein Aufpressen sorgt dafür, dass das Sicherheitsdokument entlang seiner gesamten oder eines größeren Teilbereichs seiner Oberfläche optimal an der Auflagefläche anliegt. Dies ist insbesondere bei Sicherheitsdokumenten, welche im Gebrauch verformt werden, von Vorteil.In order to minimize any diffraction effects that may occur on the document surface, particularly in the case of security documents that have a transparent or partially transparent document body produced on a plastic basis, the security document is preferably oriented so that the direction of examination, which is determined by the white light of the white light interferometer impinging on the security document , is oriented perpendicular to a surface of the security document. The surface here is the examination surface, which is generally the surface of the security document that has the largest two-dimensional extent. In the case of a verification device, such an orientation can be achieved simply in that the document receptacle is designed in such a way that a security document arranged on or in it is automatically oriented with its surface perpendicular to the direction of examination. For example, the document receptacle can be designed as a support surface which, for example, has almost no Absorption in the wavelength range having, transparent, plane-parallel plate is formed, on which the security document is placed flat with its surface to be examined or pressed. Pressing on ensures that the security document rests optimally on the support surface along its entire or a larger partial area of its surface. This is particularly advantageous for security documents which are deformed during use.

Ein Weißlichtinterferometer umfasst bei einer bevorzugten Ausführungsform eine Lichtquelle, einen Strahlteiler, einen Detektor, einen auf einem steuerbaren Linearstellglied befestigten Reflektor sowie eine Steuer- und Datenerfassungseinrichtung, wobei die Lichtquelle breitbandiges, eine räumliche Kohärenz aufweisendes Licht erzeugt und so bezüglich des Strahlteilers angeordnet ist, dass der Strahlteiler einen Anteil des Lichts in einen Messarm leitet, in dem sich die Objektaufnahme befindet, und einen Teil des Lichts in einen Referenzarm leitet, in dem der Reflektor so angeordnet ist, dass dieser das Licht auf den Strahlteiler zurückreflektiert und dort mit dem Licht überlagert wird, welches an einem in oder auf der Dokumentaufnahme angeordneten Sicherheitsdokument zu dem Strahlteiler zurückreflektiert wird, wobei der Detektor so angeordnet ist, dass dieser ein bei der Überlagerung des reflektierten Lichts des Referenzarms mit dem reflektierten Licht des Messarms entstehendes Interferenzsignal erfassen kann, wobei die Steuer- und Erfassungseinrichtung mit dem linearen Stellglied gekoppelt ist, um während des Erfassens des Interferenzsignals eine Referenzarmlänge über eine lineare Verlagerung des Reflektors zu variieren, wobei die Referenzarmlängen mit Messarmlängen korrespondieren, die Abständen von dem Strahlteiler entlang der Untersuchungsrichtung entsprechen, die zumindest zu der Oberfläche des Sicherheitsdokuments auf und in der Dokumentaufnahme bzw. bis hinein in das Innere der Dokumentaufnahme entsprechen. Über die Variation der Reflektorposition wird somit eine Referenzarmlänge des Interferometers variiert. Das Licht in dem Messarm trifft auf die Oberfläche des zu untersuchenden Objekts, d.h. des Sicherheitsdokuments, und dringt auch zumindest teilweise in das Sicherheitsdokument ein. Sowohl an der Oberfläche als auch entlang der Ausbreitungsstrecke des Lichts entlang der Untersuchungsrichtung in dem Sicherheitsdokument werden je nach Beschaffenheit des Sicherheitsdokuments bzw. darin enthaltener Merkmale Anteile des Untersuchungslichts im Messarm in das Interferometer zurückreflektiert. In Abhängigkeit von der Referenzarmlänge, welche über die Position des Reflektors (beispielsweise eines Referenzspiegels) festgelegt ist, ist festgelegt, welche Anteile des Lichts, die entlang der Untersuchungsrichtung in dem Sicherheitsdokument in das Interferometer zurückreflektiert werden, zu einer konstruktiven Interferenz am Detektor führen. Die Reflektorposition im Referenzarm legt somit quasi die Tiefe fest, welche durch die entstehende Interferenz abgetastet wird. Da jedoch nicht monochromatisches Licht, sondern ganz gezielt breitbandiges, eine räumliche Kohärenz aufweisendes Licht verwendet wird, ist das sich ergebende Interferenzmuster wesentlich komplexer. Aus dem Stand der Technik sind jedoch Rechenalgorithmen bekannt, die es ermöglichen, ein Tiefenprofil entlang der Untersuchungsrichtung aus den zeitlich nacheinander gewonnenen Interferenzsignalen abzuleiten, die während der Variation der Referenzarmlänge erfasst sind. Solche Algorithmen werden auch bei der optischen Kohärenztomografie (OCT) verwendet. Die optische Kohärenztomografie (OTC) ist insbesondere aus dem Bereich der Augenheilkunde bekannt und wird dort beispielsweise zur Untersuchung der Retina angewandt.In a preferred embodiment, a white light interferometer comprises a light source, a beam splitter, a detector, a reflector mounted on a controllable linear actuator and a control and data acquisition device, the light source generating broadband light having spatial coherence and being arranged with respect to the beam splitter in such a way that the beam splitter guides part of the light into a measuring arm in which the object holder is located, and guides part of the light into a reference arm in which the reflector is arranged in such a way that it reflects the light back onto the beam splitter and is superimposed there with the light which is reflected back to the beam splitter on a security document arranged in or on the document receptacle, the detector being arranged in such a way that it interferes with the reflected light of the reference arm when the reflected light of the measuring arm is superimposed can detect nzsignal, wherein the control and detection device is coupled to the linear actuator in order to vary a reference arm length via a linear displacement of the reflector during the detection of the interference signal, the reference arm lengths corresponding to measuring arm lengths corresponding to the distances from the beam splitter along the examination direction which correspond at least to the surface of the security document on and in the document receptacle or into the interior of the document receptacle. A reference arm length of the interferometer is thus varied by varying the reflector position. The light in the measuring arm strikes the surface of the object to be examined, ie the security document, and also at least partially penetrates the security document. Both on the surface and along the path of propagation of the light along the direction of examination in the security document, portions of the examination light in the measuring arm are reflected back into the interferometer, depending on the nature of the security document or the features contained therein. Depending on the length of the reference arm, which is determined by the position of the reflector (for example a reference mirror), it is determined which portions of the light that are along the Examination direction in the security document are reflected back into the interferometer, lead to a constructive interference at the detector. The reflector position in the reference arm thus determines the depth that is scanned by the resulting interference. However, since it is not monochromatic light, but rather broadband light with spatial coherence that is used very specifically, the resulting interference pattern is much more complex. However, computing algorithms are known from the prior art which make it possible to derive a depth profile along the examination direction from the interference signals obtained one after the other, which are recorded during the variation of the reference arm length. Such algorithms are also used in optical coherence tomography (OCT). Optical coherence tomography (OTC) is known in particular from the field of ophthalmology and is used there, for example, to examine the retina.

Das Weißlichtinterferometer ist somit vorzugsweise als optischer Kohärenztomograf ausgebildet.The white light interferometer is thus preferably designed as an optical coherence tomograph.

Erfindungsgemäß sind sehr viel genauere Informationen bzw. komplexere Verifikationen als bei der Auswertung nur eines Tiefenprofils möglich, da für mehrere Orte an der Oberfläche des Sicherheitsdokuments Tiefenprofile ermittelt werden. Bei einer bevorzugten Ausführungsform werden für die mehreren Orte, die gemeinsam entlang einer Strecke auf der Oberfläche des Sicherheitsdokuments angeordnet sind, oder für die mehreren Orte, die in einem Flächenbereich der Oberfläche des Sicherheitsdokuments angeordnet sind, zeitgleich die Tiefenprofile erfasst. Bei geeigneter Ausgestaltung ist es möglich zu erreichen, dass ein entlang einer Richtung aufgeweiteter Lichtstrahl des breitbandigen, eine räumliche Kohärenz aufweisenden Lichts auf den Strahlteiler geschickt wird und das Sicherheitsdokument entlang einer Linie, d.h. einer Strecke, auf der Oberfläche des Sicherheitsdokuments beleuchtet und somit quer zur Oberfläche, vorzugsweise senkrecht zur Oberfläche, an den beleuchteten Orten jeweils ein Tiefenprofil zeitgleich erfasst wird. Hierfür ist es erforderlich, dass der Detektor für jeden der zu erfassenden Orte ein lichtempfindliches Detektionselement umfasst, um die den einzelnen Orten zugeordneten Interferenzen erfassen zu können und hieraus für die einzelnen Orte die entsprechenden Tiefenprofile ableiten zu können. Wird das Licht entlang zweier Raumrichtungen aufgeweitet, so ist es möglich, für Orte in einer Fläche zeitgleich die Tiefenprofile zu erfassen. In diesem Fall muss der Detektor nicht nur ein lineares Array von fotoempfindlichen Sensoren, sondern eine flächige Anordnung von fotoempfindlichen Detektionselementen aufweisen, die für die entsprechenden Orte in der Fläche jeweils das Interferenzsignal während der Variation der Reflektorposition erfassen können.According to the invention, very much more precise information or more complex verifications are possible than when evaluating only one depth profile, since depth profiles are determined for several locations on the surface of the security document. In a preferred embodiment, the depth profiles are detected at the same time for the multiple locations that are arranged together along a route on the surface of the security document, or for the multiple locations that are arranged in a surface area of the surface of the security document. With a suitable configuration, it is possible to achieve that a light beam of broadband, spatial coherence having light that is widened along one direction is sent to the beam splitter and illuminates the security document along a line, ie a path, on the surface of the security document and thus across the Surface, preferably perpendicular to the surface, a depth profile is recorded at the same time at the illuminated locations. For this it is necessary that the detector comprises a light-sensitive detection element for each of the locations to be detected in order to be able to detect the interferences assigned to the individual locations and to be able to derive the corresponding depth profiles for the individual locations. If the light is expanded along two spatial directions, it is possible to record the depth profiles for locations in an area at the same time. In this case, the detector doesn't just need one linear array of photosensitive sensors, but a flat arrangement of photosensitive detection elements, which can each detect the interference signal for the corresponding locations in the area during the variation of the reflector position.

Um eine Verifikation durchführen zu können, ist es vorteilhaft, wenn auf der Anzeigevorrichtung mindestens eine aus den erfassten Tiefenprofilen ermittelte Querschnittsfläche des Sicherheitsdokuments angezeigt wird, die durch die Untersuchungsrichtung und die Strecke oder eine in dem Flächenbereich liegende Kontur aufgespannt wird. Im Prinzip ist es möglich, die eine Achse der Querschnittsfläche durch eine beliebige Anordnung von Positionen auf der Oberfläche des Sicherheitsdokuments zu bilden und die entsprechenden Tiefenprofile nebeneinander anzuordnen, um eine Querschnittsfläche zu bilden. In der Regel ist es jedoch sinnvoll, dass die in der Querschnittsfläche nebeneinander dargestellten Tiefenprofile auch mit Punkten korrespondieren, die auf der Oberfläche räumlich benachbart zueinander angeordnet sind. Ein Vorteil einer solchen Querschnittsflächendarstellung, welche beispielsweise entlang einer Strecke einen Querschnitt durch einen Volumenbereich im Innern des Dokuments quer zur Oberfläche des Dokuments darstellt, besteht darin, dass beispielsweise in dem Dokument vorhandene Schichten oder Schichtenübergänge erkennbar sind. Moderne Sicherheitsdokumente werden häufig aus mehreren Substratschichten in einem Laminationsverfahren zusammengefügt. Nicht in allen Fällen ist es möglich, diesen Laminationsvorgang so auszuführen, dass ein monolithischer Dokumentkörper besteht, bei dem die ursprünglichen Schichtgrenzen in dem Festkörper auch messtechnisch als Phasenübergänge nicht mehr nachweisbar sind.In order to be able to carry out a verification, it is advantageous if at least one cross-sectional area of the security document determined from the detected depth profiles is displayed on the display device, which is spanned by the examination direction and the route or a contour lying in the surface area. In principle, it is possible to form one axis of the cross-sectional area by any arrangement of positions on the surface of the security document and to arrange the corresponding depth profiles next to one another in order to form a cross-sectional area. As a rule, however, it makes sense that the depth profiles shown next to one another in the cross-sectional area also correspond to points that are arranged spatially adjacent to one another on the surface. One advantage of such a cross-sectional area representation, which for example shows a cross-section through a volume area inside the document transversely to the surface of the document, is that layers or layer transitions present in the document can be recognized, for example. Modern security documents are often assembled from several substrate layers in a lamination process. It is not possible in all cases to carry out this lamination process in such a way that there is a monolithic document body in which the original layer boundaries in the solid body are no longer detectable as phase transitions, even by measurement.

Bei Sicherheitsdokumenten, bei denen eine solche monolithische Ausgestaltung in dem Dokumentkörper nicht gelingt, lassen sich diese Schichtgrenzen, die zwar bei einer optischen Betrachtung für einen menschlichen Nutzer nicht wahrnehmbar sind, dennoch durch unterschiedliche Intensitätswerte in den Tiefenprofilen nachweisen. Eine solche Querschnittsfläche zeigt somit an den Schichtgrenzen abweichende Intensitätswerte oder Intensitätswertänderungen, so dass diese Schichtgrenzen in der Querschnittsdarstellung deutlich erkennbar sind. Ist nun für eine Manipulation ein solches Dokument gespalten worden, um beispielsweise Passbildinformationen oder andere Informationen, die beispielsweise eine Person identifizieren, welcher das Sicherheitsdokument zugeordnet wird, zu verändern, so sind nach einem erneuten Zusammenfügen der aufgespaltenen Schichten in der Regel deutliche Abweichungen in der Schichtstruktur, welche in der weißlichtinterferometrisch hergeleiteten Querschnittsfläche sichtbar ist, zu erkennen. Eine optische Prüfung einer solchen Querschnittsflächendarstellung ermöglicht es somit einem Verifikationspersonal, einfach Dokumente aufzufinden, an denen Manipulationen vorgenommen sind. Auf ähnliche Weise lassen sich unterschiedliche Druckverfahren erkennen. Wird beispielsweise ein Hochdruckverfahren verwendet, so sind in der Druckebene beim Drucken auftretende Quetschungen am Rand der eingeprägten Buchstaben oder Zeichen zu erkennen. Eine mittels Hochdruck hergestellte Druckschicht zeigt somit charakteristische Höhenprofileigenschaften, die sich aus dem Querschnittsprofil ableiten lassen. Eben solches gilt für mittels eines Stichtiefdrucks hergestellte Druckelemente.In the case of security documents in which such a monolithic configuration in the document body does not succeed, these layer boundaries, which are not perceptible to a human user when viewed optically, can nevertheless be detected by different intensity values in the depth profiles. Such a cross-sectional area thus shows deviating intensity values or intensity value changes at the layer boundaries, so that these layer boundaries can be clearly recognized in the cross-sectional representation. If such a document has now been split for a manipulation in order to change, for example, passport photo information or other information which, for example, identify a person to whom the security document is assigned, then the split Layers usually show significant deviations in the layer structure, which is visible in the cross-sectional area derived by white light interferometry. A visual check of such a cross-sectional area representation thus enables verification personnel to easily find documents on which manipulations have been made. Different printing processes can be identified in a similar way. If, for example, a letterpress process is used, pinches occurring during printing can be seen on the edge of the embossed letters or characters. A pressure layer produced by means of high pressure thus shows characteristic height profile properties that can be derived from the cross-sectional profile. The same applies to printing elements produced by intaglio printing.

In modernen Sicherheitsdokumenten, die auf Kunststoffbasis hergestellt sind, werden beispielsweise Tintenstrahldruckverfahren eingesetzt, deren Tinte auf Basis des Kunststoffmaterials hergestellt ist, aus dem die Substratschichten gefertigt sind, auf die der Tintenstrahldruck aufgebracht wird. Diese Druckschichten weisen den Vorteil auf, dass diese auch großflächig ausgeführt werden können, ohne dass hierdurch eine Delaminationsmöglichkeit an der bedruckten Fläche geschaffen wird, da das Tintenmaterial sich beim Laminationsschritt optimal mit dem der angrenzenden Substratschichten verbindet. Die verwendeten Farbmittel verbleiben jedoch abhängig von der konkreten Zusammensetzung der verwendeten Drucktinte nicht unbedingt an der bedruckten Oberfläche, sondern diffundieren gegebenenfalls gezielt in die Substratschicht ein, auf die der Druck aufgetragen wird. Bei einer Untersuchung des Tiefenprofils können somit mittels eines solchen Tintenstrahldruckverfahrens erzeugte Druckbereiche deutlich von anderen Druckbereichen unterschieden werden.In modern security documents which are produced on a plastic basis, for example, inkjet printing processes are used, the ink of which is produced on the basis of the plastic material from which the substrate layers are made to which the inkjet print is applied. These printing layers have the advantage that they can also be implemented over a large area without creating a possibility of delamination on the printed area, since the ink material optimally bonds with that of the adjacent substrate layers during the lamination step. However, the colorants used do not necessarily remain on the printed surface, depending on the specific composition of the printing ink used, but instead diffuse in a targeted manner into the substrate layer to which the print is applied. When examining the depth profile, printing areas generated by means of such an inkjet printing method can thus be clearly distinguished from other printing areas.

Auch andere Manipulationen, welche mit einer zwischenzeitlichen Spaltung oder Delamination eines Dokumentkörpers verbunden sind, und/oder gegebenenfalls einem Abhobeln und/oder neuen Einfügen von Material, Einfügen geänderter oder verfälschter anderer Sicherheitselemente, wie beispielsweise metallisierter Folien oder Patches anderer Art oder Hologrammen, in Verbindung stehen, sind mit dem vorgeschlagenen Verifikationsverfahren erkennbar, da beim Zusammenfügen und/oder Einfügen in der Regel nicht die gleichen Verfahrensparameter verwendbar sind, die bei der ursprünglichen Dokumentherstellung verwendet wurden, um die unterschiedlichen Schichten miteinander zu verbinden. Daher treten an den Stellen, an denen Manipulationen vorgenommen wurden, in dem Querschnittsprofil deutlich wahrnehmbare Änderungen beispielsweise in Form von Sprüngen in ansonsten parallel verlaufenden Schichtübergängen auf.Other manipulations associated with an interim split or delamination of a document body and / or possibly a planing off and / or new insertion of material, insertion of changed or falsified other security elements, such as metallized foils or patches of a different type or holograms, in connection are recognizable with the proposed verification method, since when joining and / or inserting, as a rule, the same method parameters cannot be used that were used in the original document production to connect the different layers to one another. Therefore occur in the places where Manipulations have been made, changes in the cross-sectional profile that are clearly perceptible, for example in the form of cracks in otherwise parallel layer transitions.

Um eine maschinelle Auswertung zu ermöglichen, können als Vorgaben Tiefenprofile oder aus diesen gebildete Querschnittsflächen in einer Datenbank oder einem Speicher als Vorgaben abgelegt sein. Über einen Vergleich der ermittelten Tiefenprofile, Querschnittsprofile mit den Vorgaben ist eine Verifikation möglich.In order to enable a machine evaluation, depth profiles or cross-sectional areas formed from these can be stored as specifications in a database or a memory as specifications. A verification is possible by comparing the determined depth profiles and cross-sectional profiles with the specifications.

Erfindungsgemäß ist vorgesehen, dass die zu einzelnen Tiefenwerten oder Tiefenbereichen korrespondierenden Intensitätswerte und/oder Intensitätswertänderungen statistisch hinsichtlich der Häufigkeit ausgewertet werden, um eine Abweichung von einer erwarteten statistischen Verteilung als Indiz für eine Manipulation oder Fälschung zu ermitteln. Als Tiefenbereich kann beispielsweise ein Bereich benachbart zu einem Schichtenübergang in dem Dokument gewählt werden, in dem bei einem nicht manipulierten Sicherheitsdokument keine den Übergang charakterisierenden Intensitätswerte und/oder Intensitätswertänderungen auftreten. Da bei manipulierten Sicherheitsdokumenten der Schichtenübergang oder hiermit einhergehende charakteristische Intensitätswerte oder Intensitätswertänderungen auch bei Tiefenwerten auftreten, die nicht exakt der Tiefe des Schichtenübergangs entsprechen, werden bei einer solchen Auswertung beispielsweise in einem gefälschten Sicherheitsdokument Intensitätswerte, die eine Schichtenübergang anzeigen, mit einer größeren Häufigkeit als bei Originaldokumenten vorgefunden. Ebenso ist es möglich, den Tiefenbereich des Schichtenübergangs auszuwerten und hierbei in dem Bereich des Schichtenübergangs bei einem manipulierten Sicherheitsdokument eine Häufung von Intensitätswerten oder Intensitätswertänderungen aufzufinden, die nicht mit einem Schichtenübergang korrespondieren.According to the invention it is provided that the intensity values and / or intensity value changes corresponding to individual depth values or depth ranges are statistically evaluated with regard to frequency in order to determine a deviation from an expected statistical distribution as an indication of manipulation or forgery. For example, a region adjacent to a layer transition in the document can be selected as the depth region in which, in the case of a security document that has not been manipulated, no intensity values characterizing the transition and / or intensity value changes occur. Since the layer transition or associated characteristic intensity values or changes in intensity values also occur in the case of manipulated security documents with depth values that do not exactly correspond to the depth of the layer transition, in such an evaluation, for example in a forged security document, intensity values that indicate a layer transition are generated with a greater frequency than in Original documents found. It is also possible to evaluate the depth region of the layer transition and to find an accumulation of intensity values or changes in intensity values in the region of the layer transition in a manipulated security document that do not correspond to a layer transition.

Die verschiedenen statistischen genannten Auswerteverfahren können auch in Kombination ausgewertet und/oder verwendet werden.The various statistical evaluation methods mentioned can also be evaluated and / or used in combination.

Bei einer weiteren Ausführungsform ist vorgesehen, dass in mindestens einem Ausschnitt, beispielsweise einem Tiefenwertebereich, der mindestens einen Querschnittsfläche die Tiefenwerte, denen Intensitätswerte eines Wertebereichs zugeordnet sind, oder Tiefenwerte, denen Intensitätswertänderungen eines Wertebereichs zugeordnet sind, bezüglich ihrer zugeordneten Positionen entlang der mindestens einen Strecke oder Kurve durch eine vorgegebene parametrisierte Funktion der Position approximiert werden und anhand der bei der Approximation abgeleiteten Parameter die Verifikationsentscheidung getroffen wird. Sind in einem Sicherheitsdokument als Sicherheitsmerkmal beispielsweise in einer im fertigen Dokument im Innern angeordneten Grenzschicht vor deren Zusammenfügung Aussparungen eingebracht, die das Oberflächenprofil in einer Schnittebene modifizieren und anschließend so verfüllt, dass im fertigen Sicherheitsdokument keine Hohlvolumina enthalten sind, so ergibt sich bei geeigneter Wahl der Querschnittfläche eine charakteristische, den Konturen der eingebrachten Aussparungen folgende, mit der Grenzkante korrespondierende Linie. An diese Linie kann dann eine Funktion angepasst werden, die diesen Schnittlinienverlauf optimal approximieren kann. Im Stand der Technik sind Approximationsverfahren wohl bekannt, die die Parameter einer Funktion so variieren, dass eine möglichst gute Übereinstimmung zwischen dem durch die experimentell ermittelten Werte, hier die Tiefenwerte, gegebenen Schichtlinienverlauf und der parametrierten Funktion erreicht wird. Anhand der Parameter, die dann beispielsweise eine Lage, Form und Tiefe der eingebrachten Aussparungen charakterisieren, kann dann auf einfache Weise eine Verifikation ausgeführt werden.In a further embodiment it is provided that in at least one section, for example a depth value range, of the at least one cross-sectional area, the depth values to which intensity values of a value range are assigned, or depth values to which intensity value changes of a value range are assigned, with respect to their assigned positions along the at least one route or curve can be approximated by a predetermined parameterized function of the position and the verification decision is made on the basis of the parameters derived during the approximation. If recesses are made in a security document as a security feature, for example in a boundary layer arranged in the interior of the finished document, before they are joined, which modify the surface profile in a cutting plane and are then filled in such a way that the finished security document does not contain any hollow volumes Cross-sectional area has a characteristic line that follows the contours of the cutouts and corresponds to the boundary edge. A function can then be adapted to this line, which can optimally approximate this cutting line course. In the prior art, approximation methods are well known which vary the parameters of a function in such a way that the best possible correspondence is achieved between the experimentally determined values, here the depth values, the given layer line course and the parameterized function. A verification can then be carried out in a simple manner on the basis of the parameters, which then characterize, for example, a position, shape and depth of the recesses made.

Für eine menschliche Wahrnehmung der unterschiedlichen Intensitätswerte ist es vorteilhaft, wenn diese beispielsweise über unterschiedliche Farbwerte auf der Anzeigefläche dargestellt werden. Eine Anzeigevorrichtung, die mit der Auswerteeinrichtung gekoppelt ist, auf der eine aus dem mindestens einen Tiefenprofil und weiteren Tiefenprofilen für weitere Positionen auf der Oberfläche des Sicherheitsdokuments gebildete Querschnittsfläche anzeigbar ist, ist vorzugsweise so ausgestaltet, dass diese eine solche farbige Darstellung bietet. Angemerkt wird, dass die Farben nicht mit den Farben korreliert sind, mit denen die Sicherheitsmerkmale eventuell in dem Sicherheitsdokument gespeichert sind. Sie dienen lediglich zur leichteren Unterscheidbarkeit der unterschiedlichen ermittelten Intensitätswerte.For a human perception of the different intensity values, it is advantageous if these are represented on the display surface using different color values, for example. A display device, which is coupled to the evaluation device, on which a cross-sectional area formed from the at least one depth profile and further depth profiles for further positions on the surface of the security document can be displayed, is preferably designed so that it offers such a colored representation. It is noted that the colors are not correlated with the colors with which the security features are possibly stored in the security document. They only serve to make it easier to distinguish between the different intensity values determined.

Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf eine Zeichnung näher erläutert. Hierbei zeigen:

Fig. 1
eine schematische Darstellung einer Verifikationsvorrichtung;
Fig. 2
eine schematische Darstellung eines Ausschnitts eines Schichtaufbaus eines Sicherheitsdokument, in welches Informationen mittels eines Tintenstrahldruckverfahrens eingebracht sind;
Fig. 3a, 3b
schematische Darstellungen zur Erläuterung eines Sicherheitsmerkmals, welches über eine eingebrachte und anschließend aufgefüllte Ausnehmung ausgebildet ist;
Fig. 4
eine schematische Darstellung einer aus Tiefenprofilen abgeleiteten Querschnittsfläche für ein Sicherheitsdokument mit einer Struktur nach Fig. 3b;
Fig. 5
eine schematische Darstellung einer aus Tiefenprofilen eines Sicherheitsdokuments abgeleiteten Querschnittsfläche, welches das Merkmal nach Fig. 3b nicht aufweist;
Fig. 6
eine schematische Darstellung einer statistischen Auswertung für ein Dokument mit nicht modifizierten parallelen Schichten, bei der die Häufigkeiten der Intensitätswerte eines Intensitätswertebereichs gegenüber ihren zugeordneten Tiefenwerten darstellt sind;
Fig. 7
grafische Darstellung einer entsprechenden statistischen Auswertung analog zu der nach Fig. 6 für ein Sicherheitsdokument mit einer Ausgestaltung analog zu der nach Fig. 3b;
Fig. 8
Darstellung einer anderen statistischen Auswertung eines nicht gefälschten Sicherheitsdokuments;
Fig. 9
eine schematische Darstellung einer statistischen Auswertung analog zu der nach Fig.8 für ein gefälschtes Sicherheitsdokument; und
Fig. 10
schematische grafische Darstellung einer Auswertung, bei der die Tiefenwerte, eines Tiefenwertebereichs gegenüber den zugeordneten Positionen auf der Oberfläche aufgetragen sind und eine parametrisierte Funktion der Position an die Tiefenwerte angepasst ist.
The invention is explained in more detail below on the basis of preferred exemplary embodiments with reference to a drawing. Here show:
Fig. 1
a schematic representation of a verification device;
Fig. 2
a schematic representation of a section of a layer structure of a security document into which information is introduced by means of an inkjet printing process;
Figures 3a, 3b
schematic representations to explain a security feature which is formed via an introduced and then filled recess;
Fig. 4
a schematic representation of a cross-sectional area derived from depth profiles for a security document with a structure according to FIG Figure 3b ;
Fig. 5
a schematic representation of a cross-sectional area derived from depth profiles of a security document, which the feature according to Figure 3b does not have;
Fig. 6
a schematic representation of a statistical evaluation for a document with unmodified parallel layers, in which the Frequencies of the intensity values of an intensity value range are shown in relation to their assigned depth values;
Fig. 7
graphic representation of a corresponding statistical evaluation analogous to that according to Fig. 6 for a security document with an embodiment analogous to that according to Figure 3b ;
Fig. 8
Representation of another statistical evaluation of a non-forged security document;
Fig. 9
a schematic representation of a statistical evaluation analogous to that according to Fig. 8 for a forged security document; and
Fig. 10
schematic graphical representation of an evaluation in which the depth values, a depth value range are plotted against the assigned positions on the surface and a parameterized function of the position is adapted to the depth values.

In Fig. 1 ist schematisch eine Verifikationsvorrichtung 1 dargestellt. Diese umfasst ein Weißlichtinterferometer 2. Das Weißlichtinterferometer 2 umfasst eine Lichtquelle 3, welche breitbandiges Licht 4 mit räumlicher Kohärenz emittiert. In der dargestellten Ausführungsform wird das Licht 4 zunächst über ein optisches Element 5 aufgeweitet. Dieses trifft dann auf einen Strahlteiler 6. Der Strahlteiler lässt einen Teil des Lichts 4r in einen Referenzarm 7 eintreten, an dessen Ende 8 sich ein Spiegel 9 als Reflektor befindet. Dieser ist beweglich an einem Stellglied 10 gelagert. Das Stellglied 10 kann den Spiegel 9 linear so verlagern, dass eine Länge Ir des Referenzarms variiert werden kann.In Fig. 1 a verification device 1 is shown schematically. This includes a white light interferometer 2. The white light interferometer 2 includes a light source 3 which emits broadband light 4 with spatial coherence. In the embodiment shown, the light 4 is first expanded via an optical element 5. This then strikes a beam splitter 6. The beam splitter allows part of the light 4r to enter a reference arm 7, at the end 8 of which a mirror 9 is located as a reflector. This is movably mounted on an actuator 10. The actuator 10 can displace the mirror 9 linearly so that a length I r of the reference arm can be varied.

An dem Strahlteiler 6 wird ein weiterer Teil des Lichts 4m in einen Messarm 11 gelenkt. In dem Messarm 11 ist auf einer beispielsweise als Glasplatte ausgebildeten Dokumentaufnahme 12 ein Sicherheitsdokument 13 als Messobjekt angeordnet. Das an der Oberfläche 15 und im Volumen 16 im Innern des Sicherheitsdokuments 13 in den Messarm 11 zurückreflektierte Licht 4mR wird an dem Strahlteiler 6 mit dem von dem Spiegel 9 aus dem Referenzarm 7 zurückreflektierten Licht 4rR überlagert und auf einen Detektor 14 geführt. In der dargestellten Ausführungsform weist der Detektor 14 mehrere lichtempfindliche Sensorelemente (nicht dargestellt) auf.At the beam splitter 6, a further part of the light 4m is directed into a measuring arm 11. In the measuring arm 11, a security document 13 is arranged as a measuring object on a document receptacle 12 designed, for example, as a glass plate. The light 4mR reflected back into the measuring arm 11 on the surface 15 and in the volume 16 inside the security document 13 is superimposed on the beam splitter 6 with the light 4rR reflected back by the mirror 9 from the reference arm 7 and guided to a detector 14. In the embodiment shown, the detector 14 has a plurality of light-sensitive sensor elements (not shown).

Exemplarisch ist die Strahlführung für drei Positionen P1, P2, P3 auf einer Oberfläche 15 des Sicherheitsdokuments 13 dargestellt. Das an den Oberflächenpositionen P1, P2, P3 bzw. im Innern des Sicherheitsdokuments 13 entlang der Ausbreitungsrichtungen des auf die Oberfläche 15 auftreffenden Lichts 4m des Messarms 11 zurückreflektierte Licht 4mR wird mit dem entsprechenden im Referenzarm 7 zurückreflektierten Licht 4rR an einem Sensorelement des Detektors 14 überlagert und als Interferenzsignal erfasst. Während der Messung wird die Länge Ir des Referenzarms 7 variiert. Korrespondierende gleichlange Messarmlängen Im reichen von der Oberfläche 15 bis hinein in das Volumen 16 des Sicherheitsdokuments 13. Die zeitaufgelöst erfassten Interferenzsignale werden einer Steuer- und Datenerfassungseinrichtung 17 zugeführt, die anhand der Messwerte eines jeden Messelements ein Tiefenprofil zu der entsprechenden Position P1, P2, P3 entlang Untersuchungsrichtungen 19-1 bis 19-3 ermittelt. Die Untersuchungsrichtungen 19-1 bis 19-3 sind durch die Richtung des Lichts 4m an den entsprechenden Positionen P1 bis P3 festgelegt. Es versteht sich, dass abhängig von der Ausleuchtung des Dokuments 13 und einer Auflösung des Detektors 14 Tiefenprofile für mehr Positionen entlang einer Strecke 20 oder, sofern das Licht 4 flächig aufgeweitet wird, für über eine Fläche verteilte Positionen zeitgleich erfasst und ausgewertet werden können. Die Steuer- und Datenerfassungseinrichtung 17 steuert während der Messdatenerfassung das Stellglied 10, mit dem der Spiegel 9 linear verlagert wird, um die Referenzarmlänge Ir und hiermit die dazu korrespondierende Messarmlänge Im zu variieren.The beam guidance for three positions P1, P2, P3 on a surface 15 of the security document 13 is shown as an example. The light 4mR reflected back at the surface positions P1, P2, P3 or inside the security document 13 along the directions of propagation of the light 4m of the measuring arm 11 impinging on the surface 15 is superimposed on a sensor element of the detector 14 with the corresponding light 4rR reflected back in the reference arm 7 and recorded as an interference signal. The length I r of the reference arm 7 is varied during the measurement. Corresponding measuring arm lengths I m of equal length extend from the surface 15 into the volume 16 of the security document 13. The time-resolved interference signals are fed to a control and data acquisition device 17 which, based on the measured values of each measuring element, creates a depth profile for the corresponding position P1, P2, P3 determined along examination directions 19-1 to 19-3. The examination directions 19-1 to 19-3 are determined by the direction of the light 4m at the corresponding positions P1 to P3. It goes without saying that, depending on the illumination of the document 13 and a resolution of the detector 14, depth profiles for more positions along a path 20 or, if the light 4 is widened over an area, for positions distributed over an area can be detected and evaluated at the same time. The control and data acquisition device 17 controls the actuator 10 during the acquisition of the measured data, with which the mirror 9 is linearly displaced in order to vary the reference arm length I r and thus the corresponding measuring arm length I m.

Die erfassten Messdaten, welche Interferenzsignale darstellen, werden von der Steuer- und Datenerfassungseinrichtung 17 ausgewertet, um für die einzelnen Positionen P1 bis P3 die zugehörigen Tiefenprofile zu erstellen. Dieses erfolgt gemäß Algorithmen, wie sie für die optische Kohärenztomographie bekannt sind. Ein Tiefenprofil zu einer Position umfasst für die Tiefenwerte entlang der Untersuchungsrichtung die zugehörigen Intensitätswerte, welche ein Maß für die Reflexion des Bereichs des untersuchten Sicherheitsdokuments darstellen, der durch die Position und den entsprechenden Tiefenwert festgelegt ist. In einer Auswerteeinrichtung 21 werden dann die Tiefenprofile ausgewertet. Die Steuer- und Datenerfassungseinrichtung 17 kann mit der Auswerteeinrichtung 21 in einer Einrichtung zusammengefasst sein. Beide können einzeln oder gemeinsam als eine programmgesteuerte Vorrichtung ausgeführt sein. Alternativ kann zumindest die Steuer- und Erfassungseinrichtung 17 rein in Hardware ausgeführt sein. Bei der dargestellten Ausführungsform umfasst die Verifikationsvorrichtung 1 zusätzlich eine Anzeigevorrichtung 23, welche eine freiprogrammierbare Anzeigefläche 24 umfasst, auf der beispielsweise eine aus Tiefenprofilen abgeleitete Querschnittsfläche 25 dargestellt wird. Dies ist schematisch in Fig. 1 dargestellt. Zu erkennen sind unterschiedliche Schichtgrenzen 44, 45, an denen markante Intensitätswerte auftreten. Zusätzlich kann die Verifikationsvorrichtung eine Speichervorrichtung 26 umfassen, in der Vorgabedaten, beispielsweise für bestimmte Tiefenprofile, statistische Kennzahlen oder beispielhafte Querschnittsflächen abgelegt sind, die zum Vergleich mit ermittelten Tiefenprofilen, Querschnittsflächen oder statischen Auswertungen herangezogen werden können, um das jeweils untersuchte Sicherheitsdokument zu verifizieren. Ebenso ist es möglich, dass die Auswerteeinrichtung eine Schnittstelle 27 umfasst, über die Vorgabewerte aus einer Datenbank abgerufen werden können. Genauso ist es möglich, Messergebnisse und/oder eine Verifikationsentscheidung über die Schnittstelle 27 auszugeben, welche als drahtgebundene Schnittstelle oder als Funkschnittstelle usw. ausgebildet sein kann.The acquired measurement data, which represent interference signals, are evaluated by the control and data acquisition device 17 in order to create the associated depth profiles for the individual positions P1 to P3. This is done according to algorithms that are known for optical coherence tomography. A depth profile for a position includes the associated intensity values for the depth values along the examination direction, which represent a measure for the reflection of the area of the examined security document which is defined by the position and the corresponding depth value. The depth profiles are then evaluated in an evaluation device 21. The control and data acquisition device 17 can be combined with the evaluation device 21 in one device. Both can be designed individually or together as a program-controlled device. Alternatively, at least the control and detection device 17 can be implemented purely in hardware. In the embodiment shown, the verification device comprises 1 In addition, a display device 23 which comprises a freely programmable display area 24 on which, for example, a cross-sectional area 25 derived from depth profiles is displayed. This is schematically in Fig. 1 shown. Different layer boundaries 44, 45 can be seen, at which striking intensity values occur. In addition, the verification device can include a storage device 26 in which default data, for example for certain depth profiles, statistical key figures or exemplary cross-sectional areas, are stored, which can be used for comparison with determined depth profiles, cross-sectional areas or static evaluations in order to verify the security document being examined. It is also possible for the evaluation device to include an interface 27, via which default values can be called up from a database. It is also possible to output measurement results and / or a verification decision via the interface 27, which can be designed as a wired interface or as a radio interface, etc.

In Fig. 2 ist schematisch ein Ausschnitt eines Sicherheitsdokuments 12 dargestellt, welcher aus drei unterschiedlichen Substratschichten 31, 32, 33 gebildet ist. In dem Dokument ist eine Information mittels eines Tintenstrahldrucks codiert. Auf die mittlere Substratschicht 32 sind drei Druckpixel 34, 35, 36 aufgedruckt. Hierbei ist ein Teil der Drucktinte in die mittlere Substratschicht 32 und die darunter befindliche Substratschicht 33 diffundiert. Insgesamt sind die Substratschichten 31 bis 33 beispielsweise in einem Laminationsverfahren zu einem Dokumentkörper 40 zusammengefügt. Bei einer Untersuchung eines Tiefenprofils ist die deutliche Ausdehnung nicht nur in lateraler Richtung 37, sondern ebenfalls in senkrechter Richtung 38, welche senkrecht zur Substratschichtoberfläche 39 der Substratschicht 32 orientiert ist, wahrnehmbar. Die in dem Dokumentkörper 40 gespeicherte Information kann somit von einer Information unterschieden werden, die mit einem anderen Druckverfahren aufgebracht ist, bei dem keine oder eine nicht so ausgeprägte Diffusion der Farbmittel in die Substratschichten 32, 33 stattfindet.In Fig. 2 a section of a security document 12 is shown schematically, which is formed from three different substrate layers 31, 32, 33. In the document, information is encoded by means of an inkjet printing. Three printing pixels 34, 35, 36 are printed on the middle substrate layer 32. Here, part of the printing ink has diffused into the middle substrate layer 32 and the substrate layer 33 located below it. Overall, the substrate layers 31 to 33 are joined together to form a document body 40, for example in a lamination process. When examining a depth profile, the clear expansion is perceptible not only in the lateral direction 37, but also in the perpendicular direction 38, which is oriented perpendicular to the substrate layer surface 39 of the substrate layer 32. The information stored in the document body 40 can thus be differentiated from information that is applied using a different printing method in which no diffusion or a less pronounced diffusion of the colorants into the substrate layers 32, 33 takes place.

In Fig. 3a und 3b sind weitere Ausschnitte eines Dokumentkörpers 40 schematisch dargestellt. In Fig. 3a ist dargestellt, dass in den Dokumentkörper 40 zunächst eine kegelartige Aussparung 41 eingebracht ist. Die einzelnen Substratschichten 31 bis 33 sind vorzugsweise alle transparent ausgeführt und hier lediglich aus Gründen der vereinfachten Darstellung mittels unterschiedlicher Schraffuren versehen. Die Substratschichten können jedoch unterschiedliche Brechungsindicees aufweisen. In Fig. 3b ist der fertige Dokumentkörper dargestellt, bei dem die kegelartige Aussparung 41 mit einem vorzugsweise ebenfalls transparenten Füllmaterial 42 verfüllt ist. Ein Brechungsindex des Füllmaterials 42 weicht vorzugsweise leicht von den Brechungsindizes der Materialien ab, aus denen die Substratschichten 31 bis 33 hergestellt sind. Bei einer Erstellung eines Tiefenprofils des Dokumentkörpers lässt sich die verfüllte Aussparung 41 anhand der Änderungen in den ursprünglich ebenen Grenzschichten 44 und 45 nachweisen.In Figures 3a and 3b further details of a document body 40 are shown schematically. In Fig. 3a it is shown that a cone-like recess 41 is first made in the document body 40. The individual substrate layers 31 to 33 are preferably all made transparent and provided here by means of different hatchings merely for the sake of simplifying the illustration. The However, substrate layers can have different refractive indices. In Figure 3b the finished document body is shown in which the cone-like recess 41 is filled with a preferably likewise transparent filling material 42. A refractive index of the filler material 42 preferably deviates slightly from the refractive indices of the materials from which the substrate layers 31 to 33 are made. When creating a depth profile of the document body, the filled recess 41 can be detected on the basis of the changes in the originally flat boundary layers 44 and 45.

In Fig. 4 ist eine anhand mehrerer nebeneinander angeordneter Tiefenprofile gebildete Querschnittsfläche 25 schematisch dargestellt. Entlang der X-Achse sind die unterschiedlichen Positionen und entlang der Y-Achse die unterschiedlichen Tiefen aufgetragen. Die zugeordneten Intensitätswerte sind abgestuft nach Farbe oder Graustufe aufgetragen. Die einer Position zugeordneten Intensitätswerte für die unterschiedlichen Tiefenwerte stellen ein Tiefenprofil dar. Im dargestellten Beispiel sind zur Vereinfachung nur Intensitätswerte dargestellt, die charakteristisch für Übergänge von einer Materialschicht zur anderen Materialschicht sind. Den übrigen Tiefenwerten, an denen keine Grenzfläche erkannt ist, sei hier ein Intensitätswert von null zugeordnet. Die Grenzschichten 44 und 45 sowie die äußere Oberfläche 15 sind in der dargestellten aus den Tiefenprofilen abgeleiteten Querschnittsfläche 25 gut zu erkennen. Zusätzlich sind Intensitätswerte, die charakteristischen Substratübergängen entsprechen, an jenen Kanten zu erkennen, die die eingebrachte und verfüllte Aussparung 41 begrenzen.In Fig. 4 a cross-sectional area 25 formed on the basis of a plurality of depth profiles arranged next to one another is shown schematically. The different positions are plotted along the X axis and the different depths are plotted along the Y axis. The assigned intensity values are graded according to color or gray level. The intensity values assigned to a position for the different depth values represent a depth profile. In the example shown, for the sake of simplicity, only intensity values are shown which are characteristic of transitions from one material layer to the other material layer. An intensity value of zero is assigned here to the remaining depth values at which no boundary surface is recognized. The boundary layers 44 and 45 and the outer surface 15 can be clearly seen in the illustrated cross-sectional area 25 derived from the depth profiles. In addition, intensity values which correspond to characteristic substrate transitions can be seen at those edges which delimit the introduced and filled recess 41.

Gut zu erkennen ist, dass sich eine solche Querschnittsflächendarstellung deutlich von einer Querschnittsflächendarstellung unterscheidet, wie sie in Fig. 5 dargestellt ist, in der eine Darstellung für ein gleichartiges Sicherheitsdokument exemplarisch gezeigt ist, welches die aufgefüllte kegelartige Aussparung nicht umfasst. Die Oberfläche 15 sowie die beiden Schichtgrenzen 44, 45, welche nicht modifiziert sind, sind deutlich zu erkennen.It can be clearly seen that such a cross-sectional area representation differs significantly from a cross-sectional area representation as shown in Fig. 5 is shown, in which a representation for a similar security document is shown by way of example, which does not include the filled cone-like recess. The surface 15 and the two layer boundaries 44, 45, which are not modified, can be clearly seen.

Gemäß der Erfindung ist es vorgesehen, statistische Auswertungen auszuführen. Trägt man beispielsweise für einen gewählten Intensitätswert oder einen Intensitätswertebereich die Häufigkeit in Abhängigkeit von dem zugeordneten Tiefenwert auf, so erhält man für das Dokument ohne die verfüllte Aussparung beispielsweise eine Ansicht, wie sie in Fig. 6 dargestellt ist. Zu erkennen sind drei scharf begrenzte lokale Überhöhungen 53-55, die alle ungefähr die gleiche Häufigkeit aufweisen und der Oberfläche 15 sowie den Schichtübergängen 44,45 zugeordnet werden können.The invention provides for statistical evaluations to be carried out. If, for example, the frequency is plotted for a selected intensity value or an intensity value range as a function of the assigned depth value, then for the document without the filled recess one obtains, for example, a view as shown in FIG Fig. 6 is shown. You can see three sharply delimited local peaks 53-55, the all have approximately the same frequency and can be assigned to the surface 15 and the layer transitions 44, 45.

In Fig. 7 ist die gleiche statistische Auswertung für das Sicherheitsdokument mit der verfüllten kegelartigen Aussparung gezeigt. Erneut sind die drei der Oberfläche 15 und den Schichtgrenzen 44,45 zuzuordnenden Erhöhungen 53-55 zu erkennen, jedoch ist zusätzlich über einen weiten Tiefenwertebereich 56 ebenfalls eine endliche Anzahl 57 von Intensitätswerten zu erkennen, die durch die schräg durch das Dokument verlaufenden Kegelwände 43 verursacht sind (vergl. Fig. 3b).In Fig. 7 the same statistical evaluation is shown for the security document with the filled cone-like recess. The three elevations 53-55 associated with the surface 15 and the layer boundaries 44, 45 can again be seen, but a finite number 57 of intensity values can also be recognized over a wide depth value range 56, which is caused by the conical walls 43 running obliquely through the document are (cf. Figure 3b ).

In Fig. 8 und 9 sind statistische Auswertungen dargestellt, bei denen die in einem vorgegebenen Tiefenbereich auftretenden Intensitätswerte in Abhängigkeit von ihrer Häufigkeit aufgetragen werden. Während bei einer Verifikation einer nicht manipulierten Schichtgrenze (Fig. 8) fast ausschließlich die einen Schichtenübergang charakterisierenden Intensitätswerte 61 beobachtet werden, sind in der Verteilung nach Fig. 9, die mit einem Dokument mit einer manipulierten Schichtgrenze korrespondiert, in dem Tiefenbereich um die Schichtgrenze nicht nur die einen Schichtübergang charakterisierenden Intensitätswerte 61, sondern auch eine Vielzahl weiterer Intensitätswerte vorhanden, die mit der Reflexionseigenschaft des Volumenmaterials 62 oder mit anderen Übergängen 63 korrespondieren, die zwischen dem Substrat und einem beispielsweise eingesetzten Kleber oder zwischen dem Kleber und der zweiten Substratschicht auftreten. Zu erkennen ist, dass auch aus dem Vergleich dieser beiden Spektren eine Manipulation deutlich zu erkennen ist.In Figures 8 and 9 statistical evaluations are shown in which the intensity values occurring in a given depth range are plotted as a function of their frequency. While a verification of a non-manipulated layer boundary ( Fig. 8 ) almost exclusively the intensity values 61 characterizing a layer transition are observed, are in the distribution according to Fig. 9 , which corresponds to a document with a manipulated layer boundary, in the depth area around the layer boundary not only the intensity values 61 characterizing a layer transition, but also a large number of further intensity values are present which correspond to the reflection property of the volume material 62 or to other transitions 63 that exist between the substrate and an adhesive used, for example, or between the adhesive and the second substrate layer. It can be seen that a manipulation can also be clearly seen from the comparison of these two spectra.

Wieder eine andere Auswertung kann vorsehen, dass beispielsweise die Tiefenwerte, eines Tiefenwertebereichs 71 (vergl. Fig. 4), denen Intensitätswerte oder Intensitätswertänderungen oberhalb eines Schwellenwertes oder innerhalb eines Wertebereichs zugeordnet sind, gegen die entsprechende Position auftragen werden. In Fig. 10 ist eine sich ergebende grafische Darstellung gezeigt. Zur Auswertung ist an die Tiefenwerte eine parametrisierte Funktion 72 der Position f(x, t1, t2, a, b, c) angepasst. Die Funktion 72 ist als durchgezogene Linie dargestellt. Ist die Funktion 72 optimal angepasst, charakterisieren die Parameter t1, t2, a, b, c die Spitze der Aussparung 41. b gibt die Mittenposition an. Δt=t2-t1 gibt die Tiefe der Spitze und die Differenz a-c eine Breite der Spitze an der Grenzschicht in der Tiefe t1 an. Über einen Vergleich der Parameterwerte mit Vorgaben ist somit eine Verifikation möglich.Another evaluation can provide that, for example, the depth values of a depth value range 71 (cf. Fig. 4 ), to which intensity values or intensity value changes above a threshold value or within a value range are assigned, are plotted against the corresponding position. In Fig. 10 a resulting graph is shown. For the evaluation, a parameterized function 72 of the position f (x, t1, t2, a, b, c) is adapted to the depth values. The function 72 is shown as a solid line. If the function 72 is optimally adapted, the parameters t1, t2, a, b, c characterize the tip of the recess 41. b indicates the center position. Δt = t2-t1 indicates the depth of the tip and the difference ac indicates a width of the tip at the boundary layer at depth t1. A verification is thus possible by comparing the parameter values with specifications.

Es versteht sich, dass hier lediglich beispielhafte Auswertungen beschrieben sind. Es können selbstverständlich die einzelnen Auswertungen kombiniert ausgeführt werden und komplexe Auswertungen vorgenommen werden, um unterschiedliche Sicherheitsmerkmale in den untersuchten Dokumenten zu identifizieren oder deren Fehlen nachzuweisen. Beispielsweise kann auch ein Oberflächenrelief abgetastet und mit einer Vorgabe verglichen werden. Die einzelnen beschriebenen Merkmale können in beliebiger Kombination genutzt werden, um die Erfindung auszuführen.It goes without saying that only exemplary evaluations are described here. The individual evaluations can of course be carried out in combination and complex evaluations can be carried out in order to identify different security features in the examined documents or to prove their absence. For example, a surface relief can also be scanned and compared with a specification. The individual features described can be used in any combination to carry out the invention.

BezugszeichenlisteList of reference symbols

11
VerifikationsvorrichtungVerification device
22
WeißlichtinterferometerWhite light interferometer
33
LichtquelleLight source
44th
Lichtlight
4m4m
Anteil des in den Messarm gesandten LichtsProportion of the light sent into the measuring arm
4mR4mR
Anteil des aus dem Messarm zurückreflektierten LichtsProportion of the light reflected back from the measuring arm
4r4r
Anteil des in den Referenzarm gesandten LichtsShare of light sent into the reference arm
4rR4rR
Anteil des aus dem Referenzarm zurückreflektierten LichtsProportion of the light reflected back from the reference arm
55
optisches Elementoptical element
66th
StrahlteilerBeam splitter
77th
ReferenzarmReference arm
88th
EndeThe End
99
Spiegelmirror
1010
StellgliedActuator
Ir I r
ReferenzarmlängeReference arm length
Im I m
MessarmlängeMeasuring arm length
1111
MessarmMeasuring arm
1212
DokumentaufnahmeDocument recording
1313
SicherheitsdokumentSecurity document
1414th
Detektordetector
1515th
Oberflächesurface
P1, P2, P3P1, P2, P3
PositionenPositions
1616
Volumenvolume
1717th
Steuer- und DatenerfassungseinrichtungControl and data acquisition device
19-1-19-319-1-19-3
UntersuchungsrichtungDirection of investigation
2020th
Streckeroute
2121st
AuswerteeinrichtungEvaluation device
2323
AnzeigevorrichtungDisplay device
2424
AnzeigeflächeDisplay area
2525th
QuerschnittsflächeCross sectional area
2626th
SpeichervorrichtungStorage device
2727
Schnittstelleinterface
31, 32, 3331, 32, 33
SubstratschichtenSubstrate layers
34, 35, 3634, 35, 36
DruckpixelPrint pixels
3737
laterale Richtunglateral direction
3838
senkrechte Richtungperpendicular direction
3939
SubstratschichtoberflächeSubstrate layer surface
4040
DokumentkörperDocument body
4141
AussparungRecess
4242
Füllmaterialfilling material
4343
KegelwändeCone walls
44,4544.45
GrenzschichtenBoundary layers
53-5553-55
lokale Überhöhungenlocal superelevations
5656
TiefenwertebereichDepth range
5757
Anzahlnumber
6161
einen Schichtenübergang charakterisierende IntensitätswerteIntensity values characterizing a layer transition
6262
Volumenmaterial charakterisierende IntensitätswerteIntensity values characterizing volume material
6363
andere Schichtübergänge charakterisierende Intensitätswerteintensity values characterizing other layer transitions
7171
TiefenwertebereichDepth range
7272
Funktionfunction
t1, t2t1, t2
Parameterwerte für TiefenParameter values for depths
a, b, ca, b, c
Parameterwerte für PositionenParameter values for positions

Claims (9)

  1. Method for verifying a security document (13), comprising the steps:
    orientating the security document (13) relative to a white light interferometer (2), carrying out an examination by means of white light interferometry at several locations (P1-P3) on a surface (15) of a security document (13),
    wherein at each of the locations (P1-P3) a depth profile is produced along a direction of examination (19-1 to 19-3), which is oriented transverse to the surface (15) of the security document (13), wherein, as the depth profile, the measured values of a physical quantity are regarded, which are assigned to different depths along the examination direction, wherein the examination direction extends into an interior of the security document (13), and the depth profile is assigned to the location (P1-P3) of the surface (15) of the security document (13) at which the examination direction intersects the surface (15) of the security document (13),
    deriving a feature from the depth profiles, and comparing the at least one derived feature with one or more predetermined specifications in order to derive a verification decision,
    characterised in that
    the intensity values corresponding to the individual depth values or depth regions and/or intensity value changes of several depth profiles are statistically evaluated in respect of their frequency, in order to determine any deviation from an expected statistical distribution as an indicator of manipulation or falsification.
  2. Method according to claim 1, characterised in that the security document (13) is oriented in such a way that the direction of examination (19-1 to 19-3) is oriented perpendicular to a surface (15) of the security document (13).
  3. Method according to claim 1 or 2, characterised in that for several locations (P1 to P3), which are arranged in common along a path (20) on the surface (15) of the security document (13), or for several locations (P1 to P3), which are arranged in a surface region of the surface (15) of the security document (13), which comprises at least one location (P1), depth profiles are detected at the same time as the depth profile for the at least one location (P1).
  4. Method according to claim 3, characterised in that at least one cross-section surface (25) of the security document (13), determined from the depth profiles which have been detected, is displayed on a display apparatus (23), this surface being spanned by the direction of examination (19-1 to 19-3) and the path (20) or by a contour lying in the surface region.
  5. Method according to claim 4, characterised in that, in at least one section or depth region of the at least one cross-section surface (25), the depth values to which are assigned intensity values from a value range, or the depth values to which are assigned intensity value changes from a value range, are approximated in relation to their assigned positions (P1 to P3) along the at least one path or curve by means of a predetermined parameterised function of the position, and, on the basis of the parameters (t1, t2, a, b, c) derived from the approximation, the verification decision is reached.
  6. Method according to any one of the preceding claims, characterised in that depth values in which intensity values or intensity value changes arise, which in each case are determined by a comparison of an intensity value with the intensity value of an adjacent spatial position in the security document (13) or with the intensity values of adjacent spatial positions in the security document (13), above a threshold value or within a value range delimited by an upper threshold value and a lower threshold value, are then evaluated in respect of their frequency in order to derive deviations or concordances in relation to one or more expected statistical distributions, and from this the verification decision is derived.
  7. Verification apparatus (1) for carrying out the method according to any one of claims 1 to 6, comprising a document receiver (12) and a white light interferometer (2), which is configured such as to produce in each case a depth profile for at least several positions (P1-P3) on a surface (15) of a security document (13) arranged in the document receiver (12), along a direction of examination (19-1) oriented transversely to the surface (15), wherein, as a depth profile, measured values of a physical quantity are regarded, the different depths are arranged along the direction of examination, wherein the direction of examination extends into an interior of the security document (13) and the depth profile is assigned to the location (P1-P3) on the surface (15) of the security document (13) at which the direction of examination intersects the surface (15) of the security document (13), and an evaluation device (21), which is configured such as to evaluate several depth profiles, in that the intensity values and/or intensity value changes of several depth profiles, corresponding to individual depth values or depth ranges, are statistically evaluated in respect of their frequency in order to determine a deviation from an expected statistical distribution as an indicator of manipulation or falsification.
  8. Verification apparatus (1) according to claim 7, characterised in that the white light interferometer (2) is configured as an optical coherence tomograph.
  9. Verification apparatus (1) according to any one of claims 7 or 8, characterised in that the white light interferometer (2) comprises a light source (3), a beam divider (6), a detector (14), a reflector (9) secured to a controllable linear adjustment element (10), and a control and data acquisition device (17), wherein the light source (3) produces broad-band light (4) exhibiting spatial coherence and is arranged in relation to the beam divider (6) in such a way that the beam divider (6) conveys a portion of the light (4m) into a measuring arm (11) in which the document receiver (12) is located, and a portion of the light (4r) to a reference arm (7), in which the reflector (9) is arranged in such a way that this reflects the light (4rR) back onto the beam divider (7) and there overlays it with the light (4mR), which, at a security document (13) arranged in or on the document receiver (12), is reflected back to the beam divider (6), wherein the detector (14) is arranged in such a way that, at the overlayering of the reflected light (4rR) from the reference arm (7) with the reflected light (4mR) from the measuring arm (11), it can detect an interference signal which occurs, wherein the control and detection device (17) is coupled to the linear adjustment element (10), in order, during the detection of the interference signal, to vary a reference arm length (Ir) by a linear displacement of the reflector (9), wherein the reference arm lengths (Ir) correspond to measurement arm lengths (Im) which accord with the distances from the beam divider (6) along the direction of examination (19-1 to 19-3), which extend at least to the surface (15) of the security document (13) on or in the document receiver (12) and then into the interior of the security document (13).
EP12720181.2A 2011-05-16 2012-05-10 Method and apparatus for verifying security documents using white light interferometry Active EP2710564B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011075943A DE102011075943A1 (en) 2011-05-16 2011-05-16 Method and device for verification of security documents by means of white light interferometry
PCT/EP2012/058646 WO2012156274A1 (en) 2011-05-16 2012-05-10 Method and apparatus for verifying security documents using white light interferometry

Publications (2)

Publication Number Publication Date
EP2710564A1 EP2710564A1 (en) 2014-03-26
EP2710564B1 true EP2710564B1 (en) 2021-02-24

Family

ID=46052762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12720181.2A Active EP2710564B1 (en) 2011-05-16 2012-05-10 Method and apparatus for verifying security documents using white light interferometry

Country Status (4)

Country Link
EP (1) EP2710564B1 (en)
CN (1) CN103534735B (en)
DE (1) DE102011075943A1 (en)
WO (1) WO2012156274A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524989B (en) * 2014-04-08 2018-12-26 Innovia Films Ltd Apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584214B1 (en) * 1999-04-23 2003-06-24 Massachusetts Institute Of Technology Identification and verification using complex, three-dimensional structural features
US20110043821A1 (en) * 2008-04-28 2011-02-24 Innovia Films Sarl Method of authenticating a polymer film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9715084D0 (en) * 1997-07-18 1997-09-24 Ncr Int Inc An apparatus for validating sheets
WO2006123341A1 (en) * 2005-05-18 2006-11-23 Green Vision Systems Ltd. Hyper-spectral imaging and analysis system for authenticating an authentic article
DE102006016131A1 (en) * 2005-09-22 2007-03-29 Robert Bosch Gmbh Interferometric measuring device
GB0526422D0 (en) * 2005-12-23 2006-02-08 Ingenia Holdings Uk Ltd Authentication
DE102007059550A1 (en) * 2007-12-11 2009-06-25 Giesecke & Devrient Gmbh Optically variable security element
GB0811991D0 (en) * 2008-07-01 2008-08-06 Scalar Technologies Ltd Authentication apparatus and methods
RU2011154114A (en) * 2009-06-10 2013-07-20 Байер Текнолоджи Сервисиз Гмбх IDENTIFICATION AND / OR AUTHENTICATION OF OBJECTS BASED ON THE PROPERTIES OF THEIR SURFACE
CN101718520B (en) * 2009-11-16 2011-01-05 浙江大学 System for quickly measuring surface quality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584214B1 (en) * 1999-04-23 2003-06-24 Massachusetts Institute Of Technology Identification and verification using complex, three-dimensional structural features
US20110043821A1 (en) * 2008-04-28 2011-02-24 Innovia Films Sarl Method of authenticating a polymer film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHOUDE CHANG ET AL: "Full-field optical coherence tomography used for security and document identity", DESIGN FOR MANUFACTURABILITY THROUGH DESIGN-PROCESS INTEGRATION III, vol. 6402, 27 September 2006 (2006-09-27), pages 64020Q, XP055566781, ISSN: 0277-786X, DOI: 10.1117/12.692733 *
STIFTER D: "Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography", APPLIED PHYSICS B ; LASERS AND OPTICS, SPRINGER, BERLIN, DE, vol. 88, no. 3, 10 August 2007 (2007-08-10), pages 337 - 357, XP019540594, ISSN: 1432-0649, DOI: 10.1007/S00340-007-2743-2 *

Also Published As

Publication number Publication date
CN103534735B (en) 2017-05-03
DE102011075943A1 (en) 2012-11-22
CN103534735A (en) 2014-01-22
EP2710564A1 (en) 2014-03-26
WO2012156274A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
EP2771868B1 (en) Method and device for examining a sheet-shaped or card-shaped valuable document having a security feature having one or more cavities
EP2208118B1 (en) Method and device for producing holograms having regions of different scattering characteristics and corresponding hologram
WO2004013817A2 (en) Device and document for processing security documents
DE10162537A1 (en) Procedure for ensuring the authenticity of documents
WO2012062505A1 (en) Method and device for producing colour images by way of a uv laser on pigmented substrates, and products produced as a result
EP3863863A1 (en) Diffractive security element
EP2710564B1 (en) Method and apparatus for verifying security documents using white light interferometry
EP2686173B1 (en) Security element having a 3d color effect and verification method and verification device for such a security element
DE102009017708B3 (en) A verification device and method for verifying security and diffractive security features of security documents
EP2724323B1 (en) Method and device for creating a document reference data set on the basis of a document
EP3789976B1 (en) Document authenticity testing method, computer program product, test device and data processing system
EP3984762A1 (en) Security element with window boom and method of manufacture
EP2394250B1 (en) Method and device for verifying document using a wavelet transformation
EP4037914A1 (en) Personalizing a plurality of security elements
EP3415339B1 (en) Method for the unique identifying of a document
EP2138322B1 (en) Valuable or security document with a safety marker
DE102005032704A1 (en) Sheet value document e.g. banknote, has code e.g. barcode read, in invisible spectral region, where barcode is codification of measurable properties of document and has materials including significant absorption in specific area
EP3117407A1 (en) Device and method for checking at least one security element of a security document
EP4209355A1 (en) Security document with micro-grid structure
EP4159464A1 (en) Angle-dependent printed concealed security element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016633

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1365462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016633

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1365462

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120510

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 12

Ref country code: DE

Payment date: 20230519

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 12