EP2707158B1 - Method for producing composite parts by means of a combination of deep drawing and impact extrusion - Google Patents

Method for producing composite parts by means of a combination of deep drawing and impact extrusion Download PDF

Info

Publication number
EP2707158B1
EP2707158B1 EP11735970.3A EP11735970A EP2707158B1 EP 2707158 B1 EP2707158 B1 EP 2707158B1 EP 11735970 A EP11735970 A EP 11735970A EP 2707158 B1 EP2707158 B1 EP 2707158B1
Authority
EP
European Patent Office
Prior art keywords
core material
elements
deep
blank
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11735970.3A
Other languages
German (de)
French (fr)
Other versions
EP2707158A1 (en
Inventor
Andreas Jäger
Stephan HÄNISCH
Stephan BRÖCKERHOFF
Erman Tekkaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dortmund
Original Assignee
Technische Universitaet Dortmund
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dortmund filed Critical Technische Universitaet Dortmund
Publication of EP2707158A1 publication Critical patent/EP2707158A1/en
Application granted granted Critical
Publication of EP2707158B1 publication Critical patent/EP2707158B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/22Making metal-coated products; Making products from two or more metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/203Deep-drawing of compound articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D49/00Sheathing or stiffening objects

Definitions

  • the invention relates to methods for the production of composite parts by a combination of deep drawing and extrusion according to the preamble of claim 1 (see, for example DE 10 2009 032435 A1 ).
  • the production of composite parts is becoming increasingly important due to the need to optimize the use of materials for the production of mass parts or even highly stressed components.
  • high-quality materials are becoming more and more expensive or less available in production, on the other hand, there is a need to design components that are more load-resistant, also with regard to the materials used. It often happens that certain material properties of the materials used are required only in certain areas of the components, whereas other or not so high material properties are sufficient in other areas.
  • Object of the present invention is therefore to provide a forming process for the production of components with different material properties, with the due to the transformation of a secure warranty of local material properties is possible.
  • the method concerning the invention is based on a method for producing a composite part formed from core material and wrapping material by means of an extrusion process.
  • a generic method is further developed in an inventive manner that in a first process step, the at least part of the procedurally formed composite part outside covering shell material is produced by a deep drawing of a sheet-shaped or tubular blank in which the core material as a stamp insert for deep drawing of Envelope material is used, wherein shell material and core material come into close surface contact with each other, and then the thus preformed intermediate form of the composite part of deep-drawn shell material and partially enclosed core material is subjected to a common extrusion process in which the final shape of the composite part is produced plastically reshaping.
  • the invention is a combination of deep drawing and extrusion molding to a novel process in which a sheet-like shell material is deep-drawn by means of a resting on the sheet-like shell material core material and then backfilled by extrusion.
  • the Core material assumes the function of a conventional deep-drawing die for the deep-drawing of the shell material, wherein the shell material is formed in a flow press, equipped with a punch, a die and a hold-down, for example, to a cup-shaped or cup-shaped body, which at least partially covers the core material on the outside and thus at least in sections determined in particular the surface properties of the composite part.
  • the transfer of the resulting composite part in the desired final contour is then carried out by extrusion of the thus produced intermediate stage of the composite part, for example by upsetting and / or pushing the intermediate stage of the composite part into or through the die.
  • the sheet-like shell material and the core material Due to the use of different materials for the sheet-like shell material and the core material, the method described for the production of components in which different requirements are placed on the local component properties. Examples of these requirements are a wear-resistant surface with low mass of the composite part or different thermal conductivities of core material and shell material.
  • the sheet-like design of the shell material and the deep-drawing process achieve very homogeneous and uniform material properties of the formed shell material, since the layer of shell material on the core material remains essentially unchanged in terms of material thickness and material properties relative to the blank of the shell material.
  • the layer of the wrapping material which determines at least parts of the outer shape of the composite part has homogeneous properties in itself and this is not disturbed by flow processes during forming.
  • an intimate composite material between shell material and core material by a material and / or positive connection, possibly also a frictional connection, by a separation of shell material and core material of the later composite part is reliably prevented.
  • the composite part is formed from at least one core material and at least one shell material.
  • the material properties of the core material and shell material can be selected according to the subsequent requirements of the composite steel and combined with each other, which of course is also conceivable, for example, the shell material multilayer design and about a wear-free surface on the later outside of the composite part by a correspondingly wear-free layer ensure, whereas on the inside of the wrapping material facing the core material, a layer is provided, which connects particularly well with the core material.
  • the core material itself can consist of several layers or sections or else of an inhomogeneous distribution of different materials which have different material properties.
  • core material and shell material may at least partially have different properties.
  • the covering material can be formed particularly resistant to abrasion, for example of a steel material, whereas the core material is lightweight, for example, made of a light metal.
  • the core material is lightweight, for example, made of a light metal.
  • the overall properties of the composite part have a high abrasion resistance in the outer region with a particularly low density and thus low weight in the core material.
  • the core material and / or the blank of the shell material may consist of a plastically deformable material, preferably a metallic material or a plastic.
  • plastically deformable material preferably a metallic material or a plastic.
  • plastically deformable plastics for wrapping material and / or core material.
  • other plastically deformable materials for use in the inventive method are conceivable.
  • the sheet-like blank of the wrapping material is held during the deep-drawing process between a die and a preferably segmented hold-down.
  • the deformation of the sheet-like blank by deep drawing is not significantly different from the known thermoforming sheet-like materials, which can be exercised by the example segmented hold down a targeted locally acting stress on the sheet-like blank of the shell material during deep drawing and thus a certain control of the flow of the sheet-shaped blank of the shell material is achieved.
  • the core material and the sheet-like blank of the wrapping material are positioned relative to each other and to the die, that the core material presses the sheet-like blank of the wrapping material into the die and deep-draws the sheet-like blank to form a suitable deep-drawing gap.
  • the formation of the deep-drawing gap depends primarily and thus the formation of the material flow of the sheet-like blank during deep drawing. This can be achieved, for example, by a corresponding positioning aid or by handling devices which position the core material relative to the die.
  • extrusion molding process for carrying out the extrusion molding, wherein the preformed intermediate form of the composite material of core material and deep-drawn shell material between the die, an upper punch pressing on the core material and an anvil in at least one forming process by backward extrusion and / or by forward extrusion and / or plastically deformed by transverse extrusion molding and / or by hollow extrusion molding (everting) to the desired final shape.
  • thermoformed shell material and / or the core material form elements or shapes, preferably undercuts, folds and / or openings or the like.
  • Provided or generated during deep drawing of the shell material become, at which core material and shell material connect form-fitting with each other.
  • the core material deformed during extruding flows into depressions, windows or similar openings of the wrapping material and thereby interlocks with the wrapping material in a form-fitting manner in addition to frictional engagement, if appropriate depressions, windows or similar openings are introduced in advance in the wrapping material or also produced in the thermoforming process become.
  • a solid material section is used as the core material.
  • a solid material portion such as a cylindrically shaped aluminum solid material is combined, for example, with a sheet-like steel material as a shell material, in which the solid material forms the stamp for deep-drawing deformation of the shell material as a core material and by an upper punch the blank of the shell material into the die suppressed.
  • thermoforming forming the massive core material will deform little to no, and thus be at least partially surrounded on the outside of the shell material. Due to their material properties, such as, for example, their elasticity and their surface properties, the covering material and this section of the core material will form a bond, which is then further solidified in the subsequent extrusion molding process.
  • the resulting intermediate form the composite part are further deformed by extrusion at least in sections, wherein both a transformation of the core material and a simultaneous deformation of core material and shell material by the extrusion can be done depending on the type of extrusion process used.
  • a transformation of the core material and a simultaneous deformation of core material and shell material by the extrusion can be done depending on the type of extrusion process used.
  • the bond between shell material and core material will further solidify or change.
  • the deep-drawn shell material can invest in the desired final shape non-positively and / or positively to the block-shaped core material in the extrusion. This alone makes it possible to achieve a secure bond between shell material and core material, which also ensures the hull material for a secure connection of shell material and core material without subsequent extrusion press processing.
  • the core material and the sheet-like blank of the shell material are at least partially covered with a coating of a lubricant.
  • Both deep drawing and extrusion require lubrication of the materials to be processed.
  • the workpieces are coated for this purpose in immersion baths over impregnated rollers or by spraying with a lubricant.
  • the blank of the shell material is only one-sided and the core material only partially coated with lubricant for the adjustment of the contact composite.
  • the core material and the sheet-like blank of the shell material are covered with an adhesion-increasing coating, at least in the area of direct contact.
  • Coatings of shell material and core material can be used to increase the bond (eg combination of aluminized steel sheet and aluminum core), which achieves particularly good adhesion of the shell material to the core material becomes.
  • an adhesion-increasing coating to perform an insulating or otherwise separating coating between shell material and core material, for example to influence a heat transfer or electrical contact between shell material and core material.
  • the sheet-like blank of the shell material is supplied in a strip or occasionally the forming process.
  • the blank of the shell material in the form of platinum stacks or pre-cut (by shear cutting or laser cutting) tapes provided in which the blank on the section in function of Carrier tape remains. If the blank of the wrapping material is in the form of blanks or blanks, the blank of the wrapping material can be fed to the process periodically via guides, stops and slides. If the blank of the wrapping material provided in the form of ribbons, the trimmed sheet metal strip can be periodically pulled through between the die and downholder and separated by deep drawing.
  • a segmented hold-down can be used for controlling the sheet feeder.
  • the ejection of the finished composite part takes place as in conventional extrusion by means of an ejector. This can be used during the deep drawing operation as a counter punch, which prevents bulging of the shell material in the region of the bottom of the composite part.
  • the core material is used as the core material.
  • the sheet-like shell material is the outer shell of the new composite part, the highly compacted chips form the core material or the filling.
  • Shell material and core material from eg pressed chips can consist of the same or different materials, the shell material determines the surface properties of the composite part.
  • the core material of self-compacting chips serves as a deep-drawing die.
  • a lightweight component having a solid surface can be produced.
  • Such a composite part thus closes the gap between light but less strong aluminum parts and steel components.
  • copper shavings can also be introduced in order, for example, to increase the thermal conductivity.
  • a mixture of aluminum and copper shavings is just as possible as a combination of other materials.
  • a filling with non-metallic materials or a combination of metal shavings and non-metallic filler material is also conceivable with regard to an improvement of lightweight components.
  • the accumulation of individual material elements can have structured material elements such as chips of very different characteristics (eg, turnings, milling chips, drill chips, etc.) and / or rather shapeless material elements such as grains or the like. It is important in this case above all that these material elements are able to establish a mechanical connection to one another when the core material formed in this way is compressed.
  • structured material elements such as chips of very different characteristics (eg, turnings, milling chips, drill chips, etc.) and / or rather shapeless material elements such as grains or the like. It is important in this case above all that these material elements are able to establish a mechanical connection to one another when the core material formed in this way is compressed.
  • a particularly advantageous embodiment can be achieved in that the accumulation of individual material elements is formed inhomogeneous, preferably having material elements of different properties.
  • the accumulation of individual material elements is formed inhomogeneous, preferably having material elements of different properties.
  • material elements made of copper are reinforced, whereas aluminum elements are provided in areas that are not so thermally relevant.
  • the accumulation of individual material elements may form a lamination of individual material elements of different properties, preferably layered along the longitudinal axis of the core material. Such stratification is technically easy to implement and often sufficient to adapt the material properties of the core material to the stresses of the composite part.
  • the accumulation of individual material elements in the forming is enclosed by a hollow mold into which a punch pressing on the material elements dips in and which pre-compacts the accumulation of individual material elements on the sheet-like blank of the wrapping material.
  • Such formation of the accumulation of individual material elements before forming can be effected, for example, by a ring which can simultaneously be used as a hold-down for deep-drawing the wrapping material and whose opening is e.g. filled with chips completely or partially. If now an auxiliary punch which fits into the opening of the mold is placed on this pile and the accumulation is compressed with the upper punch, the accumulation is precompressed and reduces its volume, the material elements such as e.g. the chips are connected together at the same time, e.g. weld or stick together locally or get caught.
  • the accumulation of individual material elements is precompressed by the upper punch until the sheet-like blank of the shell material has also largely deformed by deep drawing.
  • the pressure on the blank of the wrapping material by the densifying as described above Accumulation of the material elements will lead to a thermoforming of the blank from reaching the necessary stresses in the blank, so that then the precompression of the accumulation of individual material elements and the deep drawing process will occur in parallel, the pre-compressed accumulation of individual material elements used as a stamp insert for the deep drawing of the shell material
  • the pre-compaction then comes to an end with the completion of the deep-drawing process.
  • the resulting intermediate shape of the composite part is further deformed at least in sections by extrusion.
  • the final degree of compaction of the material elements compacted to the core material will depend on the degree of deformation during extrusion, so that after the pre-compression before and during deep drawing can achieve a further compression and thus improve the adhesion of the material elements to each other.
  • metal chips preferably untreated or pretreated chips from cutting processes or already precompressed chip chips
  • metal chips are used as the accumulation of individual material elements. It is of course also possible to use other metallic or non-metallic material elements that are structured or not structured. Also mixtures of such material elements and material elements made of different materials are conceivable. Of importance is that the accumulation of individual material elements is compressed until the material elements form a permanently solid composite, in particular the material elements are welded or glued together.
  • the composite of materials between chips and sheet metal in addition to deformations of casing material and material elements, also occurs due to composite material due to micro-welding or diffusion processes due to the high local pressures during forming. Tests for composite extrusion of aluminum turnings in a steel bowl have shown that the filling of the composite is very good, the chips have joined into a single piece and do not come out by themselves.
  • the compacted accumulation of individual material elements has a specifiable porosity or density.
  • the packing density of the accumulation of individual material elements can be selectively controlled, whereby the porosity or density of the core material of the composite part is determined depending on the resulting degree of compaction.
  • the porosity or density of the material elements compacted to the core material is changed by subsequent pore formation, preferably by foaming a pressed foam-forming material or melting meltable material elements.
  • a further process step can follow, in which the compacted core material is foamed chemically or physically or certain with incorporated constituents are removed, for example, thermally or chemically.
  • the porosity or density of the material elements compacted to the core material can be influenced by the shaping and / or densification and / or mixing of the material elements, e.g. through the targeted addition of lightweight supplements.
  • the properties of the material elements compressed to the core material may be affected by materials of other properties, preferably other conductivity, specific gravity, damping or the like.
  • the material elements to be compacted to the core material are enclosed by cylindrically shaped hollow sheet metal blanks and / or cover-like blanks which are arranged and deformed between the accumulation of individual material elements and the surrounding hollow shape or on the upper punch side end of the core material.
  • the sheet metal blank of the blank of the shell material known during deep drawing problems such as wrinkles and tears can occur.
  • This can be counteracted by a rolled to an (overlapping) tube and coated outside sheet metal blank (alternatively: a piece of pipe) is placed on the blank of the shell material. This is followed by filling with chips and the usual forming process.
  • an adaptation of the stamp is required.
  • a lid with corresponding radii can be positioned above the die. If the ejector moves upwards, the composite part produced is pressed against the cover and the sheet edges are bent inwards. The sheet thus completely encloses the core material. After removing the cover, the composite part can be ejected as usual.
  • FIG. 1 is a schematic representation of a first embodiment of the method according to the invention with a solid core material 3 and a sheet-like blank 1 of the shell material 2 as a stage plan during deep drawing of an end cup of a sheet-like blank 1 of the shell material 2 and subsequent backward extrusion shown.
  • the device for carrying out the method is constructed in basically known manner, so that only the procedural features of the device should be mentioned here.
  • the deep drawing of the blank 1 is effected by an upper punch 7, below which the solid core material 3 is arranged and initially rests on the blank 1.
  • the blank 1 of the wrapping material 2 is held or clamped and guided between the upper side of a die 4 provided with a drawing opening 6 and a hold-down 5, wherein the hold-down 5 can be configured as a segmented hold-down 5 and one in the plane of the blank 1 can exert locally controlled pressure on the blank 1.
  • an ejector 8 can be seen, which forms an abutment in forming the composite part 18 to be produced and ejects the finished composite part 18 back up from the drawing opening 6.
  • FIG. 1 In the upper left part of the figure FIG. 1 is the starting position before the start of the drawing operation of the sheet-shaped blank 1 of the enveloping material 2 to recognize, ie the solid core material 3 is without pressure on the blank 1 on. If the upper punch 7 and thus the solid core material 3 acting here as a stamp are pressed vertically from above into the die 4, the blank 1 is gradually pressed further and further into the drawing opening 6 of the die 4 and forms a bowl with a level bottom portion and an annular side wall.
  • core material 3 and shell material 2 Due to the dimensions of core material 3 and shell material 2, which are in diameter in differ about twice the sheet thickness of the blank 1 (at a slightly lower drawing gap results in an ironing), the core material 3 will move exactly centered in the drawing opening 6 and as described the cup-shaped deformation of the shell material 2 result.
  • the sheath material 2 is thereby deformed so that the side wall of the cup of the enveloping material 2 presses against the frontal surface of the core material 3 and rests tightly against this surface of the core material 3. This stage is in the lower left part of the figure FIG. 1 shown.
  • the composite of Kenmaterial 3 and wrapping material 2 thus produced is then further deformed by a backward extrusion.
  • the bottom portion of the cup-shaped deformed envelope material 2 rests on the ejector 8 and can not be pushed further into the pull opening 6.
  • the core material 3 pressurized by the upper punch 7 will swerve outwards and upwards, the core material 3 will virtually flow upwards past the upper punch 7, and an upper-side depression will be formed in the core material 3.
  • the core material 3 will likewise expand radially and thus further strengthen the bond with the wrapping material 2.
  • the composite part 18 is finished and can be ejected after retraction of the upper punch 7 of the ejector 8 upwards.
  • the covering material 2 arranged locally around the lower end of the core material 3 around the core material 3 determines the surface properties of the composite part 18 in this area.
  • the covering material may be made of a hard and abrasion-resistant material, such as e.g. Steel are formed, whereas the core material consists of a lightweight aluminum.
  • a lightweight composite part with locally high abrasion resistance can be generated.
  • FIG. 2 is only one stage of a variant of the method according to FIG. 1 shown with a deep-drawing of a front-side cup and subsequent full-forward extrusion.
  • a deeper cup or better already a kind of unilaterally closed sleeve deep-drawn, which is pressed completely through the opposite of the drawing opening 6 constricted extrusion opening 22 in the subsequent extrusion.
  • the composite part 18 is once again reduced in diameter and stretched.
  • FIG. 3 is a variant of the method according to FIG. 1 with a thermoforming of a tubular blank 1 of the wrapping material 2 and subsequent forward extrusion in the form of a staged plan.
  • a tubular shell material 2 is pushed onto the core material 3 and in a manner not shown analogous to the procedure according to FIG. 1 deep-drawn and then extruded.
  • the region of the resulting casing material 2 is arranged tapering down on a part of the outer circumference of the core material 3 of the composite part 18.
  • FIG. 4 is another embodiment of the method according to the invention with a heaped from individual material elements not shown in more detail core material 3 and a sheet-like blank 1 of the shell material 2 as a stage plan during deep drawing a front cup from the sheet-like blank 1 of the shell material 2 and subsequent forward extrusion shown.
  • the accumulation of the material elements can be formed, for example, from a heap of metal shavings, which are first filled loosely in a simultaneously taking over the function of the blank holder 5 hollow part 9 from above onto the blank 1.
  • the material elements can be varied in many ways in the manner already described above in terms of shape, material, distribution and formation of the heap.
  • an auxiliary plunger 10 is placed and pressed into the opening of the hollow part 9, presses on the top of the upper punch 7 again. If now the upper punch 7 is pressed down as already described, the accumulation of the material elements forming the core material 3 is precompressed and thus the volume of such core material 3 is reduced significantly. Due to the compression of the core material 3 forming accumulation of the material elements, the deep-drawing limit of the blank 1 of the enveloping material 2 is exceeded from a certain degree of compaction by the pressure and the blank 1 of the enveloping material 2 begins as before figure 1 described to deform to a kind of bowl. This stage is in the third part of the FIG. 4 shown.
  • the core material 3 forming accumulation of the material elements is not only compressed, but it comes on the one hand to local welds, entanglements and other fasteners between the individual material elements and on the other hand, the material elements are pressed into the cup-shaped shell material 2 in and also set this. It thus forms a solid composite material between deformed shell material 2 and core material.
  • the upper punch 7 is moved upwards and the auxiliary punch and the hollow part 9 are removed. Subsequently, the upper punch moves down again and presses the composite of core material 3 and shell material 2 against the constriction of the extrusion opening and deforms this composite further by forward extrusion. In this case, core material 3 and shell material 2 are at least partially or even completely reformed (during full-forward extrusion) and with each other, whereby the composite between core material 3 and shell material 2 further promoted and the core material 3 is further compressed.
  • FIG. 5 is a variant of the method according to FIG. 4 with a thermoforming of a tubular and a sheet-like blank 1 of the wrapping material and subsequent forward extrusion and back bending in the form of a staged plan.
  • the wrapping material 2 here consists of a tubular part 11 and a flat part 1, which are arranged adjacent to each other in the hollow part 9 and between the die 4 and hollow part 9.
  • the accumulation of the material elements of the core material 3 filled and pressed again by means of auxiliary plunger 10 and upper punch 7 in the die 4. This forms as in the middle part of the figure FIG.
  • a cover 12 is placed over the upper punch-side opening of the drawing die 4 and pressed from below with an ejector the largely finished composite part 18 up against the lid part 12.
  • the collar of the wrapping material 2 projecting upwards over the core material 3 bears against the inside of the cover part 12 and is pressed inwards, the core material completely or partially overlapping.
  • the resulting composite part is thus largely completely enclosed by the enveloping material 2.
  • FIG. 6 is a variant of the method according to FIG. 4 to recognize with storage of an insert part in the accumulation of individual material elements.
  • An additional insert part 14, for example, made of a highly thermally conductive copper material in the formed from an accumulation of material elements core material 3 is introduced by fitting it to the flat blank 1 of the shell material 2 and then, for example, from chips formed material elements are filled into the hollow part 9.
  • the material elements of the core material completely surround the insert part 14 except for the end face resting on the blank 1. During the subsequent deep drawing and extruding, not only the already described close bond between core material 3 and shell material 2 will form, but also the insert part is firmly surrounded and fixed by the material elements of the core material 3.
  • FIG. 6 can also be described in a further variant of the method according to FIG. 4 be used for storing a measuring wire in the accumulation of individual material elements, wherein instead of the insert part as in FIG. 6 a measuring wire 15 such as a measuring wire to be used as a strain gauge to be inserted into the core material and is deformed with. If this measuring wire is insulated from the core material 3, the mechanical stress in the form of strains or changes in shape of the composite part 18 can be detected on the finished composite part, for example via the resistance change of the measuring wire 15.
  • a measuring wire 15 such as a measuring wire to be used as a strain gauge to be inserted into the core material and is deformed with. If this measuring wire is insulated from the core material 3, the mechanical stress in the form of strains or changes in shape of the composite part 18 can be detected on the finished composite part, for example via the resistance change of the measuring wire 15.
  • FIG. 8 can also recognize a mechanical part such as a screw 16 in a variant of the method according to FIG. 4 by inserting a projecting through an opening 21 in the sheet-like shell material 2 above screw 16 in the accumulation of individual material elements.
  • the screw is inserted with the threaded portion through a previously introduced opening 21 in the blank 1 of the enveloping material 2 and protrudes from the underside of the blank 1 out.
  • the accumulation of individual material elements of the core material 3 is filled and compacted in the manner already described.
  • the threaded portion protrudes from the front side of the opening 21 of the shell material 2 of the composite part 18 and is safe and rotatably surrounded by the core material.
  • FIG. 9 is in a very schematic way a variant of the method according to FIG. 1 to recognize with a deep drawing of disc / platinum-shaped blanks of the shell material and simultaneous transverse extrusion, the main flow direction of the composite of core material 3 and shell material 2 extends transversely to the compression direction of the upper punch 7 and thereby radially outwardly projecting protuberances 17 are generated.
  • preformed blanks 1 in addition to the use of simple flat blanks 1 of the wrapping material, it is also conceivable to use preformed blanks 1, as these in the FIG. 10 are shown for various variants of the shaping of the sheet-like shell material 2 to form differently shaped composite parts 18.
  • perforated, cross-shaped or segmentally trimmed blanks 1 can be used, which transform due to the deformation during deep drawing and extrusion in correspondingly complex shaped, three-dimensional composite parts and surround the core material 3.
  • This idea can also be used to form, for example, tab-shaped form elements 19 from the wrapping material 2, as these as a variant of the method according to FIG. 4 for the formation of a laterally protruding tab in the FIG. 11 can be seen.
  • the per se round blank 1 is slotted for this, so that a tab 19 is formed.
  • This tab 19 can now be bent out after the reshaping of the composite part 18 already described.
  • a similar variant of the method according to FIG. 4 can also be used for the formation of a circumferential flange, as in FIG. 12 roughly indicated.
  • a region of the enveloping material 2 deforms outwardly like a flange 20, surrounding the core material 3 so as to protrude radially outwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft Verfahren zur Fertigung von Verbundteilen durch eine Kombination aus Tiefziehen und Fließpressen gemäß Oberbegriff des Anspruchs 1 (siehe z.B. DE 10 2009 032435 A1 ). Die Herstellung von Verbundteilen erhält immer mehr zunehmende Bedeutung durch die Notwendigkeit, den Materialeinsatz für die Herstellung von Massenteilen oder auch hoch beanspruchten Bauteilen zu optimieren. Zum einen werden hochwertige Materialien in der Gewinnung immer teurer oder schlechter verfügbar, zum anderen besteht Bedarf danach, Bauteile gezielt belastungsgerechter auch hinsichtlich der verwendeten Materialien zu gestalten. Dabei kommt es häufig vor, dass bestimmte Materialeigenschaften der verwendeten Materialien nur in bestimmten Bereichen der Bauteile benötigt werden, wohingegen in anderen Bereichen andere oder nicht so hohe Materialeigenschaften ausreichend sind. So ist es z.B. bei gehärteten Bauteilen schon seit langem üblich, durch metallurgische Prozesse gezielt eine Härtung von Materialien nur in den z.B. abrasiv beanspruchten Bereichen vorzunehmen und andere Bereiche nicht zu härten. Ähnlich geht man z.B. auch bei der Beschichtung von Bauteilen vor, bei der z.B. chemisch beanspruchte Bauteile gezielt nur in den die Materialeigenschaften beeinträchtigenden Bereichen mit einem Schutzüberzug versehen werden.The invention relates to methods for the production of composite parts by a combination of deep drawing and extrusion according to the preamble of claim 1 (see, for example DE 10 2009 032435 A1 ). The production of composite parts is becoming increasingly important due to the need to optimize the use of materials for the production of mass parts or even highly stressed components. On the one hand, high-quality materials are becoming more and more expensive or less available in production, on the other hand, there is a need to design components that are more load-resistant, also with regard to the materials used. It often happens that certain material properties of the materials used are required only in certain areas of the components, whereas other or not so high material properties are sufficient in other areas. It has long been customary for hardened components, for example, to undertake metallurgical processes in a targeted manner to cure materials only in, for example, abrasive areas and not to harden other areas. Similarly, for example, in the coating of components in which, for example, chemically stressed components are specifically provided only in the material properties affecting areas with a protective coating.

Solche inhomogen über das Bauteil unterschiedlichen Materialeigenschaften werden zunehmend auch für metallische Bauteile gefordert, die aus massiven Rohlingen oder auch aus Blechen hergestellt werden. So ist es z.B. aus der Veröffentlichung " Pressure Welding of Corrosion Resistant Metals by Cold Extrusion" aus Journal of Materials Processing Technology 45 (1994), Seite 275-280 bekannt, durch Kaltmassivumformung bimetallische rohrförmige, napfförmige oder massive Bauteile herzustellen. Hierzu werden zwei verschiedene vorgeformte massive oder rohrförmige Rohlinge in eine vorbestimmte Lage zueinander gebracht und durch Vorwärts- oder Rückwärtsfließpressen in einer gemeinsamen Matrize durch das Einwirken eines Stempels umgeformt. Durch die plastische Umformung der Materialien beim Fließpressen verbinden sich die beiden auch unterschiedlichen Materialien miteinander und werden gleichzeitig in die neue Form gebracht. Allerdings sind die Umformvorgänge bei diesem Fließpressen recht komplex und damit auch die Fließvorgänge der beiden beteiligten Materialien, so dass über die genaue Verteilung der Materialien in dem hergestellten Bauteil und damit über die lokalen Materialeigenschaften nur bedingt Aussagen möglich sind.Such inhomogeneous over the component different material properties are increasingly required for metallic components that are made of solid blanks or sheets. So it is for example from the publication " Pressure Welding of Corrosion Resistant Metals by Cold Extrusion "from Journal of Materials Processing Technology 45 (1994), pages 275-280 known to produce bimetallic tubular, cup-shaped or solid components by cold mass forming. For this purpose, two different preformed solid or tubular blanks are brought into a predetermined position to each other and by forward or Reverse extrusion in a common die reshaped by the action of a punch. Due to the plastic deformation of the materials during extrusion, the two different materials combine with each other and are simultaneously brought into the new shape. However, the forming processes in this extrusion are quite complex and thus the flow processes of the two materials involved, so that only limited statements are possible on the exact distribution of the materials in the manufactured component and thus on the local material properties.

Aufgabe der vorliegenden Erfindung ist es daher, ein Umformverfahren für die Herstellung von Bauteilen mit unterschiedlichen Materialeigenschaften anzugeben, mit dem aufgrund der Umformung eine sichere Gewährleistung von lokalen Materialeigenschaften möglich ist.Object of the present invention is therefore to provide a forming process for the production of components with different material properties, with the due to the transformation of a secure warranty of local material properties is possible.

Die Lösung der erfindungsgemäßen Aufgabe ergibt sich hinsichtlich des Verfahrens aus den Merkmalen des Anspruchs 1. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.The solution of the object of the invention results in terms of the method of the features of claim 1. Further advantageous embodiments of the invention will become apparent from the dependent claims.

Das die Erfindung betreffende Verfahren geht aus von einem Verfahren zur Fertigung eines aus Kernmaterial und Hüllmaterial gebildeten Verbundteils mittels eines Fließpressvorgangs. Ein derartiges gattungsgemäßes Verfahren wird dadurch in erfinderischer Weise weiter entwickelt, dass in einem ersten Verfahrensschritt das zumindest einen Teil des verfahrensmäßig gebildeten Verbundteils außenseitig bedeckende Hüllmaterial durch einen Tiefziehvorgang aus einem blechförmigen oder rohrförmigen Rohling hergestellt wird, bei dem das Kernmaterial als Stempeleinsatz für das Tiefziehen des Hüllmaterials verwendet wird, wobei Hüllmaterial und Kernmaterial in engen Oberflächenkontakt miteinander kommen, und anschließend die derart vorgeformte Zwischenform des Verbundteils aus tiefgezogenem Hüllmaterial und teilweise umschlossenen Kernmaterial einem gemeinsamen Fliesspressvorgang unterworfen wird, bei dem die Endform des Verbundteils plastisch umformend hergestellt wird. Bei der Erfindung handelt es sich um eine Verfahrenskombination aus Tiefziehen und Fließpressen zu einem neuartigen Verfahren, bei dem ein blechförmiges Hüllmaterial mittels eines auf dem blechförmigen Hüllmaterial aufliegenden Kernmaterials tiefgezogen und anschließend durch Fließpressen hinterfüllt wird. Das Kernmaterial übernimmt hierbei für das Tiefziehen des Hüllmaterials die Funktion eines herkömmlichen Tiefziehstempels, wobei das Hüllmaterials in einer Fließpresse, ausgestattet mit einem Oberstempel, einer Matrize und einem Niederhalter, z.B. zu einem napfförmigen oder schalenförmigen Körper umgeformt wird, der das Kernmaterial zumindest abschnittsweise außenseitig überdeckt und damit zumindest abschnittsweise insbesondere die Oberflächeneigenschaften des Verbundteils bestimmt. Die Überführung des resultierenden Verbundteils in die gewünschte Endkontur erfolgt anschließend durch ein Fließpressen des so hergestellten Zwischenstadiums des Verbundteils, z.B. durch Aufstauchen und/oder Durchdrücken des Zwischenstadiums des Verbundteils in die bzw. durch die Matrize. Durch den Einsatz unterschiedlicher Werkstoffe für das blechförmige Hüllmaterial und das Kernmaterial eignet sich das beschriebene Verfahren zur Fertigung von Bauteilen, bei denen unterschiedliche Anforderungen an die lokalen Bauteileigenschaften gestellt werden. Beispiele für diese Anforderungen sind eine verschleißfeste Oberfläche bei geringer Masse des Verbundteils oder unterschiedliche Wärmeleitfähigkeiten von Kernmaterial und Hüllmaterial. Durch die blechförmige Ausgestaltung des Hüllmaterials und den Tiefziehprozess werden sehr homogene und gleichmäßige Materialeigenschaften des umgeformten Hüllmaterials erreicht, da die Schicht des Hüllmaterials auf dem Kernmaterial hinsichtlich Materialdicke und Materialeigenschaften im wesentlichen gegenüber dem Zuschnitt des Hüllmaterials unverändert bleibt. Damit ist gewährleistet, dass die zu mindestens Teile der Außenform des Verbundteils bestimmende Schicht des Hüllmaterials in sich homogene Eigenschaften aufweist und dies nicht durch Fließvorgänge bei der Umformung gestört wird. Gleichzeitig bildet sich durch die nach dem Tiefziehen ausgeführte Bearbeitung mittels Fließpressen ein inniger Werkstoffverbund zwischen Hüllmaterial und Kernmaterial durch einen Stoff- und/oder Formschluss, ggf. auch einen Kraftschluss, durch den eine Trennung von Hüllmaterial und Kernmaterial des späteren Verbundteils sicher verhindert wird. Damit lassen sich die Werkstoffeigenschaften von Hüllmaterial und Kernmaterial am späteren Verbundteil sehr gezielt einstellen und gewährleisten, dass die Kombinationseigenschaften des Verbundteils den Anforderungen entsprechen.
In einer ersten vorteilhaften Ausgestaltung ist es denkbar, dass das Verbundteil aus mindestens einem Kernmaterial und mindestens einem Hüllmaterial gebildet wird.
The method concerning the invention is based on a method for producing a composite part formed from core material and wrapping material by means of an extrusion process. Such a generic method is further developed in an inventive manner that in a first process step, the at least part of the procedurally formed composite part outside covering shell material is produced by a deep drawing of a sheet-shaped or tubular blank in which the core material as a stamp insert for deep drawing of Envelope material is used, wherein shell material and core material come into close surface contact with each other, and then the thus preformed intermediate form of the composite part of deep-drawn shell material and partially enclosed core material is subjected to a common extrusion process in which the final shape of the composite part is produced plastically reshaping. In the invention, it is a combination of deep drawing and extrusion molding to a novel process in which a sheet-like shell material is deep-drawn by means of a resting on the sheet-like shell material core material and then backfilled by extrusion. The Core material assumes the function of a conventional deep-drawing die for the deep-drawing of the shell material, wherein the shell material is formed in a flow press, equipped with a punch, a die and a hold-down, for example, to a cup-shaped or cup-shaped body, which at least partially covers the core material on the outside and thus at least in sections determined in particular the surface properties of the composite part. The transfer of the resulting composite part in the desired final contour is then carried out by extrusion of the thus produced intermediate stage of the composite part, for example by upsetting and / or pushing the intermediate stage of the composite part into or through the die. Due to the use of different materials for the sheet-like shell material and the core material, the method described for the production of components in which different requirements are placed on the local component properties. Examples of these requirements are a wear-resistant surface with low mass of the composite part or different thermal conductivities of core material and shell material. The sheet-like design of the shell material and the deep-drawing process achieve very homogeneous and uniform material properties of the formed shell material, since the layer of shell material on the core material remains essentially unchanged in terms of material thickness and material properties relative to the blank of the shell material. This ensures that the layer of the wrapping material which determines at least parts of the outer shape of the composite part has homogeneous properties in itself and this is not disturbed by flow processes during forming. At the same time formed by the deep-drawing machining by extrusion an intimate composite material between shell material and core material by a material and / or positive connection, possibly also a frictional connection, by a separation of shell material and core material of the later composite part is reliably prevented. This allows the material properties of shell material and core material on the later composite part set very specific and ensure that the combination properties of the composite part meet the requirements.
In a first advantageous embodiment, it is conceivable that the composite part is formed from at least one core material and at least one shell material.

Hierbei können die Materialeigenschaften von Kernmaterial und Hüllmaterial entsprechend den späteren Anforderungen an das Verbundstahl ausgewählt und miteinander kombiniert werden, wobei selbstverständlich auch denkbar ist, zum Beispiel das Hüllmaterial mehrschichtig auszugestalten und etwa eine verschleißfreie Oberfläche auf der späteren Außenseite des Verbundteils durch eine entsprechend verschleißfreie Schicht zu gewährleisten, wohingegen auf der dem Kernmaterial zugewandten Innenseite des Hüllmaterials eine Schicht vorgesehen wird, die sich besonders gut mit dem Kernmaterial verbindet. Ebenfalls kann das Kernmaterial selbst aus mehreren Schichten oder Abschnitten oder auch aus einer inhomogenen Verteilung unterschiedlicher Werkstoffe bestehen, die unterschiedliche Werkstoffeigenschaften aufweisen. So wäre es beispielsweise denkbar, ein Stahlmaterial mit hoher Zähigkeit mit einem Stahlmaterial hoher Festigkeit zu einem Kernmaterial vorab zu verbinden, das dann in beschriebener Weise mit dem Hüllmaterial verbunden wird.Here, the material properties of the core material and shell material can be selected according to the subsequent requirements of the composite steel and combined with each other, which of course is also conceivable, for example, the shell material multilayer design and about a wear-free surface on the later outside of the composite part by a correspondingly wear-free layer ensure, whereas on the inside of the wrapping material facing the core material, a layer is provided, which connects particularly well with the core material. Likewise, the core material itself can consist of several layers or sections or else of an inhomogeneous distribution of different materials which have different material properties. Thus, for example, it would be conceivable to pre-bond a high-strength steel material with a high-strength steel material to a core material, which is then bonded to the shell material in the manner described.

Von Bedeutung ist hierbei insbesondere, dass Kernmaterial und Hüllmaterial zumindest teilweise unterschiedliche Eigenschaften aufweisen können. So kann beispielsweise das Hüllmaterial besonders abriebfest ausgebildet werden, zum Beispiel aus einem Stahlmaterial, wohingegen das Kernmaterial leichtgewichtig etwa aus einem Leichtmetall besteht. Hierdurch kann gewährleistet werden, dass die Gesamteigenschaften des Verbundteils eine hohe Abriebfestigkeit im Außenbereich mit besonders geringer Dichte und damit geringem Gewicht im Kernmaterial aufweisen. Es versteht sich von selbst, dass sehr unterschiedliche Kombinationen unterschiedlicher Eigenschaften von Kernmaterial und Hüllmaterial denkbar sind, abhängig vom Einsatzzweck des Verbundteils und den zur Verfügung stehenden Eigenschaften von Kernmaterial und Hüllmaterial.Of particular importance here is that core material and shell material may at least partially have different properties. Thus, for example, the covering material can be formed particularly resistant to abrasion, for example of a steel material, whereas the core material is lightweight, for example, made of a light metal. In this way it can be ensured that the overall properties of the composite part have a high abrasion resistance in the outer region with a particularly low density and thus low weight in the core material. It goes without saying that very different combinations of different properties of core material and shell material are conceivable, depending on the intended use of the composite part and the available properties of core material and shell material.

Von besonderer Bedeutung ist es, dass das Kernmaterial und/oder der Rohling des Hüllmaterials aus einem plastisch umformbaren Werkstoff, vorzugsweise einem metallischen Werkstoff oder einem Kunststoff bestehen kann. Von Wichtigkeit ist hierbei insbesondere die plastische Umformung des Materials von Kernmaterial und Hüllmaterial, da hierdurch der innige Werkstoffverbund nach dem Fließpressen hergestellt werden kann. Ein Schwerpunkt der Anwendung des erfindungsgemäßen Verfahrens liegt sicherlich in der Verwendung metallischer Werkstoffe für Hüllmaterial und Kernmaterial, doch ist es auch denkbar, zum Beispiel plastisch umformbare Kunststoffe für Hüllmaterial und/oder Kernmaterial zu verwenden. Auch sind andere, plastisch verformbare Materialien für die Verwendung bei dem erfindungsgemäßen Verfahren denkbar.Of particular importance is that the core material and / or the blank of the shell material may consist of a plastically deformable material, preferably a metallic material or a plastic. Of particular importance here is in particular the plastic deformation of the material of core material and shell material, since in this way the intimate composite material can be produced after extrusion. A focus of application of the method of the invention is certainly the use of metallic materials for shell material and core material, but it is also conceivable, for example plastically deformable plastics for wrapping material and / or core material. Also, other plastically deformable materials for use in the inventive method are conceivable.

In weiterer Ausgestaltung ist es vorteilhaft, wenn der blechförmige Rohling des Hüllmaterials beim Tiefziehvorgang zwischen einer Matrize und einem, vorzugsweise segmentierten Niederhalter gehaltert wird. Hierbei unterscheidet sich die Umformung des blechförmigen Rohlings durch Tiefziehen nicht wesentlich von dem bekannten Tiefziehen blechförmiger Materialien, wobei durch den zum Beispiel segmentierten Niederhalter eine gezielte lokal wirkende Spannung auf den blechförmigen Rohling des Hüllmaterials beim Tiefziehen ausgeübt werden kann und damit eine gewisse Steuerung des Fließens des blechförmigen Rohlings des Hüllmaterials erreicht wird.In a further embodiment, it is advantageous if the sheet-like blank of the wrapping material is held during the deep-drawing process between a die and a preferably segmented hold-down. In this case, the deformation of the sheet-like blank by deep drawing is not significantly different from the known thermoforming sheet-like materials, which can be exercised by the example segmented hold down a targeted locally acting stress on the sheet-like blank of the shell material during deep drawing and thus a certain control of the flow of the sheet-shaped blank of the shell material is achieved.

Weiterhin ist es denkbar, dass das Kernmaterial und der blechförmige Rohling des Hüllmaterials derart zueinander und zu der Matrize positioniert werden, dass das Kernmaterial unter Bildung eines passenden Tiefziehspaltes den blechförmigen Rohling des Hüllmaterials in die Matrize drückt und den blechförmigen Rohling dabei tiefzieht. Von dieser Positionierung von Kernmaterial und blechförmigen Rohling des Hüllmaterials zueinander und zu der Matrize hängt die Ausbildung des Tiefziehspaltes vorrangig ab und damit auch die Ausbildung des Materialflusses des blechförmigen Rohlings beim Tiefziehen. Dies kann beispielsweise durch eine entsprechende Positionierhilfe oder durch Handhabungseinrichtungen erreicht werden, die das Kernmaterial relativ zu der Matrize positionieren.Furthermore, it is conceivable that the core material and the sheet-like blank of the wrapping material are positioned relative to each other and to the die, that the core material presses the sheet-like blank of the wrapping material into the die and deep-draws the sheet-like blank to form a suitable deep-drawing gap. From this positioning of core material and sheet-like blank of the shell material to each other and to the die, the formation of the deep-drawing gap depends primarily and thus the formation of the material flow of the sheet-like blank during deep drawing. This can be achieved, for example, by a corresponding positioning aid or by handling devices which position the core material relative to the die.

Für die Durchführung des Fließpressens sind verschiedene Ausgestaltungen des Fließpressvorgangs denkbar, wobei die vorgeformte Zwischenform des Verbundteils aus Kernmaterial und tiefgezogenem Hüllmaterial zwischen Matrize, einem auf das Kernmaterial drückenden Oberstempel und einem Gegenhalter in mindestens einem Umformprozess durch Rückwärts-Fließpressen und/oder durch Vorwärts-Fließpressen und/oder durch Querfließpressen und/oder durch Hohlfließpressen (Stülpziehen) auf die gewünschte Endform plastisch umgeformt wird. Je nach der Form des herzustellenden Verbundteils und der Ausgangsform des Kernmaterials kann ein einzelnes der vorstehend genannten Fließpressverfahren oder auch eine Kombination von zwei oder mehreren derartigen Fließpressverfahren zum Einsatz kommen, auch ist es denkbar, das Fließpressen in mehreren Stufen nacheinander auszuführen.Various embodiments of the extrusion molding process are conceivable for carrying out the extrusion molding, wherein the preformed intermediate form of the composite material of core material and deep-drawn shell material between the die, an upper punch pressing on the core material and an anvil in at least one forming process by backward extrusion and / or by forward extrusion and / or plastically deformed by transverse extrusion molding and / or by hollow extrusion molding (everting) to the desired final shape. Depending on the shape of the composite part to be produced and the starting shape of the core material, it is possible to use a single one of the abovementioned extrusion molding processes or else a combination of two or more such extrusion molding processes come, it is also conceivable to carry out the extrusion in several stages in succession.

Für die sichere Verbindung von Kernmaterial und Hüllmaterial des Verbundteils ist es von besonderem Vorteil, wenn in oder an dem tiefgezogenen Hüllmaterial und/oder dem Kernmaterial Formelemente oder Formgebungen, vorzugsweise Hinterschnitte, Falten und/oder Durchbrüche oder dgl. vorgesehen oder beim Tiefziehen des Hüllmaterials erzeugt werden, an denen sich Kernmaterial und Hüllmaterial formschlüssig miteinander verbinden. Neben der reinen kraftschlüssigen Verbindung von Hüllmaterial und Kernmaterial aufgrund des Fließpressens und aufgrund unterschiedlicher Werkstoffelastizitäten kann der Werkstoffverbund durch einen Stoffverbund infolge wirkender Flächenpressungen und Diffusionsvorgänge, durch Hinterschnitte oder Werkstückumfließungen (wofür zum Beispiel das Hüllmaterial mit entsprechenden Durchbrüchen zu versehen ist) passend zu den entsprechenden Anforderungen eingestellt werden. So fließt beispielsweise das beim Fließpressen verformte Kernmaterial in Vertiefungen, Fenster oder dergleichen Öffnungen des Hüllmaterials hinein und verhakt sich dadurch neben einem Kraftschluss auch formschlüssig mit dem Hüllmaterial, wenn entsprechende Vertiefungen, Fenster oder dergleichen Öffnungen in dem Hüllmaterial vorab eingebracht oder auch bei der Tiefziehbearbeitung hergestellt werden.For the secure connection of core material and shell material of the composite part, it is particularly advantageous if in or on the thermoformed shell material and / or the core material form elements or shapes, preferably undercuts, folds and / or openings or the like. Provided or generated during deep drawing of the shell material become, at which core material and shell material connect form-fitting with each other. In addition to the pure frictional connection of shell material and core material due to extrusion and due to different material elasticities of the composite material by a composite due to acting surface pressures and diffusion processes, by undercuts or Werkstückumfließungen (for which, for example, the shell material is to be provided with appropriate breakthroughs) to match the appropriate requirements be set. Thus, for example, the core material deformed during extruding flows into depressions, windows or similar openings of the wrapping material and thereby interlocks with the wrapping material in a form-fitting manner in addition to frictional engagement, if appropriate depressions, windows or similar openings are introduced in advance in the wrapping material or also produced in the thermoforming process become.

In einer ersten vorteilhaften Ausgestaltung ist es denkbar, dass als Kernmaterial ein massiver Materialabschnitt verwendet wird. Ein solcher massiver Materialabschnitt, etwa ein zylindrisch ausgebildetes Aluminium-Vollmaterial wird beispielsweise mit einem blechförmigen Stahlmaterial als Hüllmaterial kombiniert, in dem das Vollmaterial als Kernmaterial den Stempel für die Tiefzieh-Umformung des Hüllmaterials bildet und durch einen Oberstempel den Rohling des Hüllmaterials in die Matrize hinein drückt. Bei dieser Tiefzieh-Umformung wird sich das massive Kernmaterial wenig bis gar nicht verformen und damit zumindest abschnittsweise außenseitig von dem Hüllmaterial umgeben werden. Das Hüllmaterial und dieser Abschnitt des Kernmaterials werden dabei aufgrund ihrer Materialeigenschaften wie zum Beispiel ihrer Elastizität und ihrer Oberflächeneigenschaften einen Verbund eingehen, der dann bei der nachfolgenden Fließpress-Bearbeitung weiter verfestigt wird. Hierbei kann in weiterer Ausgestaltung nach dem Abschluss des Tiefziehvorgangs die entstandene Zwischenform des Verbundteils durch ein Fließpressen zumindest abschnittsweise weiter verformt werden, wobei abhängig von der verwendeten Verfahrensart des Fließpressens sowohl eine Umformung allein des Kernmaterials als auch eine gleichzeitige Umformung von Kernmaterial und Hüllmaterial durch das Fließpressen erfolgen kann. So ist es beispielsweise denkbar, das Kernmaterial nur in dem nicht von dem Hüllmaterial umgebenen Bereich zum Beispiel durch ein Rückwärts-Fließpressen umzuformen, wohingegen ein Vorwärts-Fließpressen von Kernmaterial und Hüllmaterial die gesamte Zwischenform des Verbundteils noch einmal gemeinsam umformen kann. Abhängig hiervon wird sich auch der Verbund zwischen Hüllmaterial und Kernmaterial weiter verfestigen oder verändern.In a first advantageous embodiment, it is conceivable that a solid material section is used as the core material. Such a solid material portion, such as a cylindrically shaped aluminum solid material is combined, for example, with a sheet-like steel material as a shell material, in which the solid material forms the stamp for deep-drawing deformation of the shell material as a core material and by an upper punch the blank of the shell material into the die suppressed. In this thermoforming forming the massive core material will deform little to no, and thus be at least partially surrounded on the outside of the shell material. Due to their material properties, such as, for example, their elasticity and their surface properties, the covering material and this section of the core material will form a bond, which is then further solidified in the subsequent extrusion molding process. In this case, in a further embodiment after completion of the deep-drawing process, the resulting intermediate form the composite part are further deformed by extrusion at least in sections, wherein both a transformation of the core material and a simultaneous deformation of core material and shell material by the extrusion can be done depending on the type of extrusion process used. For example, it is conceivable to reform the core material only in the area not surrounded by the shell material, for example by backward extrusion, whereas forward extrusion of core material and shell material may reshape the entire intermediate form of the composite part together once again. Depending on this, the bond between shell material and core material will further solidify or change.

Von besonderer Bedeutung ist es für das Fließpressen, dass das tiefgezogene Hüllmaterial sich bei dem Fließpressen auf die gewünschte Endform kraftschlüssig und/oder formschlüssig an das blockförmige Kernmaterial anlegen kann. Schon allein hierdurch ist ein sicherer Verbund von Hüllmaterial und Kernmaterial erreichbar, der auch ohne eine nachfolgende Fließpress-Bearbeitung auch des Hüllmaterials für eine sichere Verbindung von Hüllmaterial und Kernmaterial sorgt.It is of particular importance for the extruding that the deep-drawn shell material can invest in the desired final shape non-positively and / or positively to the block-shaped core material in the extrusion. This alone makes it possible to achieve a secure bond between shell material and core material, which also ensures the hull material for a secure connection of shell material and core material without subsequent extrusion press processing.

Für die Durchführung sowohl des Tiefziehens als auch des Fließpressens ist es von Vorteil, wenn das Kernmaterial und der blechförmige Rohling des Hüllmaterials zumindest abschnittsweise mit einer Beschichtung aus einem Schmiermittel bedeckt werden. Sowohl das Tiefziehen als auch das Fließpressen erfordern eine Schmierung der zu verarbeitenden Materialien. Konventionell werden die Werkstücke hierzu in Tauchbädern über getränkte Walzen oder durch Besprühen mit einem Schmierstoff beschichtet. Für die Einstellung des Kontaktverbundes ist im erfindungsgemäßen Verfahren der Rohling des Hüllmaterials nur einseitig und das Kernmaterial nur partiell mit Schmierstoff zu beschichten.For the implementation of both the deep drawing and extrusion molding, it is advantageous if the core material and the sheet-like blank of the shell material are at least partially covered with a coating of a lubricant. Both deep drawing and extrusion require lubrication of the materials to be processed. Conventionally, the workpieces are coated for this purpose in immersion baths over impregnated rollers or by spraying with a lubricant. In the process according to the invention, the blank of the shell material is only one-sided and the core material only partially coated with lubricant for the adjustment of the contact composite.

In einer anderen Ausgestaltung ist es auch denkbar, dass das Kernmaterial und der blechförmige Rohling des Hüllmaterials zumindest im Bereich des direkten Kontaktes miteinander mit einer haftungserhöhenden Beschichtung bedeckt werden. Zur Erhöhung des Verbundes können Beschichtungen von Hüllmaterial und Kernmaterial Anwendung finden (z.B. Kombination aluminiertes Stahlblech und Aluminium Kern), durch die eine besonders gute Haftung des Hüllmaterials an dem Kernmaterial erreicht wird. Auch wäre es zum Beispiel denkbar, alternativ oder zusätzlich zu einer haftungserhöhenden Beschichtung eine isolierende oder sonst wie trennende Beschichtung zwischen Hüllmaterial und Kernmaterial vorzunehmen, zum Beispiel um einen Wärmeübergang oder einen elektrischen Kontakt zwischen Hüllmaterial und Kernmaterial zu beeinflussen.In another embodiment, it is also conceivable that the core material and the sheet-like blank of the shell material are covered with an adhesion-increasing coating, at least in the area of direct contact. Coatings of shell material and core material can be used to increase the bond (eg combination of aluminized steel sheet and aluminum core), which achieves particularly good adhesion of the shell material to the core material becomes. It would also be conceivable, for example, alternatively or in addition to an adhesion-increasing coating to perform an insulating or otherwise separating coating between shell material and core material, for example to influence a heat transfer or electrical contact between shell material and core material.

Für die automatische Herstellung entsprechender Verbundteile ist es von Vorteil, wenn der blechförmige Rohling des Hüllmaterials in einem Streifen oder vereinzelt dem Umformvorgang zugeführt wird. Zur Einbindung des Tiefziehprozesses in den Fließpressprozess (beide Verfahren sind im industriellen Einsatz weitestgehend automatisiert) ist eine Bereitstellung des Rohlings des Hüllmaterials in Form von Platinenstapeln oder vorgestanzten (durch Scherschneiden bzw. durch Laserbeschneiden) Bändern vorgesehen, bei denen der Zuschnitt am Abschnitt in Funktion eines Trägerbandes verbleibt. Liegt der Rohling des Hüllmaterials in Form von Ronden oder Platinen vor, kann der Rohling des Hüllmaterials dem Prozess periodisch über Führungen, Anschläge und Schieber zugeführt werden. Wird der Rohling des Hüllmaterials in Form von Bändern bereitgestellt, kann das beschnittene Blechband periodisch zwischen Matrize und Niederhalter durchgezogen und durch das Tiefziehen vereinzelt werden. Zur Entfernung von am Blechzuschnitt verbleibenden Graten können hier zusätzlich Bürsten oder rotierende Schleifkörper integriert werden. Zur Steuerung des Blecheinzuges kann ein segmentierter Niederhalter Anwendung finden. Der Auswurf des fertigen Verbundteils erfolgt wie beim konventionellen Fließpressen mittels eines Auswerfers. Dieser kann während der Tiefziehoperation als Gegenstempel eingesetzt werden, der ein Aufwölben des Hüllmaterials im Bereich des Bodens des Verbundteils verhindert.For the automatic production of corresponding composite parts, it is advantageous if the sheet-like blank of the shell material is supplied in a strip or occasionally the forming process. To integrate the deep-drawing process in the extrusion process (both methods are largely automated in industrial use) is a provision of the blank of the shell material in the form of platinum stacks or pre-cut (by shear cutting or laser cutting) tapes provided in which the blank on the section in function of Carrier tape remains. If the blank of the wrapping material is in the form of blanks or blanks, the blank of the wrapping material can be fed to the process periodically via guides, stops and slides. If the blank of the wrapping material provided in the form of ribbons, the trimmed sheet metal strip can be periodically pulled through between the die and downholder and separated by deep drawing. In order to remove burrs remaining on the blank, additional brushes or rotating grinding tools can be integrated here. For controlling the sheet feeder, a segmented hold-down can be used. The ejection of the finished composite part takes place as in conventional extrusion by means of an ejector. This can be used during the deep drawing operation as a counter punch, which prevents bulging of the shell material in the region of the bottom of the composite part.

In einer anderen vorteilhaften Ausgestaltung ist es auch denkbar, dass als Kernmaterial eine Anhäufung von einzelnen Materialelementen, vorzugsweise von metallischen Spänen oder dgl. Materialelementen verwendet wird. Hierdurch wird die Herstellung von massiven Verbundteilen aus z.B. Spänen und Blechen möglich. Das blechförmige Hüllmaterial wird dabei zur äußeren Hülle des neuen Verbundteils, die stark verdichteten Späne bilden das Kernmaterial bzw. die Füllung. Hüllmaterial und Kernmaterial aus z.B. gepressten Spänen können dabei aus dem gleichen oder aus unterschiedlichen Werkstoffen bestehen, das Hüllmaterial bestimmt die Oberflächeneigenschaften des Verbundteils. Während des Umformprozesses dient das Kernmaterial aus sich verdichtenden Spänen als Tiefziehstempel. Die Vorteile der durch dieses Verfahren hergestellten Verbundteile liegen insbesondere in der Kombination verschiedener Werkstoffe. So kann bei Verwendung eines Stahlblechs als Hüllmaterial und dem Einsatz von Spänen aus Aluminium als Kernmaterial ein leichtes Bauteil mit einer festen Oberfläche hergestellt werden. Ein solches Verbundteil schließt somit die Lücke zwischen leichten, aber weniger festen Aluminiumteilen und Bauteilen aus Stahl. Alternativ zu Spänen aus Aluminium können auch Kupferspäne eingebracht werden, um bspw. die Wärmeleitfähigkeit zu erhöhen. Eine Mischung aus Aluminium- und Kupferspänen ist ebenso möglich wie eine Kombination anderer Werkstoffe. Eine Befüllung mit nichtmetallischen Werkstoffen oder eine Kombination aus Metallspänen und nichtmetallischem Füllmaterial ist im Hinblick auf eine Verbesserung von Leichtbauteilen ebenfalls denkbar. Durch diese erfindungsgemäße Ausgestaltung des Verfahrens kann aus blechförmigem Hüllmaterial und Spänen als Kernmaterial ein neues Massivbauteil hergestellt werden. Der ökologische Aspekt ist vor allem bei Verwendung von Späneabfall hervorzuheben. Alternative Verfahren wie das Einschmelzen der Aluminiumspäne zur Erzeugung neuer Massivteile sind mit hohem (Energie-)Aufwand verbunden. Im Hinblick auf ressourcen- und energiesparende Produktion bietet dieses Verfahren neue Möglichkeiten zur umweltgerechten Fertigung. In Kombination mit Gewindewalzen lassen sich wie auch grundsätzlich für den Einsatz massiver, aber leichtgewichtiger Kernmaterialien erfindungsgemäß beispielweise Leichtbauschrauben herstellen, die eine höhere Festigkeit als Aluminiumschrauben, aber ein geringeres Gewicht als Stahlschrauben besitzen. Im Vergleich zu üblichen Titanschrauben ist eine enorme Kostenersparnis möglich. Weitere nur beispielhaft genannte mögliche Verbundteile sind z.B. Kolben und Wellen aller Art, Bolzen, Verbindungselemente für Werkstoffverbund (z. B. Schweißanbindung Aluminium/Stahl) oder auch Mehrfunktions-Bauteile (z. B. mechanische und thermische Funktion). Die Anhäufung von einzelnen Materialelementen kann dabei strukturierte Materialelemente wie etwa Späne unterschiedlichster Charakteristik (z.B. Drehspäne, Frasspäne, Bohrspäne etc.) und/oder auch eher gestaltlose Materialelemente wie Körner oder dgl. aufweisen. Wichtig hierbei ist vor allem, dass diese Materialelemente in der Lage sind, eine mechanische Verbindung zueinander aufzubauen, wenn das derart gebildete Kernmaterial komprimiert wird.In another advantageous embodiment, it is also conceivable that an accumulation of individual material elements, preferably of metallic chips or the like. Material elements is used as the core material. As a result, the production of massive composite parts from eg chips and sheets is possible. The sheet-like shell material is the outer shell of the new composite part, the highly compacted chips form the core material or the filling. Shell material and core material from eg pressed chips can consist of the same or different materials, the shell material determines the surface properties of the composite part. During the forming process, the core material of self-compacting chips serves as a deep-drawing die. The advantages of the composite parts produced by this method are in particular the combination of different materials. Thus, when using a steel sheet as the shell material and the use of chips of aluminum as the core material, a lightweight component having a solid surface can be produced. Such a composite part thus closes the gap between light but less strong aluminum parts and steel components. As an alternative to chips made of aluminum, copper shavings can also be introduced in order, for example, to increase the thermal conductivity. A mixture of aluminum and copper shavings is just as possible as a combination of other materials. A filling with non-metallic materials or a combination of metal shavings and non-metallic filler material is also conceivable with regard to an improvement of lightweight components. By means of this embodiment of the method according to the invention, it is possible to produce a new solid component from sheet-like casing material and chips as core material. The ecological aspect is to be emphasized above all when using swarf waste. Alternative processes such as the melting down of the aluminum shavings to produce new solid parts are associated with high (energy) expenditure. In terms of resource and energy-saving production, this process offers new opportunities for environmentally friendly production. In combination with thread rolling can be as in principle for the use of solid but lightweight core materials according to the invention, for example, lightweight screws produce that have a higher strength than aluminum screws, but a lower weight than steel screws. Compared to conventional titanium screws, an enormous cost saving is possible. Other possible composite parts which are mentioned by way of example only are, for example, pistons and shafts of all kinds, bolts, connecting elements for composite material (eg welded connection aluminum / steel) or else multifunctional components (eg mechanical and thermal function). The accumulation of individual material elements can have structured material elements such as chips of very different characteristics (eg, turnings, milling chips, drill chips, etc.) and / or rather shapeless material elements such as grains or the like. It is important in this case above all that these material elements are able to establish a mechanical connection to one another when the core material formed in this way is compressed.

Ein besonders vorteilhafte Ausgestaltung lässt sich dadurch erreichen, dass die Anhäufung von einzelnen Materialelementen inhomogen ausgebildet wird, vorzugsweise Materialelemente verschiedener Eigenschaften aufweist. Hierdurch können durch Verwendung unterschiedlicher Materialelemente in der Matrix des Kernmaterials gezielt Zonen gleicher oder abweichender Eigenschaften geschaffen werden, die z.B. auf Bauteilbelastungen und deren Angriffzonen abgestimmt werden. So können beispielsweise in einem Bereich, wo das Verbundteil eine hohe Wärmeleitung aufweisen soll, verstärkt Materialelemente aus Kupfer eingelagert werden, wohingegen in thermisch nicht so relevanten Bereichen Aluminiumelemente vorgesehen werden. In besonderer Weise kann die Anhäufung von einzelnen Materialelementen eine Schichtung von einzelnen Materialelementen verschiedener Eigenschaften, vorzugsweise entlang der Längsachse des Kernmaterials geschichtet, bilden. Eine solche Schichtung ist technisch einfach umzusetzen und häufig ausreichend zur Anpassung der Materialeigenschaften des Kernmaterials an die Belastungen des Verbundteils.A particularly advantageous embodiment can be achieved in that the accumulation of individual material elements is formed inhomogeneous, preferably having material elements of different properties. In this way, by using different material elements in the matrix of the core material, it is possible to create zones of identical or differing properties in a targeted manner, e.g. be matched to component loads and their attack zones. Thus, for example, in an area where the composite part is to have a high heat conduction, material elements made of copper are reinforced, whereas aluminum elements are provided in areas that are not so thermally relevant. In particular, the accumulation of individual material elements may form a lamination of individual material elements of different properties, preferably layered along the longitudinal axis of the core material. Such stratification is technically easy to implement and often sufficient to adapt the material properties of the core material to the stresses of the composite part.

Von besonderem Vorteil ist es, wenn die Anhäufung von einzelnen Materialelementen bei der Umformung von einer Hohlform umschlossen ist, in die ein auf die Materialelemente drückender Oberstempel eintaucht und die Anhäufung von einzelnen Materialelementen auf dem blechförmigen Rohling des Hüllmaterials vorverdichtet. Eine solche Bildung der Anhäufung von einzelnen Materialelementen vor der Umformung kann beispielsweise durch einen Ring erfolgen, der gleichzeitig als Niederhalter für das Tiefziehen des Hüllmaterials genutzt werden kann und dessen Öffnung z.B. durch eingefüllte Späne ganz oder teilweise aufgefüllt wird. Wird nun ein in die Öffnung der Hohlform passender Hilfsstempel auf diese Anhäufung aufgesetzt und die Anhäufung mit dem Oberstempel komprimiert, so wird die Anhäufung vorverdichtet und verkleinert ihr Volumen, wobei die Materialelemente wie z.B. die Späne gleichzeitig miteinander verbunden werden, z.B. miteinander lokal verschweißen oder verkleben bzw. sich verhaken.It is particularly advantageous if the accumulation of individual material elements in the forming is enclosed by a hollow mold into which a punch pressing on the material elements dips in and which pre-compacts the accumulation of individual material elements on the sheet-like blank of the wrapping material. Such formation of the accumulation of individual material elements before forming can be effected, for example, by a ring which can simultaneously be used as a hold-down for deep-drawing the wrapping material and whose opening is e.g. filled with chips completely or partially. If now an auxiliary punch which fits into the opening of the mold is placed on this pile and the accumulation is compressed with the upper punch, the accumulation is precompressed and reduces its volume, the material elements such as e.g. the chips are connected together at the same time, e.g. weld or stick together locally or get caught.

In weiterer Ausgestaltung wird die Anhäufung von einzelnen Materialelementen durch den Oberstempel solange vorverdichtet, bis sich der blechförmige Rohling des Hüllmaterials ebenfalls durch Tiefziehen weitgehend verformt hat. Der Druck auf den Rohling des Hüllmaterials durch die sich wie vorstehend beschrieben verdichtende Anhäufung der Materialelemente wird ab Erreichen der notwendigen Spannungen im Rohling zu einer Tiefziehumformung des Rohlings führen, so dass dann die Vorverdichtung der Anhäufung von einzelnen Materialelementen und der Tiefziehvorgang parallel ablaufen werden, wobei die vorverdichtete Anhäufung von einzelnen Materialelementen als Stempeleinsatz für das Tiefziehen des Hüllmaterials verwendet wird Die Vorverdichtung kommt dann mit dem Abschluss des Tiefziehvorgangs ebenfalls zum Ende.In a further embodiment, the accumulation of individual material elements is precompressed by the upper punch until the sheet-like blank of the shell material has also largely deformed by deep drawing. The pressure on the blank of the wrapping material by the densifying as described above Accumulation of the material elements will lead to a thermoforming of the blank from reaching the necessary stresses in the blank, so that then the precompression of the accumulation of individual material elements and the deep drawing process will occur in parallel, the pre-compressed accumulation of individual material elements used as a stamp insert for the deep drawing of the shell material The pre-compaction then comes to an end with the completion of the deep-drawing process.

Anschließend wird dann in weiterer Ausgestaltung nach dem Abschluss des Tiefziehvorgangs die entstandene Zwischenform des Verbundteils durch ein Fließpressen zumindest abschnittsweise weiter verformt werden. Hierbei wird sich der endgültige Verdichtungsgrad der zum Kernmaterial verdichteten Materialelemente abhängig von dem Umformungsgrad beim Fließpressen einstellen, so dass nach der Vorverdichtung vor und beim Tiefziehen eine weitere Verdichtung und damit Verbesserung der Haftung der Materialelemente aneinander erreichen lässt.Subsequently, in a further refinement, after the completion of the deep-drawing process, the resulting intermediate shape of the composite part is further deformed at least in sections by extrusion. In this case, the final degree of compaction of the material elements compacted to the core material will depend on the degree of deformation during extrusion, so that after the pre-compression before and during deep drawing can achieve a further compression and thus improve the adhesion of the material elements to each other.

Von besonderem Vorteil ist es, wenn als Anhäufung von einzelnen Materialelementen metallische Späne, vorzugsweise unbehandelte oder vorbehandelte Späne aus spanenden Prozessen oder bereits vorverdichtete Späne-Pellets verwendet werden. Es ist selbstverständlich auch denkbar, andere metallische oder auch nichtmetallische Materialelemente zu verwenden, die strukturiert oder auch nicht strukturiert ausgebildet sind. Auch Mischungen derartiger Materialelemente und Materialelemente aus unterschiedlichsten Materialien sind denkbar. Von Bedeutung ist es, dass die Anhäufung von einzelnen Materialelementen solange verdichtet wird, bis die Materialelemente einen dauerhaft festen Verbund bilden, insbesondere die Materialelemente miteinander verschweißt oder verklebt sind. Der Werkstoffverbund zwischen Spänen und Blech stellt sich je nach Werkstoffpaarung neben Verformungen von Hüllmaterial und Materialelementen durch Stoffverbund infolge von Mikroverschweißungen bzw. Diffusionsvorgängen aufgrund der hohen lokalen Drücke bei der Umformung ein. Versuche zum Verbundfließpressen von Aluminiumspänen in einem Stahlnapf haben gezeigt, dass die Ausfüllung des Verbundteils sehr gut ist, die Späne haben sich zu einem einzigen Teil verbunden und lösen sich selbst nicht heraus.It is particularly advantageous if metal chips, preferably untreated or pretreated chips from cutting processes or already precompressed chip chips, are used as the accumulation of individual material elements. It is of course also possible to use other metallic or non-metallic material elements that are structured or not structured. Also mixtures of such material elements and material elements made of different materials are conceivable. Of importance is that the accumulation of individual material elements is compressed until the material elements form a permanently solid composite, in particular the material elements are welded or glued together. Depending on the material pairing, the composite of materials between chips and sheet metal, in addition to deformations of casing material and material elements, also occurs due to composite material due to micro-welding or diffusion processes due to the high local pressures during forming. Tests for composite extrusion of aluminum turnings in a steel bowl have shown that the filling of the composite is very good, the chips have joined into a single piece and do not come out by themselves.

Weiterhin ist es denkbar, dass die verdichtete Anhäufung von einzelnen Materialelementen eine vorgebbare Porosität oder Dichte aufweist. So kann durch die Größe und die Formgebung der Materialelemente vor der Verformung die Packungsdichte der Anhäufung von einzelnen Materialelementen gezielt gesteuert werden, wodurch abhängig vom resultierenden Verdichtungsgrad auch die Porosität oder Dichte des Kernmaterials des Verbundteils bestimmt wird.Furthermore, it is conceivable that the compacted accumulation of individual material elements has a specifiable porosity or density. Thus, by the size and shape of the material elements prior to deformation, the packing density of the accumulation of individual material elements can be selectively controlled, whereby the porosity or density of the core material of the composite part is determined depending on the resulting degree of compaction.

In anderer Ausgestaltung ist es auch denkbar, dass die Porosität oder Dichte der zum Kernmaterial verdichteten Materialelemente durch nachträgliche Porenbildung, vorzugsweise durch Aufschäumen eines eingepressten Schaum bildenden Materials oder Ausschmelzen schmelzbarer Materialelemente verändert wird. So kann sich bei oder nach der Verdichtung des Kernmaterials etwa ein weiterer Verfahrensschritt anschließen, in dem das verdichtete Kernmaterial chemisch oder physikalisch aufgeschäumt wird oder bestimmte mit eingelagerte Bestandteile gezielt etwa thermisch oder chemisch entfernt werden. Dies erlaubt eine nachträgliche Veränderung der Porosität bzw. Dichte des Verbundteils, wobei in weiterer Ausgestaltung die Porosität oder Dichte der zum Kernmaterial verdichteten Materialelemente durch die Formgebung und/oder die Verdichtung und/oder die Mischung der Materialelemente beeinflusst werden kann, z.B. durch die gezielte Zumischung leichtgewichtiger Zuschläge. Auch können die Eigenschaften der zum Kernmaterial verdichteten Materialelemente durch Materialien anderer Eigenschaften, vorzugsweise anderer Leitfähigkeit, anderem spezifischem Gewicht, anderer Dämpfung oder dgl. beeinflusst werden.In another embodiment, it is also conceivable that the porosity or density of the material elements compacted to the core material is changed by subsequent pore formation, preferably by foaming a pressed foam-forming material or melting meltable material elements. Thus, during or after the compaction of the core material, a further process step can follow, in which the compacted core material is foamed chemically or physically or certain with incorporated constituents are removed, for example, thermally or chemically. This allows a subsequent change in the porosity or density of the composite part, wherein in a further embodiment, the porosity or density of the material elements compacted to the core material can be influenced by the shaping and / or densification and / or mixing of the material elements, e.g. through the targeted addition of lightweight supplements. Also, the properties of the material elements compressed to the core material may be affected by materials of other properties, preferably other conductivity, specific gravity, damping or the like.

In weiterer Ausgestaltung ist es denkbar, dass in die zum Kernmaterial zu verdichtenden Materialelemente Funktionsbauteile, vorzugsweise Gewindebauteile, Drähte, Sensoren oder dgl. eingelagert werden, die bei der Verdichtung einen engen Verbund mit den verdichteten Materialelementen bilden. Die Materialelemente wie etwa die Späne können sich der Kontur des sie aufnehmenden Behälters anpassen und auch innenliegende Geometrien umschließen. Es ist somit das Einpressen weiterer Bauteile oder Materialien möglich, (z. B. eines Kupferkerns zur Wärmeableitung). Das einzupressende Funktionsbauteil wird dabei vor der Befüllung des Hohlteils mit den Materialelementen z.B. auf dem Rohling des Hüllmaterials positioniert. Ein Einpressen von isolierten Leitungen und/oder Sensoren (z.B. in einer Stahlkapsel) ist bei diesem Verfahren ebenfalls möglich. Des Weiteren ist es denkbar, Drahtschlaufen einzupressen und diese dann als integrierten Dehnungsmeßstreifen zu nutzen, um Bauteilbelastungen des Verbundteils aufzuzeichnen. Bei Verwendung eines gelochten Bleches und entsprechenden Auswerfers können zusätzliche Funktionselemente wie eine Sechskantschraube (ggf. mit Unterlegscheibe) zur Erzeugung eines Verbundteils mit Gewinde in einem Arbeitsschritt eingebracht werden.. Analog ist das Einbringen eines Innengewindes bei Verwendung einer Mutter möglich, ein auf die Mutter gelegtes Stahlblech verhindert dabei das Eindringen von Spänen.In a further embodiment, it is conceivable that functional components, preferably threaded components, wires, sensors or the like, are embedded in the material elements to be compacted for the core material, which form a close bond with the compacted material elements during compaction. The material elements such as the chips can adapt to the contour of the receiving container and also enclose internal geometries. It is thus possible to press in further components or materials (eg a copper core for heat dissipation). The functional component to be pressed in is thereby positioned, for example, on the blank of the wrapping material before the filling of the hollow part with the material elements. Pressing in insulated cables and / or sensors (eg in a steel capsule) is included This method is also possible. Furthermore, it is conceivable to press wire loops and then use them as integrated strain gauges to record component loads of the composite part. When using a perforated plate and corresponding ejector additional functional elements such as a hexagon screw (possibly with washer) to produce a composite part with thread can be introduced in one step. Similarly, the introduction of an internal thread when using a nut is possible, a laid on the mother Steel sheet prevents the penetration of chips.

Weiterhin ist es denkbar, dass die zum Kernmaterial zu verdichtenden Materialelemente durch zylindrisch ausgebildete hohle Blechzuschnitte und/oder deckelartige Blechzuschnitte umschlossen werden, die zwischen die Anhäufung von einzelnen Materialelementen und die umgebende Hohlform oder am oberstempelseitigen Ende des Kernmaterials angeordnet und mit verformt werden. Bei großem Durchmesser der Blechronde des Rohlings des Hüllmaterials können die beim Tiefziehen bekannten Probleme wie Faltenbildung und Blechreißer auftreten. Dem kann dadurch entgegen gewirkt werden, dass ein zu einem (überlappenden) Rohr gerollter und außen beschichteter Blechzuschnitt (alternativ: ein Rohrstück) auf den Rohling des Hüllmaterials gestellt wird. Anschließend erfolgen das Befüllen mit Spänen und der übliche Umformvorgang. Bei dieser Variante ist eine Anpassung der Stempel erforderlich. Zusätzlich kann nach dem Vorwärts-Vollfließpressen und Entfernen des Stempels ein Deckel mit entsprechenden Radien oberhalb der Matrize positioniert werden. Fährt der Auswerfer nach oben, wird das hergestellte Verbundteil gegen den Deckel gedrückt und dabei die Blechkanten nach innen gebogen. Das Blech umschließt das Kernmaterial somit vollständig. Nach Entfernen des Deckels kann das Verbundteil wie gewohnt ausgestoßen werden.Furthermore, it is conceivable that the material elements to be compacted to the core material are enclosed by cylindrically shaped hollow sheet metal blanks and / or cover-like blanks which are arranged and deformed between the accumulation of individual material elements and the surrounding hollow shape or on the upper punch side end of the core material. For large diameter of the sheet metal blank of the blank of the shell material known during deep drawing problems such as wrinkles and tears can occur. This can be counteracted by a rolled to an (overlapping) tube and coated outside sheet metal blank (alternatively: a piece of pipe) is placed on the blank of the shell material. This is followed by filling with chips and the usual forming process. In this variant, an adaptation of the stamp is required. In addition, after forward full extrusion and removal of the punch, a lid with corresponding radii can be positioned above the die. If the ejector moves upwards, the composite part produced is pressed against the cover and the sheet edges are bent inwards. The sheet thus completely encloses the core material. After removing the cover, the composite part can be ejected as usual.

Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zeigt die Zeichnung.A particularly preferred embodiment of the method according to the invention is shown in the drawing.

Es zeigen:

Figur 1
- eine erste Ausgestaltung des erfindungsgemäßen Verfahrens mit einem massiven Kernmaterial und einem blechförmigen Hüllmaterial als Stadienplan beim Tiefziehen eines stirnseitigen Napfes aus einem blechförmigen Rohling des Hüllmaterials und anschließendem Rückwärts-Fließpressen,
Figur 2
- ein Stadium einer Variante des Verfahrens gemäß Figur 1 mit einem Tiefziehen eines stirnseitigen Napfes und anschließendem Voll-Vorwärts-Fließpressen,
Figur 3
- eine Variante des Verfahrens gemäß Figur 1 mit einem Tiefziehen aus einem rohrförmigen Rohling des Hüllmaterials und anschließendem Vorwärts-Fließpressen in Form eines Stadienplans,
Figur 4
- eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens mit einem aus einzelnen Materialelementen gehäuften Kernmaterial und einem blechförmigen Hüllmaterial als Stadienplan beim Tiefziehen eines stirnseitigen Napfes aus einem blechförmigen Rohling des Hüllmaterials und anschließendem Vorwärts-Fließpressen,
Figur 5
- eine Variante des Verfahrens gemäß Figur 4 mit einem Tiefziehen aus einem rohrförmigen und einem blechförmigen Rohling des Hüllmaterials und anschließendem Vorwärts-Fließpressen sowie rückseitigem Umbiegen in Form eines Stadienplans,
Figur 6
- eine Variante des Verfahrens gemäß Figur 4 mit Einlagern eines Einlageteils in die Anhäufung aus einzelnen Materialelementen,
Figur 7
- eine Variante des Verfahrens gemäß Figur 4 mit Einlagern eines Meßdrahtes in die Anhäufung aus einzelnen Materialelementen,
Figur 8
- eine Variante des Verfahrens gemäß Figur 4 mit Einlagern einer durch eine Öffnung in dem blechförmigen Hüllmaterial vorstehenden Schraube in die Anhäufung aus einzelnen Materialelementen,
Figur 9
- eine Variante des Verfahrens gemäß Figur 5 mit einem Tiefziehen aus mehreren scheibenförmigen Rohlingen des Hüllmaterials und gleichzeitigem Quer-Fließpressen,
Figur 10
- verschiedene Varianten der Formgebung des blechförmigen Hüllmaterials zur Bildung unterschiedliche geformter Verbundteile,
Figur 11
- eine Variante des Verfahrens gemäß Figur 4 mit Ausbildung einer seitlich hervorstehenden Lasche,
Figur 12
- eine Variante des Verfahrens gemäß Figur 4 mit Ausbildung eines umlaufenden Flansches.
Show it:
FIG. 1
- A first embodiment of the method according to the invention with a solid core material and a sheet-like shell material as a stage plan during deep drawing a frontal cup from a sheet-shaped blank of the wrapping material and subsequent backward extrusion,
FIG. 2
a stage of a variant of the method according to FIG. 1 with a deep-drawing of a front-side bowl and subsequent full-forward extrusion,
FIG. 3
- A variant of the method according to FIG. 1 with a deep drawing from a tubular blank of the wrapping material and subsequent forward extrusion in the form of a staged plan,
FIG. 4
a further embodiment of the method according to the invention with a core material heaped from individual material elements and a sheet-like shell material as a stage plan during deep-drawing of an end cup from a sheet-like blank of the shell material and subsequent forward extrusion;
FIG. 5
- A variant of the method according to FIG. 4 with a deep-drawing of a tubular and a sheet-like blank of the wrapping material and subsequent forward extrusion and back bending in the form of a staged plan,
FIG. 6
- A variant of the method according to FIG. 4 incorporating an insert into the aggregate of individual material elements,
FIG. 7
- A variant of the method according to FIG. 4 with insertion of a measuring wire into the aggregate of individual material elements,
FIG. 8
- A variant of the method according to FIG. 4 incorporating a screw projecting through an opening in the sheet-like wrapping material into the aggregate of individual material elements,
FIG. 9
- A variant of the method according to FIG. 5 with deep-drawing from several disc-shaped blanks of the wrapping material and simultaneous transverse extruding,
FIG. 10
various variants of the shaping of the sheet-like casing material to form different shaped composite parts,
FIG. 11
- A variant of the method according to FIG. 4 with the formation of a laterally protruding tab,
FIG. 12
- A variant of the method according to FIG. 4 with the formation of a circumferential flange.

In der Figur 1 ist in schematischer Darstellung eine erste Ausgestaltung des erfindungsgemäßen Verfahrens mit einem massiven Kernmaterial 3 und einem blechförmigen Rohling 1 des Hüllmaterials 2 als Stadienplan beim Tiefziehen eines stirnseitigen Napfes aus einem blechförmigen Rohling 1 des Hüllmaterials 2 und anschließendem Rückwärts-Fließpressen dargestellt. Hierbei ist die Vorrichtung zur Durchführung des Verfahrens in grundsätzlich bekannter Weise aufgebaut, so dass hier nur die verfahrensmäßigen Besonderheiten der Vorrichtung erwähnt werden sollen. Das Tiefziehen des Rohlings 1 erfolgt dabei durch einen Oberstempel 7, unterhalb dessen das massive Kernmaterial 3 angeordnet ist und anfänglich auf dem Rohling 1 aufsteht. Der Rohling 1 des Hüllmaterials 2 wird dabei zwischen der Oberseite einer mit einer Ziehöffnung 6 versehenen Matrize 4 und einem Niederhalter 5 in grundsätzlich bekannter Weise gehalten bzw. eingespannt sowie geführt, wobei der Niederhalter 5 als segmentierter Niederhalter 5 ausgestaltet sein kann und einen in der Ebene des Rohlings 1 lokal gesteuerten Druck auf den Rohling 1 ausüben kann. Unterhalb und innerhalb der Ziehöffnung 6 ist ein Auswerfer 8 zu erkennen, der ein Gegenlager beim Ausbilden des herzustellenden Verbundteils 18 bildet und das fertige Verbundteil 18 wieder nach oben aus der Ziehöffnung 6 auswirft.In the FIG. 1 is a schematic representation of a first embodiment of the method according to the invention with a solid core material 3 and a sheet-like blank 1 of the shell material 2 as a stage plan during deep drawing of an end cup of a sheet-like blank 1 of the shell material 2 and subsequent backward extrusion shown. In this case, the device for carrying out the method is constructed in basically known manner, so that only the procedural features of the device should be mentioned here. The deep drawing of the blank 1 is effected by an upper punch 7, below which the solid core material 3 is arranged and initially rests on the blank 1. The blank 1 of the wrapping material 2 is held or clamped and guided between the upper side of a die 4 provided with a drawing opening 6 and a hold-down 5, wherein the hold-down 5 can be configured as a segmented hold-down 5 and one in the plane of the blank 1 can exert locally controlled pressure on the blank 1. Below and within the drawing opening 6, an ejector 8 can be seen, which forms an abutment in forming the composite part 18 to be produced and ejects the finished composite part 18 back up from the drawing opening 6.

In der linken oberen Teilfigur der Figur 1 ist die Ausgangslage vor dem Beginn des Ziehvorgangs des blechförmigen Rohteils 1 des Hüllmaterials 2 zu erkennen, d.h. das massive Kernmaterial 3 liegt ohne Druck auf dem Rohling 1 auf. Wird nun der Oberstempel 7 und damit das hier quasi als Stempel wirkende massive Kernmaterial 3 vertikal von oben in die Matrize 4 gedrückt, so wird der Rohling 1 nach und nach immer weiter in die Ziehöffnung 6 der Matrize 4 hinein gedrückt und bildet einen Napf mit einem ebenen Bodenabschnitt und einer ringförmigen Seitenwand. Aufgrund der Maße von Kernmaterial 3 und Hüllmaterial 2, die sich im Durchmesser in etwa um die doppelte Blechdicke des Rohlings 1 unterscheiden (bei einem leicht untermäßigen Ziehspalt ergibt sich ein Abstreckziehen), wird sich das Kernmaterial 3 genau zentrisch in die Ziehöffnung 6 hinein bewegen und wie beschrieben die napfförmige Verformung des Hüllmaterials 2 ergeben. Das Hüllmaterial 2 wird dabei so verformt, dass sich die Seitenwand des Napfes des Hüllmaterials 2 an die stirnseitige Oberfläche des Kernmaterials 3 anpresst und sich dicht an diese Oberfläche des Kernmaterials 3 anlegt. Dieses Stadium ist in der linken unteren Teilfigur der Figur 1 dargestellt.In the upper left part of the figure FIG. 1 is the starting position before the start of the drawing operation of the sheet-shaped blank 1 of the enveloping material 2 to recognize, ie the solid core material 3 is without pressure on the blank 1 on. If the upper punch 7 and thus the solid core material 3 acting here as a stamp are pressed vertically from above into the die 4, the blank 1 is gradually pressed further and further into the drawing opening 6 of the die 4 and forms a bowl with a level bottom portion and an annular side wall. Due to the dimensions of core material 3 and shell material 2, which are in diameter in differ about twice the sheet thickness of the blank 1 (at a slightly lower drawing gap results in an ironing), the core material 3 will move exactly centered in the drawing opening 6 and as described the cup-shaped deformation of the shell material 2 result. The sheath material 2 is thereby deformed so that the side wall of the cup of the enveloping material 2 presses against the frontal surface of the core material 3 and rests tightly against this surface of the core material 3. This stage is in the lower left part of the figure FIG. 1 shown.

Im Anschluss an diesen Ziehvorgang wird nun der so hergestellte Verbund aus Kenmaterial 3 und Hüllmaterial 2 durch ein Rückwärts-Fließpressen weiter verformt. Hierzu liegt der Bodenbereich des napfförmig verformten Hüllmaterials 2 auf dem Auswerfer 8 auf und kann nicht weiter in die Ziehöffnung 6 hinein gedrückt werden. Bewegt sich der Oberstempel 7 nun trotzdem weiter nach unten, so wird das von dem Oberstempel 7 unter Druck gesetzte Kernmaterial 3 nach außen und nach oben ausweichen, das Kernmaterial 3 fließt quasi nach oben an dem Oberstempel 7 vorbei, und es bildet sich eine oberseitige Vertiefung in dem Kernmaterial 3. Im Bereich des napfförmigen Hüllmaterials 2 wird das Kernmaterial 3 sich ebenfalls radial ausdehnen und damit den Verbund mit dem Hüllmaterial 2 weiter festigen. Damit ist das Verbundteil 18 fertig geformt und kann nach dem Zurückziehen des Oberstempels 7 von dem Auswerfer 8 nach oben ausgeworfen werden.Following this drawing process, the composite of Kenmaterial 3 and wrapping material 2 thus produced is then further deformed by a backward extrusion. For this purpose, the bottom portion of the cup-shaped deformed envelope material 2 rests on the ejector 8 and can not be pushed further into the pull opening 6. If the upper punch 7 still continues to move downwards, the core material 3 pressurized by the upper punch 7 will swerve outwards and upwards, the core material 3 will virtually flow upwards past the upper punch 7, and an upper-side depression will be formed in the core material 3. In the area of the cup-shaped wrapping material 2, the core material 3 will likewise expand radially and thus further strengthen the bond with the wrapping material 2. Thus, the composite part 18 is finished and can be ejected after retraction of the upper punch 7 of the ejector 8 upwards.

Das derart lokal im Bereich des unteren Endes des Kernmaterials 3 um das Kernmaterial 3 herum angeordnete Hüllmaterial 2 bestimmt dabei in diesem Bereich die Oberflächeneigenschaften des Verbundteils 18. So kann beispielsweise das Hüllmaterial aus einem harten und abrasionsfesten Material wie z.B. Stahl gebildet werden, wohingegen das Kernmaterial aus einem leichtgewichtigen Aluminium besteht. Damit kann ein leichtgewichtiges Verbundteil mit lokal hoher Abrasionsfestigkeit erzeugt werden.In this case, the covering material 2 arranged locally around the lower end of the core material 3 around the core material 3 determines the surface properties of the composite part 18 in this area. For example, the covering material may be made of a hard and abrasion-resistant material, such as e.g. Steel are formed, whereas the core material consists of a lightweight aluminum. Thus, a lightweight composite part with locally high abrasion resistance can be generated.

In der Figur 2 ist nur ein Stadium einer Variante des Verfahrens gemäß Figur 1 mit einem Tiefziehen eines stirnseitigen Napfes und anschließendem Voll-Vorwärts-Fließpressen dargestellt. Hierbei wird während des Tiefziehens aus einem größeren Rohling 1 ein tieferer Napf oder besser schon eine Art einseitig geschlossener Hülse tiefgezogen, die beim anschließenden Fließpressen vollständig durch die gegenüber der Ziehöffnung 6 verengte Fließpressöffnung 22 hindurch gedrückt wird. Dabei wird zum einen das Verbundteil 18 noch einmal im Durchmesser verringert und gestreckt.In the FIG. 2 is only one stage of a variant of the method according to FIG. 1 shown with a deep-drawing of a front-side cup and subsequent full-forward extrusion. In this case, during deep drawing from a larger blank 1, a deeper cup or better already a kind of unilaterally closed sleeve deep-drawn, which is pressed completely through the opposite of the drawing opening 6 constricted extrusion opening 22 in the subsequent extrusion. In this case, the composite part 18 is once again reduced in diameter and stretched.

In der Figur 3 ist eine Variante des Verfahrens gemäß Figur 1 mit einem Tiefziehen aus einem rohrförmigen Rohling 1 des Hüllmaterials 2 und anschließendem Vorwärts-Fließpressen in Form eines Stadienplans dargestellt. Hierbei wird anstatt eines ebenen blechförmigen Rohteils wie in Figur 1 ein rohrförmiges Hüllmaterial 2 auf das Kernmaterial 3 aufgeschoben und in nicht weiter dargestellter Weise analog zu der Vorgehensweise gemäß Figur 1 tiefgezogen und anschließend fließgepresst. Der Bereich des entstehenden Hüllmaterials 2 ist dabei sich nach unten verjüngend auf einem Teil des Außenumfangs des Kernmaterials 3 des Verbundteils 18 angeordnet. In der Figur 4 ist eine andere Ausgestaltung des erfindungsgemäßen Verfahrens mit einem aus einzelnen, nicht genauer dargestellten Materialelementen gehäuften Kernmaterial 3 und einem blechförmigen Rohling 1 des Hüllmaterial 2 als Stadienplan beim Tiefziehen eines stirnseitigen Napfes aus dem blechförmigen Rohling 1 des Hüllmaterials 2 und anschließendem Vorwärts-Fließpressen dargestellt. Die Anhäufung der Materialelemente kann beispielsweise aus einem Haufwerk von Metallspänen gebildet werden, die in ein gleichzeitig die Funktion des Niederhalters 5 übernehmenden Hohlteil 9 von oben auf den Rohling 1 erst einmal lose eingefüllt werden. Die Materialelemente können dabei in schon vorstehend beschriebener Weise hinsichtlich Form, Material, Verteilung und Ausbildung des Haufwerks in vielerlei Weise variiert werden.In the FIG. 3 is a variant of the method according to FIG. 1 with a thermoforming of a tubular blank 1 of the wrapping material 2 and subsequent forward extrusion in the form of a staged plan. This is instead of a flat sheet-metal blank as in FIG. 1 a tubular shell material 2 is pushed onto the core material 3 and in a manner not shown analogous to the procedure according to FIG. 1 deep-drawn and then extruded. The region of the resulting casing material 2 is arranged tapering down on a part of the outer circumference of the core material 3 of the composite part 18. In the FIG. 4 is another embodiment of the method according to the invention with a heaped from individual material elements not shown in more detail core material 3 and a sheet-like blank 1 of the shell material 2 as a stage plan during deep drawing a front cup from the sheet-like blank 1 of the shell material 2 and subsequent forward extrusion shown. The accumulation of the material elements can be formed, for example, from a heap of metal shavings, which are first filled loosely in a simultaneously taking over the function of the blank holder 5 hollow part 9 from above onto the blank 1. The material elements can be varied in many ways in the manner already described above in terms of shape, material, distribution and formation of the heap.

Oberhalb der das Kernmaterial 3 bildenden Anhäufung der Materialelemente wird ein Hilfsstempel 10 aufgesetzt und in die Öffnung des Hohlteils 9 eingedrückt, auf den von oben wieder der Oberstempel 7 drückt. Wird nun der Oberstempel 7 wie schon beschrieben nach unten gedrückt, so wird die das Kernmaterial 3 bildende Anhäufung der Materialelemente vorverdichtet und damit reduziert sich das Volumen des derartigen Kernmaterials 3 deutlich. Durch die Verdichtung der das Kernmaterial 3 bildenden Anhäufung der Materialelemente wird ab einem bestimmten Verdichtungsgrad durch den Druck die Tiefziehgrenze des Rohlings 1 des Hüllmaterials 2 überschritten und der Rohling 1 des Hüllmaterials 2 beginnt sich wie schon zu Figur 1 beschrieben zu einer Art Napf zu verformen. Dieses Stadium ist in der dritten Teilfigur der Figur 4 dargestellt. Hierbei wird die das Kernmaterial 3 bildende Anhäufung der Materialelemente nicht nur verdichtet, sondern es kommt einerseits zu lokalen Verschweißungen, Verhakungen und sonstigen Befestigungen zwischen den einzelnen Materialelementen und andererseits werden die Materialelemente in das napfförmige Hüllmaterial 2 hinein gedrückt und an diesem ebenfalls festgelegt. Es bildet sich damit ein fester Materialverbund zwischen verformtem Hüllmaterial 2 und Kernmaterial 3.Above the core material 3 forming accumulation of the material elements, an auxiliary plunger 10 is placed and pressed into the opening of the hollow part 9, presses on the top of the upper punch 7 again. If now the upper punch 7 is pressed down as already described, the accumulation of the material elements forming the core material 3 is precompressed and thus the volume of such core material 3 is reduced significantly. Due to the compression of the core material 3 forming accumulation of the material elements, the deep-drawing limit of the blank 1 of the enveloping material 2 is exceeded from a certain degree of compaction by the pressure and the blank 1 of the enveloping material 2 begins as before figure 1 described to deform to a kind of bowl. This stage is in the third part of the FIG. 4 shown. Here, the core material 3 forming accumulation of the material elements is not only compressed, but it comes on the one hand to local welds, entanglements and other fasteners between the individual material elements and on the other hand, the material elements are pressed into the cup-shaped shell material 2 in and also set this. It thus forms a solid composite material between deformed shell material 2 and core material. 3

Ist das Hüllmaterial 2 in bestimmungsgemäßer Weise vollständig verformt worden, so wird der Oberstempel 7 nach oben gefahren und der Hilfsstempel sowie das Hohlteil 9 entfernt. Anschließend fährt der Oberstempel wieder nach unten und presst den Verbund aus Kernmaterial 3 und Hüllmaterial 2 gegen die Verengung der Fließpressöffnung und verformt diesen Verbund weiter durch Vorwärts-Fließpressen. Hierbei werden Kernmaterial 3 und Hüllmaterial 2 zumindest abschnittsweise oder sogar ganz (beim Voll-Vorwärts-Fließpressen) und miteinander weiter umgeformt, wodurch der Verbund zwischen Kernmaterial 3 und Hüllmaterial 2 weiter gefördert und das Kernmaterial 3 weiter verdichtet wird.If the wrapping material 2 has been completely deformed in the intended manner, the upper punch 7 is moved upwards and the auxiliary punch and the hollow part 9 are removed. Subsequently, the upper punch moves down again and presses the composite of core material 3 and shell material 2 against the constriction of the extrusion opening and deforms this composite further by forward extrusion. In this case, core material 3 and shell material 2 are at least partially or even completely reformed (during full-forward extrusion) and with each other, whereby the composite between core material 3 and shell material 2 further promoted and the core material 3 is further compressed.

In der Figur 5 ist eine Variante des Verfahrens gemäß Figur 4 mit einem Tiefziehen aus einem rohrförmigen und einem blechförmigen Rohling 1 des Hüllmaterials und anschließendem Vorwärts-Fließpressen sowie rückseitigem Umbiegen in Form eines Stadienplans dargestellt. Das Hüllmaterial 2 besteht hierbei aus einem rohrförmigen Teil 11 und einem ebenen Teil 1, die aneinander grenzend in dem Hohlteil 9 und zwischen Matrize 4 und Hohlteil 9 angeordnet werden. In diese Form wird in schon zu Figur 4 beschriebener Weise die Anhäufung der Materialelemente des Kernmaterials 3 eingefüllt und erneut mittels Hilfsstempel 10 und Oberstempel 7 in die Matrize 4 gepresst. Dabei bildet sich wie in der mittleren Teilfigur der Figur 5 zu erkennen eine Art doppellagige Anordnung der beiden Hüllmaterialien 2, 11, die das verdichtete Kernmaterial 3 unterseitig und radial entlang einer bestimmten Länge umgeben. Durch die Verwendung des rohrförmigen Hüllmaterials 11 sind größere Ummantelungen gegenüber dem einfachen Tiefziehen zu erreichen. Nach dem Vorwärts-Fließpressen, bei dem sich die doppellagige Anordnung des Hüllmaterials 2 weitgehend zu einer einzigen Lage verpresst, ist das Stadium erreicht, das in der vierten Teilfigur von links zu erkennen ist. Dabei steht eine Art Kragen des ehemals rohrförmigen Hüllmaterials nach oben über das Kernmaterial 3 hinaus und kann zum weitgehenden Umschließen des Kernmaterials 3 genutzt werden. Hierzu wird ein Deckel 12 über die oberstempelseitige Öffnung der Ziehmatrize 4 gelegt und von unten mit einem Auswerfer das weitgehend fertige Verbundteil 18 nach oben gegen das Deckelteil 12 gedrückt. Hierdurch legt sich der nach oben über das Kernmaterial 3 vorstehende Kragen des Hüllmaterials 2 gegen die Innenseite des Deckelteils 12 an und wird nach innen, das Kernmaterial ganz oder teilweise überdeckend zusammen gedrückt. Das entstehende Verbundteils ist damit weitgehend vollständig von dem Hüllmaterial 2 umschlossen.In the FIG. 5 is a variant of the method according to FIG. 4 with a thermoforming of a tubular and a sheet-like blank 1 of the wrapping material and subsequent forward extrusion and back bending in the form of a staged plan. The wrapping material 2 here consists of a tubular part 11 and a flat part 1, which are arranged adjacent to each other in the hollow part 9 and between the die 4 and hollow part 9. In this form is already in too FIG. 4 described manner, the accumulation of the material elements of the core material 3 filled and pressed again by means of auxiliary plunger 10 and upper punch 7 in the die 4. This forms as in the middle part of the figure FIG. 5 to recognize a kind of double-layered arrangement of the two envelope materials 2, 11, which surround the compressed core material 3 on the underside and radially along a certain length. By using the tubular wrapping material 11 larger sheathing over the simple deep drawing can be achieved. After the forward extrusion, in which the two-ply arrangement of the enveloping material 2 largely pressed into a single layer, the stage is reached, that in the fourth Partial figure can be seen from the left. In this case, a kind of collar of the formerly tubular wrapping material projects upwards beyond the core material 3 and can be used to largely enclose the core material 3. For this purpose, a cover 12 is placed over the upper punch-side opening of the drawing die 4 and pressed from below with an ejector the largely finished composite part 18 up against the lid part 12. As a result, the collar of the wrapping material 2 projecting upwards over the core material 3 bears against the inside of the cover part 12 and is pressed inwards, the core material completely or partially overlapping. The resulting composite part is thus largely completely enclosed by the enveloping material 2.

In der Figur 6 ist eine Variante des Verfahrens gemäß Figur 4 mit Einlagern eines Einlageteils in die Anhäufung aus einzelnen Materialelementen zu erkennen. Hierbei wird z.B. aus Gründen verbesserter Wärmeleitung oder dgl. ein zusätzliches Einlageteil 14 z.B. aus einem gut wärmeleitenden Kupfermaterial in das aus einer Anhäufung von Materialelementen gebildete Kernmaterial 3 eingebracht, indem es passend auf das ebene Rohteil 1 des Hüllmaterials 2 aufgestellt und anschließend z.B. die aus Spänen gebildeten Materialelemente in das Hohlteil 9 eingefüllt werden. Die Materialelemente des Kernmaterials umgeben dabei bis auf die auf dem Rohteil 1 aufstehende Stirnseite das Einlageteil 14 vollständig. Beim anschließenden Tiefziehen und Fließpressen wird sich nicht nur der schon beschriebene enge Verbund zwischen Kernmaterial 3 und Hüllmaterial 2 bilden, sondern auch das Einlageteil wird fest von den Materialelementen des Kernmaterials 3 umgeben und festgelegt.In the FIG. 6 is a variant of the method according to FIG. 4 to recognize with storage of an insert part in the accumulation of individual material elements. Here, for example, for reasons of improved heat conduction or the like. An additional insert part 14, for example, made of a highly thermally conductive copper material in the formed from an accumulation of material elements core material 3 is introduced by fitting it to the flat blank 1 of the shell material 2 and then, for example, from chips formed material elements are filled into the hollow part 9. The material elements of the core material completely surround the insert part 14 except for the end face resting on the blank 1. During the subsequent deep drawing and extruding, not only the already described close bond between core material 3 and shell material 2 will form, but also the insert part is firmly surrounded and fixed by the material elements of the core material 3.

Die gleiche Idee wie zu Figur 6 beschrieben kann auch in einer weiteren Variante des Verfahrens gemäß Figur 4 zum Einlagern eines Meßdrahtes in die Anhäufung aus einzelnen Materialelementen genutzt werden, wobei statt des Einlageteils wie in Figur 6 ein Meßdraht 15 wie z.B. ein als Dehnungsmessstreifen zu benutzender Messdraht in das Kernmaterial mit eingelagert und mit verformt wird. Ist dieser Messdraht gegenüber dem Kernmaterial 3 isoliert, so kann am fertigen Verbundteil z.B. über die Widerstandsänderung des Messdrahtes 15 die mechanische Belastung in Form von Dehnungen oder Formänderungen des Verbundteils 18 erfasst werden.The same idea as to FIG. 6 can also be described in a further variant of the method according to FIG. 4 be used for storing a measuring wire in the accumulation of individual material elements, wherein instead of the insert part as in FIG. 6 a measuring wire 15 such as a measuring wire to be used as a strain gauge to be inserted into the core material and is deformed with. If this measuring wire is insulated from the core material 3, the mechanical stress in the form of strains or changes in shape of the composite part 18 can be detected on the finished composite part, for example via the resistance change of the measuring wire 15.

Wie in der Figur 8 zu erkennen kann auch ein mechanisches Teil wie eine Schraube 16 in einer Variante des Verfahrens gemäß Figur 4 durch Einlegen einer durch eine Öffnung 21 in dem blechförmigen Hüllmaterial 2 vorstehenden Schraube 16 in die Anhäufung aus einzelnen Materialelementen erfolgen. Die Schraube wird mit dem Gewindeabschnitt durch eine vorher eingebrachte Öffnung 21 in dem Rohling 1 des Hüllmaterials 2 eingesteckt und ragt unterseitig des Rohlings 1 heraus. Anschließend wird in schon beschriebener Weise die Anhäufung aus einzelnen Materialelementen des Kernmaterials 3 eingefüllt und verdichtet. Nach dem Fließpressen ragt der Gewindeabschnitt vorderseitig aus der Öffnung 21 des Hüllmaterials 2 des Verbundteils 18 heraus und ist sicher und drehfest von dem Kernmaterial umgeben.Like in the FIG. 8 can also recognize a mechanical part such as a screw 16 in a variant of the method according to FIG. 4 by inserting a projecting through an opening 21 in the sheet-like shell material 2 above screw 16 in the accumulation of individual material elements. The screw is inserted with the threaded portion through a previously introduced opening 21 in the blank 1 of the enveloping material 2 and protrudes from the underside of the blank 1 out. Subsequently, the accumulation of individual material elements of the core material 3 is filled and compacted in the manner already described. After the extrusion, the threaded portion protrudes from the front side of the opening 21 of the shell material 2 of the composite part 18 and is safe and rotatably surrounded by the core material.

In der Figur 9 ist in sehr schematischer Weise eine Variante des Verfahrens gemäß Figur 1 mit einem Tiefziehen aus scheiben-/platinenförmigen Rohlingen des Hüllmaterials und gleichzeitigem Quer-Fließpressen zu erkennen, wobei die Haupt-Fließrichtung des Verbundes aus Kernmaterial 3 und Hüllmaterial 2 quer zur Druckrichtung des Oberstempels 7 verläuft und dadurch radial nach außen vorstehende Ausstülpungen 17 erzeugt werden.In the FIG. 9 is in a very schematic way a variant of the method according to FIG. 1 to recognize with a deep drawing of disc / platinum-shaped blanks of the shell material and simultaneous transverse extrusion, the main flow direction of the composite of core material 3 and shell material 2 extends transversely to the compression direction of the upper punch 7 and thereby radially outwardly projecting protuberances 17 are generated.

Neben der Verwendung von einfachen ebenen Rohlingen 1 des Hüllmaterials ist es auch denkbar, vorgeformte Rohlinge 1 zu verwenden, wie diese in der Figur 10 für verschiedene Varianten der Formgebung des blechförmigen Hüllmaterials 2 zur Bildung unterschiedlich geformter Verbundteile 18 dargestellt sind. So können beispielsweise gelochte, kreuzförmig geformte oder segmentweise beschnittene Rohlinge 1 verwendet werden, die sich aufgrund der Verformung beim Tiefziehen und Fließpressen in entsprechend komplex geformte, dreidimensionale Verbundteile umformen und das Kernmaterial 3 umgeben.In addition to the use of simple flat blanks 1 of the wrapping material, it is also conceivable to use preformed blanks 1, as these in the FIG. 10 are shown for various variants of the shaping of the sheet-like shell material 2 to form differently shaped composite parts 18. Thus, for example, perforated, cross-shaped or segmentally trimmed blanks 1 can be used, which transform due to the deformation during deep drawing and extrusion in correspondingly complex shaped, three-dimensional composite parts and surround the core material 3.

Diese Idee kann auch dazu genutzt werden, z.B. laschenförmige Formelemente 19 aus dem Hüllmaterial 2 auszuformen, wie diese als eine Variante des Verfahrens gemäß Figur 4 für die Ausbildung einer seitlich hervorstehenden Lasche in der Figur 11 zu erkennen ist. Der an sich runde Rohling 1 wird dafür geschlitzt, so dass sich eine Lasche 19 bildet. Diese Lasche 19 kann nun nach der schon beschriebenen Umformung des Verbundteils 18 heraus gebogen werden.This idea can also be used to form, for example, tab-shaped form elements 19 from the wrapping material 2, as these as a variant of the method according to FIG. 4 for the formation of a laterally protruding tab in the FIG. 11 can be seen. The per se round blank 1 is slotted for this, so that a tab 19 is formed. This tab 19 can now be bent out after the reshaping of the composite part 18 already described.

Eine ähnliche Variante des Verfahrens gemäß Figur 4 kann auch für die Ausbildung eines umlaufenden Flansches genutzt werden, wie dies in Figur 12 grob angedeutet ist. Hierbei wird wie dem Verfahren gemäß der Figur 4 in der dritten Umformstufe ein Bereich des Hüllmaterials 2 wie ein Flansch 20 nach außen verformt und umgibt dabei das Kernmaterial 3 radial nach außen abstehend.A similar variant of the method according to FIG. 4 can also be used for the formation of a circumferential flange, as in FIG. 12 roughly indicated. Here, as the method according to the FIG. 4 in the third forming stage, a region of the enveloping material 2 deforms outwardly like a flange 20, surrounding the core material 3 so as to protrude radially outwards.

SachnummernlistePart number list

11
- Rohling Hüllmaterial- blank wrapping material
22
- blechförmiges Hüllmaterial- sheet-shaped wrapping material
33
- Kernmaterial- nuclear material
44
- Matrize- Matrix
55
- Niederhalter- Stripper plate
66
- Durchziehöffnung Matrize- Pull-through opening die
77
- Oberstempel- Upper stamp
88th
- Auswerfer- ejector
99
- Hohlteil- hollow part
1010
- Hilfsstempel- auxiliary stamp
1111
- rohrförmiges Hüllmaterial- tubular wrapping material
1212
- Deckel- Lid
1313
- Umbiegung- bend
1414
- Einlageteil- Deposit part
1515
- Meßdraht- Measuring wire
1616
- Schraube- screw
1717
- Ausstülpung- protuberance
1818
- Verbundteil- composite part
1919
- Lasche- tab
2020
- Flansch- flange
2121
- Loch- hole
2222
- Fließpreßöffnung- Extrusion opening

Claims (18)

  1. Method for producing a composite part (18) made of core material (3) and shell material (2) by means of an impact extrusion process,
    characterized in that
    in a first process step, the covering material (2) covering at least a part of the outside surface of the composite part (18) which is produced according to the method is produced by a deep-drawing process from a sheet-like or tubular blank (1), in which the core material (3) is used as insert die for the deep-drawing process of the covering material (2), wherein covering material (2) and core material (3) come in close contact to each other at their surfaces, and afterwards the intermediate form of the composite part (18) produced respectively made from deep-drawn covering material (2) and partially covered core material (3) is subjected to a common impact extrusion process, in which the final shape of the composite part (18) is produced by plastic deformation.
  2. The method as claimed in claim 1, characterized in that the composite part (18) is formed from at least one core material (3) and at least one covering material (2), the core material (3) and the covering material (2) preferably having at least partly different properties respectively.
  3. The method as claimed in one of the claims 1 or 2, characterized in that the core material (3) has a, preferably nonhomogeneous distribution of different materials and/or the blank (1) of the covering material (2) has a layer-like distribution of different materials layers and/or the core material (3) and/or the blank (1) of the covering material (2) consists of a plastically deformable material, preferably a metallic material or a plastic.
  4. The method according to one of the claims 1 to 3, characterized in that the sheet-like blank (1) of the covering material (2) is held during the deep-drawing process between a die (4) and a preferably segmented blank holder (5) and the core material (3) and the sheet-like blank (1) of the covering material (2) are preferably positioned relative to each other and to the die (4), so that the core material (4), forming an appropriate clearance deep-draws the sheet metal blank (1) of the covering material (2) into the die (4) and thereby deep-draws the sheet-like blank (1).
  5. The method as claimed in one of the preceding claims, characterized in that the preformed intermediate form of the composite part (18) consists of core material (3) and deep-drawn covering material (2) is plastically deformed into the desired final shape between die (4), an upper punch (7) pressing onto the core material (3) and a pressure pad (8) by at least one forming process by backward extrusion and/or by forward extrusion and/or by lateral extrusion.
  6. The method as claimed in one of the preceding claims, characterized in that shaping elements or shapings, preferably undercuts, folds and/or openings or the like are provided in or on the deep-drawn covering material (2) and/or the core material (3) on which core material (3) and covering material (2) are joined together in a form-fitting manner.
  7. The method as claimed in one of the preceding claims, characterized in that after the completion of the deep-drawing process, the resultant intermediate form of the composite part (18) is further deformed at least in sections by an impact extrusion, and the deep-drawn covering material (2) becomes non-positive and/or interlocking and/or material-locking during extrusion to the block-shaped core material (3).
  8. The method as claimed in one of the preceding claims, characterized in that the core material (3) and the sheet-like blank (1) of the covering material (2) are at least partially covered with a coating of a lubricant or are covered at least in the region of direct contact with one another with an adhesion-increasing coating.
  9. The method as claimed in one of the preceding claims, characterized in that as core material (3) a solid material section is used.
  10. The method as claimed in one of claims 1 to 8, characterized in that an accumulation of individual material elements, preferably metallic shavings or the like, preferably of untreated or pre-treated shavings from cutting processes or already pre-compressed shaving pellets is used.
  11. The method as claimed in claim 10, characterized in that the accumulation of individual material elements is inhomogeneous, preferably has material elements of different properties, in particular a layering of individual material elements of different properties, preferably layered along the longitudinal axis of the core material (3).
  12. The method as claimed in one of the claims 10 or 11, characterized in that the accumulation of individual material elements is enclosed during the forming by a hollow mold (9) into which an upper die (7) pressing onto the material elements is inserted which precompresses the accumulation of individual material elements (1) of the covering material (2), in particular precompresses for as long as the sheet-like blank (1) of the covering material (2) has also largely deformed by deep-drawing.
  13. The method as claimed in claim 12, characterized in that the precompressed accumulation of individual material elements and the blank (1) of the covering material (2) are further deformed together during the deep-drawing of the covering material (2), wherein the precompressed accumulation of individual material elements is further compressed during this deep-drawing, wherein the precompressed accumulation of individual material elements is preferably used as a die insert for the deep-drawing of the covering material (2).
  14. The method as claimed in claim 13, characterized in that, after completion of the deep-drawing process, the resultant intermediate form of the composite part (18) is further deformed at least in sections by means of an impact extrusion.
  15. The method as claimed in one of the claims 10 to 14, characterized in that the compressed accumulation of individual material elements has a predeterminable porosity or density, in particular by subsequent pore formation, preferably by foaming an injection-molded foam-forming material or melting-out meltable material elements.
  16. The method as claimed in claim 15, characterized in that the porosity or density of the material elements compacted to the core material (3) by the forming and/or the compression and/or the mixture of the material elements or the density of the material elements compacted to the core material (3) is influenced by admixture of light-weight additives.
  17. The method as claimed in one of the claims 10 to 16, characterized in that the properties of the material elements compacted to the core material (3) are influenced by materials of other properties, preferably different conductivity, other specific weight, other damping or the like, and/or the material elements compacted to the core material (3) include functional elements, preferably threaded parts (16), wires (15), sensors or the like, which form a tight bond with the compacted material elements during the compaction process.
  18. The method as claimed in one of the claims 10 to 17, characterized in that the material elements to be compacted to the core material (3) are enclosed by cylindrically constructed hollow sheet metal blanks (11) and/or lid-like sheet metal blanks which are arranged between the accumulation of individual material elements and the surrounding hollow mold (9) or at the end of the core material (3) directed to the upper punch and which are also deformed.
EP11735970.3A 2011-05-07 2011-05-07 Method for producing composite parts by means of a combination of deep drawing and impact extrusion Active EP2707158B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2011/001053 WO2012152235A1 (en) 2011-05-07 2011-05-07 Method for producing composite parts by means of a combination of deep drawing and impact extrusion

Publications (2)

Publication Number Publication Date
EP2707158A1 EP2707158A1 (en) 2014-03-19
EP2707158B1 true EP2707158B1 (en) 2017-11-29

Family

ID=44508539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11735970.3A Active EP2707158B1 (en) 2011-05-07 2011-05-07 Method for producing composite parts by means of a combination of deep drawing and impact extrusion

Country Status (2)

Country Link
EP (1) EP2707158B1 (en)
WO (1) WO2012152235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019002851A1 (en) * 2019-04-21 2020-10-22 Technische Universität Dortmund Process for the production of composite parts through a combination of expanding, deep drawing and subsequent massive forming

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113042B4 (en) * 2013-11-26 2020-06-25 Sitek-Spikes Gmbh & Co. Kg Process for producing a tire anti-skid stick
DE102014209179A1 (en) 2014-03-20 2015-09-24 Schaeffler Technologies AG & Co. KG Hydraulic camshaft adjuster, use and method for assembling an at least two-piece rotor of a hydraulic camshaft adjuster

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19913695A1 (en) * 1998-03-25 2000-01-20 Tox Pressotechnik Gmbh Tool for press device for rivet-type connection of components, e.g. as plates, bolts, nuts etc. with plate
DE102009032435B4 (en) * 2009-07-09 2012-08-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for making a cross-flow molded composite and cross-flow molded composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019002851A1 (en) * 2019-04-21 2020-10-22 Technische Universität Dortmund Process for the production of composite parts through a combination of expanding, deep drawing and subsequent massive forming

Also Published As

Publication number Publication date
EP2707158A1 (en) 2014-03-19
WO2012152235A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP3036060B1 (en) Method of connecting at least two sheet metal parts ; assembly of sheet metal parts
EP2512702B1 (en) Method and device for producing a half-shell part
DE102013114245B3 (en) Method and device for producing hot-formed wheeled dishes
EP2750814A1 (en) Method for producing a thread part as a composite part, ball screw drive, linear actuator, electromechanical brake booster with such a composite part
DE102013103612A1 (en) Working and upsetting tool for producing high-volume half-shells
DE102005041460A1 (en) Deforming tool system with punch, lower holder and mold, useful e.g. in processing metal sheet for automobile productions, has masks of different properties to produce different components of similar geometries
WO2010124894A1 (en) Method and device for producing a piston for an internal combustion engine and piston for internal combustion engine
EP2707158B1 (en) Method for producing composite parts by means of a combination of deep drawing and impact extrusion
DE102009018151A1 (en) Method for connecting a metal body with a plastic body, comprises arranging the metal body in overlap with the plastic body, and guiding a rotating welding pin with a contact force over the metal body
DE2733925C2 (en) Process for making composite extrusions
DE102011007937B4 (en) Method for producing a structural component of a motor vehicle body
DE102017001211A1 (en) Method and device for producing a helical metal profile and method for producing helical gears
WO2020200796A2 (en) Method for producing a sandwich composite component with pressed two- or three-dimensional shape, and such a sandwich composite component
EP2988920B1 (en) Method for producing hybrid components
DE4417663C2 (en) Pressed part made of metal powder, method and device for its production
WO2013113299A1 (en) Device and method for producing non-porous profiles from separation residues by means of extrusion
DE102011102288A1 (en) Device for manufacturing spur gear that is utilized in e.g. automotive industry for vehicle gear box, has ejector performing screw movement in aperture of cutting plate with linear portion that is rectified for stamper movement
EP1268099B1 (en) Method for producing components using a flowable active medium and a forming tool
EP3221068B2 (en) Method for manufacturing a rotationally symmetrical shaped article
DE102013100930B3 (en) Manufacturing cartridge case, comprises e.g. providing first- and second workpiece parts, two-dimensionally joining two workpiece parts, and forming workpiece produced from two joined workpiece parts to produce cylindrical sleeve
WO2013121328A1 (en) Reshaped bush-like part and method and device for the production thereof
DE102019002851A1 (en) Process for the production of composite parts through a combination of expanding, deep drawing and subsequent massive forming
DE102009015418B4 (en) Method for producing a component
EP2918962B1 (en) Method for producing a cartridge case
DE4106148A1 (en) Precise radius deep-drawn bearing seat mfr. for electric motor housing - involves removal of superfluous metal from peaks and its compression into troughs of roughly prepd. surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JAEGER, ANDREAS

Inventor name: BROECKERHOFF, STEPHAN

Inventor name: HAENISCH, STEPHAN

Inventor name: TEKKAYA, ERMAN

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 949909

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013361

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013361

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180507

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 949909

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230523

Year of fee payment: 13