EP2706188B1 - Barrière annulaire avec diaphragme - Google Patents

Barrière annulaire avec diaphragme Download PDF

Info

Publication number
EP2706188B1
EP2706188B1 EP13193384.8A EP13193384A EP2706188B1 EP 2706188 B1 EP2706188 B1 EP 2706188B1 EP 13193384 A EP13193384 A EP 13193384A EP 2706188 B1 EP2706188 B1 EP 2706188B1
Authority
EP
European Patent Office
Prior art keywords
annular barrier
barrier
expandable sleeve
tubular part
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13193384.8A
Other languages
German (de)
English (en)
Other versions
EP2706188A3 (fr
EP2706188A2 (fr
Inventor
Jørgen HALLUNDBAEK
Paul Hazel
Lars Staehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Welltec AS
Original Assignee
Welltec AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welltec AS filed Critical Welltec AS
Priority to EP13193384.8A priority Critical patent/EP2706188B1/fr
Priority to NO13193384A priority patent/NO2706188T3/no
Priority to DK13193384.8T priority patent/DK2706188T3/da
Publication of EP2706188A2 publication Critical patent/EP2706188A2/fr
Publication of EP2706188A3 publication Critical patent/EP2706188A3/fr
Application granted granted Critical
Publication of EP2706188B1 publication Critical patent/EP2706188B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • E21B33/1277Packers; Plugs with inflatable sleeve characterised by the construction or fixation of the sleeve

Definitions

  • the pressure envelope of a well is governed by the burst rating of the tubular and the well hardware etc. used within the well construction.
  • the expandable sleeve of an annular barrier may be expanded by increasing the pressure within the well, which is the most cost-efficient way of expanding the sleeve.
  • the burst rating of a well defines the maximum pressure that can be applied to the well to expand the sleeve, and it is desirable to minimise the expansion pressure required for expanding the sleeve in order to minimise the exposure of the well to the expansion pressure.
  • annular barriers When expanded, annular barriers may be subjected to a continuous pressure or a periodic high pressure from the outside, either in the form of hydraulic pressure within the well environment or in the form of formation pressure. In some circumstances, such pressure may cause the annular barrier to collapse, which may have severe consequences for the area which is to be sealed off by the barrier, as the sealing properties are lost due to the collapse.
  • expansion means e.g. a pressurised fluid. If the fluid leaks from the sleeve, the back pressure may fade, and the sleeve itself may thus collapse.
  • the annular barrier is capable of withstanding an outside pressure that is higher than the pressure in the well tubular structure without changing the pressure inside the well tubular structure since the diaphragm seals off the inside of the well tubular structure from the outside of the well tubular structure.
  • the diaphragm may be made from a deformable material.
  • the diaphragm may be made from an elastically/plastically deformable material.
  • the diaphragm may be cylindrical or corrugated.
  • the annular barrier may further comprise a connection part connecting the expandable sleeve to the tubular part.
  • the annular barrier may comprise a spacer which may be a part of the connection part, a part of the expandable sleeve or a separate part.
  • the annular barrier may further comprise a restriction element arranged on an outside of the expandable sleeve, restricting the sleeve from expanding freely.
  • the restriction element may be arranged on the inside of the sleeve.
  • the annular barrier may further comprise sealing elements arranged on an outside of the expandable sleeve for sealing against the inside wall of the borehole.
  • the diaphragm in an unexpanded state may substantially be shaped as a hollow cylinder.
  • the expandable sleeve may be capable of expanding to an at least 10% larger diameter, preferably an at least 15% larger diameter, more preferably an at least 30% larger diameter than that of an unexpanded sleeve, and it may have a wall thickness which is thinner than a length of the expandable sleeve, the thickness preferably being less than 25% of its length, more preferably less than 15% of its length, and even more preferably less than 10% of its length.
  • the expandable sleeve may have a varying thickness along its periphery and/or length.
  • more than one sealing member may be arranged between the slidable fastening means and the tubular part.
  • connection parts may be fixedly fastened to the tubular part or be part of the tubular part.
  • the sealing elements may have a sealing surface facing the inner side of the borehole.
  • the sealing surface may be serrated or be another kind of deformable surface.
  • the sealing elements may be made of polymers, elastomers, natural or synthetic rubber or silicone.
  • one of the two connection parts may be slidably connected with the tubular part and the other of the two connection parts may be fixedly connected with the tubular part.
  • the present invention may further relate to an annular barrier system comprising:
  • system may comprise a second annular barrier, wherein the inflow control section is arranged between the two annular barriers.
  • the present invention may further relate to a method of placing an annular barrier according to the invention in an annulus, the method comprising the steps of:
  • said method may comprise the step of opening the inflow control section.
  • the present invention may further relate to a zone isolation method for providing and maintaining zone isolation between a first zone and a second zone of the borehole, comprising the steps of:
  • the annular barrier 1 is used for a variety of purposes, all of which require that an expandable sleeve 3 of the annular barrier 1 is expanded so that the sleeve abuts the inside wall 101 of the borehole.
  • the annular barrier 1 comprises a tubular part 2 surrounded by the expandable sleeve 3.
  • the unexpanded sleeve has a cylindrical shape and at its ends it is connected with the tubular part.
  • the expandable sleeve 3 is expanded by letting pressurised fluid through an expansion opening 9 of the tubular part into an annular barrier space 6 between the expandable sleeve 3 and the tubular part 2.
  • the annular barrier 1 When the annular barrier 1 has been expanded using a pressurised fluid and abuts the inside of the borehole wall 101, the annular barrier provides a seal between a first zone 102 and a second zone 103 of the borehole.
  • the first zone 102 is on one side of the annular barrier 1 and the second zone 103 is on the other side of the annular barrier 1.
  • the annular barrier 1 When the pressure P expansion of the pressurised fluid is released in order to start production, the annular barrier 1 must be capable of withstanding a certain pressure P100 from the borehole 100 in order to prevent a collapse which would lead the barrier to become leaky.
  • the annular barrier 1 is used to seal off a production zone 400 (shown in Fig. 17 ), and a pressure P400 in the production zone might build up inside the production zone 400 when a fluid, such as oil, starts to enter the production zone 400 from the surrounding formation 200.
  • a fluid such as oil
  • the annular barrier 1 comprises a barrier compartment 7 which is in fluid communication with the borehole 100 through a first barrier opening 10, and since the barrier space 7 is in fluid communication with the first zone 102 of the borehole, the pressure P7 in the barrier compartment will build up as fluid flows from the first zone 102 and into the barrier compartment 7 (illustrated by an arrow), equalising the pressure in the barrier compartment 7 with the pressure in the first zone P102.
  • the diaphragms may abut each other, the outermost diaphragm being supported by an abutting element, such as the tubular part 2 or the expandable sleeve 3.
  • the deformation of a diaphragm material may be elastic, plastic or a combination thereof.
  • the deformation of both diaphragms and sleeves may also be referred to as expansion or expandable, since compared to the relaxed position, the material of the sleeve and diaphragms will be expanded during use.
  • the diaphragms and the sleeve may be connected with the tubular part 2 by means of a connection part 12.
  • the connection part may be connected with the sleeve and the diaphragms by means of welding or thread connections.
  • the expandable sleeve 3 of the annular barrier 1 When the expandable sleeve 3 of the annular barrier 1 is expanded, the diameter of the sleeve is expanded from its initial unexpanded diameter to a larger diameter.
  • the expandable sleeve 3 has an outside diameter D and is capable of expanding to an at least 10% larger diameter, preferably an at least 15% larger diameter, more preferably an at least 30% larger diameter than that of an unexpanded sleeve.
  • the expandable sleeve 3 has a wall thickness t which is thinner than a length L of the expandable sleeve, the thickness preferably being less than 25% of the length, more preferably less than 15% of the length, and even more preferably less than 10% of the length.
  • a section 14 of the sleeve 3 In order to increase the thickness of a section 14 of the sleeve 3, additional material is applied onto an outer face 33 of the expandable sleeve, e.g. by adding welded material onto the outer face.
  • This section 14 is also referred to, in some embodiments, as a reinforcement ring 14.
  • the thickness of the section 14 of the sleeve 3 is increased by fastening a ring-shaped part onto the sleeve.
  • the ring-shaped part is the section 14 and is fastened to the inner surface by means of welding or a similar suitable fastening process.
  • a production zone 400 on one side of the annular barrier is a first zone 102 of the borehole with a first zone pressure P102, and on the other side of the annular barrier is the second zone 103 of the borehole, not forming part of the production zone 400.
  • the second zone pressure P103 suddenly increases substantially may be due to a gas leak further down the borehole 100, and the annular barrier 1 may suddenly experience an unexpected high pressure from the second zone pressure P103 even though the barrier was set up to seal a high production zone pressure P400.
  • the second diaphragm 5 is provided in the annular barrier 1.
  • the expansion compartment 6 is in fluid communication with an inside 302 of the well tubular structure 300 through an expansion opening 9, and the first barrier compartment 7 is in fluid communication with the first zone 102 of the borehole through a first barrier opening 10, and the second barrier compartment 8 is in fluid communication with the second zone 103 of the borehole through a second barrier opening 11.
  • the second zone pressure P103 builds up as shown in Fig. 7 , fluid will flow (illustrated by an arrow) into the second barrier compartment 8, forcing the first diaphragm to abut the expandable sleeve 3 and the second diaphragm 5 to abut the tubular part 2, thereby obtaining the second zone pressure P103 inside the annular barrier 1.
  • FIG. 7 shows the situation in which the second zone pressure P103 is the highest pressure, thereby forcing the second diaphragm 5 to abut the expandable sleeve 3 and the first diaphragm 4 to abut the tubular part 2.
  • Fig. 8 shows the situation in which the first zone pressure P102 is the highest, thereby forcing a fluid to enter the first barrier compartment 7 from the first zone 102 of the borehole 100 (illustrated by the arrow).
  • the first diaphragm 4 is forced towards the tubular part in that the first diaphragm 4 is forced to abut the second diaphragm 5 which is forced to abut the tubular part 2.
  • Fig. 9 shows the first and second diaphragms 4, 5 in intermediate positions, not abutting each other, nor abutting the expandable sleeve 3 or the tubular part 2.
  • a typical annular barrier has a length of 5 to 15 metres, and preferably 10 metres, to match standard well tubular parts and equipment for inserting well tubular parts into boreholes.
  • the difference between the diameter of an expanded and an unexpanded annular barrier may typically be less than 10 centimetres, and even less than 5 centimetres, which over a length of 5 to 15 metres applies very little stress to the diaphragm.
  • the diaphragms are shaped as hollow cylinders fastened at their ends to the connection parts and surrounding the tubular part which is surrounded by the expandable sleeve.
  • Figs. 10A and 10B show the annular barrier 1 having two diaphragms, and each diaphragm is shaped as a hollow cylinder fastened at its one end to a connection part and at its other end to the tubular part 2.
  • the tubular part 2 has an expansion opening 9 arranged in a middle part, and the ends of the diaphragms are connected with the tubular part 2 on opposite sides of the expansion opening 9 when seen in cross-section.
  • the diaphragms are welded to the tubular part, and at its other ends the diaphragms are connected with the connection parts by means of a thread connection.
  • the diaphragms may also be welded to the connection parts.
  • both the first barrier opening 10 and the second barrier opening 11 penetrate the connection part, the expansion sleeve 3 and the diaphragm providing fluid communication between the first zone 102 and the first barrier compartment and the second zone 103 and the second barrier compartment, respectively.
  • the first barrier opening 10 and the second barrier opening 11 penetrate only the connection part. In this way, the expandable sleeve 3 and the diaphragms are not penetrated, resulting in a more simple design.
  • the diaphragms in Figs. 10A and 10B may also be manufactured from one cylinder fastened at its ends to the connection parts and at a middle part welded to the tubular part, and subsequently, the expansion openings are provided therein through the tubular part.
  • the annular barrier of Fig. 11 also has two diaphragms; a first diaphragm connected at its ends to the connection part and a second diaphragm which in its one end is connected with one connection part and in its other end is connected with the tubular part 2 near the expansion opening 9.
  • the expansion opening 9 is provided in the tubular part 2 near the connection part in which only the first diaphragm is fastened. Thus, the expansion opening 9 is not arranged in the middle part of the tubular as in Figs. 10A and 10B .
  • Figs. 10A and 10B show a first barrier opening 10 and a second barrier opening 11
  • the barrier openings may be replaced by a non-sealing connection between the connection part and the tubular part.
  • the first barrier connection may be replaced in the same way by a leaky connection between the connection part and the tubular part.
  • the first diaphragm shown in Fig. 11 allows that a completely tight sealing connection is not needed between the connection part 12 and the tubular part 2 at the end of the annular barrier 1 where the first diaphragm 4 is connected to the connection part.
  • the first diaphragm arranged in this way results in this connection part possibly being the sliding end of the annular barrier, thereby complying with the need for a movable end due to the shortening of the sleeve during expansion while still providing a seal between the outside pressure and the inside of the well tubular structure, and then the other end can be fixedly connected to the tubular part 2.
  • the first diaphragm of Fig. 11 has the ability to expand substantially the entire volume of the annular barrier 1, equivalently to if it was connected with both connection parts due to the fact that its connection with the tubular part 2 can be arranged so close to the connection part in which only the second diaphragm is connected that the first diaphragm can be expanded in substantially the entire volume of the annular barrier 1.
  • the projecting part 13 has the purpose of restricting the expansion of the expandable sleeve 3 so that the curvature of the expandable sleeve 3 when expanded is more S-shaped when seen in the cross-sectional view along the longitudinal extension of the sleeve. It is hereby obtained that the expandable sleeve 3 does not fracture during expansion and that the cross-sectional profile of the expandable sleeve 3 is capable of withstanding a higher collapse pressure than a known annular barrier. Thus, the expandable sleeve 3 is more restricted in expanding at the first point than at the second point. Furthermore, due to the fact that the projecting part 13 may be made from a less flexible metal alloy and tapers from the connection towards the second point, the expandable sleeve 3 is less restricted in expanding along with the decreasing thickness of the projecting part.
  • the first barrier opening 10 may also be arranged directly in the expandable sleeve 3, as shown in Fig. 13 , resulting in a very simple design which is easy to manufacture and implement in existing manufacturing procedures.
  • the diaphragms, the sleeve, the connection part 12 and the tubular part 2 may be welded as best suited in a specific annular barrier.
  • the diaphragms and sleeves may be welded if the connection part is slidably connected to the tubular part, or they may be welded to the tubular part if the connection part is fixedly connected to the tubular part etc.
  • the expandable sleeve and the diaphragm/-s may also be fastened directly to the tubular part without use of connection parts, as shown in Fig. 14 .
  • the expandable sleeve of the annular barrier may have one end fastened by means of a connection part and the other end welded directly to the tubular part together with a diaphragm.
  • both ends can be fixed by welding or both ends can be sliding along the tubular part 2.
  • Fig. 15 also shows the possibility of using a valve 19 instead of the barrier opening 10.
  • the expansion opening 9, the first barrier opening 10 and/or the second barrier opening 11 may in some embodiments be replaced by a valve to control the flow from the borehole into the barrier compartments or to control the flow from the inside of the well tubular structure 300 and into the expansion compartment 6. Also, the flow direction may be restricted using one-way valves.
  • additional material may be applied onto an inner or outer face of the sleeve, e.g. by adding welded material onto the inner face.
  • sealing elements 15 are arranged opposite the sections of the sleeve having an increased thickness.
  • the sealing elements 15 fill up the gap occurring during expansion.
  • the sealing elements 15 have a tapering or triangular cross-sectional shape.
  • annular barrier When the annular barrier is installed, it forms part of a well tubular structure, as shown in Fig. 17 , providing an annular barrier system 500.
  • the system comprises two annular barriers sealing a production zone 400.
  • the barriers are arranged in a horizontal part of the well and are seen in their expanded condition.
  • An inner ring may also be arranged between the expandable sleeve 3 and the tubular part 2 and may be welded to the connection part 12.
  • An expansion tool may be used to expand the annular barrier and may comprise an isolation device for isolating a first section outside the passage or valve between an outside wall of the tool and the inside wall of the well tubular structure.
  • the pressurised fluid is obtained by increasing the pressure of the fluid in the isolation device.
  • the tool may also use coiled tubing for expanding the expandable sleeve 3 of an annular barrier 1 or of two annular barriers at the same time.
  • a tool with coiled tubing can pressurise the fluid in the well tubular structure without having to isolate a section of the well tubular structure.
  • the tool may need to plug the well tubular structure further down the borehole from the two annular barriers or barriers 1 to be operated.
  • the annular barrier system of the present invention may also employ a drill pipe or a wireline tool to expand the sleeve.
  • the tool comprises a reservoir containing the pressurised fluid, e.g. when the fluid used for expanding the sleeve 3 is cement, gas or a two-component compound.
  • An annular barrier 1 may also be called a packer or similar expandable means.
  • the well tubular structure can be the production tubing or casing or a similar kind of tubing downhole in a well or a borehole.
  • the annular barrier 1 can be used both between the inner production tubing and an outer tubing in the borehole or between a tubing and the inner wall of the borehole.
  • a well may have several kinds of tubing, and the annular barrier 1 of the present invention can be mounted for use in all of them.
  • the valve may be any kind of valve capable of controlling flow, such as a ball valve, butterfly valve, choke valve, check valve or non-return valve, diaphragm valve, expansion valve, gate valve, globe valve, knife valve, needle valve, piston valve, pinch valve or plug valve.
  • a ball valve such as a ball valve, butterfly valve, choke valve, check valve or non-return valve, diaphragm valve, expansion valve, gate valve, globe valve, knife valve, needle valve, piston valve, pinch valve or plug valve.
  • the expandable tubular metal sleeve 3 may be extruded, die-cast or rolled, e.g. hot rolled, cold rolled, roll bended etc., and subsequently welded.
  • the fluid used for expanding the expandable sleeve 3 may be any kind of well fluid present in the borehole surrounding the tool and/or the well tubular structure.
  • the fluid may be cement, gas, water, polymers, or a two-component compound, such as powder or particles mixing or reacting with a binding or hardening agent.
  • Part of the fluid, such as the hardening agent, may be present in the space before injecting a subsequent fluid into the space.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Gasket Seals (AREA)
  • Measuring Fluid Pressure (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Pipe Accessories (AREA)
  • Diaphragms And Bellows (AREA)

Claims (12)

  1. Barrière annulaire (1) disposée dans un trou de forage (100) afin de réaliser une isolation de zone entre une première zone (102) et une deuxième zone (103) du trou de forage, comprenant :
    - une partie tubulaire (2) destinée à être montée en tant que partie d'une structure tubulaire de puits (300), la partie tubulaire ayant une ouverture de dilatation (9),
    - un manchon expansible (3) entourant la partie tubulaire, chaque extrémité (31, 32) du manchon expansible étant reliée à la partie tubulaire, et
    - un espace de barrière annulaire (6, 7) entre la partie tubulaire (2) et le manchon expansible (3),
    caractérisée en ce qu'un premier diaphragme (4) disposé dans l'espace de barrière annulaire divise l'espace de barrière annulaire en un compartiment de barrière (7) et un compartiment de dilatation (6), et dans laquelle le compartiment de dilatation (6) est en communication de fluide avec un côté intérieur (302) de la partie tubulaire (2) par l'intermédiaire de l'ouverture de dilatation (9), et le compartiment de barrière (7) est en communication de fluide avec le trou de forage (100) par l'intermédiaire d'une première ouverture de barrière (10), la première ouverture de barrière (10) étant disposée à l'opposé de la première zone (102) du trou de forage lorsque le manchon expansible (3) s'est dilaté.
  2. Barrière annulaire (1) selon la revendication 1, comprenant en outre des parties de raccordement (12) reliant le premier diaphragme (4) et le manchon expansible (3) à la partie tubulaire (2) à une première extrémité (31) et une deuxième extrémité (32) du manchon expansible (3).
  3. Barrière annulaire (1) selon la revendication 1 ou 2, dans laquelle la première ouverture de barrière (10) s'étend à travers la partie de raccordement (12) et le manchon expansible (3).
  4. Barrière annulaire (1) selon l'une quelconque des revendications précédentes, dans laquelle le premier diaphragme (4) comporte une première extrémité et une deuxième extrémité, la première extrémité étant disposée entre une première extrémité (31) du manchon expansible (3) et la partie tubulaire (2), et la deuxième extrémité du premier diaphragme (4) étant disposée entre une deuxième extrémité (32) du manchon expansible (3) et la partie tubulaire (2).
  5. Barrière annulaire (1) selon la revendication 4, dans laquelle le premier diaphragme (4) et le manchon expansible (3) sont reliés à leurs extrémités à la partie tubulaire (2) à l'aide de parties de raccordement (12).
  6. Barrière annulaire (1) selon l'une quelconque des revendications précédentes, dans laquelle le premier diaphragme (4) est réalisé à partir d'un matériau élastiquement/plastiquement déformable.
  7. Barrière annulaire (1) selon l'une quelconque des revendications précédentes, dans laquelle le premier diaphragme (4) est réalisé à partir de métal, d'alliage, de matière plastique, d'élastomère ou de caoutchouc naturel ou synthétique, ou n'importe quelle combinaison de ceux-ci.
  8. Barrière annulaire (1) selon l'une quelconque des revendications précédentes, comprenant en outre des éléments d'étanchéité (15) disposés sur un côté extérieur du manchon expansible (3) pour s'appliquer de façon étanche contre la paroi intérieure (101) du trou de forage.
  9. Barrière annulaire (1) selon l'une quelconque des revendications 2 à 8, dans laquelle l'une des deux parties de raccordement (12) est raccordée de manière coulissante à la partie tubulaire (2) et l'autre des deux parties de raccordement est raccordée de manière fixe à la partie tubulaire.
  10. Barrière annulaire (1) selon la revendication 9, dans laquelle au moins un élément d'étanchéité, tel qu'un joint torique ou un joint d'étanchéité chevron, est agencé entre la partie de raccordement coulissante (12) et la partie tubulaire (2).
  11. Système de barrière annulaire (500) comprenant :
    - une structure tubulaire de puits (300), et
    - au moins une barrière annulaire (1) selon l'une quelconque des revendications précédentes, agencée en tant que partie de la structure tubulaire de puits.
  12. Procédé de mise en place d'une barrière annulaire (1) selon l'une quelconque des revendications 1 à 10 dans un espace annulaire, le procédé comprenant les étapes de :
    - liaison de la barrière annulaire (1) à une structure tubulaire de puits (300),
    - disposition de la barrière annulaire non-dilatée (1) dans une position souhaitée dans le trou,
    - dilatation du manchon expansible (3) grâce à du fluide sous pression admis depuis l'intérieur de la partie tubulaire (2), et
    - mise en place de l'ouverture de barrière (10) à l'opposé de la première zone (102) du trou de forage pour assurer que le compartiment de barrière (7) est en communication de fluide avec la première zone du trou de forage (100).
EP13193384.8A 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme Active EP2706188B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13193384.8A EP2706188B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme
NO13193384A NO2706188T3 (fr) 2011-01-25 2011-01-25
DK13193384.8T DK2706188T3 (da) 2011-01-25 2011-01-25 Ringformet barriere med en membran

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13193384.8A EP2706188B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme
EP11152135.7A EP2479376B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP11152135.7A Division EP2479376B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme

Publications (3)

Publication Number Publication Date
EP2706188A2 EP2706188A2 (fr) 2014-03-12
EP2706188A3 EP2706188A3 (fr) 2015-04-22
EP2706188B1 true EP2706188B1 (fr) 2017-10-11

Family

ID=43926892

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11152135.7A Active EP2479376B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme
EP13193384.8A Active EP2706188B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme
EP13193387.1A Active EP2706189B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire dotée d'une membrane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11152135.7A Active EP2479376B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire avec diaphragme

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13193387.1A Active EP2706189B1 (fr) 2011-01-25 2011-01-25 Barrière annulaire dotée d'une membrane

Country Status (4)

Country Link
EP (3) EP2479376B1 (fr)
DK (3) DK2706188T3 (fr)
ES (1) ES2443319T3 (fr)
NO (2) NO2706188T3 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570587B1 (fr) 2011-09-13 2013-10-30 Welltec A/S Barrière annulaire dotée d'un manchon métallique de sécurité
FR2988126B1 (fr) * 2012-03-16 2015-03-13 Saltel Ind Dispositif d'isolation d'une partie d'un puits
EP2644821A1 (fr) * 2012-03-30 2013-10-02 Welltec A/S Barrière annulaire dotée d'une connexion flexible
AU2013100387B4 (en) * 2013-03-28 2013-07-11 Welltec Oilfield Solutions Ag Annular barrier
AU2013100385B4 (en) * 2013-03-28 2013-09-26 Welltec Oilfield Solutions Ag Annular barrier
AU2013100388B4 (en) * 2013-03-28 2013-07-11 Welltec Oilfield Solutions Ag Annular barrier
FR3010130B1 (fr) * 2013-08-28 2015-10-02 Saltel Ind Element tubulaire avec etancheite dynamique et son procede d'application contre la paroi d'un puits
GB201315957D0 (en) 2013-09-06 2013-10-23 Swellfix Bv Retrievable packer
EP2963233A1 (fr) * 2014-06-30 2016-01-06 Welltec A/S Système de fond de puits
EP3255240A1 (fr) * 2016-06-10 2017-12-13 Welltec A/S Système de chevauchement de fond de trou
CN107916908A (zh) * 2017-12-11 2018-04-17 中国石油天然气股份有限公司 一种管内复合密封机构
EP3584403A1 (fr) * 2018-06-19 2019-12-25 Welltec Oilfield Solutions AG Barrière annulaire
EP3647532A1 (fr) * 2018-10-30 2020-05-06 Welltec Oilfield Solutions AG Barrière annulaire
CN109931264B (zh) * 2018-11-26 2024-05-14 珠海格力电器股份有限公司 一种变容控制机构、压缩机和空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859828A (en) * 1953-12-14 1958-11-11 Jersey Prod Res Co Down hole hydraulic pump for formation testing
US2828823A (en) * 1955-07-07 1958-04-01 Exxon Research Engineering Co Reinforced inflatable packer
US2959226A (en) * 1956-10-26 1960-11-08 Jersey Prod Res Co Inflatable packer formation tester
FR2791732B1 (fr) * 1999-03-29 2001-08-10 Cooperation Miniere Et Ind Soc Dispositif d'obturation d'un puits de forage
US7234533B2 (en) * 2003-10-03 2007-06-26 Schlumberger Technology Corporation Well packer having an energized sealing element and associated method
GB0417328D0 (en) * 2004-08-04 2004-09-08 Read Well Services Ltd Apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
NO2706188T3 (fr) 2018-03-10
DK2479376T3 (da) 2014-01-13
NO2706189T3 (fr) 2018-03-17
ES2443319T3 (es) 2014-02-18
EP2706189A3 (fr) 2015-04-08
EP2479376A1 (fr) 2012-07-25
DK2706189T3 (da) 2017-11-20
EP2706189B1 (fr) 2017-10-18
EP2479376B1 (fr) 2013-12-25
DK2706188T3 (da) 2017-11-20
EP2706188A3 (fr) 2015-04-22
EP2706189A2 (fr) 2014-03-12
EP2706188A2 (fr) 2014-03-12

Similar Documents

Publication Publication Date Title
EP2706188B1 (fr) Barrière annulaire avec diaphragme
EP2723976B1 (fr) Barrière annulaire avec joint externe
CA2776962C (fr) Barriere annulaire
CA2813896C (fr) Barriere annulaire
US9518441B2 (en) Expandable packing element and cartridge
AU2012300925B2 (en) Annular barrier with compensation device
CA2867519A1 (fr) Barriere annulaire comportant un raccord flexible
AU2013100386A4 (en) Annular barrier
AU2013100385B4 (en) Annular barrier
AU2013100388A4 (en) Annular barrier
AU2013100387A4 (en) Annular barrier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2479376

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 33/127 20060101AFI20150317BHEP

17P Request for examination filed

Effective date: 20151019

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2479376

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936229

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011042421

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 936229

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011042421

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011042421

Country of ref document: DE

Representative=s name: SAMSON & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011042421

Country of ref document: DE

Owner name: WELLTEC OILFIELD SOLUTIONS AG, CH

Free format text: FORMER OWNER: WELLTEC A/S, ALLEROED, DK

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: WELLTEC OILFIELD SOLUTIONS AG, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190429 AND 20190502

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: WELLTEC OILFIELD SOLUTIONS AG; CH

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: WELLTEC A/S

Effective date: 20190607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200121

Year of fee payment: 10

Ref country code: NL

Payment date: 20200120

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011042421

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240123

Year of fee payment: 14

Ref country code: FR

Payment date: 20240117

Year of fee payment: 14

Ref country code: DK

Payment date: 20240117

Year of fee payment: 14