EP2705553A1 - Weak light detection using an organic, photosensitive component - Google Patents

Weak light detection using an organic, photosensitive component

Info

Publication number
EP2705553A1
EP2705553A1 EP12732579.3A EP12732579A EP2705553A1 EP 2705553 A1 EP2705553 A1 EP 2705553A1 EP 12732579 A EP12732579 A EP 12732579A EP 2705553 A1 EP2705553 A1 EP 2705553A1
Authority
EP
European Patent Office
Prior art keywords
layer
intermediate layer
organic
component
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12732579.3A
Other languages
German (de)
French (fr)
Inventor
Jon AJURIA ARREGUI
Francesco ARCA
Oliver Hayden
Maria Sramek
Sandro Francesco Tedde
Guido ZOLI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2705553A1 publication Critical patent/EP2705553A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the detection of light by means of organic photosensitive components.
  • organic photodetectors In the field of organic photodetectors, components based on organic semiconductors are known, which can be used at high light intensities. However, the response of these organic photodetectors is not sufficiently fast for many applications. However, the speed is critical for industrial applications, are listed in accepted de ⁇ nen photodiode signals from electronic circuits, which are characterized as very short integration times ⁇ .
  • the dynamic response of organic photodetectors is too low, especially in the range of low light intensity of about only a few nW / cm 2 . It is an object of the present invention to improve this response in the low light intensity range.
  • an organic intermediate layer is used in a photosensitive component to increase the cutoff frequency of this photosensitive component.
  • This has the advantage, by using this organic interlayer, of making the photosensitive member capable of applications which require a fast response of the photodetector, for example, in combined organic inorganic CCD cameras, in which a high frame rate is usually required.
  • the organic intermediate layer is used in a photosensitive component whose cutoff frequency for irradiation intensities below 1000 nW / cm 2 is at least 1 Hz.
  • loading carries the cut-off frequency in this range at least 10 Hz, preferably at least 100 Hz.
  • the cutoff frequency in this low light range also be up to 1 kHz.
  • This refinement has the advantage of being able to use photosensitive components also in the low-light range by means of the organic intermediate layer for increasing the cut-off frequency, for example for night-vision applications or also for analytical and clinical diagnostic applications in the low-light range.
  • a charge blocking layer ⁇ as an organic intermediate layer, in particular an electron blocking layer USAGE ⁇ det.
  • the organic intermediate layer in the photosensitive member is preferably used for interface modification between at least one of the electrodes and the photoactive semiconductor layer.
  • Charge blocking layers in organic photosensitive components have hitherto been known only for the purpose of dark current reduction, as for example from WO 2009/043683 A1.
  • the photosensitive member according to the invention comprises a photo ⁇ active organic semiconductor layer, a first and a second electrode, and an organic interlayer.
  • the organic intermediate layer between the photoactive semiconductor layer and at least one of the electrodes is attached ⁇ arranged.
  • the organic intermediate layer is designed such that the limit frequency of the photosensitive component is at least 1 Hz.
  • the cutoff frequency is at least 10 Hz, preferably at least
  • the component may also have a cut-off frequency in the kilohertz range.
  • the latter has an organic intermediate layer, which is designed such that the trap states at the interface between the photoactive semiconductor layer and at least egg ⁇ ner of the electrodes are influenced in such a way that the boundary ⁇ frequency of the photosensitive member at an irradiation - Intensity to 1000 nW / cm 2 is at least 1 Hz. Insbeson ⁇ wider is the cutoff frequency in this irradiation area to 1000 nW / cm 2 is at least 10 Hz, preferably at least 100 Hz.
  • the cut-off frequency can also be located in the kilohertz range. For example, an increase in the cutoff frequency can also be ensured for irradiation intensities below 100 nW / cm 2 .
  • the cut-off frequency for irradiation intensities up to 100 nW / cm 2 is above 10, in particular above 100 Hz.
  • this has a cutoff frequency of at least one hertz for irradiation intensities of up to 1000 nW / cm 2 in the visible wavelength range and in the near infrared or in the near UV wavelength range.
  • the organic intermediate layer of the photosensitive component is a charge blocking layer, in particular an electron blocking layer. Whether it is an electric ⁇ denominator or hole blocking layer may be dictated by the Sta ⁇ ck awarded the component.
  • the photoactive layer of the organic semiconductor fotosensiti ⁇ ven component comprises a bulk unction Heteroj.
  • This embodiment is of particular advantage for the planar structures of the photodetector.
  • the photosensitive component is designed such that the organic intermediate layer is arranged between the photoactive semiconductor layer and both electrodes or that the photoactive semiconductor layer and both hiss Electrodes per an intermediate layer is arranged. Instead therefore to modify only an electrode-semiconductor interface with a Zvi ⁇ rule layer, both electrode semiconductor interfaces may include an intermediate layer, which leads to a further improvement of the response behavior.
  • this has a substrate on which the first and the second electrode are arranged.
  • the intermediate layer is then organized see between the photoactive half ⁇ conductor layer and the substrate with the two electrodes on ⁇ sorted.
  • the organic intermediate layer is in this case advantageous way ⁇ been deposited on an inorganic substrate.
  • the photosensitive member for example, a substrate on which the photoactive semiconductor layer is integrally ⁇ arranges and the organic intermediate layer on this fo ⁇ toeducationen semiconductor layer is disposed and, in turn, the two electrodes are arranged on the orga ⁇ African intermediate layer.
  • the organic intermediate layer has a monomolecular layer, which in particular is a self-assembling monomolecular layer.
  • a self-assembling monomolecular layer Such Schich ⁇ th are also known as SAM (self-assembled monolayer).
  • SAMs have the advantage of being perfectly adaptable to the interface through their molecular components.
  • anchor and end groups of the self-assembling molecule can be tuned to substrate and adjacent semiconductor.
  • the variation of the chain length can be used to modulate the dielectric behavior of the layer.
  • the photosensitive component has at least one electrode, which comprises nanoparticles. These nanoparticulate electrodes have proven to be advantageous for the rapid word behavior proved.
  • the cut-off frequency of the component can be further increased.
  • one or more of the described photosensitive components is arranged in an X-ray detector with a scintillator unit. These preferably find appli ⁇ dung in radiography, mammography, dosimetry, fluorescence microscopy and in angiography. Especially in the diagnostically-Nazi applications is a low X-ray dose geach ⁇ tet. Therefore, only a ge ⁇ ring light signal is based on the Szintillatorü, in particular below 1000 nW / cm 2. Moreover, these are pulsed methods in which a fast response of the photodiode arrives, which detects the scintillation radiation. Therefore, the photosensitive component according to the invention is of particular advantage for the described X-ray detector.
  • an organic intermediate layer is used in a photosensitive component, which leads to an increase in the cutoff frequency of this component.
  • an organic intermediate layer in a photosensitive component is used for irradiation intensities up to 1000 nW / cm 2 , which contributes to increasing the cutoff frequency to at least 1 Hz.
  • the use of an organic intermediate layer in the detection method causes a cut-off frequency of at least 10, preferably at least 100 Hz.
  • the irradiation range for such cutoff frequencies may in particular also be less than 100 nW / cm 2 .
  • FIG. 1 shows a vertical structure of an organic photosensitive component
  • 2 shows a planar structure with bottom contact
  • FIG. 3 shows a planar structure with top contact
  • FIG. 1 shows a vertical structure of an organic photosensitive component
  • FIG. 4 shows the photocurrent of a component with aluminum cathode
  • FIG. 5 shows the photocurrent of a component with zinc oxide cathode
  • FIG. 6 shows the cut-off frequency characteristic of a component with P3HT electron blocking layer.
  • FIG. 7 shows the cut-off frequency profile of a component with SAM electron blocking layer.
  • FIG. 1 shows schematically the structure of a photosensitive component 1.
  • six layers are arranged one above the other angeord ⁇ net.
  • the lowermost layer represents the substrate 10 of the component 1.
  • An anode 20 is deposited thereon.
  • In the intermediate layer 30 is shown and turn over the fotoakti ⁇ ve semiconductors 31.
  • These photoactive semiconductor layer 31 is in particular unction for a bulk Heteroj. This is followed by the cathode 21 and above it is still an encapsulation layer 11 is shown. Encapsulation of the devices is common in the area orga ⁇ nic semiconductors to protect air and moisture sensitive Ma ⁇ terialien from degradation. Laterally of the perspective layer view are still the interfaces I i, I 2 , I3 between the stacked layers named. All of these boundary layers I i, I2, I3 preferably have Fallenzu ⁇ stands that affect the dynamic behavior of the photodetector. 1
  • FIG. 2 again shows a substrate 10 as the lowermost layer, on which two layers, which are separated horizontally from each other, are shown. which are for the two electrodes, the cathode 21 and the anode 20. Across these electrodes 20, 21 of time, the remaining substrate 10 even with covering, the intermediate ⁇ layer 30 was deposited. The organic semiconductor layer 31 was deposited via the intermediate layer 30 and an encapsulation 11 is again shown thereon.
  • a so structured device 2 can be also referred to as a bottom-contact structure ⁇ the since both electrodes 20, 21, so the contacts are at the bottom of the component 2 and lie in the construction sequence at the bottom of the substrate 10 itself.
  • the photosensitive component 3 is constructed in FIG. 3, which has a so-called top contact.
  • the organic semiconductor 31, in particular the bulk heterojunction 31, is deposited on the substrate 10, and the intermediate layer 30 is deposited thereon.
  • Two electrodes, the anode 20 and the cathode 21, are deposited on this intermediate layer 30, separated from each other horizontally again ⁇ an encapsulation 11.
  • the vertical stack structure shown 1 and the bottom-contact structure 2 are particularly suitable for the intermediate layers 30, which, to hold a SAM, a self-assembled monolayer ⁇ , since these type of molecules choice often particularly forthcoming Trains t on inorganic substrates, as the electrode material ⁇ lien 20, 21 they can be deposited.
  • FIGS. 4 and 5 show the time course of the photocurrent Ip H , which was measured on photodetectors 1 in the vertical structure.
  • the upper contacts that is to say the cathode 21 in FIG. 4
  • the cathode 21 in FIG. 4 are aluminum which has been applied by resistance vapor deposition
  • a zinc oxide electrode composed of zinc oxide nanoparticles.
  • the Fo ⁇ tostrom Ip H that is, the signal amplitude upon irradiation of the Fo todetektors 1, is initially angege ⁇ ben in arbitrary units.
  • the measurement of the photocurrent I Ph was carried out with an oscilloscope.
  • FIGS. 4 and 5 show that an organic photodetector 1 has an approximately twice as fast response time. Behavior under low light conditions shows when one of the electrodes as here, for example, the top electrode 21, which is connected as a cathode, a nanoparticle layer comprises, compared to the vaporized aluminum cathode.
  • a pulsed green light source which emits light of a wavelength ⁇ of 530 nm was operated at 23 nW / cm 2 light intensity ⁇ and thus aimed at two different photodetectors 1, which in their Cathode 21 differ.
  • the time t is plotted in seconds along the x-axis and the photocurrent I pH along the y-axis of the diagrams.
  • light pulses of a duration of 50 s are recorded; in the respectively right-hand diagrams in FIGS. 4 and 5, light pulses of a duration of 0.5 s are recorded.
  • the frequency difference between the two diagrams is the factor 10 2 , the frequency increases from 0.01 Hz to 1 Hz.
  • the building ⁇ part 1 with the aluminum cathode forms its signal I Ph within 2.7 s.
  • This time of 2.7 s is marked in drawing ⁇ on the graph with R Rise Time.
  • R indicates how long it takes for the signal I Ph to increase from 10% to 90% of its value.
  • the so-called Fall Time is also indicated by F, how long it takes until the signal I Ph has fallen from 90% back to 10% of its value.
  • the case Time F is 2.8 s.
  • the rise time R is 1.3 s and the case time F is 1.1 s.
  • the response behavior of the photodetectors 1 changes as follows: the rise time R for the photodetector 1 with aluminum cathode 21 is 48 ms and its case time is 30 ms.
  • the rise time of the component R 1 having particulate Zinkoxidka ⁇ Thode 21, however, is only 24 ms and the fall time F only 12 ms.
  • the rise time of the component R 1 having particulate Zinkoxidka ⁇ Thode 21 is only 24 ms and the fall time F only 12 ms.
  • the signal amplitude, ie the photocurrent I pH, is about 30% less than the original signal in the long light pulse.
  • This decrease of 3 dB is characteristically measured to determine the cutoff frequency f co of the device 1.
  • the frequency is gradually increased until the signal at I Ph only a maximum signal level is formed, which is 3 dB below the amplitude at low frequency.
  • the cut-off frequency f co is preferably determined by a sine ⁇ modulated light source. With declining Lichtintensi ⁇ ty ⁇ also this cut-off frequency f co also known as cut-off frequency decreases.
  • the cut-off frequency f co is plotted in FIGS. 6 and 7 for every two photodetectors 1 with different intermediate layers 30, in each case in comparison to a standard component.
  • the light source used for the measurement irradiates the photodetector 1 with light having a wavelength ⁇ of 530 nm and light intensities ⁇ between a few nW and several yW / cm 2 .
  • the standard component whose measuring points are shown in the diagram with squares, shows a typical drastic ⁇ rule drop in the cut-off frequency f co in the range of low light intensity, in particular below 1000 nW / cm 2, particularly evident in the range of 100 nW / cm 2 and less.
  • the cut-off frequency f co of the standard component drops to up to 1 Hz.
  • the diode area of the components 1 used is
  • interlayer 1 1 cm 2 .
  • the intermediate layers 30 used in FIGS. 6 and 7, which were used in the photosensitive components 1, are referred to in the diagrams as interlayer 1 and 2.
  • the interlayer 1 is a layer of P3HT, which is deposited as an electron blocking layer 30, again in the vertical structure 1 of Figure 1.
  • the structure of the comparison component is the same with the component with P3HT intermediate layer 30, except that in the so-called standard standard component as intermediate layer 30 PEDOT: PSS is used.
  • PEDOT: PSS PEDOT: PSS
  • PEDO PSS interlayer.
  • the interlayer 2 represents an intermediate layer 30 of a self-assembling monolayer of aliphatic molecules, which in turn constitutes an electron-blocking layer.
  • This interlayer 2 is again compared with the experiment in Figure 6 with a standard component 1 with PEDO: PSS interlayer.
  • the component 1 with SAM-Inter Layer 2 is in the low intensity ⁇ of a few nW / cm 2, a check increased the dynamic response behavior to about 3 size North ⁇ voltages compared to standard device 1 having a PEDOT: PSS layer between the 30th
  • Such an intermediate layer 30 with a self-organize in power monolayer has the advantage of offering by varying the anchor group, the chain length and end group of the molecules of a wide variety of intermediate layers, which can be matched to electrode material 20, 21and then organic semiconducting ⁇ termaterial 31 of the photoactive semiconductor layer , Self-assembling monolayers can be separated from the gas phase but also from solution.
  • X may be 0, S, NH or absent
  • n is in the range between 0 and 5 and is preferably 0;
  • - m is between 0 and 20, in particular between 5 and 10, - Instead of -CF 3 are also more polar groups such.
  • formula 1 can be extended to formula 2 as shown below so that there are ether units between the individual components of the molecular chain. In particular, then would be preferred
  • f 2 or is generally between 1 and 4;
  • - Xi, X 2 and X 3 can independently of each other 0, S, NH, a halogen, z. B. F or not at all;
  • n is in the range between 0 and 2 and is preferably 0;
  • - m is between 0 and 15, in particular between 2 and 5.
  • the CF 3 ⁇ group at the end of the molecular chain can be also Wegge ⁇ .
  • X 3 F.
  • Suitable self-organizing Mo ⁇ leküle are phosphonic acids, up to about octa- decylphosphonic acid from the ethyl, having the general formula 3:
  • n is in the range between 1 and 17 and is preferably 17.
  • polar head groups such as.
  • the alpha-bithiophene-2-phosphonic acid is z. B. particularly compatible with the bulk heterojunction system used here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The invention relates to the novel use of an organic intermediate layer (30) in a photosensitive component (1, 2, 3) for increasing the limit frequency (fco) of the component, preferably in the range of low radiation intensities (Ιλ). The photosensitive component (1, 2, 3) is in particular a diode having a photoactive organic semiconductor layer (31), a first (20) and a second electrode (21), wherein an organic intermediate layer (30) is arranged between the photoactive semiconductor layer (31) and at least one of the electrodes (20, 21). The organic intermediate layer (30) is in particular a charge-blocking layer.

Description

Beschreibung description
Schwachlichtdetektion mit organischem fotosensitivem Bauteil Die vorliegende Erfindung betrifft die Detektion von Licht mittels organischen fotosensitiven Bauteilen. Low-light Detection with Organic Photosensitive Component The present invention relates to the detection of light by means of organic photosensitive components.
Im Bereich der organischen Fotodetektoren sind Bauteile basierend auf organischen Halbleitern bekannt, welche bei hohen Lichtintensitäten eingesetzt werden können. Das Antwortverhalten dieser organischen Fotodetektoren ist jedoch für viele Anwendungen nicht ausreichend schnell. Die Geschwindigkeit ist jedoch entscheidend für industrielle Anwendungen, in de¬ nen Fotodiodensignale von elektronischen Schaltungen aufge- nommen werden, die sich etwa durch sehr kurze Integrations¬ zeiten auszeichnen. Das dynamische Antwortverhalten von organischen Fotodetektoren ist vor allem im Bereich niedriger Lichtintensität etwa von nur wenigen nW/cm2 zu gering. Es ist Aufgabe der vorliegenden Erfindung dieses Antwortverhalten im niedrigen Lichtintensitätsbereich zu verbessern. In the field of organic photodetectors, components based on organic semiconductors are known, which can be used at high light intensities. However, the response of these organic photodetectors is not sufficiently fast for many applications. However, the speed is critical for industrial applications, are listed in accepted de ¬ nen photodiode signals from electronic circuits, which are characterized as very short integration times ¬. The dynamic response of organic photodetectors is too low, especially in the range of low light intensity of about only a few nW / cm 2 . It is an object of the present invention to improve this response in the low light intensity range.
Die Aufgabe wird durch eine Verwendung gemäß Patentanspruch 1 gelöst. Ein fotosensitives Bauteil wird in Patentanspruch 4 angegeben. Ein Detektionsverfahren wird in Patentanspruch 14 angegeben. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. The object is achieved by a use according to claim 1. A photosensitive member is specified in claim 4. A detection method is specified in claim 14. Advantageous embodiments of the invention are the subject of the dependent claims.
Erfindungsgemäß wird eine organische Zwischenschicht in einem fotosensitiven Bauteil zur Erhöhung der Grenzfrequenz dieses fotosensitiven Bauteils verwendet. Dies hat den Vorteil, durch Verwendung dieser organischen Zwischenschicht das fotosensitive Bauteil auch für Anwendungen fähig zu machen, welche ein schnelles Antwortverhalten des Fotodetektors erfor- dern, beispielsweise in kombinierten organischen inorganischen CCD Kameras, in denen für gewöhnlich eine hohe Bildwechselfrequenz gefordert wird. In einer vorteilhaften Ausgestaltung der Erfindung wird die organische Zwischenschicht in einem fotosensitiven Bauteil verwendet, dessen Grenzfrequenz für BeStrahlungsintensitäten unter 1000 nW/cm2 mindestens 1 Hz beträgt. Insbesondere be- trägt die Grenzfrequenz in diesem Bereich mindestens 10 Hz, vorzugsweise mindestens 100 Hz. In bestimmten Wellenlängenbe¬ reichen kann die Grenzfrequenz in diesem Schwachlichtbereich auch bis zu 1 kHz betragen. Diese Ausgestaltung hat den Vorteil, mittels der organischen Zwischenschicht zur Erhöhung der Grenzfrequenz, fotosensitive Bauteile auch im Schwachlichtbereich anwendbar zu machen, etwa für Nachtsichtanwendungen oder auch für analytische und klinische Diagnostikanwendungen im Schwachlichtbereich. In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird als organische Zwischenschicht eine Ladungsblockier¬ schicht, insbesondere eine Elektronenblockierschicht verwen¬ det. Die organische Zwischenschicht in dem fotosensitiven Bauteil wird vorzugsweise zur Interface-Modifikation zwischen wenigstens einer der Elektroden und der fotoaktiven Halbleiterschicht eingesetzt. According to the invention, an organic intermediate layer is used in a photosensitive component to increase the cutoff frequency of this photosensitive component. This has the advantage, by using this organic interlayer, of making the photosensitive member capable of applications which require a fast response of the photodetector, for example, in combined organic inorganic CCD cameras, in which a high frame rate is usually required. In an advantageous embodiment of the invention, the organic intermediate layer is used in a photosensitive component whose cutoff frequency for irradiation intensities below 1000 nW / cm 2 is at least 1 Hz. In particular, loading carries the cut-off frequency in this range at least 10 Hz, preferably at least 100 Hz. In certain Wellenlängenbe can rich ¬ the cutoff frequency in this low light range also be up to 1 kHz. This refinement has the advantage of being able to use photosensitive components also in the low-light range by means of the organic intermediate layer for increasing the cut-off frequency, for example for night-vision applications or also for analytical and clinical diagnostic applications in the low-light range. In a further advantageous embodiment of the invention, a charge blocking layer ¬ as an organic intermediate layer, in particular an electron blocking layer USAGE ¬ det. The organic intermediate layer in the photosensitive member is preferably used for interface modification between at least one of the electrodes and the photoactive semiconductor layer.
Ladungsblockierschichten in organischen photosensitiven Bauteilen sind bislang nur zum Zweck der Dunkelstromreduktion bekannt, wie etwa aus der WO 2009/043683 AI. Charge blocking layers in organic photosensitive components have hitherto been known only for the purpose of dark current reduction, as for example from WO 2009/043683 A1.
Das erfindungsgemäße fotosensitive Bauteil umfasst eine foto¬ aktive organische Halbleiterschicht, eine erste und eine zweite Elektrode sowie eine organische Zwischenschicht. Dabei ist die organische Zwischenschicht zwischen der fotoaktiven Halbleiterschicht und wenigstens einer der Elektroden ange¬ ordnet. Des Weiteren ist die organische Zwischenschicht der¬ art ausgestaltet, dass die Grenzfrequenz des fotosensitiven Bauteils mindestens 1 Hz beträgt. Insbesondere beträgt die Grenzfrequenz mindestens 10 Hz, vorzugsweise mindestens The photosensitive member according to the invention comprises a photo ¬ active organic semiconductor layer, a first and a second electrode, and an organic interlayer. The organic intermediate layer between the photoactive semiconductor layer and at least one of the electrodes is attached ¬ arranged. Furthermore, the organic intermediate layer is designed such that the limit frequency of the photosensitive component is at least 1 Hz. In particular, the cutoff frequency is at least 10 Hz, preferably at least
100 Hz. In bestimmten Wellenlängenbereichen der zu detektie- renden Bestrahlung kann das Bauteil auch eine Grenzfrequenz im Kilohertzbereich aufweisen. In einer vorteilhaften Ausgestaltung des fotosensitiven Bauteils weist dieses eine organische Zwischenschicht auf, die derart ausgestaltet ist, dass die Fallenzustände am Interface zwischen der fotoaktiven Halbleiterschicht und wenigstens ei¬ ner der Elektroden derart beeinflusst sind, dass die Grenz¬ frequenz des fotosensitiven Bauteils bei einer Bestrahlungs- intensität bis 1000 nW/cm2 mindestens 1 Hz beträgt. Insbeson¬ dere beträgt die Grenzfrequenz in diesem Bestrahlungsbereich bis 1000 nW/cm2 mindestens 10 Hz, vorzugsweise mindestens 100 Hz. Je nach Wellenlänge und Sensitivität des Bauteils kann die Grenzfrequenz auch im Kilohertzbereich liegen. Beispielsweise kann eine Erhöhung der Grenzfrequenz auch für Be- strahlungsintensitäten unter 100 nW/cm2 gewährleistet sein. Vorzugsweise liegt die Grenzfrequenz für Bestrahlungsintensi- täten bis 100 nW/cm2 über 10, insbesondere über 100 Hz. 100 Hz. In certain wavelength ranges of the radiation to be detected, the component may also have a cut-off frequency in the kilohertz range. In an advantageous embodiment of the photosensitive component, the latter has an organic intermediate layer, which is designed such that the trap states at the interface between the photoactive semiconductor layer and at least egg ¬ ner of the electrodes are influenced in such a way that the boundary ¬ frequency of the photosensitive member at an irradiation - Intensity to 1000 nW / cm 2 is at least 1 Hz. Insbeson ¬ wider is the cutoff frequency in this irradiation area to 1000 nW / cm 2 is at least 10 Hz, preferably at least 100 Hz. Depending on the wavelength and sensitivity of the component, the cut-off frequency can also be located in the kilohertz range. For example, an increase in the cutoff frequency can also be ensured for irradiation intensities below 100 nW / cm 2 . Preferably, the cut-off frequency for irradiation intensities up to 100 nW / cm 2 is above 10, in particular above 100 Hz.
In einer weiteren vorteilhaften Ausführungsform des fotosensitiven Bauteils weist dieses eine Grenzfrequenz von mindes- tens einem Hertz für BeStrahlungsintensitäten bis 1000 nW/cm2 im sichtbaren Wellenlängenbereich sowie im nahen Infrarot oder im nahen UV-Wellenlängenbereich auf. In a further advantageous embodiment of the photosensitive component, this has a cutoff frequency of at least one hertz for irradiation intensities of up to 1000 nW / cm 2 in the visible wavelength range and in the near infrared or in the near UV wavelength range.
Insbesondere ist die organische Zwischenschicht des fotosen- sitiven Bauteils eine Ladungsblockierschicht, insbesondere eine Elektronenblockierschicht . Ob es sich um eine Elektro¬ nen- oder Loch-Blockierschicht handelt, kann durch den Sta¬ ckaufbau des Bauteils vorgegeben sein. Die fotoaktive organische Halbleiterschicht des fotosensiti¬ ven Bauteils umfasst insbesondere eine Bulk-Heteroj unction . Diese Ausführungsform ist gerade für die planaren Aufbauten des Fotodetektors von besonderem Vorteil. Beispielsweise ist das fotosensitive Bauteil so ausgestaltet, dass die organische Zwischenschicht zwischen der fotoaktiven Halbleiterschicht und beiden Elektroden angeordnet ist oder dass zischen der fotoaktiven Halbleiterschicht und beiden Elektroden je eine Zwischenschicht angeordnet ist. Anstelle also nur eines Elektroden-Halbleiter-Interface mit einer Zwi¬ schenschicht zu modifizieren, können auch beide Elektroden- Halbleiter-Interfaces eine Zwischenschicht aufweisen, was zu einer weiteren Verbesserung des Antwortverhaltens führt. In particular, the organic intermediate layer of the photosensitive component is a charge blocking layer, in particular an electron blocking layer. Whether it is an electric ¬ denominator or hole blocking layer may be dictated by the Sta ¬ ckaufbau the component. In particular the photoactive layer of the organic semiconductor fotosensiti ¬ ven component comprises a bulk unction Heteroj. This embodiment is of particular advantage for the planar structures of the photodetector. By way of example, the photosensitive component is designed such that the organic intermediate layer is arranged between the photoactive semiconductor layer and both electrodes or that the photoactive semiconductor layer and both hiss Electrodes per an intermediate layer is arranged. Instead therefore to modify only an electrode-semiconductor interface with a Zvi ¬ rule layer, both electrode semiconductor interfaces may include an intermediate layer, which leads to a further improvement of the response behavior.
In einer weiteren vorteilhaften Ausführungsform des fotosensitiven Bauteils weist dieses ein Substrat auf, auf dem die erste und die zweite Elektrode angeordnet sind. Die organi- sehe Zwischenschicht ist dann zwischen der fotoaktiven Halb¬ leiterschicht und dem Substrat mit den beiden Elektroden an¬ geordnet. Die organische Zwischenschicht wird dabei vorteil¬ hafterweise auf ein anorganisches Substrat abgeschieden. Al¬ ternativ weist das fotosensitive Bauteil beispielsweise ein Substrat auf, auf dem die fotoaktive Halbleiterschicht ange¬ ordnet ist und die organische Zwischenschicht auf dieser fo¬ toaktiven Halbleiterschicht angeordnet ist und auf der orga¬ nischen Zwischenschicht wiederum die beiden Elektroden angeordnet sind. Diese beiden Ausführungsformen haben den Vor- teil, dass je nur eine organische Zwischenschicht im Bauteil abgeschieden wird. In a further advantageous embodiment of the photosensitive component, this has a substrate on which the first and the second electrode are arranged. The intermediate layer is then organized see between the photoactive half ¬ conductor layer and the substrate with the two electrodes on ¬ sorted. The organic intermediate layer is in this case advantageous way ¬ been deposited on an inorganic substrate. Al ¬ ternatively, the photosensitive member, for example, a substrate on which the photoactive semiconductor layer is integrally ¬ arranges and the organic intermediate layer on this fo ¬ toaktiven semiconductor layer is disposed and, in turn, the two electrodes are arranged on the orga ¬ African intermediate layer. These two embodiments have the advantage that only one organic intermediate layer is deposited in the component.
In einer weiteren vorteilhaften Ausführungsform des fotosensitiven Bauteils weist die organische Zwischenschicht eine monomolekulare Schicht auf, welche insbesondere eine selbst organisierende monomolekulare Schicht ist. Derartige Schich¬ ten werden auch als SAM ( seif-assembled monolayer) bezeichnet. Diese SAMs haben den Vorteil durch ihre Molekülbestandteile ideal auf das Interface anpassbar zu sein. Beispielsweise können Anker- und Endgruppe des selbstorganisierenden Moleküls auf Substrat und angrenzenden Halbleiter abgestimmt sein. Darüber hinaus kann über die Variation der Kettenlänge das dielektrische Verhalten der Schicht moduliert werden. In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist das fotosensitive Bauteil wenigstens eine Elektrode auf, welche Nanopartikel umfasst. Diese nanopartikulären Elektroden haben sich als vorteilhaft für das schnelle Ant- wortverhalten erwiesen. Mittels nanopartikulärer Elektroden kann die Grenzfrequenz des Bauteils noch weiter erhöht werden . Insbesondere wird eines oder werden mehrere der beschriebenen fotosensitiven Bauteile in einem Röntgendetektor mit einer Szintillatoreinheit angeordnet. Diese finden bevorzugt Anwen¬ dung in der Radiographie, Mammographie, Dosimetrie, Fluo- roskopie sowie in der Angiographie. Besonders in den diagnos- tischen Anwendungen wird auf eine geringe Röntgendosis geach¬ tet. Daher geht von der Szintillatoreinheit auch nur ein ge¬ ringes Lichtsignal aus, insbesondere von unter 1000 nW/cm2. Außerdem handelt es sich um gepulste Methoden bei denen es sehr auf ein schnelles Antwortverhalten der Fotodiode an- kommt, die die Szintillationsstrahlung detektiert. Daher ist das erfindungsgemäße fotosensitive Bauteil von besonderem Vorteil für den beschriebenen Röntgendetektor. In a further advantageous embodiment of the photosensitive component, the organic intermediate layer has a monomolecular layer, which in particular is a self-assembling monomolecular layer. Such Schich ¬ th are also known as SAM (self-assembled monolayer). These SAMs have the advantage of being perfectly adaptable to the interface through their molecular components. For example, anchor and end groups of the self-assembling molecule can be tuned to substrate and adjacent semiconductor. In addition, the variation of the chain length can be used to modulate the dielectric behavior of the layer. In a further advantageous embodiment of the invention, the photosensitive component has at least one electrode, which comprises nanoparticles. These nanoparticulate electrodes have proven to be advantageous for the rapid word behavior proved. By means of nanoparticulate electrodes, the cut-off frequency of the component can be further increased. In particular, one or more of the described photosensitive components is arranged in an X-ray detector with a scintillator unit. These preferably find appli ¬ dung in radiography, mammography, dosimetry, fluorescence microscopy and in angiography. Especially in the diagnostically-Nazi applications is a low X-ray dose geach ¬ tet. Therefore, only a ge ¬ ring light signal is based on the Szintillatoreinheit, in particular below 1000 nW / cm 2. Moreover, these are pulsed methods in which a fast response of the photodiode arrives, which detects the scintillation radiation. Therefore, the photosensitive component according to the invention is of particular advantage for the described X-ray detector.
Bei dem erfindungsgemäßen Detektionsverfahren für elektromag- netische Strahlung wird eine organische Zwischenschicht in einem fotosensitiven Bauteil eingesetzt, was zur Erhöhung der Grenzfrequenz dieses Bauteils führt. Bei einer vorteilhaften Ausführungsform dieses Detektionsverfahrens wird für Bestrah- lungsintensitäten bis 1000 nW/cm2 eine organische Zwischen- schicht in einem fotosensitiven Bauteil eingesetzt, welche zur Erhöhung der Grenzfrequenz auf mindestens 1 Hz beiträgt. Insbesondere wird durch den Einsatz einer organischen Zwischenschicht in dem Detektionsverfahren eine Grenzfrequenz von mindestens 10, vorzugsweise mindestens 100 Hz, bewirkt. Der Bestrahlungsbereich für derartige Grenzfrequenzen kann insbesondere auch unter 100 nW/cm2 liegen. In the detection method according to the invention for electromagnetic radiation, an organic intermediate layer is used in a photosensitive component, which leads to an increase in the cutoff frequency of this component. In an advantageous embodiment of this detection method, an organic intermediate layer in a photosensitive component is used for irradiation intensities up to 1000 nW / cm 2 , which contributes to increasing the cutoff frequency to at least 1 Hz. In particular, the use of an organic intermediate layer in the detection method causes a cut-off frequency of at least 10, preferably at least 100 Hz. The irradiation range for such cutoff frequencies may in particular also be less than 100 nW / cm 2 .
Ausführungsformen der vorliegenden Erfindung werden in exemplarischer Weise mit Bezug auf die Figuren 1 bis 7 der ange- hängten Zeichnung beschrieben: Embodiments of the present invention will be described by way of example with reference to Figures 1 to 7 of the accompanying drawings:
Figur 1 zeigt einen vertikalen Aufbau eines organischen fotosensitiven Bauteils, Figur 2 einen planaren Aufbau mit Bottom-Kontakt, Figur 3 einen planaren Aufbau mit Top-Kontakt, FIG. 1 shows a vertical structure of an organic photosensitive component, 2 shows a planar structure with bottom contact, FIG. 3 shows a planar structure with top contact, FIG.
Figur 4 den Fotostrom eines Bauteils mit Aluminiumkathode, Figur 5 den Fotostrom eines Bauteils mit Zinkoxidkathode, Figur 6 den Grenzfrequenzverlauf eines Bauteils mit P3HT- Elektronenblockierschicht . FIG. 4 shows the photocurrent of a component with aluminum cathode, FIG. 5 shows the photocurrent of a component with zinc oxide cathode, FIG. 6 shows the cut-off frequency characteristic of a component with P3HT electron blocking layer.
Figur 7 den Grenzfrequenzverlauf eines Bauteils mit SAM- Elektronenblockierschicht . FIG. 7 shows the cut-off frequency profile of a component with SAM electron blocking layer.
Die Figur 1 zeigt schematisch den Aufbau eines fotosensitiven Bauteils 1. Dafür sind sechs Schichten übereinander angeord¬ net. Die unterste Schicht stellt das Substrat 10 des Bauteils 1 dar. Darauf ist eine Anode 20 abgeschieden. Darüber ist die Zwischenschicht 30 gezeigt und wiederum darüber der fotoakti¬ ve Halbleiter 31. Diese fotoaktive Halbleiterschicht 31 steht insbesondere für eine Bulk-Heteroj unction . Darüber folgt die Kathode 21 und darüber ist noch eine Verkapselungsschicht 11 gezeigt. Eine Verkapselung der Bauteile ist im Bereich orga¬ nischer Halbleiter üblich, um luft- und feuchtesensitive Ma¬ terialien vor Degradation zu schützen. Seitlich der perspektivischen Schichtenansicht sind noch die Interfaces I i , I2, I3 zwischen den aufeinandergestapelten Schichten benannt. Alle dieser Grenzschichten I i , I2, I3 weisen bevorzugt Fallenzu¬ stände auf, welche das dynamische Verhalten des Fotodetektors 1 beeinflussen. 1 shows schematically the structure of a photosensitive component 1. For this purpose, six layers are arranged one above the other angeord ¬ net. The lowermost layer represents the substrate 10 of the component 1. An anode 20 is deposited thereon. In the intermediate layer 30 is shown and turn over the fotoakti ¬ ve semiconductors 31. These photoactive semiconductor layer 31 is in particular unction for a bulk Heteroj. This is followed by the cathode 21 and above it is still an encapsulation layer 11 is shown. Encapsulation of the devices is common in the area orga ¬ nic semiconductors to protect air and moisture sensitive Ma ¬ terialien from degradation. Laterally of the perspective layer view are still the interfaces I i, I 2 , I3 between the stacked layers named. All of these boundary layers I i, I2, I3 preferably have Fallenzu ¬ stands that affect the dynamic behavior of the photodetector. 1
Auch innerhalb des organischen Halbleiters 31, der insbesondere als Bulk-Heteroj unktion ausgeführt ist, befinden sich derartige Fallenzustände, die jedoch wesentlich schwieriger zugänglich sind als die Fallenzustände an den Interfaces I i , I2, I3. Within the organic semiconductor 31, which is embodied in particular as a bulk heterojunction, there are such trap states, which, however, are much more difficult to access than the trap states at the interfaces I i, I 2 , I 3 .
Die Figuren 2 und 3 zeigen je einen alternativen Aufbau eines fotosensitiven Bauteils 2, 3, bei dem beide Elektroden 20, 21 in jeweils nur einer Zwischenschicht 30 pro Bauteil 2, 3 vom Halbleiter 31 beabstandet werden können. In der Figur 2 ist dabei wieder ein Substrat 10 als unterste Schicht gezeigt, auf der zwei horizontal voneinander getrennte Schichten auf- liegen, welche für die beiden Elektroden, die Kathode 21 und die Anode 20 stehen. Über diese Elektroden 20, 21 hinweg, das restliche Substrat 10 noch mit bedeckend, wurde die Zwischen¬ schicht 30 abgeschieden. Über die Zwischenschicht 30 wurde die organische Halbleiterschicht 31 abgeschieden und darauf ist wieder eine Verkapselung 11 gezeigt. Ein so aufgebautes Bauteil 2 kann auch als Bottom-Kontaktaufbau bezeichnet wer¬ den, da sich beide Elektroden 20, 21, also die Kontakte am Boden des Bauteils 2 befinden und in der Aufbaureihenfolge ganz unten auf dem Substrat 10 liegen. Figures 2 and 3 each show an alternative construction of a photosensitive component 2, 3, in which both electrodes 20, 21 in each case only one intermediate layer 30 per component 2, 3 can be spaced from the semiconductor 31. FIG. 2 again shows a substrate 10 as the lowermost layer, on which two layers, which are separated horizontally from each other, are shown. which are for the two electrodes, the cathode 21 and the anode 20. Across these electrodes 20, 21 of time, the remaining substrate 10 even with covering, the intermediate ¬ layer 30 was deposited. The organic semiconductor layer 31 was deposited via the intermediate layer 30 and an encapsulation 11 is again shown thereon. A so structured device 2 can be also referred to as a bottom-contact structure ¬ the since both electrodes 20, 21, so the contacts are at the bottom of the component 2 and lie in the construction sequence at the bottom of the substrate 10 itself.
Anders herum ist das fotosensitive Bauteil 3 in der Figur 3 aufgebaut, welches einen sogenannten Top-Kontakt aufweist. Dazu ist auf dem Substrat 10 zunächst der organische Halblei- ter 31, insbesondere die Bulk-Heteroj unction 31 abgeschieden und darüber die Zwischenschicht 30. Auf diese Zwischenschicht 30 werden horizontal getrennt voneinander zwei Elektroden, die Anode 20 und die Kathode 21, abgeschieden, darauf wieder¬ um eine Verkapselung 11. The other way around, the photosensitive component 3 is constructed in FIG. 3, which has a so-called top contact. For this purpose, the organic semiconductor 31, in particular the bulk heterojunction 31, is deposited on the substrate 10, and the intermediate layer 30 is deposited thereon. Two electrodes, the anode 20 and the cathode 21, are deposited on this intermediate layer 30, separated from each other horizontally again ¬ an encapsulation 11.
Der gezeigte vertikale Stackaufbau 1 sowie der Bottom- Kontaktaufbau 2 sind besonders geeignet für Zwischenschichten 30, welche eine SAM, eine selbst organisierende Monolage, um¬ fassen, da diese je nach Molekülwahl häufig besonders bevor- zugt auf anorganischen Substraten, wie die Elektrodenmateria¬ lien 20, 21 sie darstellen, abgeschieden werden können. The vertical stack structure shown 1 and the bottom-contact structure 2 are particularly suitable for the intermediate layers 30, which, to hold a SAM, a self-assembled monolayer ¬, since these type of molecules choice often particularly forthcoming Trains t on inorganic substrates, as the electrode material ¬ lien 20, 21 they can be deposited.
Die Figuren 4 und 5 zeigen den Zeitverlauf des Fotostroms IpH, der an Fotodetektoren 1 im vertikalen Aufbau gemessen wurde. Dabei handelt es sich bei den oberen Kontakten, also bei der Kathode 21 in der Figur 4 um Aluminium, welches durch Widerstandsverdampfen aufgebracht wurde, und in der Figur 5 um eine Zinkoxidelektrode aus Zinkoxidnanopartikeln . Der Fo¬ tostrom IpH, d.h. die Signalamplitude bei Bestrahlung des Fo- todetektors 1, ist zunächst in beliebigen Einheiten angege¬ ben. Die Messung des Fotostroms IPh wurde mit einem Oszil- loskop vorgenommen. Die Figuren 4 und 5 zeigen, dass ein organischer Fotodetektor 1 ein etwa 2 mal so schnelles Antwort- verhalten unter schwachen Lichtbedingungen zeigt, wenn eine der Elektroden wie hier beispielsweise die Top-Elektrode 21, die als Kathode geschaltet ist, eine Nanopartikelschicht um- fasst, im Vergleich zu der gedampften Aluminiumkathode. Figures 4 and 5 show the time course of the photocurrent Ip H , which was measured on photodetectors 1 in the vertical structure. In this case, the upper contacts, that is to say the cathode 21 in FIG. 4, are aluminum which has been applied by resistance vapor deposition, and in FIG. 5 a zinc oxide electrode composed of zinc oxide nanoparticles. The Fo ¬ tostrom Ip H, that is, the signal amplitude upon irradiation of the Fo todetektors 1, is initially angege ¬ ben in arbitrary units. The measurement of the photocurrent I Ph was carried out with an oscilloscope. FIGS. 4 and 5 show that an organic photodetector 1 has an approximately twice as fast response time. Behavior under low light conditions shows when one of the electrodes as here, for example, the top electrode 21, which is connected as a cathode, a nanoparticle layer comprises, compared to the vaporized aluminum cathode.
Bei den in den Figuren 4 und 5 gezeigten Messungen wurde eine gepulste grüne Lichtquelle, die Licht einer Wellenlänge λ von 530 nm emittiert, bei 23 nW/cm2 Lichtintensität Ιλ betrieben und damit auf zwei unterschiedliche Fotodetektoren 1 gerich- tet, welche sich in ihrer Kathode 21 unterscheiden. Dabei ist entlang der x-Achse die Zeit t in Sekunden aufgetragen und entlang der y-Achse der Diagramme der Fotostrom IpH. In den jeweils linken Diagrammen der Figuren 4 und 5 sind Lichtpulse einer Dauer von 50 s aufgenommen, in den jeweils rechten Dia- grammen in den Figuren 4 und 5 sind Lichtpulse einer Dauer von 0,5 s aufgenommen. D.h. der Frequenzunterschied zwischen den beiden Diagrammen beträgt den Faktor 102, die Frequenz steigt von 0,01 Hz auf 1 Hz an. In den jeweils linken Dia¬ grammen mit dem langen Lichtpuls von 50 s sieht man, dass das Bauteil 1 dem Lichtpulssignal noch gut folgen kann. Das Bau¬ teil 1 mit der Aluminiumkathode, dessen Messung in Figur 4 gezeigt ist, bildet sein Signal IPh binnen 2,7 s aus. Diese Zeit von 2,7 s ist im Diagramm mit R für Rise Time gekenn¬ zeichnet. Diese Zeitdauer R gibt an wie lange es dauert bis das Signal IPh von 10 % auf 90 % seines Wertes angestiegen ist. Entsprechend ist auch mit F die sogenannten Fall Time angegeben, wie lange es dauert bis das Signal IPh von 90 % wieder auf 10 % seines Wertes abgefallen ist. Für das Bauteil 1 mit Aluminiumkathode 21 beträgt die Fall Time F 2,8 s. Im Falle der nanopartikulären Zinkoxidelektrode 21 für das Bau¬ teil 1 in Figur 5 betragen die Rise Time R 1,3 s und die Fall Time F 1,1 s. Wird nun der lange Lichtpuls von 50 s auf 0,5 s reduziert ändert sich das Antwortverhalten der Fotodetektoren 1 wie folgt: Die Rise Time R für den Fotodetektor 1 mit Alu- miniumkathode 21 beträgt 48 ms und dessen Fall Time 30 ms. Die Rise Time R des Bauteils 1 mit partikulärer Zinkoxidka¬ thode 21 beträgt hingegen nur 24 ms und die Fall Time F nur 12 ms . In den jeweils rechten Diagrammen der Figuren 4 und 5 beträgt die Signalamplitude, d.h. der Fotostrom IpH etwa 30 % weniger als das ursprüngliche Signal bei dem langen Lichtpuls. Diese Abnahme um 3 dB wird charakteristischerweise gemessen um die Grenzfrequenz fco des Bauteils 1 zu bestimmen. Dazu wird bei¬ spielsweise die Frequenz allmählich erhöht bis sich bei dem Signal IPh nur noch eine Maximalsignalhöhe ausbildet, die um 3 dB unter der Amplitude bei niedriger Frequenz liegt. In the measurements shown in FIGS. 4 and 5, a pulsed green light source which emits light of a wavelength λ of 530 nm was operated at 23 nW / cm 2 light intensity Ιλ and thus aimed at two different photodetectors 1, which in their Cathode 21 differ. The time t is plotted in seconds along the x-axis and the photocurrent I pH along the y-axis of the diagrams. In the respective left-hand diagrams of FIGS. 4 and 5, light pulses of a duration of 50 s are recorded; in the respectively right-hand diagrams in FIGS. 4 and 5, light pulses of a duration of 0.5 s are recorded. That is, the frequency difference between the two diagrams is the factor 10 2 , the frequency increases from 0.01 Hz to 1 Hz. In each slide left ¬ programs with long light pulse of 50 s can be seen that the component 1 of the light pulse signal can still follow good. The building ¬ part 1 with the aluminum cathode, the measurement of which is shown in Figure 4, forms its signal I Ph within 2.7 s. This time of 2.7 s is marked in drawing ¬ on the graph with R Rise Time. This period of time R indicates how long it takes for the signal I Ph to increase from 10% to 90% of its value. Accordingly, the so-called Fall Time is also indicated by F, how long it takes until the signal I Ph has fallen from 90% back to 10% of its value. For the component 1 with aluminum cathode 21, the case Time F is 2.8 s. In the case of the nanoparticulate zinc oxide electrode 21 for the component 1 in FIG. 5, the rise time R is 1.3 s and the case time F is 1.1 s. If the long light pulse is reduced from 50 s to 0.5 s, the response behavior of the photodetectors 1 changes as follows: the rise time R for the photodetector 1 with aluminum cathode 21 is 48 ms and its case time is 30 ms. The rise time of the component R 1 having particulate Zinkoxidka ¬ Thode 21, however, is only 24 ms and the fall time F only 12 ms. In the respective right-hand diagrams of FIGS. 4 and 5, the signal amplitude, ie the photocurrent I pH, is about 30% less than the original signal in the long light pulse. This decrease of 3 dB is characteristically measured to determine the cutoff frequency f co of the device 1. For this purpose, at ¬ play, the frequency is gradually increased until the signal at I Ph only a maximum signal level is formed, which is 3 dB below the amplitude at low frequency.
Die Grenzfrequenz fco wird bevorzugt mit einer Sinus¬ modulierten Lichtquelle bestimmt. Mit sinkender Lichtintensi¬ tät Ι sinkt auch die diese Grenzfrequenz fco die auch als Cut-off-Frequenz bezeichnet wird. The cut-off frequency f co is preferably determined by a sine ¬ modulated light source. With declining Lichtintensi ¬ ty Ι also this cut-off frequency f co also known as cut-off frequency decreases.
Die Cut-off-Frequenz fco ist in den Figuren 6 und 7 für je zwei Fotodetektoren 1 mit unterschiedlichen Zwischenschichten 30 aufgetragen, jeweils im Vergleich zu einem Standardbauteil. Die für die Messung herangezogene Lichtquelle bestrahlt den Fotodetektor 1 mit Licht einer Wellenlänge λ von 530 nm und Lichtintensitäten Ιχ zwischen einige nW und mehreren yW/cm2. Das Standardbauteil, dessen Messpunkte im Diagramm mit Quadraten dargestellt sind, zeigt einen typischen drasti¬ schen Abfall der Cut-off-Frequenz fco im Bereich niedriger Lichtintensität, insbesondere unter 1000 nW/cm2, besonders deutlich im Bereich von 100 nW/cm2 und weniger. Dort sinkt die Grenzfrequenz fco des Standardbauteils auf bis zu 1 Hz ab. Die Diodenfläche der verwendeten Bauteile 1 beträgt The cut-off frequency f co is plotted in FIGS. 6 and 7 for every two photodetectors 1 with different intermediate layers 30, in each case in comparison to a standard component. The light source used for the measurement irradiates the photodetector 1 with light having a wavelength λ of 530 nm and light intensities Ιχ between a few nW and several yW / cm 2 . The standard component, whose measuring points are shown in the diagram with squares, shows a typical drastic ¬ rule drop in the cut-off frequency f co in the range of low light intensity, in particular below 1000 nW / cm 2, particularly evident in the range of 100 nW / cm 2 and less. There, the cut-off frequency f co of the standard component drops to up to 1 Hz. The diode area of the components 1 used is
1 cm2. Die für die Figuren 6 und 7 verwendeten Zwischen- schichten 30, die in den fotosensitiven Bauteilen 1 eingesetzt wurden, werden in den Diagrammen als Interlayer 1 und 2 bezeichnet . 1 cm 2 . The intermediate layers 30 used in FIGS. 6 and 7, which were used in the photosensitive components 1, are referred to in the diagrams as interlayer 1 and 2.
Bei dem Interlayer 1 handelt es sich um eine Schicht aus P3HT, welches als Elektronenblockierschicht 30 abgeschieden ist, wieder in dem vertikalen Aufbau 1 nach Figur 1. Der Aufbau des Vergleichsbauteils ist mit dem Bauteil mit P3HT- Zwischenschicht 30 gleich, nur dass in dem sogenannten Stan- dardbauteil als Zwischenschicht 30 PEDOT :PSS verwendet wird. Bei Lichtintensitäten Ιχ im Bereich von wenigen nW/cm2 steigt das dynamische Antwortverhalten des P3HT-Bauteils um zwei Größenordnungen verglichen mit dem Standardbauteil mit The interlayer 1 is a layer of P3HT, which is deposited as an electron blocking layer 30, again in the vertical structure 1 of Figure 1. The structure of the comparison component is the same with the component with P3HT intermediate layer 30, except that in the so-called standard standard component as intermediate layer 30 PEDOT: PSS is used. At light intensities Ιχ in the range of a few nW / cm 2 , the dynamic response of the P3HT component increases by two orders of magnitude compared to the standard component
PEDO : PSS-Zwischenschicht . PEDO: PSS interlayer.
Eine alternative Zwischenschicht 30 ist in Figur 7 gezeigt. Der Interlayer 2 steht für eine Zwischenschicht 30 aus einer selbst organisierenden Monolage aus aliphatischen Molekülen, welche wiederum eine Elektronenblockierschicht darstellt.An alternative intermediate layer 30 is shown in FIG. The interlayer 2 represents an intermediate layer 30 of a self-assembling monolayer of aliphatic molecules, which in turn constitutes an electron-blocking layer.
Dieser Interlayer 2 wird analog zum Versuch in Figur 6 wieder mit einem Standardbauteil 1 mit PEDO : PSS-Zwischenschicht verglichen. Das Bauteil 1 mit SAM-Interlayer 2 zeigt im Bereich niedriger Intensität Ιχ von wenigen nW/cm2 einen An- stieg des dynamischen Antwortverhaltens um etwa 3 Größenord¬ nungen verglichen zum Standardbauteil 1 mit PEDOT: PSS- Zwischenschicht 30. This interlayer 2 is again compared with the experiment in Figure 6 with a standard component 1 with PEDO: PSS interlayer. The component 1 with SAM-Inter Layer 2 is in the low intensity Ιχ of a few nW / cm 2, a check increased the dynamic response behavior to about 3 size North ¬ voltages compared to standard device 1 having a PEDOT: PSS layer between the 30th
Eine derartige Zwischenschicht 30 mit einer selbst organisie- renden Monolage hat den Vorteil, durch Variation von Ankergruppe, Kettenlänge und Endgruppe der Moleküle eine große Bandbreite an Zwischenschichten anzubieten, welche auf Elektrodenmaterial 20, 21und anschließendes organisches Halblei¬ termaterial 31 der fotoaktiven Halbleiterschicht abgestimmt werden können. Selbstorganisierende Monolagen können aus der Gasphase aber auch aus Lösung abgeschieden werden. Such an intermediate layer 30 with a self-organize in power monolayer has the advantage of offering by varying the anchor group, the chain length and end group of the molecules of a wide variety of intermediate layers, which can be matched to electrode material 20, 21and then organic semiconducting ¬ termaterial 31 of the photoactive semiconductor layer , Self-assembling monolayers can be separated from the gas phase but also from solution.
Beispiele für geeignete selbstorganisierende Moleküle besit¬ zen die allgemeine Formel 1: Examples of suitable self-organizing molecules besit ¬ zen the general formula 1:
R2— Si— X- CH2- CF2- -CF3 R 2 - Si - X - CH 2 - CF 2 - -CF 3
m  m
R 3 R 3
wobei in which
- Ri, R2, R3 unanhängig voneinander Cl oder Alkoxy, insbeson¬ dere Methoxy, Ethoxy oder OH sind; - Ri, R2, R3 unanhängig each other Cl or alkoxy, insbeson ¬ particular methoxy, ethoxy or OH;
- X kann 0, S, NH bzw. nicht vorhanden sein;  X may be 0, S, NH or absent;
- n liegt im Bereich zwischen 0 und 5 und ist bevorzugt 0; n is in the range between 0 and 5 and is preferably 0;
- m liegt zwischen 0 und 20, insbesondere zwischen 5 und 10, - Anstatt -CF3 sind auch polarere Gruppen wie z. B. -NH2 ge¬ eignet, wie es beispielsweise im Molekül 3-Aminopropyl- methyldiethoxysilan der Fall ist. - m is between 0 and 20, in particular between 5 and 10, - Instead of -CF 3 are also more polar groups such. B. -NH 2 ge ¬ suitable, as is the case, for example, in the molecule 3-aminopropyl methyldiethoxysilane.
Die Formel 1 kann wie unten gezeigt zu Formel 2 erweitert werden, so dass sich Ethereinheiten zwischen den einzelnen Bestandteilen der Molekülkette liegen. Insbesondere wäre dann bevorzugt The formula 1 can be extended to formula 2 as shown below so that there are ether units between the individual components of the molecular chain. In particular, then would be preferred
- h und f gleich 2 oder liegt im allgemeinen zwischen 1 und 4;  - h and f equals 2 or is generally between 1 and 4;
- Xi, X2 und X3 kann unabhängig voneinander 0, S, NH, ein Halogen, z. B. F oder gar nicht vorhanden sein; - Xi, X 2 and X 3 can independently of each other 0, S, NH, a halogen, z. B. F or not at all;
- n liegt im Bereich zwischen 0 und 2 und ist bevorzugt 0 ; n is in the range between 0 and 2 and is preferably 0;
- m liegt zwischen 0 und 15, insbesondere zwischen 2 und 5. - m is between 0 and 15, in particular between 2 and 5.
Die CF3~Gruppe am Ende der Molekülkette kann auch wegge¬ lassen werden. In diesem Fall ist dann X3 = F. The CF 3 ~ group at the end of the molecular chain can be also Wegge ¬. In this case, X 3 = F.
Formel 2 :  Formula 2:
Anstatt -CF3 sind auch polarere Gruppen wie z. B. -NH2 geeig¬ net . Instead of -CF 3 are also more polar groups such. B. -NH 2 appro ¬ net.
Alternative Beispiele für geeignete selbstorganisierende Mo¬ leküle sind Phosphonsäuren, etwa von der Ethyl- bis zur Octa- decylphosphonsäure, die die allgemeine Formel 3 besitzen: Alternative examples of suitable self-organizing Mo ¬ leküle are phosphonic acids, up to about octa- decylphosphonic acid from the ethyl, having the general formula 3:
(HO) 2 - PO - (CH2 ) n - CH3 (HO) 2 - PO - (CH 2) n - CH 3
Dabei liegt n im Bereich zwischen 1 und 17 und ist bevorzugt 17. Alternativ zu den aliphatischen Phosphonsäuren können auch Phosphonsäuren mit polaren Kopfgruppen verwendet werden, wie z. B. folgendes Molekül: In this case, n is in the range between 1 and 17 and is preferably 17. As an alternative to the aliphatic phosphonic acids and phosphonic acids can be used with polar head groups, such as. For example, the following molecule:
Die alpha-Bithiophene-2-Phosphonsäure ist z. B. besonders kompatibel mit dem hier verwendeten Bulk-Heteroj unction- System. The alpha-bithiophene-2-phosphonic acid is z. B. particularly compatible with the bulk heterojunction system used here.

Claims

Patentansprüche claims
1. Verwendung einer organischen Zwischenschicht (30) in einem fotosensitiven Bauteil (1, 2, 3) für BeStrahlungsintensitäten (Ιλ) bis 1000 nW/cm2, wobei das fotosensitive Bauteil (1, 2, 3) eine fotoaktiven organischen Halbleiterschicht (31) und eine erste (20) und eine zweite Elektrode (21) umfasst, wobei die organische Zwischenschicht (30) zur Erhöhung der Grenz¬ frequenz (fco) auf mindestens 1 Hz zwischen der fotoaktiven Halbleiterschicht (31) und wenigstens einer der Elektroden (20, 21) angeordnet wird. 1. Use of an organic intermediate layer (30) in a photosensitive component (1, 2, 3) for irradiation intensities (Ιλ) up to 1000 nW / cm 2 , wherein the photosensitive component (1, 2, 3) comprises a photoactive organic semiconductor layer (31) and a first (20) and a second electrode (21), comprising the organic intermediate layer (30) for increasing the intrinsic ¬ frequency (f co) of at least 1 Hz between the photoactive semiconductor layer (31) and at least one of the electrodes (20 , 21) is arranged.
2. Verwendung nach Anspruch 1, wobei die organische Zwischenschicht (30) eine Ladungsblockierschicht, insbesondere eine Elektronenblockierschicht , ist. 2. Use according to claim 1, wherein the organic intermediate layer (30) is a charge blocking layer, in particular an electron blocking layer.
3. Fotosensitives Bauteil (1, 2, 3) mit 3. Photosensitive component (1, 2, 3) with
- einer fotoaktiven organischen Halbleiterschicht (31), a photoactive organic semiconductor layer (31),
- einer ersten (20) und einer zweiten Elektrode (21) und - einer organischen Zwischenschicht (30), a first (20) and a second electrode (21) and an organic intermediate layer (30),
wobei die organische Zwischenschicht (30) zwischen der fo¬ toaktiven Halbleiterschicht (31) und wenigstens einer der Elektroden (20, 21) angeordnet ist wherein the organic intermediate layer (30) between the fo ¬ toaktiven semiconductor layer (31) and at least one of the electrodes (20, 21) disposed
und wobei die organische Zwischenschicht (30) derart aus- gestaltet ist, dass die Grenzfrequenz (fco) des fotosensi¬ tiven Bauteils (1, 2, 3) mindestens 1 Hz beträgt. and wherein the organic intermediate layer (30) is designed to off, that the cutoff frequency (f co) of the photo-sensi tive ¬ component (1, 2, 3) is at least 1 Hz.
4. Fotosensitives Bauteil (1, 2, 3) nach Anspruch 3, bei dem die organische Zwischenschicht (30) derart ausgestaltet ist, dass die Fallenzustände am Interface (I2, I3) zwischen der fotoaktiven Halbleiterschicht (31) und wenigstens einer der Elektroden (20, 21) derart beeinflusst sind, dass die Grenz¬ frequenz (fco) des fotosensitiven Bauteils (1, 2, 3) bei ei¬ ner BeStrahlungsintensität bis 1000 nW/cm2 mindestens 1 Hz beträgt. 4. Photosensitive component (1, 2, 3) according to claim 3, wherein the organic intermediate layer (30) is designed such that the case states at the interface (I 2 , I3) between the photoactive semiconductor layer (31) and at least one of the electrodes (20, 21) are influenced in such a way that the boundary ¬ frequency (f co) of the photosensitive member (1, 2, 3) at ei ¬ ner irradiation intensity to 1000 nW / cm 2 is at least 1 Hz.
5. Fotosensitives Bauteil (1, 2, 3) nach Anspruch 3 oder 4 für BeStrahlungsintensitäten (Ιλ) im sichtbaren, nahen Infrarot- oder im nahen UV-Wellenlängenbereich. 5. Photosensitive component (1, 2, 3) according to claim 3 or 4 for irradiation intensities (Ι λ ) in the visible, near infrared or in the near UV wavelength range.
6. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 5, wobei die organische Zwischenschicht (30) eine La¬ dungsblockierschicht, insbesondere eine Elektronenblockier- schicht, ist. 6. photosensitive member (1, 2, 3) according to any one of claims 3 to 5, wherein the organic intermediate layer (30) is a La ¬ tion blocking layer, in particular a Elektronenblockier- layer is.
7. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 6, bei dem die fotoaktive organische Halbleiterschicht (31) eine Bulk-Heteroj unction umfasst. A photosensitive member (1, 2, 3) according to any one of claims 3 to 6, wherein said photoactive organic semiconductor layer (31) comprises a bulk heterojunction.
8. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 7, bei dem die organische Zwischenschicht (30) zwischen der fotoaktiven Halbleiterschicht (31) und beiden Elektroden (20, 21) angeordnet oder bei dem zwischen der fotoaktiven Halbleiterschicht (31) und beiden Elektroden (20, 21) je eine Zwischenschicht (30) angeordnet ist. 8. Photosensitive member (1, 2, 3) according to any one of claims 3 to 7, wherein the organic intermediate layer (30) between the photoactive semiconductor layer (31) and two electrodes (20, 21) arranged or at the between the photoactive semiconductor layer (31) and two electrodes (20, 21) each have an intermediate layer (30) is arranged.
9. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 7 mit einem Substrat (10), auf dem die erste (20) und die zweite Elektrode (21) angeordnet sind, bei dem die orga¬ nische Zwischenschicht (30) zwischen der fotoaktiven Halblei- terschicht (31) und dem Substrat (10) mit den beiden Elektro¬ den (20, 21) angeordnet ist. 9. Photosensitive component (1, 2, 3) according to one of claims 3 to 7 with a substrate (10), on which the first (20) and the second electrode (21) are arranged, wherein the orga ¬ African intermediate layer ( 30) between the photoactive semiconductor layer (31) and the substrate (10) with the two electrodes ¬ (20, 21) is arranged.
10. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 7 mit einem Substrat (10), auf dem die fotoaktive Halb- leiterschicht (31) angeordnet ist, bei dem die organische10. Photosensitive member (1, 2, 3) according to any one of claims 3 to 7 with a substrate (10) on which the photoactive semiconductor layer (31) is arranged, wherein the organic
Zwischenschicht (30) auf dieser fotoaktiven Halbleiterschicht (31) angeordnet und auf der organischen Zwischenschicht (30) die beiden Elektroden (20, 21) angeordnet sind. Intermediate layer (30) arranged on this photoactive semiconductor layer (31) and on the organic intermediate layer (30), the two electrodes (20, 21) are arranged.
11. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 10, bei dem die organische Zwischenschicht (30) eine monomolekulare Schicht, insbesondere eine selbstorganisieren¬ de monomolekulare Schicht, ist. 11. Photosensitive member (1, 2, 3) according to one of claims 3 to 10, wherein the organic intermediate layer (30) is a monomolecular layer, in particular a self-organize ¬ de monomolecular layer.
12. Fotosensitives Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 11, bei dem wenigstens eine der Elektroden (20, 21) Na- nopartikel umfasst. 12. Photosensitive component (1, 2, 3) according to any one of claims 3 to 11, wherein at least one of the electrodes (20, 21) nopartikel comprises nanoparticles.
13. Röntgendetektor mit einer Szintillatoreinheit und einem fotosensitiven Bauteil (1, 2, 3) nach einem der Ansprüche 3 bis 12. 13. X-ray detector with a scintillator unit and a photosensitive component (1, 2, 3) according to one of claims 3 to 12.
14. Detektionsverfahren für elektromagnetische Strahlung, bei dem eine organische Zwischenschicht (30) in einem fotosensi¬ tiven Bauteil (1, 2, 3) zur Erhöhung der Grenzfrequenz (fco) eingesetzt wird. 14. A detection method for electromagnetic radiation, wherein an organic intermediate layer (30) in a fotosensi ¬ tive component (1, 2, 3) for increasing the cutoff frequency (f co ) is used.
15. Detektionsverfahren nach Anspruch 14 für Bestrahlungsin- tensitäten bis 1000 nW/cm2, bei dem die Grenzfrequenz15. A detection method according to claim 14 for irradiation intensities up to 1000 nW / cm 2 , in which the cutoff frequency
(fco) mindestens 1 Hz beträgt. (f co ) is at least 1 Hz.
EP12732579.3A 2011-06-22 2012-06-19 Weak light detection using an organic, photosensitive component Withdrawn EP2705553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011077961A DE102011077961A1 (en) 2011-06-22 2011-06-22 Low light detection with organic photosensitive component
PCT/EP2012/061724 WO2012175505A1 (en) 2011-06-22 2012-06-19 Weak light detection using an organic, photosensitive component

Publications (1)

Publication Number Publication Date
EP2705553A1 true EP2705553A1 (en) 2014-03-12

Family

ID=46458461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12732579.3A Withdrawn EP2705553A1 (en) 2011-06-22 2012-06-19 Weak light detection using an organic, photosensitive component

Country Status (5)

Country Link
US (1) US9496512B2 (en)
EP (1) EP2705553A1 (en)
KR (1) KR102001694B1 (en)
DE (1) DE102011077961A1 (en)
WO (1) WO2012175505A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011077961A1 (en) 2011-06-22 2012-12-27 Siemens Aktiengesellschaft Low light detection with organic photosensitive component
KR102421068B1 (en) * 2015-09-16 2022-07-14 엘지이노텍 주식회사 Apparatus for Sensing Dust
DE102015220793A1 (en) 2015-10-23 2017-04-27 Siemens Healthcare Gmbh X-ray detector and / or gamma detector with light bias
FR3046496B1 (en) * 2016-01-05 2018-04-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives PHOTORESISTANCE WITH IMPROVED SENSITIVITY
CN113039659B (en) * 2018-12-04 2024-07-05 默克专利有限公司 Self-assembled monolayers for electrode modification and devices comprising such self-assembled monolayers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039395A1 (en) * 1998-02-02 1999-08-05 Uniax Corporation Organic diodes with switchable photosensitivity
DE102006046210A1 (en) * 2006-09-29 2008-04-03 Siemens Ag Organic photo-detector i.e. organic photodiode, has bulk-heterojunction-blend, whose components concentrations are changed, such that high concentrations of hole and electrodes transporting components exists close to anode and cathode
WO2009034332A1 (en) * 2007-09-14 2009-03-19 Molecular Vision Limited Photovoltaic device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060064987A (en) * 2004-12-09 2006-06-14 한국전자통신연구원 Conducting ink and organic semiconductor transistor and fabrication method using the same
US8017863B2 (en) * 2005-11-02 2011-09-13 The Regents Of The University Of Michigan Polymer wrapped carbon nanotube near-infrared photoactive devices
DE102007015471B3 (en) * 2007-03-30 2008-08-14 Siemens Ag Environmental light sensor for monitoring intensity of interior light in closed areas, has light sensor comprises of photodiode, which is made of organic semiconductor material and photodiodes are formed in given geometry of large area
JP4894921B2 (en) * 2007-05-24 2012-03-14 コニカミノルタホールディングス株式会社 Radiation detector, method for manufacturing radiation detector, and method for manufacturing support substrate
DE102007046444A1 (en) 2007-09-28 2009-04-02 Siemens Ag Organic photodetector with reduced dark current
DE102008029782A1 (en) 2008-06-25 2012-03-01 Siemens Aktiengesellschaft Photodetector and method of manufacture
DE102008051656A1 (en) * 2008-10-08 2010-04-15 Technische Universität Ilmenau Method for applying a metallic electrode to a polymer layer
TWI393283B (en) * 2008-12-04 2013-04-11 Univ Nat Chiao Tung Organic optoelectronic component
DE102009012163A1 (en) 2009-03-06 2010-09-09 Siemens Aktiengesellschaft Monolayers of organic compounds on metal oxide surfaces or oxide-containing metal surfaces and component produced therewith based on organic electronics
US20100326525A1 (en) * 2009-03-26 2010-12-30 Thuc-Quyen Nguyen Molecular semiconductors containing diketopyrrolopyrrole and dithioketopyrrolopyrrole chromophores for small molecule or vapor processed solar cells
US8294858B2 (en) * 2009-03-31 2012-10-23 Intel Corporation Integrated photovoltaic cell for display device
DE102009043348B4 (en) 2009-09-29 2012-12-13 Siemens Aktiengesellschaft Material for a photoactive layer in organic photodiodes, use thereof, and an organic photodiode
DE102011077961A1 (en) 2011-06-22 2012-12-27 Siemens Aktiengesellschaft Low light detection with organic photosensitive component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039395A1 (en) * 1998-02-02 1999-08-05 Uniax Corporation Organic diodes with switchable photosensitivity
DE102006046210A1 (en) * 2006-09-29 2008-04-03 Siemens Ag Organic photo-detector i.e. organic photodiode, has bulk-heterojunction-blend, whose components concentrations are changed, such that high concentrations of hole and electrodes transporting components exists close to anode and cathode
WO2009034332A1 (en) * 2007-09-14 2009-03-19 Molecular Vision Limited Photovoltaic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012175505A1 *

Also Published As

Publication number Publication date
US9496512B2 (en) 2016-11-15
KR20140045504A (en) 2014-04-16
KR102001694B1 (en) 2019-07-18
US20140299776A1 (en) 2014-10-09
WO2012175505A1 (en) 2012-12-27
DE102011077961A1 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
EP2453263B1 (en) Hybrid organic photodiodes
WO2012175505A1 (en) Weak light detection using an organic, photosensitive component
DE102005055278B4 (en) Organic pixelated flat detector with increased sensitivity
DE102016221481B4 (en) Radiation detector with an intermediate layer
WO2015173414A1 (en) Integrated measuring system for the spectral measuring technique
WO2014037247A1 (en) Radiation detector and method for producing a radiation detector
WO2017080728A1 (en) Detector element for detecting incident x-ray radiation
DE102006046210B4 (en) Process for the preparation of an organic photodetector
WO2013120657A1 (en) X-ray radiation detector and method for measuring x-ray radiation
DE102009015563B4 (en) X-ray detector for the detection of ionizing radiation, in particular for use in a CT system
DE202013105955U1 (en) sensor module
WO2010079206A1 (en) Accumulating moisture sensor
DE69816552T2 (en) Apparatus for measuring the rise time of noisy signals from gamma or x-ray detectors
EP2179248A1 (en) Organically based optical position sensor
WO2014019821A1 (en) Method for detection of x-ray radiation, x-ray radiation detector and ct system
DE102011080892B3 (en) Direct conversion type x-ray detector for use in computed tomography system, has scintillation layer that is arranged on x-ray radiation facing side of semiconductor, and is made of material with specific decay time
DE102007019327A1 (en) Organic drift diode for single photon emission computed tomographic detector, has one electrode layer with type that does not correspond to another type of another electrode layer, and substrate arranged on side of photoactive layer
DE102019113346A1 (en) Optoelectronic component and method for producing the same
DE102008049702A1 (en) Measuring device for measuring radiation dose, organic photo detector and scintillator and for contamination control as person dosimeter or for welding seam control, has electrode arranged on substrate of photo detector
WO2024052162A1 (en) Optoelectronic component with integrated aperture mask
WO2023274856A1 (en) Optoelectronic sensor device
DE102006024218A1 (en) Radiation detector for detecting electromagnetic radiation, has active region that contains organic semiconductor material, and filter region for radiation absorption, where active and filter regions are arranged between cathode and anode
EP4348712A1 (en) Photon detection element, method for operating a photon detection element, and method for producing an image sensor
EP4014261A1 (en) Wireless sensor for photons and/or foreign substances having a graphene fet
DE102010006074A1 (en) Device for characterizing electrical characteristic e.g. photoelectric voltage, of light absorbing layer material of e.g. solar cell, has electrodes arranged at distance to layer material on side of layer material and capacitively coupled

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAYDEN, OLIVER

Inventor name: AJURIA ARREGUI, JON

Inventor name: TEDDE, SANDRO FRANCESCO

Inventor name: ARCA, FRANCESCO

Inventor name: SRAMEK, MARIA

Inventor name: ZOLI, GUIDO

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS HEALTHCARE GMBH

17Q First examination report despatched

Effective date: 20171201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103