EP2705083A1 - Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof - Google Patents

Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof

Info

Publication number
EP2705083A1
EP2705083A1 EP12718215.2A EP12718215A EP2705083A1 EP 2705083 A1 EP2705083 A1 EP 2705083A1 EP 12718215 A EP12718215 A EP 12718215A EP 2705083 A1 EP2705083 A1 EP 2705083A1
Authority
EP
European Patent Office
Prior art keywords
aromatic
polymeric
oligomeric
carbodiimide
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12718215.2A
Other languages
German (de)
French (fr)
Inventor
Andrea Fruth
Andreas Krug
Bernd Wiloth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhein Chemie Rheinau GmbH
Original Assignee
Rhein Chemie Rheinau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP11165137A external-priority patent/EP2520612A1/en
Application filed by Rhein Chemie Rheinau GmbH filed Critical Rhein Chemie Rheinau GmbH
Priority to EP12718215.2A priority Critical patent/EP2705083A1/en
Publication of EP2705083A1 publication Critical patent/EP2705083A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00

Definitions

  • PHA polyvinyl alcoholate
  • the invention relates to novel, long-lasting, hydrolysis-stable, bio-based plastics based on polyhydroxyalkanoate (PHA), which have sufficient melt stability, a process for their preparation and their use.
  • PHA polyhydroxyalkanoate
  • Bio-based plastics known as biopolymers, are ecologically more sustainable materials compared to petrochemical-based plastics because of the bio-based raw materials used.
  • bio-based plastics have gained increasing importance not only in the packaging sector but also in the production of durable and technical plastic products.
  • optimizations in material production and processing are often necessary.
  • Bio-based plastics consist for example of an aliphatic polyester resin, which is produced by direct fermentative production of starch, sugar, carbohydrates, vegetable oil or fats.
  • Bio-based plastics have the great advantage that they are very environmentally friendly.
  • the group of biopolymers in particular polyhydroxyalkanoates (PHA) have the advantage that, for example, they have a higher heat resistance, compared to polylactic acid (PLA) possess.
  • PHA polyhydroxyalkanoates
  • PHA polylactic acid
  • polyhydroxyalkanoates show a very low shrinkage in manufactured products, so that product geometries are possible, which can not be realized with conventional polymers.
  • Both polylactic acid and polyhydroxyalkanoates are classed as aliphatic polyesters and are both susceptible to polymer degradation during processing and during use.
  • the degradation mechanism of polylactic acid proceeds via the classical route of ester hydrolysis, which, under the action of acids or bases in the presence of water, leads to cleavage of the ester bond in the polylactic acid, generating new hydroxyl and carboxyl groups.
  • the new carboxyl groups lead to hydrolysis of further ester groups in the polylactic acid polymer, i. the process is autocatalytic.
  • the ester cleavage in the polylactic acid thus leads to a polymer degradation and thus to a reduction in the life of the polylactic acid and an unstable process.
  • polyhydroxyalkanoates is much less sensitive to hydrolysis compared to polylactic acid. This difference in susceptibility to hydrolysis arises from the different degradation mechanism. In contrast to polylactic acid, polyhydroxyalkanoates are dominated by a different mechanism of ⁇ -elimination. This ⁇ -elimination leads to cleavage of the polyhydroxyalkanoate polymer chain to form unsaturated polymer fragments, see Yoshihiro Aoyagi, et al., Polymer Degradation and Stability 76, 2002, 53-59.
  • polyhydroxyalkanoates Compared to polylactic acid, hydrolytic degradation of polyhydroxyalkanoates plays a subordinate role but, since PHAs are also aliphatic polyesters, they may also occur. Despite the deviating degradation mechanism, polyhydroxyalkanoates have the disadvantage that they do not have sufficient hydrolytic stability for long-lived and industrial applications and are also difficult to process, which is reflected in a sharp increase in the melt volume rate (MVR). It is therefore necessary to look for a way to achieve stabilization of PHA during processing as well as during use, despite the combination of the largely predominant ⁇ -elimination and the still-occurring hydrolysis.
  • MVR melt volume rate
  • EP-A 1 627 894 describes the use of diisopropylphenylcarbodiimide as a hydrolysis protection agent in aliphatic polyester resins. However, no satisfactory result is achieved in terms of processibility and anti-hydrolysis.
  • EP-A 10172530 describes the use of a combination of a monomeric and oligomeric carbodiimide. Although this leads to an improvement of the hydrolysis protection and the processing, however, this result with regard to the hydrolysis protection effect in many concentration ranges, is not sufficient.
  • bio-based plastics according to the invention from the class of polyhydroxyalkanoates containing at least> 0.5% by weight of oligomeric and / or polymeric aromatic and / or araliphatic oligomeric carbodiimide compound, perform this task.
  • the present invention therefore relates to biobased plastics containing a combination of at least one polyhydroxyalkanoate and at least 0.5% by weight, preferably 0.7 and 4% by weight, more preferably 1 to 2.5% by weight, very particularly preferably 1 to 2.0% by weight of at least one oligomeric and / or polymeric aromatic and / or araliphatic carbodiimide, in one preferred embodiment of the invention consisting essentially of polyhydroxyalkanoate and carbodiimide.
  • Stabilizers such as antioxidants, plasticizers, impact modifiers, flame retardants and fillers.
  • the biobased plastics are preferably polyhydroxyalkanoates which can be prepared by direct fermentative preparation from starch, sugar, carbohydrates, vegetable oil or fats.
  • Polyhydroxyalkanoates are preferably compounds of structural formula (I)
  • PHB polyhydroxybutyrate
  • PVB polyhydroxyvalerate
  • PHBV polyhydroxybutyrate valerate
  • PHO polyhydroxyoctanoate
  • PBH polyhydroxybutyratehexanoate
  • polyhydroxyalkanoates particularly preferred as bio-based plastics are commercially available, e.g. under the name Mirel in the Finna sectiones or as Enmat of the Tianan company, or can be prepared according to the methods familiar to the person skilled in the art, e.g. by fermentation.
  • R '" is an aromatic and / or araliphatic radical and m> 1, R'" is the same or different within the molecule and can be combined with each other in any combination of any of the aforementioned radicals,
  • R aromatic, aliphatic, cycloaliphatic and / or araliphatic radical
  • R " H
  • -NCO -NHCONHR 1 , -NHCONR'R 2 , -NHCOOR 3 , -NHCOS-R 1 , -COO R 1 , -OR 1 , -N (R 1 ⁇ ,
  • R 'and R independently R l and R 2 are identical or different and a Ci-C 2 o-alkyl, C 3 -C 2 o-cycloalkyl, -aryl, C 7 -C 8 -aryl, 01igo- / polyethylene and / or -Propylenglykole represent and R 3 has one of the meanings of R 1 or a polyester or a polyamide radical, and m a whole Corresponds to from 2 to 5,000, and in the case of oligomeric carbodiimides m corresponds to an integer from 2 to 5, and in polymeric carbodiimides m corresponds to an integer of> 5, and / or of the formula (III)
  • Y arylene, C 7 -Cig-aralkylene
  • p an integer from 1 to 500, preferably 1 to 100,
  • q an integer from 1 to 500, preferably 1 to 100,
  • o an integer from 1 to 500, preferably 1 to 100, wherein
  • X is H, -OH, -SH, -NH 2 , -OR 1 , -N (R 1 ) 2 , -SR 1 , -NHR 1 , R 2 , -OCO-NH-R ', NH CO-, -NH-R ' , -S-CO-NH-R'
  • R ' C 1 -C 18 -alkyl, C 5 -C 8 -cycloalkyl, aryl, C 7 -C 18 -aralkyl, -R "' - NH-COS-R 1 , -R 1 -COOR 1 , -R 1 - OR 1 , -R '"- ⁇ 1 ⁇ , - R"' -SR 1 , -R "'---OH, -R"' - NH 2 , -R ⁇ -NHR 1 , -R "'- epoxy, R "'- NCO, - R"' - NHCONHR 1 , - R "'- NHCONR 1 R 2 or - R"' - NH - COOR 3 , wherein
  • R 1 and R 2 are the same or different and are a C 1 -C 20 -alkyl, C 3 -C 20 -cycloalkyl, aryl, C 7 -C 8 -aryl, 01igo- / polyethylene and / or propylene glycols and R 3 is a has the meanings of R 1 or denotes a polyester or a polyamide radical,
  • Z Y, polyesters, polyethers, polyamides and R '"means an aromatic and / or araliphatic radical
  • Aromatic oligomeric and / or polymeric carbodiimides of the abovementioned formula (I) with m> 2 are particularly preferred.
  • the polymeric and / or oligomeric carbodiimide are compounds of the formula (II) in which R 1, 3-substituted-2,4,6-triisopropylphenyl and / or 1,3-bis (l-methyl-1-isocyanatoethyl) benzene and / or tetramethylxylylene derivatives and / or 2,4-substituted tolylene and / or 2,6-substituted tolylene and / or mixtures of 2,4- or 2,6-
  • the abovementioned carbodiimides are commercially available compounds which, for example, are available from Rhein Chemie Rheinau GmbH under the trade names Stabaxol® P (NCN content: 12.5-13.5%), Stabaxol® P 100 (NCN Content: 12.5-13.5%) and Stabaxol® P 400 (NCN content: 12.5-13.5%) are commercially available, as well as the preparation of the carbodiimides according to, for example
  • catalysts for example, strong bases or phosphorus compounds have been proven.
  • phospholene oxides, phospholidines or phospholine oxides and the corresponding sulfides are used.
  • tertiary amines, basic metal compounds, carboxylic acid metal salts and non-basic organometallic compounds can be used.
  • carbodiimides and / or polycarbodiimides all isocyanates such as 2,6-diisopropylphenyl isocyanate are suitable, with preferred in the context of the present invention, carbodiimides and / or polycarbodiimides are used, which are based on substituted aromatic by Cr to C4 alkyl isocyanates, , 2,4,6-triisopropylphenyl-l, 3-diisocyanate, 2,4,6-triethylphenyl-l, 3-diisocyanate, 2,4,6-trimethyl-phenyl-l, 3-diisocyanate, 2,4'- Diisocyanatodiphenylmethane, 3,3 ', 5,5'-tetraisopropyl-4,4'-diisocyanatodiphenylmethane, 3,3', 5,5'-tetraethyl-4,4'-diisocyanatodiphenylmethane,
  • carbodiimides and / or Polycarbodiimides based on 2,4,6-triisopropylphenyl-l, 3-diisocyanate and / or 2,6-diisopropyl-phenylene isocyanate and / or tetramethylxylylene diisocyanate.
  • Polycarbodiimides when made from isocyanates, may also contain reactive NCO groups and complexed monomeric isocyanates.
  • the total amount of carbodiimides, based on the plastic is greater than 0.5%, particularly preferably> 0.7% by weight.
  • the proportion of polyhydroxyalkanoate in the bio-based plastic is 5-99.5%, more preferably 20-99.3%.
  • the present invention furthermore relates to a process for the preparation of the bio-based plastics according to the invention, according to which at least one polyhydroxyalkanoate with at least 0.5 wt.%, Preferably 0.7 to 4 wt.%, Particularly preferably 1 to 2.5 wt particularly preferably 1 to 2.0% by weight of at least one oligomeric and / or polymeric, aromatic and / or araliphatic carbodiimide are mixed in a mixing unit.
  • Mixing units in the context of the invention are, for example, an extruder or kneader.
  • the subject of the present invention is also the use of the bio-based plastics according to the invention in long-lived applications, such as e.g. Electronics, automotive, construction, transportation, household, e.g. as bath utensils, or as office supplies, or for applications under severe conditions, such as sterile conditions in medicine.
  • long-lived applications such as e.g. Electronics, automotive, construction, transportation, household, e.g. as bath utensils, or as office supplies, or for applications under severe conditions, such as sterile conditions in medicine.
  • CDI I a sterically hindered, aromatic carbodiimide (Stabaxol® I LF) with an NCN content of at least 10.0%, from Rhein Chemie Rheinau GmbH.
  • CDI II a sterically hindered, aromatic oligomeric carbodiimide (Stabaxol® P) with an NCN content of 13.5%, from Rhein Chemie Rheinau GmbH.
  • CDI III a sterically hindered, aromatic polymeric carbodiimide (Stabaxol® P 400) with an NCN content of 13.5%, from Rhein Chemie Rheinau GmbH.
  • Carbodilite® LA-1 (H12MDI-PCDI): a polymeric aliphatic carbodiimide with an NCN content of 15.8%, from Nisshinbo.
  • the F3 standard test specimens were produced on an Arburg Allrounder 320 S 150 - 500 injection molding machine.
  • the F3 standard specimens were stored in water at a temperature of 85 ° C, and after various time units, a tensile test was carried out to check the tensile strength.
  • the hydrolysis protection period describes the life of the test specimens after how many days under test conditions the tensile strength has assumed a value less than 5 MPa.
  • the F3 standard test specimens were stored in water at a temperature of 65 ° C and after different time units a tensile test was carried out to check the tensile strength.
  • melt volume rate was measured using a device from Göttfert, model MI 4.
  • the residual moisture content of the polymer granules is at most 100 ppm.
  • Test conditions for PHA (Samples 1-16): Measurement temperature 175 ° C, test weight 2.16 kg. Melting time: 5 minutes.
  • Test conditions for PLA Measurement temperature 200 ° C, test weight 2, 16 kg, melting time: 5 minutes.
  • the mixtures 1 to 6 according to the invention are distinguished by high hydrolysis protection and excellent MVR values. Thus, they are significantly improved over the mixtures of PLA with carbodiimides, in which only either the hydrolytic stability or the MVR value is improved, but never both. It is also apparent from Comparative Examples 17-22 that the effects of carbodiimides in PLA and PHA are surprisingly distinctly different.
  • monomeric carbodiimides CDl I
  • polymeric carbodiimides CDl II
  • polymeric carbodiimides CDI II and CDI III
  • CDU monomeric carbodiimides

Abstract

The invention relates to novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (PHA), the melt of said plastics being adequately stable, to a method for the producing same, and to the use thereof.

Description

^  ^
Neuartige langlebige, hydrolysestabile biobasierte Kunststoffe auf Basis von Polvhvdroxyalkanoat (PHA), ein Verfahren zu deren Herstellung und deren Verwendung Novel long-life, hydrolysis-stable bio-based plastics based on polyvinyl alcoholate (PHA), a process for their preparation and their use
Die Erfindung betrifft neuartige langlebige, hydrolysestabile biobasierte Kunststoffe auf Basis von Polyhydroxyalkanoat (PHA), welche eine ausreichende Stabilität der Schmelze aufweisen, ein Verfahren zu deren Herstellung und deren Verwendung. The invention relates to novel, long-lasting, hydrolysis-stable, bio-based plastics based on polyhydroxyalkanoate (PHA), which have sufficient melt stability, a process for their preparation and their use.
Biobasierte Kunststoffe, sogenannte Biopolymere, sind im Vergleich zu petrochemisch basierten Kunststoffen aufgrund der eingesetzten biobasierten Rohstoffe ökologisch nachhaltigere Werkstoffe. Insbesondere im Hinblick auf den Umweltschutz und die drohende Klimaerwärmung haben biobasierte Kunststoffe eine zunehmende Bedeutung nicht nur im Bereich Verpackung, sondern auch bei der Herstellung langlebiger sowie technischer Kunststoffprodukte erlangt. Um jedoch biobasierte Werkstoffe auf der Basis von Polyhydroxyalkanoaten im Vergleich zu herkömmlichen und etablierten Werkstoffen konkurrenzfähig zu machen, sind vielfach noch Optimierungen in der Werkstoffherstellung und -Verarbeitung notwendig. Bio-based plastics, known as biopolymers, are ecologically more sustainable materials compared to petrochemical-based plastics because of the bio-based raw materials used. In particular with regard to environmental protection and the threat of global warming, bio-based plastics have gained increasing importance not only in the packaging sector but also in the production of durable and technical plastic products. However, in order to make bio-based materials based on polyhydroxyalkanoates competitive in comparison to conventional and established materials, optimizations in material production and processing are often necessary.
Biobasierte Kunststoffe bestehen beispielsweise aus einem aliphatischem Polyesterharz, welches durch direkte fermentative Herstellung aus Stärke, Zucker, Kohlenhydraten, Pflanzenöl oder Fetten hergestellt wird. Bio-based plastics consist for example of an aliphatic polyester resin, which is produced by direct fermentative production of starch, sugar, carbohydrates, vegetable oil or fats.
Biobasierte Kunststoffe haben den großen Vorteil, dass sie sehr umweltfreundlich sind. Im Bereich der technischen Anwendungen haben aus der Gruppe der Biopolymere besonders Polyhydroxyalkanoate (PHA) den Vorteil, dass sie beispielsweise eine höhere Wärmeformbeständigkeit, im Vergleich zu Polymilchsäure (PLA), besitzen. Dies erlaubt die Herstellung von langlebigen Gegenständen, welche aus Polymilchsäure aufgrund des niedrigen Erweichungspunktes nicht anwendbar sind, wie z.B. Wasserkocher, Fön. Weiterhin zeigen Polyhydroxyalkanoate eine sehr geringe Schrumpfung bei gefertigten Produkten, so dass auch Produktgeometrien möglich sind, die mit herkömmlichen Polymeren nicht realisiert werden können. Bio-based plastics have the great advantage that they are very environmentally friendly. In the field of technical applications, the group of biopolymers in particular polyhydroxyalkanoates (PHA) have the advantage that, for example, they have a higher heat resistance, compared to polylactic acid (PLA) possess. This allows the production of durable articles which are not applicable to polylactic acid due to the low softening point, e.g. Kettle, hair dryer. Furthermore, polyhydroxyalkanoates show a very low shrinkage in manufactured products, so that product geometries are possible, which can not be realized with conventional polymers.
Sowohl Polymilchsäure als auch Polyhydroxyalkanoate zählen zur Klasse der aliphatischen Polyester und sind beide anfällig gegenüber einem Polymerabbau während der Verarbeitung und im Verlauf der Anwendung. Der Abbaumechanismus bei Polymilchsäure verläuft über den klassischen Weg einer Esterhydrolyse, bei dem es unter Einwirkung von Säuren oder Basen in Gegenwart von Wasser zu einer Spaltung der Esterbindung in der Polymilchsäure kommt, wodurch neue Hydroxyl- und Carboxylgruppen generiert werden. -COO- + H20 -COOH + HO- Both polylactic acid and polyhydroxyalkanoates are classed as aliphatic polyesters and are both susceptible to polymer degradation during processing and during use. The degradation mechanism of polylactic acid proceeds via the classical route of ester hydrolysis, which, under the action of acids or bases in the presence of water, leads to cleavage of the ester bond in the polylactic acid, generating new hydroxyl and carboxyl groups. -COO- + H 2 0 -COOH + HO-
Die neuen Carboxylgruppen führen zu einer Hydrolyse weiterer Estergruppen im Polymilchsäure Polymer, d.h. der Prozess verläuft autokatalytisch. Die Esterspaltung in der Polymilchsäure führt folglich zu einem Polymerabbau und somit zu einer Verringerung der Lebensdauer der Polymilchsäure sowie einer instabilen Prozessführung. The new carboxyl groups lead to hydrolysis of further ester groups in the polylactic acid polymer, i. the process is autocatalytic. The ester cleavage in the polylactic acid thus leads to a polymer degradation and thus to a reduction in the life of the polylactic acid and an unstable process.
Die Produktklasse der Polyhydroxyalkanoate ist jedoch im Vergleich zur Polymilchsäure weitaus weniger hydrolyseempfindlich. Dieser Unterschied hinsichtlich der Hydrolyseanfälligkeit ergibt sich aus dem unterschiedlichen Abbaumechanismus. Im Gegensatz zu Polymilchsäure dominiert bei Polyhydroxyalkanoaten ein anderer Abbaumechanismus, der einer ß-Eliminierung. Diese ß-Eliminierung führt zur Spaltung der Polyhydroxyalkanoat-Polymerkette unter Bildung von ungesättigten Polymerfragmenten, siehe Yoshihiro Aoyagi, et al., Polymer Degradation and Stability 76, 2002, 53 - 59. However, the product class of polyhydroxyalkanoates is much less sensitive to hydrolysis compared to polylactic acid. This difference in susceptibility to hydrolysis arises from the different degradation mechanism. In contrast to polylactic acid, polyhydroxyalkanoates are dominated by a different mechanism of β-elimination. This β-elimination leads to cleavage of the polyhydroxyalkanoate polymer chain to form unsaturated polymer fragments, see Yoshihiro Aoyagi, et al., Polymer Degradation and Stability 76, 2002, 53-59.
Im Vergleich zu Polymilchsäure spielt der hydrolytische Abbau von Polyhydroxyalkanoaten eine untergeordnete Rolle, kann jedoch, da es sich bei PHAs ebenso um aliphatische Polyester handelt, ebenfalls auftreten. Trotz des abweichenden Abbaumechanismus haben Polyhydroxyalkanoate den Nachteil, dass sie für langlebige und technische Anwendungen keine ausreichende Hydrolysestabilität besitzen und zudem schlecht verarbeitbar sind, was sich in einem starken Anstieg der Schmelzvolumenrate (MVR) zeigt. Es muss daher nach einer Möglichkeit gesucht werden, trotz der Kombination aus der weitgehend vorherrschenden ß-Eliminierung und der dennoch ebenfalls auftretenden Hydrolyse, eine Stabilisierung von PHA während der Verarbeitung als auch während der Anwendung zu erreichen. Compared to polylactic acid, hydrolytic degradation of polyhydroxyalkanoates plays a subordinate role but, since PHAs are also aliphatic polyesters, they may also occur. Despite the deviating degradation mechanism, polyhydroxyalkanoates have the disadvantage that they do not have sufficient hydrolytic stability for long-lived and industrial applications and are also difficult to process, which is reflected in a sharp increase in the melt volume rate (MVR). It is therefore necessary to look for a way to achieve stabilization of PHA during processing as well as during use, despite the combination of the largely predominant β-elimination and the still-occurring hydrolysis.
Es wurde versucht, über den Zusatz verschiedenster Additive dieses Problem zu lösen. So wird beispielsweise im Abstract von JP-A 2008 303 286 der Einsatz von 0,5 Gew. % eines polymeren Carbodiimides in Polyhydroxyalkanoaten beschrieben. Allerdings wird in Bezug auf die Hydrolysestabilität hier kein befriedigendes Ergebnis erreicht. Gleiches gilt für WO 2009119512, in welchem der Einsatz eines Polycarbodiimiden von Gemischen aus Polybutylensuccinat sowie Blends aus Polybutylensuccinat mit Polymilchsäure und Polyhydroxyalkanoaten genannt wird. Das eingesetzte aliphatische Polycarbodiimid wird dabei für die Stabilisierung des Polybutylensuccinates verwendet. Allerdings wird auch hier keine ausreichende Hydrolysebeständigkeit erhalten. An attempt was made to solve this problem by adding a variety of additives. Thus, for example, in the abstract of JP-A 2008 303 286 the use of 0.5 wt.% Of a polymeric Carbodiimides described in polyhydroxyalkanoates. However, in terms of hydrolytic stability, no satisfactory result is achieved here. The same applies to WO 2009119512, in which the use of a polycarbodiimides of mixtures of polybutylene succinate and blends of polybutylene succinate with polylactic acid and polyhydroxyalkanoates is called. The aliphatic polycarbodiimide used is used for the stabilization of the polybutylene succinate. However, even here, sufficient hydrolysis resistance is not obtained.
In EP-A 1 627 894 wird die Verwendung von Diisopropylphenylcarbodiimid als Hydrolyseschutzmittel in aliphatischen Polyesterharzen beschrieben. Jedoch wird hinsichtlich der Verarbeitbarkeit und dem Hydrolyseschutz kein zufriedenstellendes Ergebnis erreicht. EP-A 1 627 894 describes the use of diisopropylphenylcarbodiimide as a hydrolysis protection agent in aliphatic polyester resins. However, no satisfactory result is achieved in terms of processibility and anti-hydrolysis.
In der EP-A 10172530 wird der Einsatz einer Kombination aus einem monomeren und oligomeren Carbodiimid beschrieben. Dies führt zwar zu einer Verbesserung des Hydrolyseschutzes und der Verarbeitung, allerdings ist dieses Ergebnis hinsichtlich der Hydrolyseschutzwirkung in vielen Konzentrationsbereichen, noch nicht ausreichend. EP-A 10172530 describes the use of a combination of a monomeric and oligomeric carbodiimide. Although this leads to an improvement of the hydrolysis protection and the processing, however, this result with regard to the hydrolysis protection effect in many concentration ranges, is not sufficient.
Überraschender Weise wurde nun gefunden, dass die erfindungsgemäßen biobasierten Kunststoffe aus der Klasse der Polyhydroxyalkanoate, enthaltend mindestens > 0,5 Gew. % oligomeren und/oder polymeren aromatischen und/oder araliphatischen oligomeren Carbodiimidverbindung, diese Aufgabe erfüllen.  Surprisingly, it has now been found that the bio-based plastics according to the invention from the class of polyhydroxyalkanoates containing at least> 0.5% by weight of oligomeric and / or polymeric aromatic and / or araliphatic oligomeric carbodiimide compound, perform this task.
Gegenstand der vorliegenden Erfindung sind daher biobasierte Kunststoffe, enthaltend eine Kombination aus mindestens einem Polyhydroxyalkanoat und mindestens 0,5 Gew. %, bevorzugt 0,7 und 4 Gew. %, besonders bevorzugt 1 - 2,5 Gew.%, ganz besonders bevorzugt 1 bis 2,0 Gew. % mindestens eines oligomeren und/oder polymeren aromatischen und/oder araliphatischen Carbodiimids, wobei in einer bevorzugten Ausführungsform der Erfindung diese im Wesentlichen aus Polyhydroxyalkanoat und Carbodiimid besteht. The present invention therefore relates to biobased plastics containing a combination of at least one polyhydroxyalkanoate and at least 0.5% by weight, preferably 0.7 and 4% by weight, more preferably 1 to 2.5% by weight, very particularly preferably 1 to 2.0% by weight of at least one oligomeric and / or polymeric aromatic and / or araliphatic carbodiimide, in one preferred embodiment of the invention consisting essentially of polyhydroxyalkanoate and carbodiimide.
Weitere Additive sind z.B. Stabilisatoren, wie Antioxidantien, Weichmacher, Schlagzähigkeitsmodifatoren, Flammschutzmittel und Füllstoffe.  Other additives are e.g. Stabilizers, such as antioxidants, plasticizers, impact modifiers, flame retardants and fillers.
Bei den biobasierten Kunststoffen im Sinne der Erfindung handelt es sich vorzugsweise um Polyhydroxyalkanoate, welche durch direkte fermentative Herstellung aus Stärke, Zucker, Kohlenhydraten, Pflanzenöl oder Fetten hergestellt werden können. Bei Polyhydroxyalkanoaten handelt es sich vorzugsweise um Verbindungen der Strukturformel (I) In the context of the invention, the biobased plastics are preferably polyhydroxyalkanoates which can be prepared by direct fermentative preparation from starch, sugar, carbohydrates, vegetable oil or fats. Polyhydroxyalkanoates are preferably compounds of structural formula (I)
mit n > 10 und R4 = Ci- bis Ci4-Alkyl. Besonders bevorzugt sind Polyhydroxybutyrat (PHB), Polyhydroxyvalerat (PHV), Polyhydroxybutyratvalerat (PHBV), Polyhydroxyhexonat (PHH), Polyhydroxyoctanoat (PHO), Polyhydroxybutyrathexanoat (PHBH) und Mischungen daraus. with n> 10 and R 4 = Ci to Ci 4 alkyl. Particularly preferred are polyhydroxybutyrate (PHB), polyhydroxyvalerate (PHV), polyhydroxybutyrate valerate (PHBV), polyhydroxyhexonate (PHH), polyhydroxyoctanoate (PHO), polyhydroxybutyratehexanoate (PHBH) and mixtures thereof.
Die als biobasierte Kunststoffe besonders bevorzugten Polyhydroxyalkanoate sind kommerziell verfügbar, z.B. unter dem Namen Mirel bei der Finna Teiles bzw. als Enmat der Firma Tianan, oder können nach den, dem Fachmann geläufigen Verfahren, z.B. durch Fermentation, hergestellt werden. The polyhydroxyalkanoates particularly preferred as bio-based plastics are commercially available, e.g. under the name Mirel in the Finna Teiles or as Enmat of the Tianan company, or can be prepared according to the methods familiar to the person skilled in the art, e.g. by fermentation.
Als oligomere und/oder polymere Carbodiimide sind alle bekannten Carbodiimide der Formel (II) einsetzbar As oligomeric and / or polymeric carbodiimides, all known carbodiimides of the formula (II) can be used
R'-(-N=C=N-R"'-)m-R" (II), R '- (- N = C = NR "' -) m -R" (II),
in der in the
R'" einen aromatischen und/oder araliphatischen Rest bedeutet und bei m >1, R'" innerhalb des Moleküls gleich oder verschieden ist und bei verschiedenen Kombinationen jeder der vorgenannten Reste beliebig miteinander kombiniert werden kann, R '"is an aromatic and / or araliphatic radical and m> 1, R'" is the same or different within the molecule and can be combined with each other in any combination of any of the aforementioned radicals,
R'" in dem Fall eines aromatischen oder eines araliphatischen Restes keinen oder in mindestens einer ortho-Stellung zum aromatischen Kohlenstoffatom, das die Carbodiimidgruppe trägt, aliphatische und/oder cycloaliphatische Substituenten mit mindestens 2 Kohlenstoffatomen tragen kann, bevorzugt verzweigte oder cyclische aliphatische Reste mit mindestens 3 Kohlenstoffatomen, insbesondere Isopropylgruppen tragen kann, die auch Heteroatome, wie z.B. N, S und/oder O, oder aber Imidazolyl, tragen können, R' = Ci - Ci8-Alkyl, C5-C18-Cycloalkyl-, Aryl, C7-Ci8- Aralkyl, -R-NHCOS- R1, R '"in the case of an aromatic or an araliphatic radical may bear no or at least one ortho to the aromatic carbon atom bearing the carbodiimide group, aliphatic and / or cycloaliphatic substituents having at least 2 carbon atoms, preferably branched or cyclic aliphatic radicals having at least 3 carbon atoms, in particular isopropyl groups, which may also carry heteroatoms, such as N, S and / or O, or imidazolyl, R '= Ci - Ci 8 alkyl, C 5 -C 18 cycloalkyl, aryl, C 7 -C 8 -aralkyl, -R-NHCOS-R 1 ,
-R-COO R1, -R-0 R1, -R-NiR1^, -R-SR1, -R-OH, -R-NH2, -R-NHR1, -R-COO R 1 , -R-O R 1 , -R-NiR 1 ^, -R-SR 1 , -R-OH, -R-NH 2 , -R-NHR 1 ,
-R-Epoxy, -R-NCO, -R-NHCONHR1, -R-NHCONRlR2 oder -R-NHCOOR3, wobei -R-epoxy, -R-NCO, -R-NHCONHR 1 , -R-NHCONR 1 R 2 or -R-NHCOOR 3 , wherein
R = aromatischer, aliphatischer, cycloaliphatischer und/oder araliphatischer Rest, R"= H, -N=C=N-Aryl, -N=C=N-Alkyl, -N=C=N-Cycloalkyl, -N=C=N- Aralkyl, -NCO, -NHCONHR1, -NHCONR'R2 , -NHCOOR3, -NHCOS- R1, -COO R1, -O R1, -N (R1^, R = aromatic, aliphatic, cycloaliphatic and / or araliphatic radical, R "= H, -N = C = N-aryl, -N = C = N-alkyl, -N = C = N-cycloalkyl, -N = C = N-aralkyl, -NCO, -NHCONHR 1 , -NHCONR'R 2 , -NHCOOR 3 , -NHCOS-R 1 , -COO R 1 , -OR 1 , -N (R 1 ^,
-SR1, -OH, -NH2, -NH R1 , wobei in R' und R" unabhängig voneinander Rl und R2 gleich oder verschieden sind und einen Ci-C2o-Alkyl-, C3-C2o-Cycloalkyl-, -Aryl, C7-Ci8-Aralkylrest, 01igo-/Polyethylen- und/oder -Propylenglykole darstellen und R3 eine der Bedeutungen von R1 hat oder einen Polyester- oder einen Polyamidrest bedeutet, und m einer ganzen Zahl von 2 bis 5.000 entspricht, und bei oligomeren Carbodiimiden m einer ganzen Zahl von 2 bis 5 entspricht, und bei polymeren Carbodiimiden m einer ganzen Zahl von > 5 entspricht, und/ oder der Formel (III) -SR 1 , -OH, -NH 2 , -NH R 1 , wherein in R 'and R "independently R l and R 2 are identical or different and a Ci-C 2 o-alkyl, C 3 -C 2 o-cycloalkyl, -aryl, C 7 -C 8 -aryl, 01igo- / polyethylene and / or -Propylenglykole represent and R 3 has one of the meanings of R 1 or a polyester or a polyamide radical, and m a whole Corresponds to from 2 to 5,000, and in the case of oligomeric carbodiimides m corresponds to an integer from 2 to 5, and in polymeric carbodiimides m corresponds to an integer of> 5, and / or of the formula (III)
R'-[-(-N=C=N-Y-)p-(-B-)q-]0-X (III), enthält, mit R '- [- (- N = C = NY-) p - (- B -) q -] 0 -X (III), with
Y = Arylen, C7-Cig-Aralkylen Y = arylene, C 7 -Cig-aralkylene
p = eine ganze Zahl von 1 bis 500, bevorzugt 1 bis 100, p = an integer from 1 to 500, preferably 1 to 100,
B = -NH-CO-NH-Z-, -NH-COO-Z-, -NH-COS-Z-, B = -NH-CO-NH-Z-, -NH-COO-Z-, -NH-COS-Z-,
q = eine ganze Zahl von 1 bis 500, bevorzugt 1 bis 100, q = an integer from 1 to 500, preferably 1 to 100,
o = eine ganze Zahl von 1 bis 500, bevorzugt 1 bis 100, wobei o = an integer from 1 to 500, preferably 1 to 100, wherein
entweder p oder o > 1 sein muss. either p or o must be> 1.
X = H, - OH, -SH, -NH2, -OR1, -N(Rl)2, -SR1, -NHR1, ^R2, -OCO-NH- R', NH CO-, -NH-R', -S-CO-NH- R' X is H, -OH, -SH, -NH 2 , -OR 1 , -N (R 1 ) 2 , -SR 1 , -NHR 1 , R 2 , -OCO-NH-R ', NH CO-, -NH-R ' , -S-CO-NH-R'
R'= Ci-Cig-Alkyl, C5-Ci8-Cycloalkyl, Aryl, C7-C18-Aralkyl, - R" '-NH-COS-R1, -R^-COOR1, -R^-OR1, -R' "-^1^, - R" '-SR1, -R" '-OH, -R" '-NH2, -R^-NHR1, -R" '-Epoxy, - R" '-NCO, -R" '-NHCONHR1, -R" '-NHCONR1R2 oder - R" '-NH-COOR3, wobei R '= C 1 -C 18 -alkyl, C 5 -C 8 -cycloalkyl, aryl, C 7 -C 18 -aralkyl, -R "' - NH-COS-R 1 , -R 1 -COOR 1 , -R 1 - OR 1 , -R '"- ^ 1 ^, - R"' -SR 1 , -R "'--OH, -R"' - NH 2 , -R ^ -NHR 1 , -R "'- epoxy, R "'- NCO, - R"' - NHCONHR 1 , - R "'- NHCONR 1 R 2 or - R"' - NH - COOR 3 , wherein
R1 und R2 gleich oder verschieden sind und einen Ci-C20 -Alkyl, C3-C20-Cycloalkyl-, Aryl, C7-Cig- Arylkylrest, 01igo-/Polyethylen- und/oder Propylenglykole darstellen und R3 eine der Bedeutungen von R1 hat oder einen Polyester- oder einen Polyamidrest bedeutet, R 1 and R 2 are the same or different and are a C 1 -C 20 -alkyl, C 3 -C 20 -cycloalkyl, aryl, C 7 -C 8 -aryl, 01igo- / polyethylene and / or propylene glycols and R 3 is a has the meanings of R 1 or denotes a polyester or a polyamide radical,
Z = Y, Polyester, Polyether, Polyamide und R' " einen aromatischen und/oder araliphatischen Rest bedeutet  Z = Y, polyesters, polyethers, polyamides and R '"means an aromatic and / or araliphatic radical
Im Sinne der Erfindung wird unter dem Begriff araliphatisch ein über eine Alkylgruppe, wie beispielsweise -(CH2)r, -C(CH3)2-, -CH(C C18-Alkyl), vorzugsweise -CH2-, -C2H4-, -C3H6-, -C(CH3)2-, verknüpfter, gegebenenfalls substituierter aromatischer Rest mit i = 1 - 10 verstanden. Besonders bevorzugt sind dabei aromatische oligomere und/oder polymere Carbodiimide der vorgenannten Formel (I) mit m > 2. For the purposes of the invention, the term araliphatic means an alkyl group such as - (CH 2 ) r , -C (CH 3 ) 2 -, -CH (CC 18 alkyl), preferably -CH 2 -, -C 2 H 4 -, -C 3 H 6 -, -C (CH 3 ) 2 -, linked, optionally substituted aromatic radical with i = 1-10 understood. Aromatic oligomeric and / or polymeric carbodiimides of the abovementioned formula (I) with m> 2 are particularly preferred.
Ebenfalls bevorzugt ist, dass es sich bei dem polymeren und/oder oligomeren Carbodiimid um Verbindungen der Formel (II) handelt, bei denen R'" l,3-substituiertem-2,4,6-Triisopropylphenyl und/oder l,3-Bis-(l-methyl-l-isocyanato-ethyl)-benzol und/oder Tetramethylxylylenderivaten und/oder 2,4-substituiertem Tolylen und/oder 2,6-substituiertem Tolylen und/oder Gemischen aus 2,4- oder 2,6-substituiertem Tolylen entspricht. Bei den vorgenannten Carbodiimiden handelt es sich um handelsübliche Verbindungen, die z.B. bei der Rhein Chemie Rheinau GmbH unter den Handelsnamen Stabaxol® P (N-C-N-Gehalt: 12,5- 13,5%), Stabaxol® P 100 (N-C-N-Gehalt: 12,5 - 13,5 %) und Stabaxol® P 400 (N-C-N-Gehalt: 12,5 - 13,5 %) käuflich erhältlich sind. Ebenso möglich ist auch die Herstellung der Carbodiimide nach den beispielsweise in Angewandte Chemie 74 (21), 1962, S. 801 - 806 beschriebenen Verfahren oder durch die Kondensation von Diisocyanaten unter Abspaltung von Kohlendioxid bei erhöhten Temperaturen, z.B. bei 40 °C bis 200 °C, in Gegenwart von Katalysatoren. Geeignete Verfahren werden in DE-B-11 56 401 und in der DE-B-11 305 94 beschrieben. Als Katalysatoren haben sich z.B. starke Basen oder Phosphorverbindungen bewährt. Vorzugsweise werden Phospholenoxide, Phospholidine oder Phospholinoxide sowie die entsprechenden Sulfide verwendet. Ferner können als Katalysatoren tertiäre Amine, basisch reagierende Metallverbindungen, Carbonsäuremetallsalze und nicht basische Organometallverbindungen verwendet werden. Zur Herstellung der eingesetzten Carbodiimide und/oder Polycarbodiimide eignen sich alle Isocyanate, wobei im Rahmen der vorliegenden Erfindung bevorzugt Carbodiimide und/oder Polycarbodiimide verwendet werden, die auf durch Cr bis C4-Alkyl substituierten aromatischen Isocyanaten aufbauen, wie z.B. 2,6-Diisopropylphenylisocyanat, 2,4,6-Triisopropylphenyl-l,3- diisocyanat, 2,4,6-Triethylphenyl-l,3-diisocyanat, 2,4,6-Trimethyl-phenyl-l,3-diisocyanat, 2,4'- Diisocyanatodiphenylmethan, 3,3',5,5'-Tetraisopropyl-4,4'-diisocyanatodiphenylmethan, 3,3',5,5'- Tetraethyl-4,4'-diisocyanatodiphenylmethan, Tetramethylxyloldiisocyanat, 1 ,5-Naphthalin- diisocyanat, 4,4'-Diphenylmethandiisocyanat, 4,4'-Diphenyldimethyl-methandiisocyanat, 1,3- Phenylendiisocyanat, 1 ,4-Phenylendiisocyanat, 2,4-Tolylendiisocyanat, 2,6-Tolylendiisocyanat, ein Gemisch aus 2,4-Tolylendiisocyanat und 2,6-Tolylendiisocyanat, Xylylendi-isocyanat, Tetramethylxylylendiisocyanat, 2,6-Diisopropylphenylenisocyanat und 1,3,5-Triisopropylbenzol- 2,4-diisocyanat oder deren Gemische, oder auf substituierten Aralkylen, wie l,3-Bis-(l-methyl-l- isocyanato-ethyl)-benzol, basieren. Besonders bevorzugt ist es, wenn die Carbodiimide und/oder Polycarbodiimide auf 2,4,6-Triisopropylphenyl-l,3-diisocyanat und/oder 2,6-Diisopropyl- phenylenisocyanat und/oder Tetramethylxylylendiisocyanat basieren. It is likewise preferred that the polymeric and / or oligomeric carbodiimide are compounds of the formula (II) in which R 1, 3-substituted-2,4,6-triisopropylphenyl and / or 1,3-bis (l-methyl-1-isocyanatoethyl) benzene and / or tetramethylxylylene derivatives and / or 2,4-substituted tolylene and / or 2,6-substituted tolylene and / or mixtures of 2,4- or 2,6- The abovementioned carbodiimides are commercially available compounds which, for example, are available from Rhein Chemie Rheinau GmbH under the trade names Stabaxol® P (NCN content: 12.5-13.5%), Stabaxol® P 100 (NCN Content: 12.5-13.5%) and Stabaxol® P 400 (NCN content: 12.5-13.5%) are commercially available, as well as the preparation of the carbodiimides according to, for example, Angewandte Chemie 74 (21), 1962, p. 801-806 or by the condensation of diisocyanates with elimination of carbon dioxide at elevated temperatures, for example be i 40 ° C to 200 ° C, in the presence of catalysts. Suitable processes are described in DE-B-11 56 401 and in DE-B-11 305 94. As catalysts, for example, strong bases or phosphorus compounds have been proven. Preferably, phospholene oxides, phospholidines or phospholine oxides and the corresponding sulfides are used. Further, as catalysts, tertiary amines, basic metal compounds, carboxylic acid metal salts and non-basic organometallic compounds can be used. To prepare the carbodiimides and / or polycarbodiimides all isocyanates such as 2,6-diisopropylphenyl isocyanate are suitable, with preferred in the context of the present invention, carbodiimides and / or polycarbodiimides are used, which are based on substituted aromatic by Cr to C4 alkyl isocyanates, , 2,4,6-triisopropylphenyl-l, 3-diisocyanate, 2,4,6-triethylphenyl-l, 3-diisocyanate, 2,4,6-trimethyl-phenyl-l, 3-diisocyanate, 2,4'- Diisocyanatodiphenylmethane, 3,3 ', 5,5'-tetraisopropyl-4,4'-diisocyanatodiphenylmethane, 3,3', 5,5'-tetraethyl-4,4'-diisocyanatodiphenylmethane, tetramethylxylene diisocyanate, 1, 5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylenediisocyanate, 1,4-phenylenediisocyanate, 2,4-tolylenediisocyanate, 2,6-tolylenediisocyanate, a mixture of 2,4-tolylenediisocyanate and 2 , 6-tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 2,6-diisopropylphenylene isocyanate and 1,3,5-triiso propylbenzene-2,4-diisocyanate or mixtures thereof, or based on substituted aralkylene such as 1,3-bis (1-methyl-1-isocyanatoethyl) benzene. It is particularly preferred if the carbodiimides and / or Polycarbodiimides based on 2,4,6-triisopropylphenyl-l, 3-diisocyanate and / or 2,6-diisopropyl-phenylene isocyanate and / or tetramethylxylylene diisocyanate.
Polycarbodiimide können außerdem, wenn sie aus Isocyanaten hergestellt worden sind, noch reaktionsfähige NCO-Gruppen und komplex gebundene monomere Isocyanate enthalten. Polycarbodiimides, when made from isocyanates, may also contain reactive NCO groups and complexed monomeric isocyanates.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die Gesamtmenge an Carbodiimiden, bezogen auf den Kunststoff, größer 0,5%, besonders bevorzugt >0,7 Gew. %. In a further preferred embodiment of the present invention, the total amount of carbodiimides, based on the plastic, is greater than 0.5%, particularly preferably> 0.7% by weight.
Des Weiteren ist bevorzugt, dass der Anteil an Polyhydroxyalkanoat in dem biobasierten Kunststoff 5-99,5%, besonders bevorzugt 20-99,3% beträgt. Furthermore, it is preferred that the proportion of polyhydroxyalkanoate in the bio-based plastic is 5-99.5%, more preferably 20-99.3%.
Gegenstand der vorliegenden Erfindung ist zudem ein Verfahren zur Herstellung der erfindungsgemäßen biobasierten Kunststoffe, wonach mindestens ein Polyhydroxyalkanoat mit mindestens 0,5 Gew. %, bevorzugt 0,7 bis 4 Gew. %, besonders bevorzugt 1 - 2,5 Gew.%, ganz besonders bevorzugt 1 bis 2,0 Gew. % mindestens eines oligomeren und/oder polymeren, aromatischen und/oder araliphatischen Carbodiimids in einem Mischaggregat vermischt werden. Mischaggregate im Sinne der Erfindung sind beispielsweise ein Extruder oder Kneter. The present invention furthermore relates to a process for the preparation of the bio-based plastics according to the invention, according to which at least one polyhydroxyalkanoate with at least 0.5 wt.%, Preferably 0.7 to 4 wt.%, Particularly preferably 1 to 2.5 wt particularly preferably 1 to 2.0% by weight of at least one oligomeric and / or polymeric, aromatic and / or araliphatic carbodiimide are mixed in a mixing unit. Mixing units in the context of the invention are, for example, an extruder or kneader.
Gegenstand der vorliegenden Erfindung ist zudem die Verwendung der erfindungsgemäßen biobasierten Kunststoffe in langlebigen Anwendungen, wie z.B. Elektronik, Automotive, Construction, Transportwesen, im Haushalt, z.B. als Badutensilien, oder als Bürobedarf, oder für Anwendungen unter„severe conditions", wie z.B. die sterilen Bedingungen in der Medizin. The subject of the present invention is also the use of the bio-based plastics according to the invention in long-lived applications, such as e.g. Electronics, automotive, construction, transportation, household, e.g. as bath utensils, or as office supplies, or for applications under severe conditions, such as sterile conditions in medicine.
Der Rahmen der Erfindung erfasst alle oben stehenden und im Folgenden aufgeführten allgemeinen oder in Vorzugsbereichen genannten Restedefinitionen, Indizes, Parameter und Erläuterungen untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen in beliebiger Kombination. The scope of the invention covers all of the above-mentioned general or preferred radical definitions, indices, parameters and explanations with one another, ie also between the respective ranges and preferred ranges in any desired combination.
Die nachfolgenden Beispiele dienen der Erläuterung der Erfindung, ohne dabei limitierend zu wirken. Ausführungsbeispiele: The following examples serve to illustrate the invention without being limiting. EXAMPLES
Verwendete Chemikalien: Used chemicals:
CDI I: ein sterisch gehindertes, aromatisches Carbodiimid (Stabaxol® I LF) mit einem NCN- Gehalt von mindestens 10.0%, von der Firma Rhein Chemie Rheinau GmbH.  CDI I: a sterically hindered, aromatic carbodiimide (Stabaxol® I LF) with an NCN content of at least 10.0%, from Rhein Chemie Rheinau GmbH.
CDI II: ein sterisch gehindertes, aromatisches oligomeres Carbodiimid (Stabaxol® P) mit einem NCN-Gehalt von 13.5 %, von der Firma Rhein Chemie Rheinau GmbH.  CDI II: a sterically hindered, aromatic oligomeric carbodiimide (Stabaxol® P) with an NCN content of 13.5%, from Rhein Chemie Rheinau GmbH.
CDI III: ein sterisch gehindertes, aromatisches polymeres Carbodiimid (Stabaxol® P 400) mit einem NCN-Gehalt von 13.5 %, von der Firma Rhein Chemie Rheinau GmbH.  CDI III: a sterically hindered, aromatic polymeric carbodiimide (Stabaxol® P 400) with an NCN content of 13.5%, from Rhein Chemie Rheinau GmbH.
Carbodilite® LA-1 (H12MDI-PCDI): ein polymeres aliphatisches Carbodiimid mit einem NCN- Gehalt von 15.8 %, von der Firma Nisshinbo. Carbodilite® LA-1 (H12MDI-PCDI): a polymeric aliphatic carbodiimide with an NCN content of 15.8%, from Nisshinbo.
Polyhydroxyalkanoat (PHA): Mirel P 1003 Polyhydroxyalkanoate (PHA): Mirel P 1003
Polymilchsäure (PLA): Ingeo 2002 D der Firma Nature Works Polylactic acid (PLA): Ingeo 2002 D from the company Nature Works
Verwendete Geräte: Used devices:
Die Einarbeitung der Carbodiimide in das Polyhydroxyalkanoat erfolgte mittels eines Labordoppelschneckenextruders ZSK 25 der Finna Werner und Pfleiderer. The incorporation of the carbodiimides into the polyhydroxyalkanoate was carried out by means of a laboratory twin-screw extruder ZSK 25 from Finna Werner and Pfleiderer.
Die eingesetzten Mengen an Additiv und die Art des eingesetzten Additives ergeben sich aus den Tabellen 1 bis 4. The amounts of additive used and the type of additive used are shown in Tables 1 to 4.
Die F3 -Normprüfkörper wurden an einer Spritzgießmaschine des Typs Arburg Allrounder 320 S 150 - 500 erstellt. The F3 standard test specimens were produced on an Arburg Allrounder 320 S 150 - 500 injection molding machine.
Für den Hydrolysetest von Polyhydroxyalkanoat (PHA) wurden die F3 -Normprüfkörper in Wasser bei einer Temperatur von 85°C gelagert und nach verschiedenen Zeiteinheiten wurde eine Zugprüfung durchgeführt, um die Zugfestigkeit zu überprüfen. Die Hydrolyseschutzdauer beschreibt dabei die Lebensdauer der Prüfkörper, nach wie viel Tagen unter Prüfbedingungen die Zugfestigkeit einen Wert kleiner 5 MPa angenommen hat. Für die Hydrolysetests der Vergleichsversuche mit Polymilchsäure (PLA) wurden die F3- Normprüflörper in Wasser bei einer Temperatur von 65°C gelagert und nach verschiedenen Zeiteinheiten wurde eine Zugprüfung durchgeführt, um die Zugfestigkeit zu überprüfen. For the hydrolysis test of polyhydroxyalkanoate (PHA), the F3 standard specimens were stored in water at a temperature of 85 ° C, and after various time units, a tensile test was carried out to check the tensile strength. The hydrolysis protection period describes the life of the test specimens after how many days under test conditions the tensile strength has assumed a value less than 5 MPa. For the hydrolysis tests of the comparative tests with polylactic acid (PLA), the F3 standard test specimens were stored in water at a temperature of 65 ° C and after different time units a tensile test was carried out to check the tensile strength.
Die Messung der Schmelzvolumenrate (engl. Melt volume rate, MVR) erfolgte mit einem Gerät der Firma Göttfert, Modell MI 4. Die Restfeuchtigkeit des Polymergranulates beträgt maximal 100 ppm. Prüfbedingungen für PHA (Proben 1 - 16): Messtemperatur 175°C, Prüfgewicht 2,16 kg. Aufschmelzzeit: 5 Minuten. The melt volume rate (MVR) was measured using a device from Göttfert, model MI 4. The residual moisture content of the polymer granules is at most 100 ppm. Test conditions for PHA (Samples 1-16): Measurement temperature 175 ° C, test weight 2.16 kg. Melting time: 5 minutes.
Prüfbedingungen für PLA (Proben 17 - 24): Messtemperatur 200°C, Prüfgewicht 2, 16 kg, Aufschmelzzeit: 5 Minuten.  Test conditions for PLA (Samples 17 - 24): Measurement temperature 200 ° C, test weight 2, 16 kg, melting time: 5 minutes.
Tabelle 1: Erfindungsgemäße Proben und deren Testergebnisse (Mengenangaben in Gew%):Table 1: Inventive samples and their test results (amounts in% by weight):
Probe Eingesetzte Additive in PHA Hydrolyseschutzdauer MVR [ccm/ 10 min] Sample Additives Used in PHA Hydrolysis Protection Time MVR [cc / 10 min]
[d]  [D]
1 1.0 % CDi n 14 9.4  1 1.0% CDi n 14 9.4
2 1.5 % CDI II 29 10.8 2 1.5% CDI II 29 10.8
3 2.0 % CDI II 31 12.53 2.0% CDI II 31 12.5
4 1.0 % CDI III 18 9.5 4 1.0% CDI III 18 9.5
5 1.5 %CDI III, 30 10.7 5 1.5% CDI III, 30 10.7
6 2.0 % CDI III, 33 11.1 6 2.0% CDI III, 33 11.1
Tabelle 2: Vergleichbeispiel nicht additiviertes PHA: Table 2: Comparative example of non-additized PHA:
Probe Grundmischung aus Hydrolyseschutzdauer [d] MVR [ccm/ 10 min] Sample base mixture of hydrolysis protection duration [d] MVR [ccm / 10 min]
7 PHA direkt aus dem Gebinde 6 7.47 PHA directly from the container 6 7.4
8 PHA 1 x extrudiert 6 24.9 8 PHA 1 x extruded 6 24.9
Tabelle 3: Vergleichsbeispiele (Mengenangaben in Gew.%): Table 3: Comparative Examples (amounts in% by weight):
Probe Eingesetzte Additiv in PHA Hydrolyseschutzdauer [d] MVR [ccm/ 10 min] Sample Additive in PHA Hydrolysis Protection Time [d] MVR [ccm / 10 min]
9 0.5 % CDI I 6 12.99 0.5% CDI I 6 12.9
10 1.0 % CDU 14 10.810 1.0% CDU 14 10.8
11 1.5 % CDU 19 13.511 1.5% CDU 19 13.5
12 2.0 % CDI I 29 15.412 2.0% CDI I 29 15.4
13 0.5 % CDI II 7 10.413 0.5% CDI II 7 10.4
14 0.5 % CDI III 6 11.214 0.5% CDI III 6 11.2
15 0.5 % H12MDI-PCDI 7 22.715 0.5% H12MDI-PCDI 7 22.7
16 1.0 % H12MDI-PCDI 11 10.9 16 1.0% H12MDI-PCDI 11 10.9
Tabelle 4: Vergleichsbeispiele (Mengenangaben in Gew.%): Table 4: Comparative Examples (amounts in% by weight):
Eingesetzte Additive in PLA Hydrolyseschutzdauer [d] MVR [ccnV 10 min] Additives used in PLA hydrolysis protection time [d] MVR [ccnV 10 min]
17 0.5 % CDI I 5 4.2 17 0.5% CDI I 5 4.2
18 1.0 % CDU 16 4.5 19 1.5 % CDU 37 4.6 18 1.0% CDU 16 4.5 19 1.5% CDU 37 4.6
20 0.5 % CDl II 6 2.9  20 0.5% CDI II 6 2.9
21 1.0 %CDI II 8 3.1  21 1.0% CDI II 8 3.1
22 1.5 % CDI II 11 3.2  22 1.5% CDI II 11 3.2
Tabelle 5: Vergleichsbeispiel nicht additiviertes PLA: TABLE 5 Comparative Example of Non-Additized PLA
Grandmischung aus Hydrolyseschutzdauer [d] MVR [ccm/ 10 min] Grand mix of hydrolysis protection time [d] MVR [ccm / 10 min]
23 PLA direkt aus dem Gebinde 5 3.4 23 PLA directly out of the container 5 3.4
24 PLA 1 x extradiert 5 4.2  24 PLA 1 x extraded 5 4.2
Die erfindungsgemäßen Mischungen 1 bis 6 zeichnen sich durch einen hohen Hydrolyseschutz und exzellente MVR- Werte aus. Damit sind sie deutlich verbessert gegenüber den Mischungen aus PLA mit Carbodiimiden, bei denen immer nur entweder die Hydrolysestabilität oder der MVR-Wert verbessert ist, nie aber beides. Aus den Vergleichsbeispielen 17 - 22 wird zudem ersichtlich, dass die Wirkungen der Carbodiimide in PLA und PHA überraschenderweise deutlich verschieden ist. In PLA zeigen monomere Carbodiimide (CDl I) die beste Hydrolyseschutzdauer, polymere Carbodiimide (CDl II) haben im Vergleich hierzu in PLA eine geringere Wirksamkeit. In PHA zeigen hingegen polymere Carbodiimide (CDl II und CDl III) eine bessere Hydrolyseschutzdauer als monomere Carbodiimide (CDU). The mixtures 1 to 6 according to the invention are distinguished by high hydrolysis protection and excellent MVR values. Thus, they are significantly improved over the mixtures of PLA with carbodiimides, in which only either the hydrolytic stability or the MVR value is improved, but never both. It is also apparent from Comparative Examples 17-22 that the effects of carbodiimides in PLA and PHA are surprisingly distinctly different. In PLA, monomeric carbodiimides (CDl I) show the best hydrolysis protection time, whereas polymeric carbodiimides (CDl II) are less effective in PLA. In PHA, on the other hand, polymeric carbodiimides (CDI II and CDI III) show better hydrolysis protection than monomeric carbodiimides (CDU).

Claims

Biobasierte Kunststoffe enthaltend eine Kombination aus mindestens einem Polyhydroxyalkanoat und > 0,5 Gew. % mindestens eines oligomeren und/oder polymeren aromatischen und/oder araliphatischen Carbodiimids. Biobased plastics containing a combination of at least one polyhydroxyalkanoate and> 0.5% by weight of at least one oligomeric and / or polymeric aromatic and / or araliphatic carbodiimide.
Biobasierte Kunststoffe nach Anspruch 1 , dadurch gekennzeichnet, dass der Anteil der oligomeren und/oder polymeren Carbodiimide mindestens 0,7 - 4 Gew. % beträgt. Biobased plastics according to claim 1, characterized in that the proportion of oligomeric and / or polymeric carbodiimides is at least 0.7 to 4 wt.%.
Biobasierte Kunststoffe nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass es sich bei dem polymeren und/ oder oligomeren aromatischen und/oder araliphatischen Carbodiimid um eine Verbindung der allgemeinen Formel (II), Biobased plastics according to claim 1 or 2, characterized in that the polymeric and / or oligomeric aromatic and / or araliphatic carbodiimide is a compound of the general formula (II)
R'-(-N=ON-R" '-)m-R" (II) handelt, R '- (- N = ON-R "' -) m -R" (II),
in der in the
R' " einen aromatischen und/oder araliphatischen Rest bedeutet und bei m > 1 , R" ' innerhalb des Moleküls gleich oder verschieden ist und bei verschiedenen Kombinationen jeder der vorgenannten Reste beliebig miteinander kombiniert werden kann, R '"is an aromatic and / or araliphatic radical and m> 1, R"' is the same or different within the molecule and can be combined with each other in any combination of any of the aforementioned radicals,
R' " in dem Fall eines aromatischen oder eines araliphatischen Restes keinen oder in mindestens einer ortho- Stellung zum aromatischen Kohlenstoffatom, das die Carbodiimidgruppe trägt, aliphatische und/oder cycloaliphatische Substituenten mit mindestens 2 Kohlenstoffatomen tragen kann, die auch Heteroatome tragen können, R '"in the case of an aromatic or an araliphatic radical may bear no or in at least one ortho position to the aromatic carbon atom bearing the carbodiimide group, aliphatic and / or cycloaliphatic substituents having at least 2 carbon atoms which may also carry heteroatoms,
R' = Ci - Cig-Alkyl, C5-Ci8-Cycloalkyl-, Aryl, C7-Ci8- Aralkyl, -R-NHCOS- R1, R '= Ci - Cig alkyl, C 5 -C 8 cycloalkyl, aryl, C 7 -C 8 - aralkyl, -R NHCOS- R 1,
-R-COO R1, -R-0 R1, -R-N(Rl)2, -R-SR1, -R-OH, -R-NH2, -R-NHR1, R-COO R 1 , -R-O R 1 , -RN (R l ) 2 , -R-SR 1 , -R-OH, -R-NH 2 , -R-NHR 1 ,
-R-Epoxy, -R-NCO, -R-NHCONHR1, -R-NHCONR'R2 oder -R-epoxy, -R-NCO, -R-NHCONHR 1 , -R-NHCONR'R 2 or
-R-NHCOOR3, wobei R = aromatischer, aliphatischer, cycloaliphatischer und oder araliphatischer Rest, -R-NHCOOR 3 , where R = aromatic, aliphatic, cycloaliphatic and / or araliphatic radical,
R"= H, -N=C=N-Aryl, -N=C=N-Alkyl, -N=C=N-Cycloalkyl, -N=C=N-Aralkyl, -NCO, -NHCONHR1, -NHCONR'R2 , -NHCOOR3, -NHCOS- R1, -COO R1, -O R1, -N R. ,R "= H, -N = C = N-aryl, -N = C = N-alkyl, -N = C = N-cycloalkyl, -N = C = N-aralkyl, -NCO, -NHCONHR 1 , -NHCONR 'R 2 , -NHCOOR 3 , -NHCOS-R 1 , -COO R 1 , -OR 1 , -NR,
-SR1, -OH, -NH2, -NH R1 , wobei in R' und R' ' unabhängig voneinander R1 und R2 gleich oder verschieden sind und einen Ci - C2o-Alkyl-, C3-C20-Cycloalkyl-, -Aryl, C7-Ci8-Aralkylrest, 01igo-/Polyethylen- und/oder -Propylenglykole darstellen und R3 eine der Bedeutungen von R1 hat oder einen Polyester- oder einen Polyamidrest bedeutet, und m einer ganzen Zahl von 2 bis 5.000 entspricht, bei oligomeren Carbodiimiden m einer ganzen Zahl von 2 bis 5 entspricht, und bei polymeren Carbodiimiden m einer ganzen Zahl von > 5 entspricht, und/oder mindestens ein Carbodiimid der Formel (III) -SR 1 , -OH, -NH 2 , -NH R 1 , wherein in R 'and R''independently of one another R 1 and R 2 are identical or different and a Ci - C 2 o-alkyl, C 3 -C 20 -cycloalkyl, -aryl, C 7 -C 8 -aralkyl radical, 01-oligo- / polyethylene and / or -Propylenglykole and R 3 has one of the meanings of R 1 or a polyester or a polyamide radical, and m corresponds to an integer from 2 to 5,000 corresponds, in oligomeric carbodiimides m is an integer from 2 to 5, and in the case of polymeric carbodiimides m corresponds to an integer of> 5, and / or at least one carbodiimide of the formula (III)
R'-[-(-N=C=N-Y-)p-(-B-)q-]0-X (III), enthält, mit R '- [- (- N = C = NY-) p - (- B -) q -] 0 -X (III), with
Y = Arylen, C7-C18-Aralkylen Y = arylene, C 7 -C 18 -aralkylene
p = eine ganze Zahl von 1 -bis 500, bevorzugt 1 bis 100,  p = an integer from 1 to 500, preferably 1 to 100,
B = -NH-CO-NH-Z-, -NH-COO-Z-, -NH-COS-Z-,  B = -NH-CO-NH-Z-, -NH-COO-Z-, -NH-COS-Z-,
q = eine ganze Zahl von 1 bis 500, bevorzugt 1 bis 100,  q = an integer from 1 to 500, preferably 1 to 100,
o = eine ganze Zahl von 1 bis 500, bevorzugt 1 bis 100, wobei  o = an integer from 1 to 500, preferably 1 to 100, wherein
entweder p oder o > 1 sein muss.  either p or o must be> 1.
X = H, - OH, -SH, -NH2, -OR1, -Ν^)2, -SR1, -NHR1, NR^2, -OCO-NH- R', NH CO-, -NH-R-, -S-CO-NH- R' X = H, -OH, -SH, -NH 2 , -OR 1 , -Ν ^) 2 , -SR 1 , -NHR 1 , NR ^ 2 , -OCO-NH-R ' , NH CO-, -NH -R-, -S-CO-NH-R '
R'= Ci-Cig-Alkyl, C5-Clg-Cycloalkyl, Aryl, C7-Cig-Aralkyl, - R" '-NH-COS-R1, -R^-COOR1, -R^-OR1, -R' "-^1^ - R" '-SR1, ~R" '-OH, -R' "-NH2, -R^-NHR1,R '= Ci-Cig-alkyl, C 5 -C lg -cycloalkyl, aryl, C 7 -Cig-aralkyl, - R "' -NH-COS-R 1 , -R ^ -COOR 1 , -R ^ -OR 1 , -R '"- ^ 1 ^ - R"' -SR 1 , ~ R "'--OH, -R'" - NH 2 , -R ^ -NHR 1 ,
-R" '-Epoxy, - R" '-NCO, -R^-NHCONHR1, -R^-NHCONR^2 oder - R" '-NH-COOR3, wobei -R "'-Epoxy, - R"' - NCO, --R ^ -NHCONHR 1 , -R ^ -NHCONR ^ 2 or - R "'- NH-COOR 3 , wherein
Rl und R2 gleich oder verschieden sind und einen Ci-C2o -Alkyl, C3-C20-Cycloalkyl-, Aryl, C7-Clg-Arylkylrest, 01igo-/Polyethylen- und/oder Propylenglykole darstellen und R3 eine der Bedeutungen von R1 hat oder einen Polyester- oder einen Polyamidrest bedeutet, Z =R l and R 2 are identical or different and represent a Ci-C 2 o alkyl, C3-C 20 cycloalkyl, aryl, C7-C lg -Arylkylrest, 01igo- / polyethylene and / or propylene glycols and R 3 is has the meanings of R 1 or a polyester or a polyamide radical, Z =
Y, Polyester, Polyether, Polyamide und R' " für einen aromatischen und/oder araliphatischen Rest steht. Y, polyester, polyether, polyamides and R '"is an aromatic and / or araliphatic radical.
4. Biobasierte Kunststoffe nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den eingesetzten oligomeren und/ oder polymeren4. Bio-based plastics according to one or more of claims 1 to 3, characterized in that it is the oligomers used and / or polymeric
Carbodiimiden bevorzugt um aromatische Verbindungen handelt. Carbodiimides are preferably aromatic compounds.
5. Biobasierte Kunststoffe nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem polymeren und/oder oligomeren Carbodiimid um Verbindungen der Formel (II) handelt, bei denen R' " l ,3-substituiertem-2,4,6-5. Biobased plastics according to one or more of claims 1 to 4, characterized in that the polymeric and / or oligomeric carbodiimide are compounds of the formula (II) in which R '' l, 3-substituted-2, 4,6
Triisopropylphenyl und/oder l ,3-Bis-(l -methyl-l -isocyanato-ethyl)-benzol und/oder Tetramethylxylylenderivaten und/oder 2,4-substituierten Tolylen und/oder 2,6- substituierten Tolylen und/oder Gemischen aus 2,4- oder 2,6-substituiertem Tolylen entspricht. Triisopropylphenyl and / or 1,3-bis (1-methyl-1-isocyanatoethyl) benzene and / or tetramethylxylylene derivatives and / or 2,4-substituted tolylene and / or 2,6- substituted tolylene and / or mixtures of 2,4- or 2,6-substituted tolylene corresponds.
6. Biobasierte Kunststoffe nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei dem Polyhydroxyalkanoat um eine Verbindung der Formel6. bio-based plastics according to one or more of claims 1 to 5, characterized in that it is the polyhydroxyalkanoate to a compound of formula
(I) (I)
(I) handelt, in der n > 10 und R einem Cr bis Ct4-Alkylrest entspricht. (I) is, in which n> 10 and R is a Cr to Ct 4 alkyl corresponds.
Verfahren zur Herstellung der biobasierten Kunststoffe nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens ein Polyhydroxyalkanoat mit mindestens 0,5 Gew.% mindestens eines oligomeren und/oder polymeren aromatischen und/oder araliphatischen Carbodiimids in einem Mischaggregat vermischt werden. Process for the preparation of bio-based plastics according to one or more of Claims 1 to 6, characterized in that at least one polyhydroxyalkanoate is mixed with at least 0.5% by weight of at least one oligomeric and / or polymeric aromatic and / or araliphatic carbodiimide in a mixing unit.
Verwendung der biobasierten Kunststoffe nach einem oder mehreren der Ansprüche 1 bis 7 in langlebigen Anwendungen in der Elektronik, Automotive, Construction, Transportwesen, im Haushalt, als Bürobedarf oder in Anwendungen unter „severe conditions". Use of the bio-based plastics according to one or more of claims 1 to 7 in long-life applications in electronics, automotive, construction, transportation, in the household, as office supplies or in applications under "severe conditions".
EP12718215.2A 2011-05-06 2012-05-02 Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof Withdrawn EP2705083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12718215.2A EP2705083A1 (en) 2011-05-06 2012-05-02 Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP11165137A EP2520612A1 (en) 2011-05-06 2011-05-06 Innovative long-life hydrolysis stable bio-based plastics on the basis of polyhydroxyalkanoate (PHA), method for producing same and use of same
EP11190827 2011-11-25
PCT/EP2012/058026 WO2012152625A1 (en) 2011-05-06 2012-05-02 Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof
EP12718215.2A EP2705083A1 (en) 2011-05-06 2012-05-02 Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof

Publications (1)

Publication Number Publication Date
EP2705083A1 true EP2705083A1 (en) 2014-03-12

Family

ID=46025716

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12718215.2A Withdrawn EP2705083A1 (en) 2011-05-06 2012-05-02 Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof

Country Status (6)

Country Link
US (1) US20140155557A1 (en)
EP (1) EP2705083A1 (en)
JP (1) JP2014514418A (en)
CN (1) CN103517941A (en)
CA (1) CA2835251A1 (en)
WO (1) WO2012152625A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2975083T (en) * 2014-07-14 2017-04-24 Lanxess Deutschland Gmbh Method for the stabilisation of biobased plastic based on polyester resin
CN105778026B (en) * 2014-12-25 2018-11-20 上海华峰新材料研发科技有限公司 Carbodiimides quasi-oligomer containing steric hindrance and its preparation method and application
JP2017190444A (en) * 2015-11-25 2017-10-19 株式会社ジェイテクト Resin pellet, manufacturing method therefor, manufacturing method of molded article
US10283233B2 (en) 2016-06-28 2019-05-07 International Business Machines Corporation Bio-based conformal coating for sulfur sequestration using polyhydroxyalkanoates
US10072120B2 (en) 2016-12-02 2018-09-11 International Business Machines Corporation Functionalized polyhydroxyalkanoate materials formed from an unsaturated polyhydroxyalkanoate material
US10081706B2 (en) 2017-01-03 2018-09-25 International Business Machines Corporation Side-chain-functionalized polyhydroxyalkanoate materials
JP2022167652A (en) * 2021-04-23 2022-11-04 株式会社 資生堂 Composition, molding, container for cosmetic preparation, and cosmetic preparation

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1130594B (en) 1956-07-30 1962-05-30 Du Pont Process for the production of possibly modified polycondensation products with N? C? N bridge members
DE1156401B (en) 1960-05-24 1963-10-31 Bayer Ag Process for the preparation of carbodiimides
DK1017253T3 (en) 1998-12-30 2013-02-11 Siemens Audiologische Technik Blind source separation for hearing aids
JP3984440B2 (en) * 2001-06-20 2007-10-03 三菱樹脂株式会社 Resin composition, film and disposal method
JP4245333B2 (en) * 2002-11-08 2009-03-25 日清紡績株式会社 Biodegradable plastic composition, molded product thereof, and biodegradation rate control method using the same
KR100681107B1 (en) 2003-05-20 2007-02-08 미쓰비시 쥬시 가부시끼가이샤 Aliphatic polyester based resin reflection film and reflection plate
JP5245229B2 (en) * 2005-09-30 2013-07-24 東レ株式会社 Resin composition and molded article comprising the same
WO2008010355A1 (en) * 2006-07-21 2008-01-24 Nec Corporation Aliphatic polyester resin composition and process for producing the same
JP5483387B2 (en) * 2006-10-31 2014-05-07 東レ株式会社 Resin composition and molded article comprising the same
JP2008303286A (en) 2007-06-07 2008-12-18 Tosoh Corp Poly-3-hydroxybutyrate-based polymer resin composition
EP2255835B1 (en) 2008-03-24 2014-08-27 Terumo Kabushiki Kaisha Medical instrument, medical material, and method for production of the medical instrument and medical material
WO2011160053A2 (en) * 2010-06-18 2011-12-22 Metabolix, Inc. Melt stable polyesters
EP2418250A1 (en) * 2010-08-11 2012-02-15 Rhein Chemie Rheinau GmbH Long-life bio-based plastics on the basis of polyhydroxyalkanoate, method for producing same and use of same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012152625A1 *

Also Published As

Publication number Publication date
CN103517941A (en) 2014-01-15
US20140155557A1 (en) 2014-06-05
WO2012152625A1 (en) 2012-11-15
JP2014514418A (en) 2014-06-19
CA2835251A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2705083A1 (en) Novel durable, hydrolysis-stable bio-based plastics based on polyhydroxyalkanoate (pha), method for producing same, and use thereof
EP2418251A1 (en) Long-life bio-based plastics on the basis of polyhydroxyalkanoate, method for producing same and use of same
DE60306013T2 (en) Biodegradable plastic composition, articles made therewith, and a method for controlling biodegradation rate
EP0460481B1 (en) Process for the stabilisation of resins containing ester groups
DE60315780T2 (en) Biodegradable plastic composition, articles made therewith, and a method for controlling biodegradation rate
EP2997010B1 (en) Novel carbodiimides with urea and/or urethane terminal groups, process for their preparation and their use
EP0940389B1 (en) Carbodiimides and process for their preparation
EP2418248B1 (en) Long-life bio-based plastics, method for producing same and usage thereof
WO2013072310A1 (en) Additives for the hydrolytic stabilisation of polycondensates
EP3464445A1 (en) Polyester and polyolefin moulding compounds with bioactive properties and moulded bodies produced therefrom
DE102019200596A1 (en) USE OF ADDITIVE COMPOSITION FOR CONTROLLED ACCELERATED DISASSEMBLY OF CONDENSATION POLYMERS
EP2671912B1 (en) Method for stabilising polymers containing ester groups
EP2520612A1 (en) Innovative long-life hydrolysis stable bio-based plastics on the basis of polyhydroxyalkanoate (PHA), method for producing same and use of same
EP2975083B1 (en) Method for the stabilisation of biobased plastic based on polyester resin
US20130093119A1 (en) Processes for producing thermostable polyhydroxyalkanoate and products produced therefrom
DE102018201018A1 (en) Use of terephthaloyl-bis-N, N'-naphthalimidestern as nucleating agents for thermoplastic molding compositions, processes for the crystallization of thermoplastics and crystalline thermoplastic resin compositions
EP3891208B1 (en) Method for purifying a (co)polyester
DE60304568T2 (en) COMPOUNDS FOR REDUCING THE ACETALDEHYDE CONTENT OF POLYETHYLENEPEPHTHALATE, THEIR USE AND PRODUCTS OBTAINED THEREFROM
EP2727950A1 (en) Method for drying of plastics on the basis of polyester resins
EP3686240B1 (en) Hydrolytically stabilised polyethylene terephthalate (pet) - containing compositions
WO2024088900A1 (en) Hydrolysis-resistant polyester-containing compositions
EP4361209A1 (en) Hydrolytically stabilised polyester compositions
EP0103193B1 (en) Square acid amide derivatives, their use as stabilizing agents and plastics treated with them
EP2686297A2 (en) Use of oligomeric carbodiimides as stabilizers
DE102015000124A1 (en) Process for the stabilization of polyamides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140701