EP2698360B1 - Use of an an additive in a material for a spectral decoy flare which burns the material - Google Patents

Use of an an additive in a material for a spectral decoy flare which burns the material Download PDF

Info

Publication number
EP2698360B1
EP2698360B1 EP13004007.4A EP13004007A EP2698360B1 EP 2698360 B1 EP2698360 B1 EP 2698360B1 EP 13004007 A EP13004007 A EP 13004007A EP 2698360 B1 EP2698360 B1 EP 2698360B1
Authority
EP
European Patent Office
Prior art keywords
active composition
oxide
catalyst
phthalocyanine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13004007.4A
Other languages
German (de)
French (fr)
Other versions
EP2698360A3 (en
EP2698360A2 (en
Inventor
Arno Hahma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP2698360A2 publication Critical patent/EP2698360A2/en
Publication of EP2698360A3 publication Critical patent/EP2698360A3/en
Application granted granted Critical
Publication of EP2698360B1 publication Critical patent/EP2698360B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/22Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/007Ballistic modifiers, burning rate catalysts, burning rate depressing agents, e.g. for gas generating
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C15/00Pyrophoric compositions; Flints

Definitions

  • the invention relates to a use of an additive in an active mass for a spectrally radiating decay when burning the active mass to a ratio of intensity of a radiation emitted during combustion of the active mass radiation in the wavelength range of 3.7 to 5.1 microns to an intensity of the burn-up to increase the effective mass emitted radiation in the wavelength range of 1.9 to 2.3 microns, wherein the additive is distributed in the active material.
  • the said ratio of the radiation intensity is also referred to as the spectral ratio.
  • US 6,123,790 A discloses a gas generant composition for a gas generator of a vehicle occupant restraint system comprising a mixture of high bulk density nitroguanidine, one or more non-azide fuels, an oxidizer containing a phase stabilized ammonium nitrate and an amount of copper phthalocyanine sufficient to cause combustion of the gas generant Maintain composition at ambient pressure of about 100 psi or less.
  • the DE 10 2010 053 783 A1 discloses a high performance pyrotechnic infrared target active composition
  • a high performance pyrotechnic infrared target active composition comprising a first fuel, at least one second fuel, an oxidizer and a binder, wherein the first fuel and the oxidizer are selected for their redox potentials such that the oxidant subjects the first fuel to ignition in an exothermic reaction Emergence of a primary flame and emission of infrared radiation can oxidize.
  • the second fuel ignites, heats and / or pyrolyzes in the reaction and is released from the high performance active mass.
  • the second fuel is selected so that its redox potential or the redox potential of at least one pyrolysis product of the second fuel is higher than the redox potential of the first fuel and that the heated or ignited second fuel or the pyrolysis product can burn in the air.
  • the amount of oxidizing agent contained in the high-performance active mass is at most so great that it is just sufficient to completely oxidize the first fuel.
  • a decoy comprising a first gable housing having an interior and an exterior, a pyrotechnic composition adapted to be received and burned in the interior of this enclosure, the pyrotechnic composition comprising about 8% to about 60% by weight % of an aromatic polycarboxylic anhydride fuel component, about 40% to about 90% by weight of an oxidizing agent, from about 1% to about 20% by weight of a binder and an ignition layer surrounding at least a portion of the pyrotechnic composition.
  • the object of the present invention is to provide a use of an additive in a fake target effective mass, by which the spectral ratio is increased over that of a known active mass, the fake target effective mass still shows a high radiant power during combustion.
  • the active mass should burn stably even at high wind speeds.
  • a use of an additive is provided in an active mass for a spectrally radiating decay target during the burnup of the active mass to a ratio of an intensity of a radiation emitted during the burnup of the active mass in the wavelength range from 3.7 to 5.1 ⁇ m to an intensity during burnup to increase the effective mass emitted radiation in the wavelength range of 1.9 to 2.3 microns.
  • the additive is distributed in the effective mass and the active material comprises a fuel containing carbon and hydrogen atoms and an oxidant for the fuel containing oxygen atoms, the amount of the oxidizing agent being such that it is insufficient for complete oxidation of the carbon.
  • the additive is a particulate redox reaction catalyzing catalyst.
  • the redox reaction is a reaction according to the reaction scheme CO + H 2 O ⁇ CO 2 + H 2 .
  • the spectral ratio increases significantly compared to a working mass without this additive.
  • the spectrum of the radiation is shifted from the short-wave range into the medium-wave range, and the blackbody radiation of the windrows resulting from the formation of soot is reduced.
  • the active mass can also be equipped with a large excess of oxidizing agent, ie a very negative oxygen balance and thus a very high specific energy, without the spectral ratio being reduced by the resulting soot.
  • the particles stabilize the flame and prevent it from being blown out by wind.
  • the flame-stabilizing effect is based on the fact that the particles act as reaction nuclei and at the same time as an ignition source.
  • the catalyst may in the active material in an amount of at most 5 wt .-%, in particular at most 2 wt .-%, in particular at most 1 wt .-%, in particular at most 0.5 wt .-%, in particular at most 0.1 wt. -%, be included.
  • the specific energy of the active mass is thereby only slightly or almost not affected, while the spectral ratio can even be doubled.
  • the particles distributed in the active mass may have a maximum average particle size of 50 ⁇ m, in particular 20 ⁇ m, in particular 10 ⁇ m, in particular 1 ⁇ m.
  • the catalyst present in the form of particles should functionally survive all of the flame zones formed during the combustion and its catalytic If possible, unfold the effect on the edge of the flame. This can be ensured by solid, heat-resistant catalysts that only become effective at higher temperatures.
  • Catalysts that efficiently accelerate both the reaction according to the reaction scheme CO + H 2 O ⁇ CO 2 + H 2 and the oxidation of carbon, in particular soot are the rare earth oxides, such. CeO 2 and Ce 2 O 3 , yttrium oxide, ytterbium oxide, neodymium oxide and other rare earth oxides and mixtures thereof. Very efficient is a mixture of CeO 2 or Ce 2 O 3 and yttrium oxide.
  • Catalysts that accelerate a reaction according to the reaction scheme CO + H 2 O ⁇ CO 2 + H 2 are known in the art, for example, as LTS and HTS catalysts.
  • LTS low temperature shift
  • HTS high temperature Shift
  • the LTS catalyst consists of a copper-doped mixture of aluminum and zinc oxide and the HTS catalyst of a chromium-doped magnetite (Fe 3 O 4 ).
  • catalysts which accelerate the reaction according to the reaction scheme CO + H 2 O ⁇ CO 2 + H 2 only at temperatures above 300 ° C. Furthermore, it is favorable that the catalyst itself does not catalyze the burnup of the active material itself.
  • catalysts are those that effectively accelerate a reaction only from about 500 ° C.
  • copper phthalocyanine (Vossenblau) is very suitable for increasing the spectral ratio, which is very temperature-resistant and does not decompose until about 600 ° C.
  • Phthalocyanines of iron, chromium, cobalt, nickel and molybdenum are also well suited catalysts.
  • the catalyst forming the additive comprises at least one organometallic pigment, a salt of a rare earth metal, a compound containing a rare earth metal which forms an oxide of a rare earth metal in a flame resulting from combustion of the active material, an oxide of zirconium, titanium, aluminum, zinc, magnesium, Calcium, strontium, barium, hafnium, vanadium, niobium, tantalum, chromium, nickel, iron, manganese, molybdenum, tungsten, cobalt or thorium or a compound containing one of said metals, which in an emerging during combustion of the active material flame an oxide of a of such metal, silver, a platinum metal, Rhenium or a compound containing one of said metals, which is reduced to the metal in a flame resulting from the combustion of the active material, or a mixture of at least two of the aforementioned compounds or elements or yttrium oxide, ytterbium oxide, neodymium oxide, a mixture of said oxide
  • the fuel of the active mass may contain, in addition to carbon atoms and hydrogen atoms, oxygen and / or nitrogen atoms.
  • the fuel may comprise at least one nitrate ester, in particular a liquid nitrate ester, in particular glyceryl trinitrate, ethylene glycol dinitrate, diethylene glycol dinitrate, triethylene glycol dinitrate or methriol trinitrate, or a nitrate ester present as a polymeric solid, in particular nitrocellulose, polyvinyl nitrate or polyglycidyl nitrate and / or a nitrosamine, in particular 1,3,5- trinitroso-1,3,5-hexahydrotriazine, or an amine, amide, nitrile, cyanate, isocyanate, urethane, imine, ketimine, imide, azide, nitramine, nitrosamine, hydroxylamine, hydrazine, hydrazone, oxime,
  • each of the abovementioned compounds comprises at least one CN, one CNO or one CON group and optionally at least one CO group.
  • the groups mentioned can be present in straight or annular chains and with single, double or triple bonds.
  • the gases forming the flame include predominantly carbon monoxide, hydrogen and water vapor.
  • Hydrogen does not radiate at all, water in the short-wave wavelength range and CO in the desired B-band but with low emissivity.
  • the catalyst converts water and carbon monoxide in the flame into carbon dioxide and hydrogen.
  • the radiation of carbon dioxide is emitted to about 99% in the wavelength range between 4 and 5 microns.
  • the oxidizing agent may contain chlorine and / or bromine atoms.
  • Ammonium perchlorate has proven to be a particularly suitable oxidizing agent, because during its reaction exclusively gaseous reaction products and no particles emitting blackbody radiation are formed.
  • an additional catalyst comprising copper or iron atoms, in particular ferrocene, iron oxide, iron acetonyl acetate or copper phthalocyanine, can be present as the oxidizing agent in the active material. This additional catalyst lowers the temperature at which ammonium perchlorate decomposes and burns off. It stabilizes the burnup of the active mass.
  • the active mass in the active mass essentially (except for the catalysts) contain no substances that contain atoms other than carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine and bromine. This avoids the formation of burn-off products which shift the spectrum in the direction of the A-band. "Essentially” means that none of the selected constituents of the active material contains these substances. However, naturally, the presence of traces of substances containing such atoms can not be completely ruled out.
  • the single figure shows a schematic representation of the functional principle of an inventive use of the additive in the active mass during combustion.
  • the figure shows in the middle of the burning active mass and right of it a profile of the temperature T of the flame generated during their combustion as a function of the distance d from the burning surface 1 of the active mass.
  • hot gases exit the surface and form a diffusion zone 2.
  • oxidizing gases from an oxidant contained in the active mass and combustible gases mix from a fuel contained in the active mass and begin to react with each other in a flame.
  • these gases are mainly converted into carbon monoxide and water vapor because the amount of oxidizing agent is such that it is insufficient for complete oxidation of the carbon.
  • the temperature is still too low to activate the catalyst.
  • the line 7 shows the temperature threshold above which the catalyzed reaction proceeds according to the reaction scheme CO + H 2 O ⁇ CO 2 + H 2 and carbon monoxide and water form carbon dioxide and hydrogen.
  • This reaction produces the carbon dioxide-rich second reaction zone 4, which is hottest.
  • the hydrogen burns off in a not shown to scale thin outer reaction zone 5, whereby water vapor and carbon dioxide.
  • the outer reaction zone 5 radiates strongly into the outer zone 6.
  • the radiation emitted in the first reaction zone 3 by the water molecules in the wavelength range from 2 to 3 ⁇ m is partially shielded again by the first reaction zone 3 because water also absorbs radiation in this spectral range.
  • This shielding also occurs in the outer reaction zone 5.
  • this zone is very thin, the shielding effect in both the A and B band is low.
  • the absorption of water and carbon dioxide as a function of the wavelength is shown schematically in the diagram to the left of the flame.
  • the second reaction zone 4 radiates mainly in the range of 3 to 5 microns in the outer region 6 and is hardly shielded from the thin outer reaction zone 5. Since hardly any water is present in the second reaction zone 4, there is hardly any emission in the A band. In the outer reaction zone 5, the water is present only for a very short time, so that it emits hardly any radiation for this reason, while the residence time of the carbon dioxide in the flame and thus the emission in the B-band is relatively large.
  • BMIM-ClO 4 200 g of the ionic liquid BMIM-ClO 4 used in some of the following active compositions were synthesized as follows: 150 g of BMIM-CI were dissolved in about 600 ml of dry methanol at 25 ° C in a 2 liter one-necked flask. A stoichiometric amount of dry sodium perchlorate was also separately dissolved in 600 ml of dry methanol in a 2 liter one-necked flask. Then all the perchlorate solution was added all at once to the BMIM chloride solution. The bottle containing the perchlorate solution was washed 3 times with 50 ml of dry methanol and the methanol was added to the BMIM chloride solution. The resulting solution became cloudy and yellow after several minutes as the resulting sodium chloride began to precipitate.
  • the one-necked flask was then connected to a rotary evaporator and the methanol distilled off under about 500 mbar pressure, the water bath was heated to 90 ° C in the evaporator.
  • the warm crude BMIM-ClO 4 from the flask was again filtered through the frit into a 250 ml separatory funnel, because even more common salt had precipitated upon evaporation of the methanol.
  • the final BMIM-ClO 4 (a yellowish, viscous oil) was filled from the separating funnel into a laboratory flask and weighed. The yield was almost quantitative.
  • Active composition according to Example 4 but additionally with water gas catalyst.
  • the spectral ratio is doubled and the specific energy is slightly increased.
  • DEGDN self-synthesized 11,80 TMD 1702 BMIM-ClO 4 self-synthesized 5.9 paracyanogen powder 20.20 Akardite II 0.10 Water gas catalyst Type HTS 0.10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

Die Erfindung betrifft eine Verwendung eines Zusatzstoffes in einer Wirkmasse für ein beim Abbrand der Wirkmasse spektral strahlendes Scheinziel, um ein Verhältnis einer Intensität von einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von 3,7 bis 5,1 µm zu einer Intensität einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von 1,9 bis 2,3 µm zu erhöhen, wobei der Zusatzstoff in der Wirkmasse verteilt ist. Das genannte Verhältnis der Strahlungsintensität wird auch als Spektralverhältnis bezeichnet.The invention relates to a use of an additive in an active mass for a spectrally radiating decay when burning the active mass to a ratio of intensity of a radiation emitted during combustion of the active mass radiation in the wavelength range of 3.7 to 5.1 microns to an intensity of the burn-up to increase the effective mass emitted radiation in the wavelength range of 1.9 to 2.3 microns, wherein the additive is distributed in the active material. The said ratio of the radiation intensity is also referred to as the spectral ratio.

Herkömmliche Spektralwirkmassen zeigen beim Abbrand entweder ein hohes Spektralverhältnis oder eine hohe Leistung aber nicht beides gleichzeitig. Erhöht man bei diesen bekannten Wirkmassen die Energie in der Wirkmasse durch eine negative Sauerstoffbilanz oder Metallpulver entsteht eine Schwarzkörperstrahlung, die das Spektralverhältnis stark reduziert. Erhöht man dagegen die Sauerstoffbilanz, wird die beim Abbrand entstehende Flamme sehr kurz und die spezifische Energie der Wirkmasse reduziert. Bei bekannten Wirkmassen muss daher stets ein Kompromiss zwischen benötigter Leistung und Spektralverhältnis gemacht werden. Da es für die Täuschung von Zweifarbensuchköpfen sehr auf ein hohes Spektralverhältnis ankommt, weisen die mit hohem Spektralverhältnis beim Abbrand strahlenden Wirkmassen bei den für Scheinziele üblichen Kalibern eine so geringe Energie auf, dass sie nicht in der Lage sind, einem Zweifarbensuchkopf effektiv ein größeres Transportflugzeuge oder einen Kampfjet durch den Abbrand der Wirkmasse vorzutäuschen. Derartig große und/oder schnell fliegende Luftfahrzeuge können damit nicht geschützt werden.Conventional Spektralwirkmassen show when burning either a high spectral ratio or high power but not both at the same time. If, in the case of these known active compositions, the energy in the active mass is increased by a negative oxygen balance or metal powder, black body radiation is produced which greatly reduces the spectral ratio. If, on the other hand, the oxygen balance is increased, the flame produced during combustion is reduced very quickly and the specific energy of the active mass is reduced. In the case of known active compositions, it is therefore always necessary to make a compromise between the power required and the spectral ratio. Since it is very important for the deception of two-color seeker heads to have a high spectral ratio, the high spectral ratio on burn-emitting effective masses in the customary for fakes calibers so low energy that they are not able to a two-color seeker effectively a larger transport aircraft or to fake a fighter jet by the burning of the active mass. Such large and / or fast-flying aircraft can not be protected.

Bekannte beim Abbrand spektral strahlende Wirkmassen weisen häufig Nitrocellulose als Brennstoff auf. Diese haben jedoch den Nachteil, dass deren beim Abbrand entstehende Flamme von Luft mit einer höheren Geschwindigkeit schnell ausgeblasen wird. Um dieses Problem zu beheben gibt es aufwendig gebaute Scheinziele bei denen die Wirkmasse vorwiegend geschützt abbrennt und mittels durch die Flamme aufgeheizte Glühelemente thermisch bestrahlt wird. Die Glühelemente müssen nach außen abgeschirmt sein, damit sie keine das Spektralverhältnis reduzierende Schwarzkörperstrahlung nach außen abgeben können.Known abbrand spectrally radiating active compounds often have nitrocellulose as fuel. However, these have the disadvantage that their burned emerging flame of air at a higher speed is blown out quickly. To remedy this problem, there are elaborately built decoupling targets in which the active mass mainly burns protected and is thermally irradiated by means of heating by the flame heating elements. The glow elements must be shielded to the outside so that they can not deliver the spectral ratio reducing black body radiation to the outside.

US 6,123,790 A offenbart eine gaserzeugende Zusammensetzung für einen Gaserzeuger eines Fahrzeuginsassenrückhaltesystems, umfassend eine Mischung aus Nitroguanidin mit hoher Schüttdichte, einen oder mehrere nicht-Azid-Treibstoffe, ein Oxidationsmittel, welches ein phasenstabilisiertes Ammoniumnitrat enthält und eine Menge an Kupferphthalocyanin, die ausreicht, um eine Verbrennung der gaserzeugenden Zusammensetzung bei Umgebungsdruck von etwa 100 psi oder weniger aufrechtzuerhalten. US 6,123,790 A discloses a gas generant composition for a gas generator of a vehicle occupant restraint system comprising a mixture of high bulk density nitroguanidine, one or more non-azide fuels, an oxidizer containing a phase stabilized ammonium nitrate and an amount of copper phthalocyanine sufficient to cause combustion of the gas generant Maintain composition at ambient pressure of about 100 psi or less.

Die DE 10 2010 053 783 A1 offenbart eine Hochleistungswirkmasse für pyrotechnische Infrarotscheinziele, umfassend einen ersten Brennstoff, mindestens einen zweiten Brennstoff, ein Oxidationsmittel und ein Bindemittel, wobei der erste Brennstoff und das Oxidationsmittel hinsichtlich ihrer Redoxpotentiale so gewählt sind, dass das Oxidationsmittel den ersten Brennstoff nach Zündung in einer exothermen Reaktion unter Entstehung einer Primärflamme und Emission von Infrarotstrahlung oxidieren kann. Der zweite Brennstoff entzündet, erhitzt und/oder pyrolysiert bei der Reaktion und wird aus der Hochleistungswirkmasse freigesetzt. Dabei ist der zweite Brennstoff so gewählt, dass dessen Redoxpotential oder das Redoxpotential mindestens eines Pyrolyseprodukts des zweiten Brennstoffs höher ist als das Redoxpotential des ersten Brennstoffs und dass der erhitzte oder entzündete zweite Brennstoff oder das Pyrolyseprodukt an der Luft brennen kann. Dabei ist die Menge des in der Hochleistungswirkmasse enthaltenen Oxidationsmittels höchstens so groß, dass sie gerade ausreicht, um den ersten Brennstoff vollständig zu oxidieren.The DE 10 2010 053 783 A1 discloses a high performance pyrotechnic infrared target active composition comprising a first fuel, at least one second fuel, an oxidizer and a binder, wherein the first fuel and the oxidizer are selected for their redox potentials such that the oxidant subjects the first fuel to ignition in an exothermic reaction Emergence of a primary flame and emission of infrared radiation can oxidize. The second fuel ignites, heats and / or pyrolyzes in the reaction and is released from the high performance active mass. In this case, the second fuel is selected so that its redox potential or the redox potential of at least one pyrolysis product of the second fuel is higher than the redox potential of the first fuel and that the heated or ignited second fuel or the pyrolysis product can burn in the air. In this case, the amount of oxidizing agent contained in the high-performance active mass is at most so great that it is just sufficient to completely oxidize the first fuel.

Aus der US 6,427,599 B1 ist ein Täuschkörper bekannt, umfassend ein erstes Leuchtgeschossgehäuse mit einem Inneren und einem Äußeren, eine pyrotechnische Zusammensetzung, die daran angepasst ist, in dem Inneren dieses Gehäuses aufgenommen und verbrannt zu werden, wobei die pyrotechnische Zusammensetzung etwa 8 Gew.-% bis etwa 60 Gew.-% einer aromatischen Polycarbonsäureanhydrid-Treibstoffkomponente, etwa 40 Gew.-% bis etwa 90 Gew.-% eines Oxidationsmittels, etwa 1 Gew.-% bis etwa 20 Gew.-% eines Bindemittels und eine zumindest einen Teil der pyrotechnischen Zusammensetzung umgebende Zündschicht umfasst.From the US 6,427,599 B1 For example, there is known a decoy comprising a first gable housing having an interior and an exterior, a pyrotechnic composition adapted to be received and burned in the interior of this enclosure, the pyrotechnic composition comprising about 8% to about 60% by weight % of an aromatic polycarboxylic anhydride fuel component, about 40% to about 90% by weight of an oxidizing agent, from about 1% to about 20% by weight of a binder and an ignition layer surrounding at least a portion of the pyrotechnic composition.

Aufgabe der vorliegenden Erfindung ist es, eine Verwendung eines Zusatzstoffes in einer Scheinzielwirkmasse anzugeben, durch die das Spektralverhältnis gegenüber dem einer bekannten Wirkmasse erhöht ist, wobei die Scheinzielwirkmasse beim Abbrand dennoch eine hohe Strahlungsleistung zeigt. Um ein schnell fliegendes Flugzeug vortäuschen zu können, soll die Wirkmasse auch bei hohen Windgeschwindigkeiten stabil brennen.The object of the present invention is to provide a use of an additive in a fake target effective mass, by which the spectral ratio is increased over that of a known active mass, the fake target effective mass still shows a high radiant power during combustion. In order to be able to simulate a fast-flying aircraft, the active mass should burn stably even at high wind speeds.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 8.The object is solved by the features of claim 1. Advantageous embodiments result from the features of claims 2 to 8.

Erfindungsgemäß ist eine Verwendung eines Zusatzstoffes in einer Wirkmasse für ein beim Abbrand der Wirkmasse spektral strahlendes Scheinziel vorgesehen, um ein Verhältnis von einer Intensität einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von 3,7 bis 5,1 µm zu einer Intensität einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von 1,9 bis 2,3 µm zu erhöhen. Dabei ist der Zusatzstoff in der Wirkmasse verteilt und die Wirkmasse umfasst einen Kohlenstoff- und Wasserstoffatome enthaltenden Brennstoff und ein Sauerstoffatome enthaltendes Oxidatiönsmittel für den Brennstoff, wobei die Menge des Oxidationsmittels so bemessen ist, dass sie nicht für eine vollständige Oxidation des Kohlenstoffs ausreicht. Der Zusatzstoff ist ein in Form von Partikeln vorliegender eine Redoxreaktion katalysierender Katalysator. Bei der Redoxreaktion handelt es sich um eine Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2.According to the invention, a use of an additive is provided in an active mass for a spectrally radiating decay target during the burnup of the active mass to a ratio of an intensity of a radiation emitted during the burnup of the active mass in the wavelength range from 3.7 to 5.1 μm to an intensity during burnup to increase the effective mass emitted radiation in the wavelength range of 1.9 to 2.3 microns. In this case, the additive is distributed in the effective mass and the active material comprises a fuel containing carbon and hydrogen atoms and an oxidant for the fuel containing oxygen atoms, the amount of the oxidizing agent being such that it is insufficient for complete oxidation of the carbon. The additive is a particulate redox reaction catalyzing catalyst. The redox reaction is a reaction according to the reaction scheme CO + H 2 O → CO 2 + H 2 .

Durch den Zusatzstoff erhöht sich das Spektralverhältnis gegenüber einer Wirkmasse ohne diesen Zusatzstoff erheblich. Das Spektrum der Strahlung wird aus dem kurzwelligen Bereich in den mittelwelligen Bereich verschoben und die aus der Entstehung von Ruß resultierende Schwarzkörperstrahlung der Schwaden wird reduziert. Dadurch kann die Wirkmasse auch mit einem großen Unterschuss an Oxidationsmittel, d. h. einer sehr negativen Sauerstoffbilanz und damit einer sehr hohen spezifischen Energie ausgestattet werden, ohne dass das Spektralverhältnis durch entstehenden Ruß reduziert wird. Gleichzeitig stabilisieren die Partikel die Flamme und verhindern, dass sie durch Wind ausgeblasen werden kann. Die flammenstabilisierende Wirkung basiert darauf, dass die Partikel als Reaktionskeime und gleichzeitig als Anzündquelle fungieren. An einer Oberfläche der Partikel findet eine Abbrandreaktion am heftigsten und leichter statt als in anderen Bereichen der Flamme. Die Partikel werden dabei immer wieder stark erhitzt. Die Partikel dienen dadurch auch immer wieder als Anzündquelle. Das bewirkt, dass die Flamme nicht ausgeblasen werden kann, weil die entstehenden Gase ihre Zündquelle stets mittransportieren. Die Wirkmasse ist dadurch sehr zuverlässig und benötigt beim Abbrand bei hoher Windgeschwindigkeit keine zusätzliche Vorrichtung, die sie vor Wind schützt.Due to the additive, the spectral ratio increases significantly compared to a working mass without this additive. The spectrum of the radiation is shifted from the short-wave range into the medium-wave range, and the blackbody radiation of the windrows resulting from the formation of soot is reduced. As a result, the active mass can also be equipped with a large excess of oxidizing agent, ie a very negative oxygen balance and thus a very high specific energy, without the spectral ratio being reduced by the resulting soot. At the same time, the particles stabilize the flame and prevent it from being blown out by wind. The flame-stabilizing effect is based on the fact that the particles act as reaction nuclei and at the same time as an ignition source. On one surface of the particles, a burning-off reaction takes place most violently and more easily than in other areas of the flame. The particles are heated up again and again. The particles also serve as ignition source over and over again. This means that the flame can not be blown out, because the resulting gases always carry their ignition source along. The effective mass is therefore very reliable and does not require any additional device that burns off wind when burned at high wind speeds.

Der Katalysator kann in der Wirkmasse in einer Menge von höchstens 5 Gew.-%, insbesondere höchstens 2 Gew.-%, insbesondere höchstens 1 Gew.-%, insbesondere höchstens 0,5 Gew.-%, insbesondere höchstens 0,1 Gew.-%, enthalten sein. Die spezifische Energie der Wirkmasse wird dadurch nur geringfügig oder nahezu überhaupt nicht beeinflusst, während das Spektralverhältnis sogar verdoppelt werden kann.The catalyst may in the active material in an amount of at most 5 wt .-%, in particular at most 2 wt .-%, in particular at most 1 wt .-%, in particular at most 0.5 wt .-%, in particular at most 0.1 wt. -%, be included. The specific energy of the active mass is thereby only slightly or almost not affected, while the spectral ratio can even be doubled.

Durch den Katalysator und die damit einhergehende Verschiebung des Spektrums der Strahlung aus dem kurzwelligen in den mittelwelligen Bereich ist auch in der Flamme enthaltener Wasserdampf für das Spektralverhältnis nicht mehr sehr schädlich. Da Wasserdampf im kurzwelligen Bereich strahlt, wurde bisher der Gehalt an Wasser in Wirkmassen für Scheinziele möglichst gering gehalten. Dies geht jedoch mit dem Nachteil einher, dass eine zu trockene Flamme verhältnismäßig schwach strahlt, weil die thermische Energie zur quantenmechanischen Anregung ineffizient auf Kohlendioxid und Kohlenmonoxid übertragen wird. Für diese Übertragung ist Wasser in einer Flamme günstig, weil es bei höherer Energie angeregt wird als Kohlenstoffdioxid und als polares Molekül gerne an polares CO oder CO2 bindet. Dabei kann die Energie sehr effizient von Wasser auf Kohlendioxid oder Kohlenmonoxid übertragen werden. Die direkte Emission von Strahlung des Wassermoleküls im kurzwelligen Bereich ist dann nur noch gering. Darüber hinaus vergrößert Wasser die Flamme und erhöht dadurch die strahlende Fläche und somit die spezifische Leistung. Durch den Katalysator kann Wasser bei der Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 als Oxidationsmittel dienen. Wasser enthaltende Abbrandprodukte der Wirkmasse sind in Gegenwart des Zusatzstoffs und entgegen einer bisherigen Annahme im Stand der Technik für das Spektralverhältnis der Wirkmasse günstig.Due to the catalyst and the associated shift in the spectrum of the radiation from the short-wave to the medium-wave range, water vapor contained in the flame is no longer very damaging to the spectral ratio. Since water vapor radiates in the short-wave range, the content of water in active masses for decoys has hitherto been kept as low as possible. However, this has the disadvantage that too dry a flame emits relatively weak, because the thermal energy for quantum mechanical excitation is inefficiently transferred to carbon dioxide and carbon monoxide. For this transfer, water in a flame is favorable, because it is excited at higher energy than carbon dioxide and as a polar molecule likes to bind to polar CO or CO 2 . The energy can be transferred very efficiently from water to carbon dioxide or carbon monoxide. The direct emission of radiation of the water molecule in the short-wave range is then only slight. In addition, water increases the flame, thereby increasing the radiant area and thus the specific power. Through the catalyst, water in the reaction according to the reaction scheme CO + H 2 O → CO 2 + H 2 can serve as an oxidizing agent. Water-containing combustion products of the active material are favorable in the presence of the additive and contrary to a previous assumption in the prior art for the spectral ratio of the active mass.

Die in der Wirkmasse verteilten Partikel können eine maximale durchschnittliche Korngröße von 50 µm, insbesondere 20 µm, insbesondere 10 µm, insbesondere 1 µm, aufweisen. Je kleiner die Partikel sind, desto größer ist die insgesamt von einer vorgegebenen Menge an Katalysator bereitgestellte aktive Oberfläche. Der in Form von Partikeln vorliegende Katalysator sollte um möglichst effizient zu sein, sämtliche beim Abbrand entstehende Flammenzonen funktionell überstehen und seine katalytische Wirkung nach Möglichkeit erst am Rande der Flamme entfalten. Dies kann durch feste, hitzebeständige Katalysatoren gewährleistet werden, die erst bei höheren Temperaturen wirksam werden.The particles distributed in the active mass may have a maximum average particle size of 50 μm, in particular 20 μm, in particular 10 μm, in particular 1 μm. The smaller the particles, the larger the total active surface area provided by a given amount of catalyst. In order to be as efficient as possible, the catalyst present in the form of particles should functionally survive all of the flame zones formed during the combustion and its catalytic If possible, unfold the effect on the edge of the flame. This can be ensured by solid, heat-resistant catalysts that only become effective at higher temperatures.

Katalysatoren, die sowohl die Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 als auch die Oxidation von Kohlenstoff, insbesondere Ruß, effizient beschleunigen, sind die Oxide von seltenen Erden, wie z. B. CeO2 und Ce2O3, Yttriumoxid, Ytterbiumoxid, Neodymiumoxid und andere Oxide der seltenen Erden und Gemische daraus. Sehr effizient ist ein Gemisch aus CeO2 oder Ce2O3 und Yttriumoxid. Katalysatoren, die eine Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 beschleunigen, sind im Stand der Technik beispielsweise als LTS- und HTS-Katalysatoren bekannt. Die Katalysatoren sind gewerblich erhältlich und funktionieren im Falle von LTS-Katalysatoren im Temperaturbereich von etwa 200 bis 300°C (LTS = Low Temperature Shift) und im Falle von HTS-Katalysatoren im Temperaturbereich von etwa 400 bis 600°C (HTS = High Temperature Shift). Der LTS-Katalysator besteht aus einem mit Kupfer-dotierten Gemisch von Aluminium- und Zinkoxid und der HTS-Katalysator aus einem mit Chrom-dotierten Magnetit (Fe3O4). Geeignet sind auch metallorganische Pigmente, insbesondere stark konjugierte Metallkomplexe, wie z. B. Phthalocyanine und Porphyrine. Besonders effizient zur Erhöhung des Spektralverhältnisses sind Katalysatoren, die die Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 erst bei Temperaturen über 300°C beschleunigen. Weiterhin ist es günstig, dass der Katalysator den Abbrand der Wirkmasse selbst nicht katalysiert. Besonders gut geeignet sind Katalysatoren, die eine Reaktion erst ab etwa 500°C wirksam beschleunigen. Sehr gut zur Erhöhung des Spektralverhältnisses ist beispielsweise Kupferphthalocyanin (Vossenblau) geeignet, das sehr temperaturbeständig ist und sich erst ab ca. 600°C zersetzt. Phthalocyanine von Eisen, Chrom, Kobalt, Nickel und Molybdän sind ebenfalls gut geeignete Katalysatoren.Catalysts that efficiently accelerate both the reaction according to the reaction scheme CO + H 2 O → CO 2 + H 2 and the oxidation of carbon, in particular soot, are the rare earth oxides, such. CeO 2 and Ce 2 O 3 , yttrium oxide, ytterbium oxide, neodymium oxide and other rare earth oxides and mixtures thereof. Very efficient is a mixture of CeO 2 or Ce 2 O 3 and yttrium oxide. Catalysts that accelerate a reaction according to the reaction scheme CO + H 2 O → CO 2 + H 2 are known in the art, for example, as LTS and HTS catalysts. The catalysts are commercially available and work in the case of LTS catalysts in the temperature range of about 200 to 300 ° C (LTS = low temperature shift) and in the case of HTS catalysts in the temperature range of about 400 to 600 ° C (HTS = high temperature Shift). The LTS catalyst consists of a copper-doped mixture of aluminum and zinc oxide and the HTS catalyst of a chromium-doped magnetite (Fe 3 O 4 ). Also suitable are organometallic pigments, in particular strongly conjugated metal complexes, such as. As phthalocyanines and porphyrins. Particularly efficient for increasing the spectral ratio are catalysts which accelerate the reaction according to the reaction scheme CO + H 2 O → CO 2 + H 2 only at temperatures above 300 ° C. Furthermore, it is favorable that the catalyst itself does not catalyze the burnup of the active material itself. Particularly suitable catalysts are those that effectively accelerate a reaction only from about 500 ° C. For example, copper phthalocyanine (Vossenblau) is very suitable for increasing the spectral ratio, which is very temperature-resistant and does not decompose until about 600 ° C. Phthalocyanines of iron, chromium, cobalt, nickel and molybdenum are also well suited catalysts.

Der den Zusatzstoff bildende Katalysator umfasst mindestens ein metallorganisches Pigment, ein Salz eines Seltenerdmetalls, eine ein Seltenerdmetall enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines Seltenerdmetalls bildet, ein Oxid von Zirkonium, Titan, Aluminium, Zink, Magnesium, Calcium, Strontium, Barium, Hafnium, Vanadin, Niob, Tantal, Chrom, Nickel, Eisen, Mangan, Molybdän, Wolfram, Kobalt oder Thorium oder eine eines der genannten Metalle enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines solchen Metalls bildet, Silber, ein Platinmetall, Rhenium oder eine eines der genannten Metalle enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme zum Metall reduziert wird, oder ein Gemisch aus mindestens zwei der vorgenannten Verbindungen oder Elemente oder Yttriumoxid, Ytterbiumoxid, Neodymiumoxid, ein Gemisch der genannten Oxide, ein Gemisch von CeO2 oder Ce2O3 und Yttriumoxid, ein Kupfer-dotiertes Gemisch aus Aluminium- und Zinkoxid (LTS-Katalysator), ein Chrom-dotiertes Magnetit (Fe3O4) (HTS-Katalysator), ein Phthalocyanin, insbesondere Kupferphthalocyanin (Vossenblau), Eisenphthalocyanin, Chromphthalocyanin, Kobaltphthalocyanin, Nickelphthalocyanin oder Molybdänphthalocyanin, oder ein Porphyrin.The catalyst forming the additive comprises at least one organometallic pigment, a salt of a rare earth metal, a compound containing a rare earth metal which forms an oxide of a rare earth metal in a flame resulting from combustion of the active material, an oxide of zirconium, titanium, aluminum, zinc, magnesium, Calcium, strontium, barium, hafnium, vanadium, niobium, tantalum, chromium, nickel, iron, manganese, molybdenum, tungsten, cobalt or thorium or a compound containing one of said metals, which in an emerging during combustion of the active material flame an oxide of a of such metal, silver, a platinum metal, Rhenium or a compound containing one of said metals, which is reduced to the metal in a flame resulting from the combustion of the active material, or a mixture of at least two of the aforementioned compounds or elements or yttrium oxide, ytterbium oxide, neodymium oxide, a mixture of said oxides, a mixture of CeO 2 or Ce 2 O 3 and yttrium oxide, a copper-doped mixture of aluminum and zinc oxide (LTS catalyst), a chromium-doped magnetite (Fe 3 O 4 ) (HTS catalyst), a phthalocyanine, in particular copper phthalocyanine ( Vossenblau), iron phthalocyanine, chromium phthalocyanine, cobalt phthalocyanine, nickel phthalocyanine or molybdenum phthalocyanine, or a porphyrin.

Der Brennstoff der Wirkmasse kann neben Kohlenstoffatomen und Wasserstoffatomen auch Sauerstoff- und/oder Stickstoffatome enthalten. Der Brennstoff kann mindestens einen Nitratester, insbesondere einen flüssigen Nitratester, insbesondere Glyceryltrinitrat, Ethylenglykoldinitrat, Diethylenglykoldinitrat, Triethylenglykoldinitrat oder Methrioltrinitrat, oder einen als polymeren Feststoff vorliegenden Nitratester, insbesondere Nitrocellulose, Polyvinylnitrat oder Polyglycidylnitrat und/oder ein Nitrosamin, insbesondere 1,3,5-trinitroso-1,3,5-hexahydrotriazin, oder ein Amin, Amid, Nitril, Cyanat, Isocyanat, Urethan, Imin, Ketimin, Imid, Azid, Nitramin, Nitrosamin, Hydroxylamin, Hydrazin, Hydrazon, Oxim, Furoxan, Furazan, tertiäres Ammoniumsalz, Harnstoff, Methylharnstoff, Dimethylharnstoff, Trimethylharnstoff, Tetramethylharnstoff, Guanidinsalz, Monoaminoguanidinsalz, Diaminoguanidinsalz, Triaminoguanidinsalz oder Azoverbindung, einen Nitritester oder Stickstoffheterocyclus, eine Nitroverbindung, Nitrosoverbindung oder quartäre Ammoniumverbindung, Dicyandiamid, Azodicarbonamid, Dinitrosopentamethylentetramin (DNPT), Glyoxim, Oxamid, Acetamid, Carbazid, Semicarbazid, einen staubförmigen Brennstoff, insbesondere eine Cyanverbindung, insbesondere Paracyan, oder einen bei einem Abbrand der Wirkmasse durch Zerstäuben einen Nebel bildenden Brennstoff, insbesondere eine ionische Flüssigkeit, insbesondere eine eine Imidazol-, Pyridin-, Diazin- oder sonstige Heterocyclusstruktur umfassende ionische Flüssigkeit, insbesondere 1-Butyl-3-methylimidazoliumperchlorat (BMIM-ClO4), umfassen. Dabei umfasst jede der vorgenannten Verbindungen mindestens eine C-N-, eine C-N-O- oder eine C-O-N-Gruppe und optional mindestens eine C-O-Gruppe. Die genannten Gruppen können dabei in geraden oder ringförmigen Ketten und mit Einzel-, Doppel- oder Dreifachbindungen vorliegen. Durch diese Strukturmerkmale kann in der Flamme angeregter Stickstoff seine Energie mit hoher Ausbeute an Kohlenstoffmonoxid oder Kohlenstoffdioxid übermitteln und dieses dadurch anregen. Das Kohlenmonoxid oder Kohlendioxid gibt die dadurch aufgenommene Energie dann als Infrarotstrahlung im B-Band ab. Durch eine Bindung von Stickstoff an Kohlenstoff ist die Energieübertragung besonders effektiv und die Strahlungsausbeute erhöht. Eine Sauerstoffbrücke zwischen Stickstoff- und Kohlenstoffatomen steht dem nicht entgegen, weil die Energie auch über das Sauerstoffatom an das Kohlenstoffatom übertragen werden kann.The fuel of the active mass may contain, in addition to carbon atoms and hydrogen atoms, oxygen and / or nitrogen atoms. The fuel may comprise at least one nitrate ester, in particular a liquid nitrate ester, in particular glyceryl trinitrate, ethylene glycol dinitrate, diethylene glycol dinitrate, triethylene glycol dinitrate or methriol trinitrate, or a nitrate ester present as a polymeric solid, in particular nitrocellulose, polyvinyl nitrate or polyglycidyl nitrate and / or a nitrosamine, in particular 1,3,5- trinitroso-1,3,5-hexahydrotriazine, or an amine, amide, nitrile, cyanate, isocyanate, urethane, imine, ketimine, imide, azide, nitramine, nitrosamine, hydroxylamine, hydrazine, hydrazone, oxime, furoxane, furazane, tertiary ammonium salt , Urea, methylurea, dimethylurea, trimethylurea, tetramethylurea, guanidine salt, monoaminoguanidine salt, diaminoguanidine salt, triaminoguanidine salt or azo compound, a nitrite ester or nitrogen heterocycle, a nitro compound, nitroso compound or quaternary ammonium compound, dicyandiamide, azodicarbonamide, dinitrosopentamethylenetetramine (DNPT), Glyoxime, oxamide, acetamide, carbazide, semicarbazide, a dust-like fuel, in particular a cyano compound, in particular paracyan, or in a burnup of the active material by atomizing a mist-forming fuel, in particular an ionic liquid, in particular an imidazole, pyridine, diazine or other heterocyclic structure comprising ionic liquid, especially 1-butyl-3-methylimidazolium perchlorate (BMIM-ClO 4 ). In this case, each of the abovementioned compounds comprises at least one CN, one CNO or one CON group and optionally at least one CO group. The groups mentioned can be present in straight or annular chains and with single, double or triple bonds. Through these structural features, nitrogen excited in the flame can transmit its energy with high yield of carbon monoxide or carbon dioxide and thereby excite it. The carbon monoxide or carbon dioxide then releases the energy absorbed as infrared radiation B band off. By bonding nitrogen to carbon, the energy transfer is particularly effective and the radiation yield is increased. An oxygen bridge between nitrogen and carbon atoms is not contrary to this, because the energy can also be transferred via the oxygen atom to the carbon atom.

Durch den Mangel an Oxidationsmittel umfassen die die Flamme bildenden Gase vorwiegend Kohlenmonoxid, Wasserstoff und Wasserdampf. Keines von diesen Gasen strahlt jedoch effektiv im Wellenlängenbereich von 3,7 bis 5,1 µm, dem sogenannten B-Band (= MW-Band (mittlere Wellenlänge)). Wasserstoff strahlt gar nicht, Wasser im kurzwelligen Wellenlängenbereich und CO zwar im gewünschten B-Band jedoch mit geringer Emissivität. Durch den Katalysator wird Wasser und Kohlenmonoxid in der Flamme zu Kohlendioxid und Wasserstoff umgesetzt. Die Strahlung von Kohlendioxid wird zu etwa 99% im Wellenlängenbereich zwischen 4 und 5 µm abgestrahlt. Dadurch wird die Emissivität im B-Band erhöht und im kurzwelligen Bereich zwischen 1,9 und 2,3 µm, dem sogenannten A-Band (= KW-Band (kurzwellig)), reduziert.Due to the lack of oxidizing agent, the gases forming the flame include predominantly carbon monoxide, hydrogen and water vapor. However, none of these gases effectively radiates in the wavelength range of 3.7 to 5.1 microns, the so-called B-band (= MW band (average wavelength)). Hydrogen does not radiate at all, water in the short-wave wavelength range and CO in the desired B-band but with low emissivity. The catalyst converts water and carbon monoxide in the flame into carbon dioxide and hydrogen. The radiation of carbon dioxide is emitted to about 99% in the wavelength range between 4 and 5 microns. As a result, the emissivity in the B-band is increased and reduced in the short-wave range between 1.9 and 2.3 microns, the so-called A-band (= KW band (shortwave)).

Das Oxidationsmittel kann Chlor- und/oder Bromatome enthalten. Als besonders gut geeignetes Oxidationsmittel hat sich Ammoniumperchlorat erwiesen, weil bei dessen Umsetzung ausschließlich gasförmige Reaktionsprodukte und keine Schwarzkörperstrahlung emittierenden Partikel entstehen. Weiterhin kann bei Ammoniumperchlorat als Oxidationsmittel in der Wirkmasse ein Kupfer- oder Eisenatome enthaltender weiterer Katalysator, insbesondere Ferrocen, Eisenoxid, Eisenacetonylacetat oder Kupferphthalocyanin, enthalten sein. Dieser weitere Katalysator erniedrigt die Temperatur, bei welcher Ammoniumperchlorat zersetzt wird und abbrennt. Er stabilisiert dadurch den Abbrand der Wirkmasse.The oxidizing agent may contain chlorine and / or bromine atoms. Ammonium perchlorate has proven to be a particularly suitable oxidizing agent, because during its reaction exclusively gaseous reaction products and no particles emitting blackbody radiation are formed. Furthermore, in the case of ammonium perchlorate, an additional catalyst comprising copper or iron atoms, in particular ferrocene, iron oxide, iron acetonyl acetate or copper phthalocyanine, can be present as the oxidizing agent in the active material. This additional catalyst lowers the temperature at which ammonium perchlorate decomposes and burns off. It stabilizes the burnup of the active mass.

Bei einer Ausgestaltung sind in der Wirkmasse im Wesentlichen (außer den Katalysatoren) keine Stoffe enthalten, die andere Atome als Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Chlor und Brom enthalten. Dadurch wird die Entstehung von Abbrandprodukten, die das Spektrum in Richtung des A-Bandes verschieben, vermieden. "Im Wesentlichen" bedeutet dabei, dass keine der gewählten Bestandteile der Wirkmasse diese Stoffe enthält. Ein Vorhandensein von Spuren von Stoffen, die solche Atome enthalten, kann jedoch naturgemäß nicht ganz ausgeschlossen werden.In one embodiment, in the active mass essentially (except for the catalysts) contain no substances that contain atoms other than carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine and bromine. This avoids the formation of burn-off products which shift the spectrum in the direction of the A-band. "Essentially" means that none of the selected constituents of the active material contains these substances. However, naturally, the presence of traces of substances containing such atoms can not be completely ruled out.

Es hat sich gezeigt, dass mit der Wirkmasse beim Abbrand ein Verhältnis der emittierten Strahlungsleistung im B-Band zur Strahlungsleistung im A-Band von bis zu 60 erreicht werden kann. Weiterhin sind Strahlungsleistungen von 150 J/(g sr) möglich.It has been shown that with the effective mass during burning a ratio of the emitted radiation power in the B-band to the radiation power in A band of up to 60 can be achieved. Furthermore, radiant powers of 150 J / (g sr) are possible.

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und einer Figur näher erläutert.The invention will be explained in more detail with reference to an embodiment and a figure.

Die einzige Figur zeigt eine schematische Darstellung des Funktionsprinzips einer erfindungsgemäßen Verwendung des Zusatzstoffes in der Wirkmasse beim Abbrand.The single figure shows a schematic representation of the functional principle of an inventive use of the additive in the active mass during combustion.

Die Figur zeigt in der Mitte die brennende Wirkmasse und rechts davon ein Profil der Temperatur T der bei deren Abbrand entstehenden Flamme in Abhängigkeit vom Abstand d von der brennenden Oberfläche 1 der Wirkmasse. Beim Abbrand treten heiße Gase aus der Oberfläche aus und bilden eine Diffusionszone 2. In der Diffusionszone mischen sich oxidierende Gase aus einem in der Wirkmasse enthaltenem Oxidationsmittel und brennbare Gase aus einem in der Wirkmasse enthaltenen Brennstoff und beginnen miteinander in einer Flamme zu reagieren. In der ersten Reaktionszone 3 werden diese Gase hauptsächlich in Kohlenmonoxid und Wasserdampf umgesetzt, weil die Menge des Oxidationsmittels so bemessen ist, dass sie nicht für eine vollständige Oxidation des Kohlenstoffs ausreicht. Die Temperatur ist dabei noch zu niedrig um den Katalysator zu aktivieren.The figure shows in the middle of the burning active mass and right of it a profile of the temperature T of the flame generated during their combustion as a function of the distance d from the burning surface 1 of the active mass. During combustion, hot gases exit the surface and form a diffusion zone 2. In the diffusion zone, oxidizing gases from an oxidant contained in the active mass and combustible gases mix from a fuel contained in the active mass and begin to react with each other in a flame. In the first reaction zone 3, these gases are mainly converted into carbon monoxide and water vapor because the amount of oxidizing agent is such that it is insufficient for complete oxidation of the carbon. The temperature is still too low to activate the catalyst.

Im Profil der Temperatur T der Flamme zeigt die Linie 7 die Temperaturschwelle, oberhalb der die katalysierte Reaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 abläuft und aus Kohlenmonoxid und Wasser Kohlendioxid und Wasserstoff entstehen. Durch diese Reaktion entsteht die kohlendioxidreiche zweite Reaktionszone 4, die am heißesten ist. Durch von außen in die Flamme fließende Luft 8 brennt der Wasserstoff in einer hier nicht maßstabsgerecht dargestellten dünnen äußeren Reaktionszone 5 ab, wobei Wasserdampf und Kohlendioxid entstehen. Die äußere Reaktionszone 5 strahlt stark in die Außenzone 6 ab. Die in der ersten Reaktionszone 3 von den Wassermolekülen emittierte Strahlung im Wellenlängenbereich von 2 bis 3 µm wird von der ersten Reaktionszone 3 teilweise selbst wieder abgeschirmt, weil Wasser in diesem Spektralbereich auch Strahlung absorbiert. Diese Abschirmung erfolgt auch in der äußeren Reaktionszone 5. Da diese Zone aber sehr dünn ist, ist die abschirmende Wirkung sowohl im A- als auch im B-Band gering. Die Absorption von Wasser und Kohlendioxid in Abhängigkeit von der Wellenlänge ist schematisch in dem Diagramm links der Flamme dargestellt.In the profile of the temperature T of the flame, the line 7 shows the temperature threshold above which the catalyzed reaction proceeds according to the reaction scheme CO + H 2 O → CO 2 + H 2 and carbon monoxide and water form carbon dioxide and hydrogen. This reaction produces the carbon dioxide-rich second reaction zone 4, which is hottest. By flowing from the outside into the flame air 8, the hydrogen burns off in a not shown to scale thin outer reaction zone 5, whereby water vapor and carbon dioxide. The outer reaction zone 5 radiates strongly into the outer zone 6. The radiation emitted in the first reaction zone 3 by the water molecules in the wavelength range from 2 to 3 μm is partially shielded again by the first reaction zone 3 because water also absorbs radiation in this spectral range. This shielding also occurs in the outer reaction zone 5. However, since this zone is very thin, the shielding effect in both the A and B band is low. The absorption of water and carbon dioxide as a function of the wavelength is shown schematically in the diagram to the left of the flame.

Die zweite Reaktionszone 4 strahlt vorwiegend im Bereich von 3 bis 5 µm in den Außenbereich 6 und wird dabei kaum von der dünnen äußeren Reaktionszone 5 abgeschirmt. Da in der zweiten Reaktionszone 4 kaum Wasser vorhanden ist, erfolgt kaum eine Emission im A-Band. In der äußeren Reaktionszone 5 ist das Wasser auch nur sehr kurzzeitig vorhanden, so dass es auch aus diesem Grund kaum Strahlung emittiert, während die Verweilzeit des Kohlendioxids in der Flamme und damit auch die Emission im B-Band verhältnismäßig groß ist.The second reaction zone 4 radiates mainly in the range of 3 to 5 microns in the outer region 6 and is hardly shielded from the thin outer reaction zone 5. Since hardly any water is present in the second reaction zone 4, there is hardly any emission in the A band. In the outer reaction zone 5, the water is present only for a very short time, so that it emits hardly any radiation for this reason, while the residence time of the carbon dioxide in the flame and thus the emission in the B-band is relatively large.

Von jeder der nachfolgenden Wirkmassen wurden jeweils 5 Tabletten à 10 g Wirkmasse gepresst. Die Tabletten wurden abgebrannt und deren Strahlungsleistung mit einem Zweikanalradiometer bestimmt. Die als Beispiel 1 aufgeführte und im Stand der Technik bekannte Wirkmasse MTV diente dabei als Standard. Die Strahlungsleistung beim Abbrand der Tabletten wird als Prozentsatz der Strahlungsleistung von MTV angegeben.From each of the following active ingredients in each case 5 tablets of 10 g active weight were pressed. The tablets were burned off and their radiant power was determined with a two-channel radiometer. The known as Example 1 and known in the art effective mass MTV served as standard. The radiant power at tablet burnup is expressed as a percentage of the radiant power of MTV.

200 g der in einigen der nachfolgend angegebenen Wirkmassen verwendeten ionischen Flüssigkeit BMIM-ClO4 wurden wie folgt synthetisiert:
150 g BMIM-CI wurden in ca. 600 ml trockenem Methanol bei 25°C in einem 2 Liter Einhalskolben aufgelöst. Eine stöchiometrische Menge trockenes Natriumperchlorat wurde ebenfalls in 600 ml trockenem Methanol in einem 2 Liter Einhalskolben getrennt aufgelöst. Dann wurde die gesamte Perchloratlösung auf einmal in die BMIM-Chloridlösung gegeben. Die Flasche, in der die Perchloratlösung war, wurde noch 3 x mit 50 ml trockenem Methanol gewaschen und das Methanol auch noch zu der BMIM-Chloridlösung gegeben. Die resultierende Lösung wurde nach einigen Minuten trüb und gelb, als das entstandene Natriumchlorid begann auszufallen.
200 g of the ionic liquid BMIM-ClO 4 used in some of the following active compositions were synthesized as follows:
150 g of BMIM-CI were dissolved in about 600 ml of dry methanol at 25 ° C in a 2 liter one-necked flask. A stoichiometric amount of dry sodium perchlorate was also separately dissolved in 600 ml of dry methanol in a 2 liter one-necked flask. Then all the perchlorate solution was added all at once to the BMIM chloride solution. The bottle containing the perchlorate solution was washed 3 times with 50 ml of dry methanol and the methanol was added to the BMIM chloride solution. The resulting solution became cloudy and yellow after several minutes as the resulting sodium chloride began to precipitate.

Die gesamte Lösung wurde anschließend eine Stunde unter Rückfluss gekocht. Die heiße Lösung wurde danach mittels einer Fritte in einen 2 Liter Einhalskolben filtriert und der Niederschlag noch 3 x mit 50 ml trockenem Methanol gewaschen. Der praktisch ausschließlich aus Kochsalz bestehende Filterkuchen wurde entsorgt.The entire solution was then refluxed for one hour. The hot solution was then filtered by means of a frit in a 2 liter one-necked flask and the precipitate was washed 3 times with 50 ml of dry methanol. The practically exclusively made of common salt filter cake was disposed of.

Der Einhalskolben wurde anschließend an einen Rotationsverdampfer angeschlossen und das Methanol unter ca. 500 mbar Druck abdestilliert, wobei das Wasserbad im Verdampfer auf 90°C erhitzt wurde. Als das Methanol abdestilliert war, wurde das warme rohe BMIM-ClO4 aus dem Kolben nochmals durch die Fritte in einen 250 ml Scheidetrichter filtriert, weil beim Verdampfen des Methanols noch weiteres Kochsalz ausgefallen ist.The one-necked flask was then connected to a rotary evaporator and the methanol distilled off under about 500 mbar pressure, the water bath was heated to 90 ° C in the evaporator. When the methanol was distilled off, the warm crude BMIM-ClO 4 from the flask was again filtered through the frit into a 250 ml separatory funnel, because even more common salt had precipitated upon evaporation of the methanol.

Das fertige BMIM-ClO4 (ein gelbliches, zähflüssiges Öl) wurde aus dem Scheidetrichter in eine Laborflasche gefüllt und gewogen. Die Ausbeute war nahezu quantitativ.The final BMIM-ClO 4 (a yellowish, viscous oil) was filled from the separating funnel into a laboratory flask and weighed. The yield was almost quantitative.

Beispiel 1:Example 1:

Standard MTV (Magnesium-Teflon-Viton).Standard MTV (Magnesium Teflon-Viton). Stoffmaterial TypType Gew.-%Wt .-% Sonstigesmiscellaneous Magnesiumpulvermagnesium powder Ecka LNR 61Ecka LNR 61 60,060.0 TeflonpulverTeflon powder Hoechst TF 9202Hoechst TF 9202 25,025.0 VitonViton 3M Fluorel FC-21753M Fluorel FC-2175 10,010.0 TMD = 1893TMD = 1893 Grafitgraphite MerckMerck 5,05.0 Gleitmittellubricant TMD = Theoretische maximale DichteTMD = theoretical maximum density

Beispiel 2:Example 2:

Bekannte spektral angepasste Wirkmasse auf Basis von Ammoniumperchlorat. Diese Wirkmasse weist ein relativ hohes Spektralverhältnis aber verhältnismäßig wenig Energie auf. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat d50 = 25 µm 77,8 HTPB R45HT-M M = 2800 10,32 IPDI 0,78 TMD = 1678 Hexamethylentetramin kristallin 11,0 Eisenacetonylacetat 0,10 HTPB = Hydroxyl-terminiertes Polybutadien
IPDI = Isophorondiisocyanat
Known spectrally adjusted effective mass based on ammonium perchlorate. This active mass has a relatively high spectral ratio but relatively little energy. material Type Wt .-% miscellaneous ammonium perchlorate d 50 = 25 μm 77.8 HTPB R45HT-M M = 2800 10.32 IPDI 0.78 TMD = 1678 hexamethylenetetramine crystalline 11.0 iron acetonyl 0.10 HTPB = hydroxyl-terminated polybutadiene
IPDI = isophorone diisocyanate

Beispiel 3:Example 3:

Spektral angepasste Wirkmasse auf Basis von Ammoniumperchlorat gemäß Beispiel 2, aber zusätzlich mit 0,1% Wassergaskatalysator. Die Strahlungsenergie ist nicht beeinflusst, aber das Spektralverhältnis steigt um ca. 60%. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat d50 = 25 µm 77,7 HTPB R45HT-M M = 2800 10,32 IPDI 0,78 TMD = 1678 Hexamethylentetramin kristallin 11,0 Eisenacetonylacetat 0,10 Wassergaskatalysator Typ HTS 0,10 Spectral adjusted active material based on ammonium perchlorate according to Example 2, but in addition with 0.1% water gas catalyst. The radiant energy is not affected, but the spectral ratio increases by about 60%. material Type Wt .-% miscellaneous ammonium perchlorate d 50 = 25 μm 77.7 HTPB R45HT-M M = 2800 10.32 IPDI 0.78 TMD = 1678 hexamethylenetetramine crystalline 11.0 iron acetonyl 0.10 Water gas catalyst Type HTS 0.10

Beispiel 4:Example 4:

Wirkmasse mit Nitrocellulose und ionischer Flüssigkeit BMIM-ClO4 ohne eine erfindungsgemäße Verwendung eines Zusatzstoffes. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 20,30 Nitrocellulose Hagedorn H24 41,70 T = 1830 K DEGDN selbst synthetisiert 11,80 TMD = 1702 BMIM-ClO4 selbst synthetisiert 5,9 Paracyan Pulver 20,20 Akardit II 0,10 DEGDN = Diethylenglycoldinitrat
BMIM-ClO4 = 1-Butyl-3-methylimidazoliumperchlorat, ein Flüssigsalz
Active composition with nitrocellulose and ionic liquid BMIM-ClO 4 without an inventive use of an additive. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 20.30 nitrocellulose Hawthorn H24 41.70 T = 1830 K. DEGDN self-synthesized 11,80 TMD = 1702 BMIM-ClO 4 self-synthesized 5.9 paracyanogen powder 20.20 Akardite II 0.10 DEGDN = diethylene glycol dinitrate
BMIM-ClO 4 = 1-butyl-3-methylimidazolium perchlorate, a liquid salt

Beispiel 5:Example 5:

Wirkmasse gemäß Beispiel 4, aber zusätzlich mit Wassergaskatalysator. Das Spektralverhältnis wird verdoppelt und die spezifische Energie geringfügig gesteigert. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 20,30 Nitrocellulose Hagedorn H24 41,60 T = 1830 K DEGDN selbst synthetisiert 11,80 TMD = 1702 BMIM-ClO4 selbst synthetisiert 5,9 Paracyan Pulver 20,20 Akardit II 0,10 Wassergaskatalysator Typ HTS 0,10 Active composition according to Example 4, but additionally with water gas catalyst. The spectral ratio is doubled and the specific energy is slightly increased. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 20.30 nitrocellulose Hawthorn H24 41,60 T = 1830 K. DEGDN self-synthesized 11,80 TMD = 1702 BMIM-ClO 4 self-synthesized 5.9 paracyanogen powder 20.20 Akardite II 0.10 Water gas catalyst Type HTS 0.10

Beispiel 6:Example 6:

Wirkmasse mit Nitrocellulose und ionischer Flüssigkeit ohne eine erfindungsgemäße Verwendung eines Zusatzstoffes. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 19,90 Nitrocellulose Hagedorn H24 39,40 T = 1790 K DEGDN selbst synthetisiert 11,00 TMD = 1645 BMIM-ClO4 selbst synthetisiert 5,60 Azodicarbonamid kristallin 24,00 Akardit II 0,10 Active mass with nitrocellulose and ionic liquid without an inventive use of an additive. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 19,90 nitrocellulose Hawthorn H24 39.40 T = 1790 K. DEGDN self-synthesized 11.00 TMD = 1645 BMIM-ClO 4 self-synthesized 5.60 azodicarbonamide crystalline 24.00 Akardite II 0.10

Beispiel 7:Example 7:

Wirkmasse gemäß Beispiel 6, aber zusätzlich mit Wassergaskatalysator. Das Spektralverhältnis wird ohne Energieverlust verdoppelt. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 19,90 Nitrocellulose Hagedorn H24 39,40 T = 1790 K DEGDN selbst synthetisiert 11,00 TMD = 1645 BMIM-ClO4 selbst synthetisiert 5,60 Azodicarbonamid kristallin 24,00 Akardit II 0,10 Wassergaskatalysator Typ HTS 0,1 Active composition according to Example 6, but in addition with water gas catalyst. The spectral ratio is doubled without energy loss. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 19,90 nitrocellulose Hawthorn H24 39.40 T = 1790 K. DEGDN self-synthesized 11.00 TMD = 1645 BMIM-ClO 4 self-synthesized 5.60 azodicarbonamide crystalline 24.00 Akardite II 0.10 Water gas catalyst Type HTS 0.1

Beispiel 8:Example 8:

Wirkmasse gemäß Beispiel 6, aber zusätzlich mit unterschiedlichen Wassergaskatalysatoren. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 19,90 Nitrocellulose Hagedorn H24 39,30 T = 1790 K DEGDN selbst synthetisiert 11,00 TMD = 1645 BMIM-ClO4 selbst synthetisiert 5,60 Azodicarbonamid kristallin 24,00 Akardit II 0,10 Wassergaskatalysator Typ HTS 0,1 Wassergaskatalysator Typ LTS 0,1 Active composition according to Example 6, but in addition with different water gas catalysts. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 19,90 nitrocellulose Hawthorn H24 39.30 T = 1790 K. DEGDN self-synthesized 11.00 TMD = 1645 BMIM-ClO 4 self-synthesized 5.60 azodicarbonamide crystalline 24.00 Akardite II 0.10 Water gas catalyst Type HTS 0.1 Water gas catalyst Type LTS 0.1

Beispiel 9:Example 9:

Wirkmasse gemäß Beispiel 6, aber zusätzlich mit unterschiedlichen Wassergaskatalysatoren und Kupferphthalocyanin. Der Abbrand dieser Wirkmasse ist sehr windfest. Stoff Typ Gew.-% Sonstiges Ammoniumperchlorat gemahlen d50 = 25 µm 19,90 Nitrocellulose Hagedorn H24 39,30 T = 1790 K DEGDN selbst synthetisiert 11,00 TMD = 1645 BMIM-ClO4 selbst synthetisiert 5,60 Azodicarbonamid kristallin 24,00 Akardit II 0,10 Wassergaskatalysator Typ HTS 0,1 Wassergaskatalysator Typ LTS 0,1 Kupferphthalocyanin BASF Vossenblau 0,1 Tabelle 1: Messergebnisse von Strahlungsmessungen im Labor ohne Wind. Alle Ergebnisse sind Durchschnittswerte von 5 Parallelversuchen. Der Pressdruck bei allen Sätzen betrug 1500 bar, 17 mm Werkzeugdurchmesser, Ansatz 10,0 g. Satz Ea[J/(g sr)] Eb[J/(g sr)] (Ea + Eb) [J/(g sr)] Eb/Ea % MTV (MW-Kanal) Beispiel 1 152 84 236 0,553 100 Beispiel 2 3,7 31,3 35,0 8,7 37,2 Beispiel 3 2,2 30,7 35,0 13,9 36,5 Beispiel 4 5,1 148,8 153,9 29,2 177 Beispiel 5 2,6 153,3 155,9 59,1 182 Beispiel 6 3,5 100,4 103,9 28,7 120 Beispiel 7 1,6 79,8 81,4 49,8 95 Beispiel 8 1,5 80,7 82,2 53,8 96 Beispiel 9 1,2 81,8 82,9 68,2 97 Ea = spezifische Leistung im KW-Kanal (ca. 1,9 bis 2,3 µm) in J/(g sr); Eb = spezifische Leistung im MW-Kanal (ca. 3,7 bis 5,1 µm) in J/(g sr); (Ea + Eb) in J/(g sr) = die Summe von KW- und MW-Kanälen; Eb/Ea = das Verhältnis von MW zu KW-Kanal; % MTV = Leistung als Prozent der Leistung von Standard-MTV; KW = Kurzwellig; MW = Mittelwellig; Active composition according to Example 6, but in addition with different water gas catalysts and copper phthalocyanine. The burn of this active mass is very windproof. material Type Wt .-% miscellaneous ammonium perchlorate ground d 50 = 25 μm 19,90 nitrocellulose Hawthorn H24 39.30 T = 1790 K. DEGDN self-synthesized 11.00 TMD = 1645 BMIM-ClO 4 self-synthesized 5.60 azodicarbonamide crystalline 24.00 Akardite II 0.10 Water gas catalyst Type HTS 0.1 Water gas catalyst Type LTS 0.1 copper phthalocyanine BASF Vossen Blue 0.1 Table 1: Measurement results of radiation measurements in the laboratory without wind. All results are average values of 5 parallel experiments. The pressing pressure for all sets was 1500 bar, 17 mm tool diameter, batch 10.0 g. sentence E a [J / (g sr)] E b [J / (g sr)] (E a + E b ) [J / (g sr)] E b / E a % MTV (MW channel) example 1 152 84 236 0.553 100 Example 2 3.7 31.3 35.0 8.7 37.2 Example 3 2.2 30.7 35.0 13.9 36.5 Example 4 5.1 148.8 153.9 29.2 177 Example 5 2.6 153.3 155.9 59.1 182 Example 6 3.5 100.4 103.9 28.7 120 Example 7 1.6 79.8 81.4 49.8 95 Example 8 1.5 80.7 82.2 53.8 96 Example 9 1.2 81.8 82.9 68.2 97 E a = specific power in the HC channel (about 1.9 to 2.3 μm) in J / (g sr); E b = specific power in the MW channel (about 3.7 to 5.1 μm) in J / (g sr); (E a + E b ) in J / (g sr) = the sum of KW and MW channels; E b / E a = the ratio of MW to KW channel; % MTV = power as percent of standard MTV power; KW = shortwave; MW = medium wave;

Claims (8)

  1. Use of an additive in an active composition for a decoy which radiates spectrally as the active composition burns up, to increase the ratio of the intensity of radiation emitted during burnup of the active composition in the wavelength range from 3.7 to 5.1 µm to the intensity of radiation emitted during burnup of the active composition in the wavelength range from 1.9 to 2.3 µm,
    the additive being distributed in the active composition,
    the active composition comprising a fuel, comprising carbon atoms and hydrogen atoms, and an oxidizer for the fuel, comprising oxygen atoms, the amount of the oxidizer being such that it is not sufficient for complete oxidation of the carbon, the additive being a catalyst present in the form of particles that catalyses a redox reaction, the redox reaction being a reaction corresponding to the reaction scheme CO + H2O → CO2 + H2, and the catalyst comprising at least one organometallic pigment, a salt of a rare earth metal, a compound comprising a rare earth metal and forming an oxide of a rare earth metal in a flame produced on burnup of the active composition, or an oxide of zirconium, titanium, aluminium, zinc, magnesium, calcium, strontium, barium, hafnium, vanadium, niobium, tantalum, chromium, nickel, iron, manganese, molybdenum, tungsten, cobalt or thorium, or a compound comprising one of the stated metals and forming an oxide of such a metal in a flame produced on burnup of the active composition, or silver, a platinum metal, rhenium or a compound comprising one of the stated metals and reducing to the metal in a flame produced on burnup of the active composition, or a mixture of at least two of the above-stated compounds or elements, or the catalyst comprising yttrium oxide, ytterbium oxide, neodymium oxide, a mixture of the stated oxides, a mixture of CeO2 or Ce2O3 and yttrium oxide, a copper-doped mixture of aluminium oxide and zinc oxide (LTS catalyst), a chromium-doped magnetite (Fe3O4) (HTS catalyst), a phthalocyanine, copper phthalocyanine (Vossen blue), iron phthalocyanine, chromium phthalocyanine, cobalt phthalocyanine, nickel phthalocyanine or molybdenum phthalocyanine, or a porphyrin.
  2. Use according to Claim 1,
    the catalyst being present in an amount of not more than 5 wt%, more particularly not more than 2 wt%, more particularly not more than 1 wt%, more particularly not more than 0.5 wt%, more particularly not more than 0.1 wt%, in the active composition.
  3. Use according to either of the preceding claims,
    the particles having a maximum average particle size of 50 µm, more particularly 20 µm, more particularly 10 µm,more particularly 1 µm.
  4. Use according to any of the preceding claims,
    the fuel comprising oxygen atoms and/or nitrogen atoms.
  5. Use according to any of the preceding claims,
    the fuel comprising at least one nitrate ester, more particularly a liquid nitrate ester, more particularly glyceryl trinitrate, ethylene glycol dinitrate, diethylene glycol dinitrate, triethylene glycol dinitrate or methriol trinitrate, or a nitrate ester in polymeric solid form, more particularly nitrocellulose, polyvinyl nitrate or polyglycidyl nitrate, and/or a nitrosamine, more particularly 1,3,5-trinitroso-1,3,5-hexahydrotriazine, or an amine, amide, nitrile, cyanate, isocyanate, urethane, imine, ketimine, imide, azide, nitramine, nitrosamine, hydroxylamine, hydrazine, hydrazone, oxime, furoxan, furazan, tertiary ammonium salt, urea, methylurea, dimethylurea, trimethylurea, tetramethylurea, guanidine salt, monoaminoguanidine salt, diaminoguanidine salt, triaminoguanidine salt or azo compound, a nitrite ester or nitrogen heterocycle, a nitro compound, nitroso compound or quaternary ammonium compound, dicyandiamide, azodicarbonamide, dinitrosopentamethylenetetramine (DNPT), glyoxime, oxamide, acetamide, carbazide, semicarbazide, a fuel in dust form, more particularly a cyanogen compound, more particularly paracyanogen, or a fuel which forms a mist by atomization on burnup of the active composition, more particularly an ionic liquid, more particularly an ionic liquid comprising an imidazole, pyridine, diazine or other heterocyclic structure, more particularly 1-butyl-3-methylimidazolium perchlorate (BMIM-ClO4), each of the aforementioned compounds comprising at least one C-N, C-N-O or C-O-N group and optionally at least one C-O group.
  6. Use according to any of the preceding claims,
    the oxidizer comprising chlorine atoms and/or bromine atoms.
  7. Use according to any of the preceding claims,
    the oxidizer comprising ammonium perchlorate.
  8. Use according to Claim 7,
    comprising a further catalyst comprising copper atoms or iron atoms, more particularly iron oxide, ferrocene, iron acetonylacetate or copper phthalocyanine.
EP13004007.4A 2012-08-17 2013-08-12 Use of an an additive in a material for a spectral decoy flare which burns the material Active EP2698360B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012016452.1A DE102012016452B4 (en) 2012-08-17 2012-08-17 Active mass for a spectrally radiant decay target with an additive during combustion of the active mass

Publications (3)

Publication Number Publication Date
EP2698360A2 EP2698360A2 (en) 2014-02-19
EP2698360A3 EP2698360A3 (en) 2017-08-16
EP2698360B1 true EP2698360B1 (en) 2019-12-04

Family

ID=48979514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13004007.4A Active EP2698360B1 (en) 2012-08-17 2013-08-12 Use of an an additive in a material for a spectral decoy flare which burns the material

Country Status (6)

Country Link
US (1) US9139487B2 (en)
EP (1) EP2698360B1 (en)
AU (1) AU2013213696B2 (en)
DE (1) DE102012016452B4 (en)
IL (1) IL227587B (en)
ZA (1) ZA201306135B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173944B2 (en) 2014-10-16 2019-01-08 Northrop Grumman Innovations Systems, Inc. Compositions usable as flare compositions, countermeasure devices containing the flare compositions, and related methods
US11014859B2 (en) 2014-10-16 2021-05-25 Northrop Grumman Systems Corporation Compositions usable as flare compositions, countermeasure devices containing the flare compositions, and related methods
GB201908786D0 (en) * 2019-06-19 2019-07-31 Spex Oil & Gas Ltd Downhole tool with fuel system
CN113831259B (en) * 2021-11-05 2023-07-25 内蒙古工业大学 Synthesis method of aromatic azo compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946555A (en) * 1973-08-22 1976-03-30 Atlantic Research Corporation Process for simulating turbojet engine plumes
JPH08151288A (en) * 1994-11-25 1996-06-11 Otsuka Chem Co Ltd Gas generating agent for air bag
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
US6017404A (en) * 1998-12-23 2000-01-25 Atlantic Research Corporation Nonazide ammonium nitrate based gas generant compositions that burn at ambient pressure
US6599379B2 (en) * 2001-04-12 2003-07-29 Dmd Systems, Llc Low-smoke nitroguanidine and nitrocellulose based pyrotechnic compositions
JP4847143B2 (en) * 2006-01-26 2011-12-28 株式会社ダイセル Gas generant composition
US20100212221A1 (en) * 2009-02-26 2010-08-26 Aradi Allen A Modulation of combustion rates in fuels
DE102010053783A1 (en) * 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg High-performance active mass, useful for pyrotechnic infrared decoys, comprises a first fuel, a second fuel, an oxidizing agent and a binder, where oxidizing agent is capable of oxidizing first fuel after ignition in an exothermic reaction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9139487B2 (en) 2015-09-22
DE102012016452A1 (en) 2014-02-20
IL227587A0 (en) 2014-03-31
DE102012016452B4 (en) 2014-07-24
ZA201306135B (en) 2014-04-30
AU2013213696A1 (en) 2014-03-06
EP2698360A3 (en) 2017-08-16
EP2698360A2 (en) 2014-02-19
AU2013213696B2 (en) 2017-08-10
US20150047760A1 (en) 2015-02-19
IL227587B (en) 2019-10-31

Similar Documents

Publication Publication Date Title
DE69424041T2 (en) IGNITION COMPOSITIONS FOR AIRBAG GAS GENERATORS
DE69832155T2 (en) TRANSITION METAL NITRITIC COMPLEXES CONTAINING GAS GENERATORS
DE4412871C2 (en) Gas generator compositions
DE69423626T2 (en) GAS-GENERATING RESIDUE-FREE AZID-FREE COMPOSITION
DE69730202T2 (en) AZIDFREE, GAS-CREATING COMPOSITIONS
EP2698360B1 (en) Use of an an additive in a material for a spectral decoy flare which burns the material
EP0519485A1 (en) Propellant for gas generators
DE112006000826T5 (en) Gas generating compositions
EP2698362B1 (en) Material for a spectral decoy flare which burns the material
DE19730872A1 (en) Propellant useful in munitions and gas generator
DE884170C (en) Gas Generating Charge
EP2646400A2 (en) Perchlorate-free pyrotechnic mixture
EP1242338B1 (en) Ignition means for propellant powders
EP2530065B1 (en) High performance active material for an infra-red decoy which emits spectral radiation upon combustion
WO2010022831A1 (en) Explosive
DE102010050861B4 (en) explosive
EP1541539B1 (en) Pyrotechnical charge for generating infrared radiation
EP2738150B1 (en) Use of a dinitromethane salt
EP3995473A1 (en) Active mass for a pyrotechnic dummy target burning at high wind speed
EP2530064B1 (en) Active material for an infra-red decoy with area effect which emits spectral radiation upon combustion
EP2824413B1 (en) Decoy body with a pyrotechnic material
DE102010050358A1 (en) Explosive or detonable mixture
DE19712820A1 (en) Burning moderators for gas-generating mixtures
DE2519980A1 (en) Explosive mixt contg an oxidant additive - to give increased energy release per unit volume

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 23/00 20060101AFI20170712BHEP

Ipc: C06B 29/22 20060101ALI20170712BHEP

Ipc: C06C 15/00 20060101ALI20170712BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013991

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013991

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200812

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1209207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230811

Year of fee payment: 11

Ref country code: CH

Payment date: 20230902

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231018

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240826

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 12