EP2694672B1 - Method for the lysis of cells and pcr amplification - Google Patents

Method for the lysis of cells and pcr amplification Download PDF

Info

Publication number
EP2694672B1
EP2694672B1 EP12704033.5A EP12704033A EP2694672B1 EP 2694672 B1 EP2694672 B1 EP 2694672B1 EP 12704033 A EP12704033 A EP 12704033A EP 2694672 B1 EP2694672 B1 EP 2694672B1
Authority
EP
European Patent Office
Prior art keywords
cells
dna
pcr
photolysis
method step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12704033.5A
Other languages
German (de)
French (fr)
Other versions
EP2694672A1 (en
Inventor
Peter Rothacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2694672A1 publication Critical patent/EP2694672A1/en
Application granted granted Critical
Publication of EP2694672B1 publication Critical patent/EP2694672B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers

Definitions

  • the invention relates to a method for the lysis of cells and PCR amplification of the DNA of the cells.
  • MRSA Methicillin-resistant Staphylococcus aureus
  • pneumonia Sepsis
  • tuberculosis and fluoroquinolone resistance in Escherichia coli
  • fluoroquinolone resistance in Escherichia coli are some examples.
  • these resistances are usually determined based on cell culture.
  • the cell culture-based determination of resistance is a relatively lengthy process, since the culture and evaluation 2-3 days must be scheduled.
  • DNA analysis of the bacterial DNA resistances can be determined significantly faster. However, the DNA of the cells must be amplified, i. be increased.
  • Gram-negative cells the PCR works even if cell material is used directly after a prolonged first high-temperature step without purification, as at temperatures near the boiling point the cells are destroyed and DNA is released.
  • this does not work with Gram-positive cells, which have a particularly resistant cell membrane.
  • Gram-positive bacteria die during this heating, the DNA contained in them can not leave the bacterial envelope and can not be duplicated accordingly.
  • a photolysis with a laser describes the EP 4342914 A1 .
  • a cell-containing solution is first placed on a metal oxide carrier, wherein the metal oxide binds cells. Subsequently, the metal oxide is irradiated with the laser, destroying the cell walls and releasing DNA. Subsequently, unbound cell components are washed out in a purification step. These procedures require a lot of effort and handling before the PCR can begin.
  • EP 1797956 A1 shows a microfluidic device for the concentration and lysis of cells or viruses and an associated method, the microfluidic device comprising: a reaction chamber in which magnetic beads can be accommodated, comprising a plurality of electrodes 20, 20 'for generating a nonuniform electric field, a vibrating member for moving the magnetic beads in the chamber, and a laser source for emitting a laser beam onto the magnetic beads in the reaction chamber.
  • US 2003/096429 A1 shows a method for determining laser parameters for cell lysis, exposing the cells from a sub-sample of a sample to the laser light. At least one parameter of the laser is varied and damage to intracellular molecules of the subsamples of the sample becomes at the parameters so different measured. At least one of the parameters is determined based on the measured damage.
  • US 2008/171366 A1 discloses a method and apparatus for disrupting cells and amplifying nucleic acids using gold nanorods which are laser irradiated to disrupt the cells.
  • the invention can be easily transferred to the current biochemical assay.
  • the invention also makes it possible to amplify Gram-positive bacteria or other cells which are difficult to lyse, such as fungi or spores, which makes possible a platform with applications for urinary tract infections, MRSA, pneumonia, sepsis, mycoses, etc.
  • a laser scanner for scanning a sample can be conveniently realized with a micromirror in a very small construction and allows a compact analyzer.
  • the laser lysis can be realized compactly with standardized components for optics, scanners and lasers with a considerably lower outlay than lysis devices according to the prior art.
  • the invention makes possible a Lab-on-a-Chip (LOC for short) as ⁇ TAS (Micro Total Analysis System), since the sequence of the processing and amplification steps before the detection is simplified compared to the prior art and an automatable to be transferred into a biochip Simplification of the Protocol.
  • LOC Lab-on-a-Chip
  • TAS Micro Total Analysis System
  • Fig. 1 1 shows an LOC 10 in an analysis device 30 for lysis of cells and PCR amplification, both for DNA evaluation with an array 18.
  • the LOC 10 has a rigid, flat substrate 11 with a fluidic network 12 in the substrate 11.
  • To the fluidic network 12 include microchannels 13 shown by way of example, valves 14 and chamber 15, and a multi-function chamber 19 with a filter 16, in which inter alia, a PCR takes place, and an array chamber 17 with the array 18.
  • the filter 16 contains here as a filter medium a silica Pad and is temperature controlled by a first external temperature control element 43 under the substrate 11.
  • the filter 16 fills a flow-through cross-section of the multi-function chamber 19 fully.
  • the array chamber 17 can be tempered via a second tempering element 44 under the substrate 11.
  • Elements of the fluidic network 12 can also run in the interior of the LOC 10 and are liquid-tight at the top with a membrane or film, not shown.
  • the actuators for the operation of the fluidic network 12 and a fluidic interface to the analyzer 30 are not shown.
  • the analyzer 30 includes a photolysis light source 31 for irradiating the filter 16 and a controller 32 for performing lysis by irradiating the filter.
  • the photolysis light source 31 in this embodiment has a laser 33, a beam expander 34, a micromirror 35 and a lens 36.
  • a light beam 37 leaving the laser 33 passes via the beam expander 34 to the micromirror 35 and is deflected there and continues to pass through the lens 36 to the filter 16.
  • the micromirror 35 is a controllable micromirror, with which the laser light beam 37 forms the filter 16 focused and raster-shaped according to the beam diameter can sweep.
  • the analyzer 30 further includes a camera 39 and an array illumination lightwave 40, each directed to the array 18.
  • the controller 32 is connected via electrical control lines 38 to the laser 33, the micromirror 35, the camera 39, the array illumination lightwave 40, the micromirror 35 and the tempering elements 43 and 44.
  • the analysis device 30 further has a mechanical interface (not shown) with the LOC 10 with which the LOC 10 is positioned in the analysis device 30 in a defined manner. Due to the defined positioning of the filter 16 and the array 18 in the LOC, LOCs are interchangeable in the analyzer 30 without re-optical adjustment.
  • the photolysis light source 31 is directed to the position of the filter 16 and the camera 39 is directed to the position of the array 18, here in the array chamber 17.
  • the filter 16 is arranged above the first external tempering element 43, and the array chamber 17 is arranged above the second tempering 44.
  • tempering Peltier elements micro-hotplates or convective heating / cooling elements, optionally electrical resistors, can also be used in combination.
  • the mechanical interface allows a suitable heat transfer.
  • the controller 32 controls the flow of the assay protocol on the LOC 10.
  • the fluidic network 12 is controlled via the fluidic interface. Temperatures and temperature changes are controlled by the temperature control elements 43 and 44.
  • the detection is carried out with an array / biochip and is checked by means of the one fluorescence exciting an array illumination light wave 40 and the fluorescent light observing camera 39, alternatively another (not shown) photometer.
  • the evaluation of a DNA analysis is carried out by the observation at which positions fluorescence takes place on an array 18, with the camera 39.
  • the LOC 10 for lysis of cells and PCR amplification has a common, filter 16 having a multi-function chamber 19 for cell accumulation, cell staining, cell lysis and PCR.
  • Fig. 2 Figure 4 shows an LOC 46 in an analysis device 47 for cell lysis and PCR amplification, both for DNA evaluation. From Fig. 1 known elements again have the same reference numerals.
  • the fluorescent dyes used in the real-time PCR are excited by a light source 41 and a detector 42, the resulting fluorescence radiation , possibly at different wavelengths, observed.
  • an array chamber is not required.
  • the DNA of the cells is present in sufficient quantity for DNA examinations.
  • the method is suitable for Gram-negative and Gram-positive cells.
  • a cell-containing liquid usually body fluid such as urine, sputum, serum, plasma, smears, BAL (bronchoalveolar lavage), etc. via a filter medium, in order to position the cells on the filter Fig. 1 and 2 over the filter 16 silica fiber pad, pumped.
  • the cells are separated and washed with a few 100 ul buffer.
  • the filter is filled with the PCR treatment solution, the so-called master mix.
  • This PCR treatment solution consists of a mixture of DNTPs (deoxynucleotide triphosphates), primers, polymerase and buffer. Further, in the mixture, a substance for blocking the filter surface is contained, e.g. BSA (Bovine serum albumin), PEG (Polyethylene glycol), PPG (Polypropylene glycol). It is also possible to add the substances required only in process step e) only after process step d).
  • the photolysis of the cells in process step d) is preferably carried out by means of laser lysis.
  • the filter on which the stained cells are located is irradiated with a commercially available laser.
  • the laser beam is preferably focused and guided with a micromirror on the filter, wherein as far as possible the entire filter surface is swept over completely with the laser beam.
  • the filter can also be irradiated with high-energy LEDs, flash lamps or focused light sources with high energy density.
  • the decisive factor is that the bacteria absorb as much light as possible, whereas the matrix and the surrounding liquid should absorb as little energy as possible.
  • the light used for photolysis substantially in a wavelength range which is strongly absorbed by the colored cells but weakly absorbed by water.
  • the color of the stained cells is determined by the dye, but may be different from the color of the dye.
  • the wavelength or wavelengths of the photolysis light are matched to the color of the stained cells, so that the absorption coefficient of the stained cell is a multiple of the absorption coefficient of a fluid or a stationary phase of a buffer medium present around the cells, usually water.
  • a multiple may be, for example, at least the factor 2.5, for example 10.
  • a high energy intake of the fluid or the stationary phase would result in a strong, poorly controlled increase in temperature, which may lead to inactivation of the polymerase, evaporation of the liquid medium and bursting of the LOCs.
  • the photolysis light source advantageously has a Wavelength in the visible region which is complementary to the color of the stained cells is, for example, 532 nm in the case of red staining of the cells with methylene blue, so that the absorption by the stained bacteria is as high as possible.
  • the filter is subjected to the usual thermal cycles for the PCR. At these temperature cycles, the DNA is amplified as described above. Now the DNA of the cells is in sufficient quantity for DNA examinations.
  • the method is suitable for Gram-negative and Gram-positive cells.
  • the DNA can be eluted from the filter element.
  • amplifications including isotherms, are also possible, for example NASBA (Nucleic Acid Sequence Based Amplification).
  • the hybridization buffer may comprise a buffer system and a salt to increase a salt concentration.
  • the method according to the invention can be easily transferred both to the filter PCR and to a fully integrated LOC.
  • the DNA of the cells is present in sufficient quantity for DNA examinations.
  • the method is suitable for Gram-negative and Gram-positive cells.
  • the method steps of the same name correspond to those of the description of FIG Fig. 3 known method steps, taking into account the following differences.
  • the DNA of the cells is then purified in process step d1). This purification can be accomplished by one or more washes in which cell components other than DNA are removed. Because of the liquid exchange associated with the cleaning, the PCR treatment solution is added only after the purification - process step c) thus takes place after process step d1).

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zur Lyse von Zellen und PCR-Amplifikation der DNA der Zellen.The invention relates to a method for the lysis of cells and PCR amplification of the DNA of the cells.

In der Diagnostik von Infektionskrankheiten gewinnt der Nachweis von Antibiotika-Resistenzen aufgrund zunehmender Verbreitung dieser Resistenzen eine immer größere Bedeutung. Methicillin-resistant Staphylococcus aureus (MRSA), Lungenentzündung (Pneumonie), Sepsis, Tuberkulose, und Fluorchinolonresistenz bei Escherichia coli seien als einige Beispiele genannt. In der herkömmlichen Diagnostik werden diese Resistenzen meist zellkulturbasiert ermittelt. Die zellkulturbasierte Resistenzbestimmung ist jedoch ein relativ langwieriges Verfahren, da für die Kultur und Auswertung 2-3 Tage angesetzt werden müssen. Mittels DNA-Analyse der Bakterien-DNA lassen sich Resistenzen deutlich schneller bestimmen. Dabei muss jedoch die DNA der Zellen amplifiziert, d.h. vermehrt werden.In the diagnosis of infectious diseases, the detection of antibiotic resistance is becoming increasingly important due to the increasing prevalence of these resistances. Methicillin-resistant Staphylococcus aureus (MRSA), pneumonia, sepsis, tuberculosis, and fluoroquinolone resistance in Escherichia coli are some examples. In conventional diagnostics, these resistances are usually determined based on cell culture. The cell culture-based determination of resistance, however, is a relatively lengthy process, since the culture and evaluation 2-3 days must be scheduled. By means of DNA analysis of the bacterial DNA, resistances can be determined significantly faster. However, the DNA of the cells must be amplified, i. be increased.

Die Polymerase-Chain-Reaction (PCR, Polymerase-Kettenreaktion) wurde Mitte der 80-er Jahre entdeckt und wird für die DNA-Amplifizierung heute flächendeckend in Diagnostik, Forschung und Forensik eingesetzt. Dabei wird eine temperaturstabile DNA-Polymerase zu der zu amplifizierenden DNA zugegeben und ein Temperaturzyklus bestehend aus

  • Denaturierung, d.h. Aufspaltung DNA in Einzelstränge, bei ca. 95 °C;
  • Primeranlagerung bei ca. 55 °C; und
  • Elongation. d.h. Synthese der neuen DNA, bei ca. 72 °C;
mehrfach - bis zu 40 x - wiederholt, wobei sich bei jedem Zyklus die DNA-Menge verdoppelt. Für die Verzehnfachung der DNA-Menge sind also im Schnitt 3,3 Zyklen notwendig. Generell wird dazu das DNA-haltige Material vor der PCR aufgereinigt, wobei nach einem Assay-Ablauf-Protokoll vorgegangen wird.The polymerase chain reaction (PCR, polymerase chain reaction) was discovered in the mid-80's and is widely used in DNA amplification in diagnostics, research and forensics. In this case, a temperature-stable DNA polymerase is added to the DNA to be amplified and a temperature cycle consisting of
  • Denaturation, ie splitting DNA into single strands, at about 95 ° C;
  • Primer attachment at about 55 ° C; and
  • Elongation. ie synthesis of the new DNA, at about 72 ° C;
repeatedly - up to 40 x - repeated, with each cycle doubling the amount of DNA. For the tenfold increase in the DNA amount, 3.3 cycles are necessary on average. In general, the DNA-containing material is purified before the PCR, following an assay procedure protocol.

Bei Gram-negativen Zellen funktioniert die PCR auch wenn nach einem verlängerten ersten Hochtemperaturschritt direkt ohne Reinigung Zellmaterial eingesetzt wird, da bei Temperaturen nahe dem Siedepunkt die Zellen zerstört werden und DNA freigesetzt wird. Dies funktioniert jedoch nicht bei Gram-positiven Zellen, die eine besonders widerstandsfähige Zellmembran besitzen. Gram-positive Bakterien sterben zwar bei dieser Erhitzung ab, die in ihnen enthaltene DNA kann jedoch die Bakterienhülle nicht verlassen und entsprechend nicht vervielfältigt werden.In Gram-negative cells, the PCR works even if cell material is used directly after a prolonged first high-temperature step without purification, as at temperatures near the boiling point the cells are destroyed and DNA is released. However, this does not work with Gram-positive cells, which have a particularly resistant cell membrane. Although Gram-positive bacteria die during this heating, the DNA contained in them can not leave the bacterial envelope and can not be duplicated accordingly.

Für die Lyse Gram-positiver Zellen werden derzeit verschiedene Verfahren eingesetzt, darunter Enzymatische Lyse, Ultraschall-Lyse und Elektroporation. Eine Photolyse mit einem Laser beschreibt die EP 4342914 A1 . Dort wird zunächst eine Zellen enthaltende Lösung auf einen Metalloxid-Träger gegeben, wobei das Metalloxid Zellen bindet. Anschließend wird das Metalloxid mit dem Laser bestrahlt, wobei die Zellwände zerstört und DNA frei gesetzt werden. Anschließend werden in einem Aufreinigungsschritt nicht gebundene Zellbestandteile ausgewaschen. Diese Verfahren erfordern einen hohen Aufwand und eine schwierige Handhabung bevor die PCR beginnen kann.Various methods are currently used for the lysis of Gram-positive cells, including enzymatic lysis, ultrasound lysis and electroporation. A photolysis with a laser describes the EP 4342914 A1 , There, a cell-containing solution is first placed on a metal oxide carrier, wherein the metal oxide binds cells. Subsequently, the metal oxide is irradiated with the laser, destroying the cell walls and releasing DNA. Subsequently, unbound cell components are washed out in a purification step. These procedures require a lot of effort and handling before the PCR can begin.

EP 1797956 A1 zeigt eine Mikrofluidik-Vorrichtung für die Konzentration und die Lyse von Zellen oder Viren und ein zugehöriges Verfahren, wobei die Mikrofluidik-Vorrichtung umfasst: eine Reaktionskammer, in welcher magnetische Kügelchen aufgenommen werden können, aufweisend eine Vielzahl von Elektroden 20, 20' zum Erzeugen eines nicht-gleichförmigen elektrischen Feldes, ein schwingendes Teil zum Bewegen der magnetischen Kügelchen in der Kammer, und eine Laserquelle zum Aussenden eines Laserstrahls auf die magnetischen Kügelchen in der Reaktionskammer. EP 1797956 A1 shows a microfluidic device for the concentration and lysis of cells or viruses and an associated method, the microfluidic device comprising: a reaction chamber in which magnetic beads can be accommodated, comprising a plurality of electrodes 20, 20 'for generating a nonuniform electric field, a vibrating member for moving the magnetic beads in the chamber, and a laser source for emitting a laser beam onto the magnetic beads in the reaction chamber.

Dhawan M. D. et Al. "Development of a laser-induced cell lysis system", Analytical and Bioanalytical Chemistry, Bd. 374, Nr. 3, Seiten 421-426 offenbart eine Zelllyse, welche auf einer laserinduzierten Zerstörung von Bakterien- und Hefe-Zellen basiert. Das Aufbrechen der Zellen erfolgt hierbei durch das gezielte Erwärmen des Wassers in der Zelle durch den Einsatz eines 100 mW Lasers. Die eingesetzten Wellenlängen reichten von 500 nm bis 1550 nm, mit optimaler Wellenlängen zwischen 1250 nm und 1550 nm. Dhawan MD et al. "Development of a laser-induced cell lysis system", Analytical and Bioanalytical Chemistry, Vol. 374, No. 3, pp. 421-426 discloses cell lysis based on laser-induced destruction of bacterial and yeast cells. The cells are broken up by the targeted heating of the water in the cell by the use of a 100 mW laser. The wavelengths used ranged from 500 nm to 1550 nm, with optimal wavelengths between 1250 nm and 1550 nm.

US 2003/096429 A1 zeigt ein Verfahren zur Bestimmung von Laserparametern zur ZellLyse, mit dem Aussetzen der Zellen aus einer Teilprobe von einer Probe dem Laserlicht. Mindestens ein Parameter des Lasers wird variiert und eine Beschädigung intrazellulärer Moleküle der Teilproben der Probe bei den derart unterschiedlichen Parametern wird gemessen. Mindestens einer der Parameter wird auf der Basis der gemessenen Schäden bestimmt. US 2003/096429 A1 shows a method for determining laser parameters for cell lysis, exposing the cells from a sub-sample of a sample to the laser light. At least one parameter of the laser is varied and damage to intracellular molecules of the subsamples of the sample becomes at the parameters so different measured. At least one of the parameters is determined based on the measured damage.

Rau Kaustubh et. Al. "Pulsed laser microbeam-induced cell lysis: Time resolved imaging and analysis of hydrodynamic effects"), BIOPHYSICAL JOURNAL, BIOPHYSICAL SOCIETY, US, Bd. 91, Nr. 1, 1. Juli 2006 (2006-07-01), Seiten 317-329 , offenbart die Lyse von Zellen, mit dem Aufbrechen der Zellwand durch eine Bestrahlung der Zellen mittels Laser zum Erzeugen von Kavitationsblasen. Rau Kaustubh et. Al. "Pulsed laser microbeam-induced cell lysis: Time resolved imaging and analysis of hydrodynamic effects"), BIOPHYSICAL JOURNAL, BIOPHYSICAL SOCIETY, US, Vol. 91, No. 1, 1 July 2006 (2006-07-01), pages 317 -329 discloses lysis of cells by disrupting the cell wall by irradiation of the cells by laser to create cavitation bubbles.

T. Baier et al. "Hands-free sample preparation platform for nucleic acid analysis", LAB ON A CHIP, Bd. 9, Nr. 23, 1. Januar 2009 (2009-01-01), Seite 3399 , zeigt ein Lab-On-Chip System für eine automatische Extraktion einer Nukleinsäure aus menschlichen Zellproben in einer Methanol-basierten Lösung. T. Baier et al. "Hands-free sample preparation platform for nucleic acid analysis", LAB ON A CHIP, Vol. 9, No. 23, January 1, 2009 (2009-01-01), page 3399 shows a lab-on-chip system for automatic extraction of nucleic acid from human cell samples in a methanol-based solution.

US 2008/171366 A1 offenbart ein Verfahren und Vorrichtung zum Aufbrechen von Zellen und Amplifizieren von Nukleinsäuren unter Verwendung von Nanostäbchen aus Gold, welche mit einem Laser bestrahlt werden, um die Zellen aufzubrechen. US 2008/171366 A1 discloses a method and apparatus for disrupting cells and amplifying nucleic acids using gold nanorods which are laser irradiated to disrupt the cells.

Offenbarung der ErfindungDisclosure of the invention Vorteile der ErfindungAdvantages of the invention

Mit dem erfindungsgemäßen Verfahren lassen sich mit im Vergleich zum Stand der Technik geringem Aufwand Zellen, insbesondere Bakterien, Pilze, Viren, Blutzellen und Zellverbände in einem Filter ohne Enzyme lysieren. Dies ist gegebenenfalls auch unter Vermeidung einer Aufreinigung nach der Lyse möglich.With the method according to the invention, it is possible to lyse cells, in particular bacteria, fungi, viruses, blood cells and cell aggregates in a filter without enzymes, in comparison to the prior art. This is possibly also possible while avoiding purification after lysis.

Die Erfindung lässt sich einfach auf den aktuellen biochemischen Assay übertragen.The invention can be easily transferred to the current biochemical assay.

Die Erfindung ermöglicht es, auch Gram-positive Keime oder andere schwer lysierbare Zellen wie Pilze oder Sporen zu amplifizieren, was erst eine Plattform mit Applikationen für Harnwegsinfekte, MRSA, Pneumonie, Sepsis, Mycosen, usw. ermöglicht.The invention also makes it possible to amplify Gram-positive bacteria or other cells which are difficult to lyse, such as fungi or spores, which makes possible a platform with applications for urinary tract infections, MRSA, pneumonia, sepsis, mycoses, etc.

Ein Laser-Scanner zum Abscannen einer Probe kann günstig mit einem Mikrospiegel in sehr kleiner Bauweise realisiert werden und ermöglicht ein kompaktes Analysegerät. Die Laserlyse lässt sich mit standardisierten Bauelementen für Optik, Scanner und Laser kompakt realisieren mit einem wesentlich geringeren Aufwand als Lyseeinrichtungen nach dem Stand der Technik.A laser scanner for scanning a sample can be conveniently realized with a micromirror in a very small construction and allows a compact analyzer. The laser lysis can be realized compactly with standardized components for optics, scanners and lasers with a considerably lower outlay than lysis devices according to the prior art.

Gegenüber enzymatischen / chemischen Lysen ist die deutliche Vereinfachung des Assays ausschlaggebend.Compared to enzymatic / chemical lyses, the clear simplification of the assay is crucial.

Gegenüber Ultraschalllysen ist neben dem Aufwand für den Generator die einfachere Auslegung und Abstimmung des Chips entscheidend.Opposite Ultraschalllysen is in addition to the effort for the generator simpler design and tuning of the chip crucial.

Die Erfindung ermöglicht ein Lab-on-a-Chip (kurz LOC) als µTAS (Micro Total Analysis System), da der Ablauf der Aufarbeitungs- und Amplifizierungsschritte vor der Detektion gegenüber dem Stand der Technik vereinfacht ist und eine in einen Biochip übertragbare, automatisierungsfähige Vereinfachung des Protokolls geschaffen worden ist.The invention makes possible a Lab-on-a-Chip (LOC for short) as μTAS (Micro Total Analysis System), since the sequence of the processing and amplification steps before the detection is simplified compared to the prior art and an automatable to be transferred into a biochip Simplification of the Protocol.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

  • Fig. 1 zeigt eine schematische Darstellung eines LOC in einer Analysevorrichtung zur Lyse von Zellen und PCR-Amplifikation. Fig. 1 shows a schematic representation of an LOC in an analysis device for lysis of cells and PCR amplification.
  • Fig. 2 zeigt eine schematische Darstellung eines LOC in einer Analysevorrichtung zur Lyse von Zellen und PCR-Amplifikation. Fig. 2 shows a schematic representation of an LOC in an analysis device for lysis of cells and PCR amplification.
  • Fig. 3 zeigt ein Flussdiagramm des Verfahrens zur Lyse von Zellen und PCR-Amplifikation gemäß einer Ausführungsform der vorliegenden Erfindung ohne Reinigungsschritt. Fig. 3 Figure 12 shows a flow chart of the method for lysis of cells and PCR amplification according to an embodiment of the present invention without purification step.
  • Fig. 4 zeigt ein Flussdiagramm des Verfahrens zur Lyse von Zellen und PCR-Amplifikation gemäß einer weiteren Ausführungsform der vorliegenden Erfindung mit Reinigungsschritt. Fig. 4 Fig. 10 shows a flow chart of the method for lysis of cells and PCR amplification according to another embodiment of the present invention with purification step.
Ausführungsformen der ErfindungEmbodiments of the invention

Fig. 1 zeigt ein LOC 10 in einer Analysevorrichtung 30 zur Lyse von Zellen und PCR-Amplifikation, beide jeweils zur DNA-Auswertung mit einem Array 18. Das LOC 10 weist ein steifes, flaches Substrat 11 mit einem fluidischen Netzwerk 12 in dem Substrat 11 auf. Zum fluidischen Netzwerk 12
gehören beispielhaft gezeigte Mikrokanäle 13, Ventile 14 und Kammer 15, sowie eine Multifunktionskammer 19 mit einem Filter 16, in der unter anderem eine PCR stattfindet, und eine Array-Kammer 17 mit dem Array 18. Der Filter 16 enthält hier als Filtermedium ein Silica-Pad und ist über ein erstes externes Temperierelement 43 unter dem Substrat 11 temperierbar. Der Filter 16 füllt einen durchströmten Querschnitt der Multifunktionskammer 19 voll aus. Die Array-Kammer 17 ist über ein zweites Temperierelement 44 unter dem Substrat 11 temperierbar. Elemente des fluidischen Netzwerks 12 können auch im Inneren des LOC 10 verlaufen und sind an der Oberseite mit einer nicht gezeigten Membran bzw. Folie flüssigkeitsdicht abgeschlossen. Die Betätigungselemente für den Betrieb des fluidischen Netzwerks 12 und eine fluidische Schnittstelle zur Analysevorrichtung 30 sind nicht dargestellt.
Fig. 1 1 shows an LOC 10 in an analysis device 30 for lysis of cells and PCR amplification, both for DNA evaluation with an array 18. The LOC 10 has a rigid, flat substrate 11 with a fluidic network 12 in the substrate 11. To the fluidic network 12
include microchannels 13 shown by way of example, valves 14 and chamber 15, and a multi-function chamber 19 with a filter 16, in which inter alia, a PCR takes place, and an array chamber 17 with the array 18. The filter 16 contains here as a filter medium a silica Pad and is temperature controlled by a first external temperature control element 43 under the substrate 11. The filter 16 fills a flow-through cross-section of the multi-function chamber 19 fully. The array chamber 17 can be tempered via a second tempering element 44 under the substrate 11. Elements of the fluidic network 12 can also run in the interior of the LOC 10 and are liquid-tight at the top with a membrane or film, not shown. The actuators for the operation of the fluidic network 12 and a fluidic interface to the analyzer 30 are not shown.

Die Analysevorrichtung 30 weist eine Photolyse-Lichtquelle 31 zur Bestrahlung des Filters 16 und eine Steuerung 32 zur Durchführung der Lyse mittels Bestrahlung des Filters auf. Die Photolyse-Lichtquelle 31 weist in dieser Ausführungsform einen Laser 33, einen Strahlaufweiter 34, einen Mikrospiegel 35 und eine Linse 36 auf. Ein den Laser 33 verlassender Lichtstrahl 37 verläuft über den Strahlaufweiter 34 zum Mikrospiegel 35 und wird dort umgelenkt und verläuft weiter über die Linse 36 zum Filter 16. In dieser Ausführungsform ist der Mikrospiegel 35 ein steuerbarer Mikrospiegel, mit dem der Laser-Lichtstrahl 37 den Filter 16 fokussiert und entsprechend dem Strahldurchmesser rasterförmig überstreichen kann. Die Analysevorrichtung 30 weist weiterhin eine Kamera 39 und eine Array-Beleuchtungs-Lichtwelle 40 auf, die jeweils auf das Array 18 gerichtet sind.The analyzer 30 includes a photolysis light source 31 for irradiating the filter 16 and a controller 32 for performing lysis by irradiating the filter. The photolysis light source 31 in this embodiment has a laser 33, a beam expander 34, a micromirror 35 and a lens 36. A light beam 37 leaving the laser 33 passes via the beam expander 34 to the micromirror 35 and is deflected there and continues to pass through the lens 36 to the filter 16. In this embodiment, the micromirror 35 is a controllable micromirror, with which the laser light beam 37 forms the filter 16 focused and raster-shaped according to the beam diameter can sweep. The analyzer 30 further includes a camera 39 and an array illumination lightwave 40, each directed to the array 18.

Die Steuerung 32 ist über elektrische Steuerleitungen 38 mit dem Laser 33, dem Mikrospiegel 35, der Kamera 39, der Array-Beleuchtungs-Lichtwelle 40, dem Mikrospiegel 35 und den Temperierelementen 43 und 44 verbunden.The controller 32 is connected via electrical control lines 38 to the laser 33, the micromirror 35, the camera 39, the array illumination lightwave 40, the micromirror 35 and the tempering elements 43 and 44.

Die Analysevorrichtung 30 weist weiterhin eine nicht gezeigte mechanische Schnittstelle mit dem LOC 10 auf, mit der das LOC 10 in der Analysevorrichtung 30 definiert positioniert wird. Aufgrund der definierten Positionierung des Filters 16 und des Arrays 18 im LOC sind LOCs austauschbar in der Analysevorrichtung 30 ohne eine erneute optische Justierung einsetzbar. Die Photolyse-Lichtquelle 31 ist bei eingelegtem LOC 10 auf die Position des Filters 16 gerichtet und die Kamera 39 ist auf die Position des Array 18, hier in der Array-Kammer 17 angeordnet, gerichtet. Bei eingelegtem LOC 10 ist der Filter 16 über dem ersten externen Temperierelement 43 angeordnet, und die Array-Kammer 17 ist über dem zweiten Temperierelement 44 angeordnet. Als Temperierelemente können Peltierelemente, Micro-Hotplates oder konvektive Heiz-/Kühl- Elemente, gegebenenfalls elektrische Widerstände, auch in Kombination verwendet werden. Die mechanische Schnittstelle ermöglicht einen geeigneten Wärmeübergang.The analysis device 30 further has a mechanical interface (not shown) with the LOC 10 with which the LOC 10 is positioned in the analysis device 30 in a defined manner. Due to the defined positioning of the filter 16 and the array 18 in the LOC, LOCs are interchangeable in the analyzer 30 without re-optical adjustment. When the LOC 10 is inserted, the photolysis light source 31 is directed to the position of the filter 16 and the camera 39 is directed to the position of the array 18, here in the array chamber 17. When LOC 10 is inserted, the filter 16 is arranged above the first external tempering element 43, and the array chamber 17 is arranged above the second tempering 44. As tempering Peltier elements, micro-hotplates or convective heating / cooling elements, optionally electrical resistors, can also be used in combination. The mechanical interface allows a suitable heat transfer.

Im Betrieb steuert die Steuerung 32 den Ablauf des Assay-Protokolls auf dem LOC 10. Das fluidische Netzwerk 12 wird über die fluidische Schnittstelle gesteuert. Temperaturen und Temperaturänderungen werden über die Temperierelemente 43 und 44 gesteuert. Die Detektion erfolgt mit einem Array- / Biochip und wird mittels der eine Fluoreszenz anregenden eine Array-Beleuchtungs-Lichtwelle 40 und der ein Fluoreszenzlicht beobachtenden Kamera 39, alternativ einem weiteren (nicht gezeigten) Photometer überprüft. Die Auswertung einer DNA-Analyse erfolgt durch die Beobachtung, an welchen Positionen auf einem Array 18 eine Fluoreszenz statt findet, mit der Kamera 39.In operation, the controller 32 controls the flow of the assay protocol on the LOC 10. The fluidic network 12 is controlled via the fluidic interface. Temperatures and temperature changes are controlled by the temperature control elements 43 and 44. The detection is carried out with an array / biochip and is checked by means of the one fluorescence exciting an array illumination light wave 40 and the fluorescent light observing camera 39, alternatively another (not shown) photometer. The evaluation of a DNA analysis is carried out by the observation at which positions fluorescence takes place on an array 18, with the camera 39.

Das LOC 10 zur Lyse von Zellen und PCR-Amplifikation hat eine gemeinsame, einen Filter 16 aufweisende, Multifunktionskammer 19 für Akkumulation von Zellen, Färbung der Zellen, Zellen-Lyse und PCR.The LOC 10 for lysis of cells and PCR amplification has a common, filter 16 having a multi-function chamber 19 for cell accumulation, cell staining, cell lysis and PCR.

Fig. 2 zeigt ein LOC 46 in einer Analysevorrichtung 47 zur Lyse von Zellen und PCR-Amplifikation, beide jeweils zur DNA-Auswertung. Die aus Fig. 1 bekannten Elemente haben wieder dieselben Bezugsziffern. In dieser Ausführungsform erfolgt die Detektion mittels Real-Time-PCR in derselben Kammer wie die Lyse, in der Multifunktionskammer 19. Dazu werden die in der Real-Time-PCR eingesetzten Fluoreszenzfarbstoffe mittels einer Lichtquelle 41 angeregt und mit einem Detektor 42 wird die resultierende Fluoreszenzstrahlung, ggf. bei verschiedenen Wellenlängen, beobachtet. In dieser Ausführungsform ist eine Arraykammer nicht erforderlich. Fig. 2 Figure 4 shows an LOC 46 in an analysis device 47 for cell lysis and PCR amplification, both for DNA evaluation. From Fig. 1 known elements again have the same reference numerals. In this embodiment, the detection by means of real-time PCR in the same chamber as the lysis, in the multi-function chamber 19. For this purpose, the fluorescent dyes used in the real-time PCR are excited by a light source 41 and a detector 42, the resulting fluorescence radiation , possibly at different wavelengths, observed. In this embodiment, an array chamber is not required.

Fig. 3 zeigt ein Flussdiagramm 50 des Verfahrens zur Lyse von Zellen und PCR-Amplifikation der DNA der Zellen gemäß einer Ausführungsform der vorliegenden Erfindung. Das Verfahren weist die Verfahrensschritte auf:

  1. a) Positionierung der Zellen auf einem Filter;
  2. b) Färbung der Zellen;
  3. c) Zugeben einer PCR-Behandlungs-Lösung;
  4. d) Photolyse der Zellen; und
  5. e) Amplifikation von DNA der Zellen mittels PCR.
Fig. 3 Figure 12 shows a flow chart 50 of the method for lysing cells and PCR amplifying the DNA of the cells according to an embodiment of the present invention. The method comprises the method steps:
  1. a) positioning the cells on a filter;
  2. b) staining of the cells;
  3. c) adding a PCR treatment solution;
  4. d) photolysis of the cells; and
  5. e) Amplification of DNA of the cells by PCR.

Damit liegt die DNA der Zellen in hinreichender Menge für DNA-Untersuchungen vor. Das Verfahren ist für Gram-negative und Gram-positive Zellen geeignet.Thus, the DNA of the cells is present in sufficient quantity for DNA examinations. The method is suitable for Gram-negative and Gram-positive cells.

Vorteilhaft folgt der weitere VerfahrenschrittAdvantageously, the further process step follows

  • f) Mischung der amplifizierten DNA mit einem Hybridisation Buffer. Dies dient der Vorbereitung für den weiteren Verfahrenschrittf) Mix the amplified DNA with a hybridization buffer. This serves as preparation for the further process step
  • g) Analyse der amplifizierten DNA. Dies betrifft die Analyse mittels einem Array, entsprechend einer Vorrichtung wie zum Beispiel in Fig. 1 gezeigt.g) Analysis of the amplified DNA. This concerns the analysis by means of an array, corresponding to a device such as in Fig. 1 shown.

In einer alternativen Ausführungsform ohne Array, entsprechend einer Vorrichtung wie zum Beispiel in Fig. 2 gezeigt, entfallen Verfahrenschritte f) und g) und Verfahrenschritt e), in diesem Fall Real-Time-PCR, findet direkt in der Multifunktionskammer 19 in Fig. 2 statt.In an alternative embodiment without array, corresponding to a device such as in Fig. 2 shown, omitted process steps f) and g) and process step e), in this case real-time PCR, takes place directly in the multi-function chamber 19 in Fig. 2 instead of.

Zu den einzelnen Verfahrensschritten folgen weitere Erläuterungen, gegebenenfalls unter beispielhafter Bezugnahme auf die Analysevorrichtung 30 und das LOC 10 aus Fig. 1 oder 2. In Verfahrensschritt a) wird zur Positionierung der Zellen auf dem Filter eine zellhaltige Flüssigkeit, meist Körperflüssigkeit wie Urin, Sputum, Serum, Plasma, Abstriche, BAL (Broncheoalveoläre Lavage), etc. über ein Filtermedium, in Fig. 1 und 2 über das Silica-Faserpad des Filters 16, gepumpt. Dabei werden die Zellen abgeschieden und mit wenigen 100 µl Puffer gewaschen. Das Silica-Faserpad enthält Glasfasern mit Durchmesser d = 0,5 µm -10 µm.For the individual method steps, further explanations, optionally with reference to the analysis device 30 and the LOC 10, follow Fig. 1 or 2 , In method step a), a cell-containing liquid, usually body fluid such as urine, sputum, serum, plasma, smears, BAL (bronchoalveolar lavage), etc. via a filter medium, in order to position the cells on the filter Fig. 1 and 2 over the filter 16 silica fiber pad, pumped. The cells are separated and washed with a few 100 ul buffer. The silica fiber pad contains glass fibers with diameter d = 0.5 μm -10 μm.

Bezüglich der Reihenfolge der Verfahrensschritte a) und b) sind zwei alternative Ausführungsformen möglich, nämlich die Zellen vor oder nach dem Aufbringen auf dem Filter 16 zu färben.With regard to the sequence of process steps a) and b), two alternative embodiments are possible, namely to dye the cells before or after application to the filter 16.

Zur Färbung der Zellen in Verfahrensschritt b) wird eine Farbstofflösung, ca. 50 µl, auf den Filter gegeben und ca. 30 s inkubiert. Anschließend wird gewaschen, z.B. zuerst mit 200 µl Ethanol und danach mit 200 µl Wasser. Als Färbereagentien können verwendet werden:

  1. 1) Gram-Färbung - Kristallviolett-Lösung, waschen mit 200 µl Wasser, 2 min fixieren mit 50 µl Lugolscher Lösung (Lugol's solution, Kl3-Lösung);
  2. 2) Methylenblau-Lösung;
  3. 3) weitere Farbstoffe wie Malachitgrün, Safranin, Fuchsin (mit PAS-Reaktion, Periodic acid-Schiff reaction), Fuchsinschwefelige Säure für Pilze, Brillant-Grün, Methylgrün, Ethyl-Grün, Brillant-blau, Coomassie violett, etc.. Diese Farbstoffe weisen eine Ammoniumgruppe auf, typischerweise in einem Chinoiden System mit weiteren Alkyl-/Aryl-aminogruppen. Viele gehören zur Klasse der Triphenylmethan-Fabstoffe. Die Farbstoffe können auch als Feststoffe in Depots auf dem LOC 10, z.B. lyophilisiert, gelagert werden und mit Wasser in den Filter 16 geschwemmt werden. Die gefärbten Bakterien lassen sich mit Licht mit vergleichsweise geringen Intensitäten lysieren.
For staining the cells in method step b), a dye solution, about 50 μl, is added to the filter and incubated for about 30 s. Then it is washed, eg first with 200 .mu.l of ethanol and then with 200 .mu.l of water. As dyeing agents can be used:
  1. 1) Gram stain - crystal violet solution, wash with 200 μl of water, fix for 2 minutes with 50 μl of Lugol's solution (Lugol's solution, Kl 3 solution);
  2. 2) methylene blue solution;
  3. 3) other dyes such as malachite green, saffron, fuchsin (with PAS reaction, periodic acid-Schiff reaction), fuchsinschwefelige acid for mushrooms, brilliant green, methyl green, Ethyl Green, Brilliant Blue, Coomassie Violet, etc. These dyes have an ammonium group, typically in a quinonoid system with other alkyl / arylamino groups. Many belong to the class of triphenylmethane dyes. The dyes can also be stored as solids in depots on the LOC 10, for example lyophilized, and washed with water into the filter 16. The stained bacteria can be lysed with light of comparatively low intensities.

In Verfahrensschritt c) wird der Filter mit der PCR-Behandlungs-Lösung, dem so genannten Mastermix, befüllt. Diese PCR-Behandlungs-Lösung besteht aus einer Mischung aus DNTPs (deoxynucleotide triphosphate), Primern, Polymerase und Puffer. Ferner ist in der Mischung noch eine Substanz zur Blockierung der Filteroberfläche enthalten, z.B. BSA (Bovine serum albumin), PEG (Polyethylene glycol), PPG (Polypropylene glycol). Es ist auch möglich, die erst in Verfahrensschritt e) benötigten Substanzen erst nach Verfahrensschritt d) zuzugeben.In method step c), the filter is filled with the PCR treatment solution, the so-called master mix. This PCR treatment solution consists of a mixture of DNTPs (deoxynucleotide triphosphates), primers, polymerase and buffer. Further, in the mixture, a substance for blocking the filter surface is contained, e.g. BSA (Bovine serum albumin), PEG (Polyethylene glycol), PPG (Polypropylene glycol). It is also possible to add the substances required only in process step e) only after process step d).

Die Photolyse der Zellen in Verfahrensschritt d) erfolgt bevorzugt mittels Laserlyse. Bei der Photolyse wird die DNA der Zellen freigesetzt. Der Filter, auf dem sich die angefärbten Zellen befinden, wird mit einem handelsüblichen Laser bestrahlt. Dabei wird vorzugsweise der Laserstrahl fokussiert und mit einem Mikrospiegel über den Filter geführt, wobei möglichst die gesamte Filterfläche lückenlos mit dem Laserstrahl überstrichen wird. Alternativ kann der Filter auch mit Hochenergie-LEDs, Blitzlampen oder fokussierten Lichtquellen mit hoher Energiedichte bestrahlt werden. Entscheidend ist dabei, dass die Bakterien möglichst viel Licht absorbieren, wohingegen die Matrix und die umgebende Flüssigkeit möglichst wenig Energie aufnehmen sollen. Dies wird erreicht, indem das zur Photolyse benutzte Licht im Wesentlichen in einem Wellenlängenbereich liegt, der von den gefärbten Zellen stark absorbiert wird, jedoch von Wasser schwach absorbiert wird. Die Farbe der gefärbten Zellen wird vom Farbstoff bestimmt, kann aber von der Farbe des Farbstoffs verschieden sein. Die Wellenlänge oder Wellenlängen des Photolyse-Lichts sind auf die Farbe der gefärbten Zellen abgestimmt, so dass der Absorptionskoeffizient der gefärbten Zelle ein Vielfaches des Absorptionskoeffizienten eines Fluids oder einer stationären Phase eines um die Zellen vorhanden Puffermediums, meist Wasser, beträgt. Ein Vielfaches kann beispielsweise mindestens der Faktor 2,5, zum Beispiel 10 sein. Eine hohe Energieaufnahme des Fluids oder der stationären Phase hätte eine starke schlecht kontrollierbare Temperaturerhöhung zur Folge, die zur Inaktivierung der Polymerase, zum Verdampfen des flüssigen Mediums und zum Platzen der LOCs führen kann. Die Photolyse-Lichtquelle weist vorteilhafterweise eine Wellenlänge im sichtbaren Bereich, die komplementär zur Farbe der angefärbten Zellen ist auf, z.B. 532 nm bei Rotfärbung der Zellen mit Methylenblau, so dass die Absorption durch die gefärbten Bakterien möglichst hoch ist.The photolysis of the cells in process step d) is preferably carried out by means of laser lysis. During photolysis, the DNA of the cells is released. The filter on which the stained cells are located is irradiated with a commercially available laser. In this case, the laser beam is preferably focused and guided with a micromirror on the filter, wherein as far as possible the entire filter surface is swept over completely with the laser beam. Alternatively, the filter can also be irradiated with high-energy LEDs, flash lamps or focused light sources with high energy density. The decisive factor is that the bacteria absorb as much light as possible, whereas the matrix and the surrounding liquid should absorb as little energy as possible. This is achieved by having the light used for photolysis substantially in a wavelength range which is strongly absorbed by the colored cells but weakly absorbed by water. The color of the stained cells is determined by the dye, but may be different from the color of the dye. The wavelength or wavelengths of the photolysis light are matched to the color of the stained cells, so that the absorption coefficient of the stained cell is a multiple of the absorption coefficient of a fluid or a stationary phase of a buffer medium present around the cells, usually water. A multiple may be, for example, at least the factor 2.5, for example 10. A high energy intake of the fluid or the stationary phase would result in a strong, poorly controlled increase in temperature, which may lead to inactivation of the polymerase, evaporation of the liquid medium and bursting of the LOCs. The photolysis light source advantageously has a Wavelength in the visible region which is complementary to the color of the stained cells is, for example, 532 nm in the case of red staining of the cells with methylene blue, so that the absorption by the stained bacteria is as high as possible.

Zwischen den Verfahrensschritten d) und e) findet in dieser Ausführungsform keine Aufreinigung statt. Die Verfahrensschritte a) bis d) finden alle im Filter 16 statt. Anschließend wird der Inhalt des Filters 16 in die Array-Kammer 17 gepumpt, in der anschließend die Hybridisierung und Detektion stattfindet.Between the process steps d) and e) no purification takes place in this embodiment. The process steps a) to d) all take place in the filter 16. Subsequently, the content of the filter 16 is pumped into the array chamber 17, in which then the hybridization and detection takes place.

Bei der PCR-Amplifikation der DNA in Verfahrensschritt e) wird der Filter den für die PCR üblichen thermischen Zyklen unterworfen. Bei diesen Temperaturzyklen wird die DNA wie bereits oben beschrieben vervielfältigt. Nun liegt die DNA der Zellen in hinreichender Menge für DNA-Untersuchungen vor. Das Verfahren ist für Gram-negative und Gram-positive Zellen geeignet. Anschließend kann die DNA von dem Filterelement eluiert werden. So werden z.B. aus 10 ml Urin mit 105 Zellen nach 20 Zyklen 1011 DNA Moleküle in 50 µl isoliert. Alternativ kommen andere Amplifikationen, auch isotherme, ebenso in Frage, z.B. NASBA (Nucleic Acid Sequence Based Amplification).During the PCR amplification of the DNA in method step e), the filter is subjected to the usual thermal cycles for the PCR. At these temperature cycles, the DNA is amplified as described above. Now the DNA of the cells is in sufficient quantity for DNA examinations. The method is suitable for Gram-negative and Gram-positive cells. Subsequently, the DNA can be eluted from the filter element. Thus, for example, from 10 ml of urine with 10 5 cells after 20 cycles, 10 11 DNA molecules are isolated in 50 μl. Alternatively, other amplifications, including isotherms, are also possible, for example NASBA (Nucleic Acid Sequence Based Amplification).

Nach dem Zufügen eines so genannten Hybridisation Buffer in Verfahrensschritt f) und Aufbringen auf das DNA-Array 18 mittels des fluidischen Netzwerks 12 ist die DNA für die Detektion bzw. Analyse der amplifizierten DNA in Verfahrensschritt g), mittels DNA-Array, beispielsweise Array 18 in Fig. 1, vorbereitet. Der Hybridisation Buffer kann ein Puffersystem und ein Salz zur Erhöhung einer Salzkonzentration umfassen.After adding a so-called hybridization buffer in method step f) and applying it to the DNA array 18 by means of the fluidic network 12, the DNA for the detection or analysis of the amplified DNA in method step g), by means of a DNA array, for example array 18 in Fig. 1 , prepared. The hybridization buffer may comprise a buffer system and a salt to increase a salt concentration.

Das erfindungsgemäße Verfahren lässt sich einfach sowohl auf die Filter-PCR als auch auf einen voll integrierten LOC übertragen.The method according to the invention can be easily transferred both to the filter PCR and to a fully integrated LOC.

Fig. 4 zeigt ein Flussdiagramm 60 des Verfahrens zur Lyse von Zellen und PCR-Amplifikation der DNA der Zellen gemäß einer Ausführungsform der vorliegenden Erfindung mit einem Reinigungsschritt. Das Verfahren weist die Verfahrensschritte auf:

  • a) Positionierung der Zellen auf einem Filter;
  • b) Färbung der Zellen;
  • d) Photolyse der Zellen;
  • d1) Reinigung von DNA der Zellen;
  • c) Zugeben einer PCR-Behandlungs-Lösung; und
  • e) Amplifikation der DNA der Zellen mittels PCR.
Fig. 4 Figure 12 shows a flow diagram 60 of the method for lysing cells and PCR amplifying the DNA of the cells according to an embodiment of the present invention with a purification step. The method comprises the method steps:
  • a) positioning the cells on a filter;
  • b) staining of the cells;
  • d) photolysis of the cells;
  • d1) purification of DNA of the cells;
  • c) adding a PCR treatment solution; and
  • e) Amplification of the DNA of the cells by means of PCR.

Damit liegt die DNA der Zellen in hinreichender Menge für DNA-Untersuchungen vor. Das Verfahren ist für Gram-negative und Gram-positive Zellen geeignet.Thus, the DNA of the cells is present in sufficient quantity for DNA examinations. The method is suitable for Gram-negative and Gram-positive cells.

Vorteilhaft folgt der weitere Verfahrenschritt

  • f) Mischung der amplifizierten DNA mit einem Hybridisation Buffer. Dies dient der Vorbereitung für den weiteren Verfahrenschritt
  • g) Analyse der amplifizierten DNA. Die Analyse umfasst die Hybridisierung und die Detektion.
Advantageously, the further process step follows
  • f) Mix the amplified DNA with a hybridization buffer. This serves as preparation for the further process step
  • g) Analysis of the amplified DNA. The analysis includes hybridization and detection.

In dieser Ausführungsform der vorliegenden Erfindung entsprechen die gleichnamigen Verfahrensschritte den aus der Beschreibung von Fig. 3 bekannten Verfahrensschritten, unter Berücksichtigung der folgenden Unterschiede. Nach der Photolyse der Zellen in Verfahrensschritt d) erfolgt nun eine Reinigung von DNA der Zellen in Verfahrensschritt d1). Diese Reinigung kann durch einen oder mehrere Waschschritte erfolgen, in denen Zellbestandteile außer DNA entfernt werden. Wegen des mit der Reinigung einher gehenden Flüssigkeitsaustauschs wird die PCR-Behandlungs-Lösung erst nach der Reinigung zugegeben - Verfahrensschritt c) erfolgt also nach Verfahrensschritt d1).In this embodiment of the present invention, the method steps of the same name correspond to those of the description of FIG Fig. 3 known method steps, taking into account the following differences. After the photolysis of the cells in process step d), the DNA of the cells is then purified in process step d1). This purification can be accomplished by one or more washes in which cell components other than DNA are removed. Because of the liquid exchange associated with the cleaning, the PCR treatment solution is added only after the purification - process step c) thus takes place after process step d1).

Claims (9)

  1. Method for the lysis of cells and PCR amplification, having the following method steps
    a) positioning the cells in a chamber (19);
    b) staining the cells;
    c) adding a PCR treatment solution;
    d) photolysis of the cells; and
    e) amplification of DNA from the cells by means of PCR;
    wherein method steps a) and b) and also c) and d) can in each case take place in any desired order and the light used for the photolysis is substantially in a wavelength range which is strongly absorbed by the stained cells, but is poorly absorbed by water, characterized in that in method step b) the cells are stained with at least one stain from the group consisting of crystal violet solution and methylene blue solution.
  2. Method according to Claim 1, characterized by the further method step d1) purifying the DNA from the cells after method step d).
  3. Method according to Claim 1 or 2, characterized by the further method step
    f) supplying a hybridization buffer to the amplified DNA.
  4. Method according to Claim 3, characterized by the further method step
    g) analysing the amplified DNA.
  5. Method according to one of Claims 1 to 4, characterized in that the method steps a) to d) take place in the same volume element of an analysis chip.
  6. Method according to one of Claims 1 to 5, characterized in that cells, bacteria, especially Gram-positive bacteria, fungi, spores or viruses are used.
  7. Method according to one of Claims 1 to 6, characterized in that in method step c) the treatment solution has a mixture of dNTPs (deoxynucleotide triphosphates), primers, polymerases and buffer, and also a substance for blocking the filter surface.
  8. Method according to one of Claims 1 to 7, characterized in that in method step d) the photolysis of the cells is carried out by means of laser beam, high-energy LEDs, flash lamps or light sources with a high energy density.
  9. Method according to one of Claims 1 to 8, characterized in that a wavelength range of a light used for the photolysis is adapted to the staining of the cells such that an absorption coefficient of the stained cells is greater by a multiple than an absorption coefficient of a buffer medium present around the cells.
EP12704033.5A 2011-04-08 2012-02-08 Method for the lysis of cells and pcr amplification Active EP2694672B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011007035A DE102011007035A1 (en) 2011-04-08 2011-04-08 Method, LOC and analyzer for cell lysis and PCR amplification
PCT/EP2012/052072 WO2012136400A1 (en) 2011-04-08 2012-02-08 Method, loc and analysis device for the lysis of cells and pcr amplification

Publications (2)

Publication Number Publication Date
EP2694672A1 EP2694672A1 (en) 2014-02-12
EP2694672B1 true EP2694672B1 (en) 2018-09-12

Family

ID=45607230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12704033.5A Active EP2694672B1 (en) 2011-04-08 2012-02-08 Method for the lysis of cells and pcr amplification

Country Status (3)

Country Link
EP (1) EP2694672B1 (en)
DE (1) DE102011007035A1 (en)
WO (1) WO2012136400A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203655B4 (en) * 2013-03-04 2023-03-23 Robert Bosch Gmbh Method and device for the selective lysis of cellular particles
DE102014207774B4 (en) * 2014-04-25 2015-12-31 Robert Bosch Gmbh Method and device for purifying biological molecules
EP3338889A1 (en) 2016-12-23 2018-06-27 IMEC vzw Combined extraction and pcr systems
DE102017123919A1 (en) 2017-10-13 2019-04-18 Gna Biosolutions Gmbh Method and apparatus for lysing microorganisms

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028379A (en) 1989-12-20 1991-07-02 General Electric Company Fuel handling system for nuclear reactor plants
US6815209B2 (en) * 2001-11-16 2004-11-09 Cornell Research Foundation, Inc. Laser-induced cell lysis system
KR101157175B1 (en) * 2005-12-14 2012-07-03 삼성전자주식회사 Microfluidic device and method for concentration and lysis of cells or viruses
KR100813271B1 (en) * 2006-11-09 2008-03-13 삼성전자주식회사 Method and apparatus for disrupting cell or virus and amplifying nucleic acids using gold nanorod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012136400A1 (en) 2012-10-11
DE102011007035A1 (en) 2012-10-11
EP2694672A1 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
Enger et al. Optical tweezers applied to a microfluidic system
EP2299257B1 (en) Device and method for detecting molecular interactions
JP5063616B2 (en) Microfluidic device
EP1054735B1 (en) Miniaturized temperature-zone flow reactor
EP2694672B1 (en) Method for the lysis of cells and pcr amplification
EP1780290A2 (en) Apparatus for amplifying nucleic acids
JP2005506541A (en) Sample preparation integrated chip
EP2152913A2 (en) Detection device for detecting biological microparticles such as bacteria, viruses, spores, pollen or biological toxins, and detection method
DE112015007082B4 (en) Cell analysis device, device and a cell analysis method using the same
WO2015156738A1 (en) Microfluidic device
DE102014209188B4 (en) Apparatus and method for processing a biological sample and analysis system for analyzing a biological sample
DE102014105437A1 (en) Microfluidic module and cassette for immunological and molecular diagnostics in an automated analyzer
WO2005107949A1 (en) Method and apparatus for creating an analysis arrangement comprising discrete, separate test zones used for performing biological, biochemical, or chemical analyses
EP2836302B1 (en) Method and device for targeted process control in a microfluidic processor having integrated active elements
EP1123980B1 (en) System for simple nucleic acid analysis
EP2555872B1 (en) Device for detecting nucleic acids
Maruyama et al. Immobilization of individual cells by local photo-polymerization on a chip
DE102005059535A1 (en) Device and method for carrying out a nucleic acid test, and method for producing such a device
Chou Microfabricated Devices for Rapid DNA Diagnostics
EP3283879B1 (en) Method for detecting one or more analytes in a sample, said detection being delimited by a reaction chamber
EP3063525B1 (en) Improved device and method for reactions between a solid and a liquid phase
WO2001070399A1 (en) Microhybridisation chamber
DE102014200468A1 (en) Microfluidic system and method for preparing and analyzing a sample of biological material containing cells
DE102014200467A1 (en) Microfluidic system and method for analyzing a sample of biological material
DE112021004322T5 (en) Sensor system and method for detecting dielectric particles from biological materials in fluids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140903

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012013418

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C12Q0001680000

Ipc: B01L0003000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101AFI20180419BHEP

Ipc: B01L 7/00 20060101ALI20180419BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013418

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1039906

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013418

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1039906

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200221

Year of fee payment: 9

Ref country code: NL

Payment date: 20200220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120208

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220221

Year of fee payment: 11

Ref country code: CH

Payment date: 20220221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220221

Year of fee payment: 11

Ref country code: BE

Payment date: 20220216

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230426

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230208

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228