EP2694249B1 - Procédé de preparation d'un agent de grenaillage, procédé de grenaillage, agent de grenaillage, dispositif pour la preparation d'un agent de grenaillage et dispositif pour le grenaillage - Google Patents

Procédé de preparation d'un agent de grenaillage, procédé de grenaillage, agent de grenaillage, dispositif pour la preparation d'un agent de grenaillage et dispositif pour le grenaillage Download PDF

Info

Publication number
EP2694249B1
EP2694249B1 EP12709533.9A EP12709533A EP2694249B1 EP 2694249 B1 EP2694249 B1 EP 2694249B1 EP 12709533 A EP12709533 A EP 12709533A EP 2694249 B1 EP2694249 B1 EP 2694249B1
Authority
EP
European Patent Office
Prior art keywords
particles
blasting
blasting media
water
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12709533.9A
Other languages
German (de)
English (en)
Other versions
EP2694249A1 (fr
Inventor
Jürgen Von Der Ohe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2694249A1 publication Critical patent/EP2694249A1/fr
Application granted granted Critical
Publication of EP2694249B1 publication Critical patent/EP2694249B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier

Definitions

  • the invention relates to a method for producing a blasting abrasive according to the preamble of claim 1, a method for blasting according to the preamble of claim 9, a blasting abrasive according to the preamble of claim 11, an apparatus for producing a blasting abrasive according to the preamble of claim 12 and a Device for blasting according to the preamble of claim 14.
  • WO 2003 101667 A1 is known CO 2 pellets used as a solid abrasive for cleaning surfaces.
  • the CO 2 pellets act as a soft, not very abrasive blasting agent, causing no damage to the surface to be cleaned. Due to the temperature of about -78 ° C, the CO 2 pellets caused a thermoelectric voltage between contamination and to clean component, which leads to the separation of the impurity (cryogenic effect).
  • the DE 35 05 675 A1 describes a method for removing surfaces, in which water ice (water particles) is added to a water jet.
  • the water jet is pressed with a dependent on the component to be cleaned, pressure on the surface to be cleaned.
  • the water ice can also be formed by ice-forming germs within the water jet.
  • a disadvantage of this method is that no cryogenic effect occurs but only a mechanical removal is recorded.
  • the DE 10 2006 002 653 B4 describes a process in which a certain amount of water is added to a dry ice stream.
  • DE 100 10 012 A1 describes a device in which CO 2 pellets or CO 2 particles are mixed to improve the cleaning performance with a blasting agent solid at room temperature.
  • a disadvantage is the low constancy of the quantitative ratio between CO 2 radiation agent and the additional abrasive.
  • DE 10 2010 020619 A1 discloses a method and apparatus for cleaning metallic or non-metallic surfaces using compressed air, a cold blasting medium, in combination with a solid abrasive and / or a blasting agent mixture.
  • the object of the present invention is to provide a manufacturing method for a blasting agent that has a controllable abrasiveness and thus impurities from surfaces as possible can be removed without residue.
  • the component itself should not be damaged or removed.
  • the inventors have recognized that the object can be achieved in a surprising manner in that first solid particles of CO 2 and second solid particles are produced separately from water and then combined, in particular mixed.
  • first solid particles of CO 2 and second solid particles are produced separately from water and then combined, in particular mixed.
  • the first and second particles are produced by crushing.
  • larger units such as blocks of dry ice and water ice can be used, which is advantageous in terms of energy and storage.
  • the separately produced first and / or the second particles are comminuted before being combined.
  • the size can optionally be adjusted to the desired size in the blasting agent mixture after a certain temperature setting of the particles.
  • the temperature of the first particles is -60 ° C to -80 ° C, preferably -70 ° C.
  • the temperature of the second particles is preferably -15 ° C to -30 ° C, especially -25 ° C.
  • the surface is then still relatively humid.
  • the water ice pieces have in this state only a small hardness and size, which is higher than that of the CO 2 particles. If these pieces of water ice are mechanically comminuted to the desired size, water is re-formed, since the comminution tools have room temperature. If the water ice pieces, however, brought to a temperature of about -60 ° C to - 70 ° C, they have, as has been found in experiments, although a high hardness, but need for crushing a very high pressure, which in turn a local Water formation favors.
  • the first particles have a dimensioning of 0.4 mm to 1 mm, preferably 0.6 to 0.8 mm in the cross-section means and / or the second particles have a dimension of 0.6 mm to 1.2 mm, preferred 0.8 to 1.0 mm in the cross-sectional means. These sizes have proven to be effective during blasting.
  • the second particles are produced as flake ice prior to merging.
  • cross-sectional means in this context means that the dimension with the least strength has this size on average.
  • flake ice which has a spatial curvature due to the cylindrical geometry of the flake ice maker, it is therefore the mean thickness of the flake ice.
  • the size and / or size distributions of the first and the second particles are each adjusted so that in each case the same masses or mass distributions result for the first and second particles. This is therefore of particular importance, because otherwise it can lead to a change in the set mixture or even to a segregation. Due to the fact that the density of dry ice is approx. 1.56 g / cm 3 , whereas that of water ice is approx.
  • the particle sizes of CO 2 must be adjusted to equal masses or mass distributions. Behave particles inversely proportional to water ice particles, so that there is no change in the set mixing ratio during transport through the compressed air stream. As a rule, values can not be kept exactly constant, which is why distributions result. When adjusting the masses or mass distributions via the targeted dimensioning, it must be ensured that these must be different depending on the temperature at hand.
  • the abrasiveness of the blasting agent is preferably adjusted by specifically setting the mixing ratio between the first and second particles, the shape of the second particles, the size of the second particles and / or the temperature of the second particles in the blasting medium.
  • Regarding the shape of the second particle have edged water ice particles a higher abrasiveness than those with curves. Larger second particles have a higher abrasiveness than smaller ones.
  • a mixture with more second particles has a higher abrasiveness than with less second particles.
  • the mixture can be arbitrarily set, for example, via the rotational speeds of respective shredders for the first and second particles.
  • the second particles have a higher abrasiveness at lower temperatures.
  • the size of the first and / or second particles in their production is so much greater than the size set in the blasting agent adjusted to compensate for size losses caused in the production of the blasting agent.
  • the desired size of the particles in the blasting medium is reliably achieved, despite the particles generated in the merger lose in size.
  • the first particles of CO 2 become smaller because they cool the second particles by sublimation.
  • the second particles are further cooled after their preparation in a special transport cooling unit, wherein they reach temperatures of about -20 ° C. At this temperature they have a hardness that is favorable for comminution and are dry. However, the hardness achieved does not yet bring the desired abrasiveness.
  • a further increase in the abrasiveness of the CO 2 water ice mixture is achieved by mixing the CO 2 particles and water ice particles, which have been comminuted separately in a certain ratio, after comminution in a further cold chamber.
  • the cold chamber there is a direct contact between the CO 2 particles with a temperature of about -78 ° C and the water ice particles which have a temperature of about -20 to -30 ° C.
  • This direct contact leads to an energy exchange between the CO 2 particles and the water ice particles.
  • the water ice particles release heat, thereby increasing their hardness and the CO 2 particles absorb the heat released, which leads to a softening of the surface or to the formation of CO 2 gas.
  • the CO 2 gas produced after the merging is used as a protective gas against heating and ambient air and / or used for cooling the second particles.
  • the cooling can be further improved by using CO 2 snow, liquid nitrogen and / or frozen compressed air to cool the second particles.
  • first and second particles are stored so separated from each other before the merger that an at least partial temperature exchange can take place.
  • the first particles, the second particles and / or the blasting agent are cooled in two or more cooling planes. This significantly increases the cooling capacity.
  • a dried compressed air stream is used as dosing flow for the metering of the blasting medium and / or the blasting agent is provided with a dried compressed air stream as a jet stream having a temperature of + 40 ° C. to + 90 ° C., preferably + 50 ° C to + 90 ° C, in particular + 70 ° C to + 80 ° C. If the object to be irradiated itself is already heated, as is the case, for example, with vulcanizing molds, a separate heating of the jet stream can be dispensed with.
  • the heat capacity decreases as a result of the removal of heat during the transition of the CO 2 particles from the solid to the gaseous state. This leads to a deterioration of the cleaning performance and the formation of condensate.
  • the compressed air is dried and heated in dependence on the contamination. This dry and hot stream of compressed air, the CO 2 water ice mixture is added.
  • the CO 2 irrigation mixture is not damaged by the hot compressed air flow, since it is exposed to the above-mentioned temperature only a short time at the high flow rate and the short distance from blasting machine to the blasting machine and due to the Leydenfrost phenomenon an insulating gas envelope around the individual particles of CO 2 forms water ice mix.
  • the hot and dry compressed air stream absorbs the moisture from the environment after leaving the jet nozzle and thus prevents condensation on the surface of the component to be cleaned.
  • blasting agent produced according to the invention which has solidified CO 2 and solidified water.
  • This blasting agent may also be separately prepared and delivered to blasting devices with suitable intermediate storage which maintains the desired temperature and humidity of the blasting medium.
  • independent protection is claimed for a device for producing a blasting medium for blasting bodies, surfaces, interiors and the like, which has solidified CO 2 and solidified water and is characterized in that supply means for separately generated first solid particles of CO 2 and second solid particles of water are provided and in particular a mixer for the first and second particles is provided.
  • the supply means can be designed, for example, as independent transport means, for example conveyor belts or transport plates.
  • a common means of transport can be provided, which is fed from two separate containers for the separately produced first and the second particles.
  • independent protection is claimed for a device for blasting bodies, surfaces, interiors and the like, comprising means for providing a stream of compressed air and means for providing a blasting agent, which is characterized in that the means for providing the blasting agent as the inventive device for Making a blasting agent is formed.
  • this device for blasting dosing for metering the blasting agent which use a dried compressed air stream as Dosierstrom and / or this device for blasting advantageously irradiation means for applying the irradiating object with the blasting agent, which use a dried compressed air stream as a jet stream, the a temperature of + 40 ° C to + 90 ° C, preferably + 50 ° C to + 90 ° C, in particular + 70 ° C to + 80 ° C.
  • the present invention provides a novel production process, in particular novel CO 2 pellets or CO 2 particles prior to entering into the compressed air flow with as edged water ice particles that are cooled in one or more stages so they have a high hardness, brings together that a stable abrasive CO 2 water ice mixture is formed, wherein for a particular adjustment of the abrasivity additionally the temperature of the blasting agent is adjustable, with temperature of about -70 ° C are preferred. The temperature adjustment takes place in particular in a separate cold chamber, in which the CO 2 water ice mixture is gradually cooled in several stages to -60 ° C to - 70 ° C, so that the water ice particles, for example, reach the desired hardness of glass.
  • the comminution of the CO 2 particles and the water ice particles is preferably carried out separately in one or more steps in a compact comminution block which is indirectly cooled by the CO 2 particles, thereby preventing the re-formation of water in the comminuting tools.
  • Fig. 1 and 2 are purely schematically two different preferred embodiments of the device A, B according to the invention of the preparation of the invention Shedding means and shown in section for radiating, wherein the same elements are provided with the same reference numerals.
  • Fig. 1 It can be seen that the water ice prepared with conventional water ice conditioners 1, preferably flake ice 2, with a temperature of about -7 ° C, using a small conveyor belt 30 either on the conveyor belts 3 in the transport unit 5 or in the water tank 31st is encouraged.
  • the water required for generating the flake ice 2 is conveyed by a pump 32 from the water tank 31 into the water ice conditioner 1.
  • the flake ice 2 On the conveyor belts 3, which run in the closed and outwardly insulated transport unit 5 via cooling blocks 4 and moved by the drive shafts 33, the flake ice 2 is transported from the water ice conditioner 1 to the crusher 6 and further to about -25 ° C. cooled.
  • the cooling is carried out by the cooling blocks 4 and is achieved by a, mounted outside the transport unit 5 blower 7, which sucks the air in the housing 5 via the upper nozzle 8 and blows on the lower nozzle 9 back into the transport unit 5.
  • the resting on the cooling blocks 4 baffles 10 are mutually offset offset on one side and force the air flow to flow through the spaces in the cooling blocks 4 which are traversed by a special coolant mixture of the refrigeration unit 37 and cooled.
  • the air flow flows perpendicular to the direction of movement of the conveyor belts 3. This ensures that the air is cooled when flowing through the cooling blocks 4 and the overflow of moving through the conveyor belts 3 Scherbeneis 2 this extracts a certain amount of heat.
  • the flake ice 2 on the conveyor belts 3 through the transport unit 5 gets to a small hopper 11 and from there to Brecherwerk 6.
  • the crusher 6 is the CO 2 -Mahlwerk 12.
  • the reservoir 13 for the CO 2 pellets 14 is arranged.
  • the small hopper 11, the crusher 6, the reservoir 13 and the CO 2 grinder 12 form a closed unit. This ensures that the crusher 6 and the small hopper 11 through the CO 2 pellets 14 in the reservoir 13 received a certain pre-cooling and heat only slightly during short breaks.
  • the crusher 6 is constructed in the usual way with hammers and an anvil bar.
  • the CO 2 grinder shown is formed with opposing rollers.
  • the flake ice 2 due to the nature of the production, has already been partially comminuted in the water ice conditioner 1 by the scraping and further, but undefined, shredded by the change of the conveyor belts 3, the flake ice 2 in the crusher plant 6 and the CO 2 Pellets 14 in the CO 2 grinder 12 crushed to a well-defined size.
  • the size ratio of the water ice particles 15 formed during comminution to the CO 2 particles 16 is in inverse proportion to the density of the generated particles 15, 16.
  • the resulting CO 2 - 16 and water ice particles 15 are then in a cold chamber 17, the in their basic structure that is similar to the transport unit 5 and is located directly below the crushing units 6, 12, mixed.
  • the mixing ratio between CO 2 - 16 and water ice particles 15 is variable and can be controlled by the speed of the CO 2 grinder 12 for the CO 2 pellets 14.
  • the cooling of the cold chamber 17 is effected by a special cooling block 36, which is traversed by a refrigerant mixture from the refrigeration unit 37.
  • the CO 2 irrigation ice mixture 18 is gradually cooled to about -70 ° C by mixing it on plates 20, which are arranged in several planes 35, at a certain angle 21 to each other, and by the vibration of the cold chamber 17th , which is generated by a vibrator 19, is transported from one level 35 to the other.
  • the CO 2 particles 16 When mixing the CO 2 particles 16 come with a temperature of about -70 ° C with the water ice particles 15, which have a temperature of about -20 to -30 ° C, in direct contact. The contact, which constantly changes as a result of the vibration and the transition from one level 35 to the other, results in an energy exchange between the CO 2 particles 16 and the water ice particles 15.
  • the CO 2 particles 16 withdraw the water ice Particles 15 energy and sublimate. Due to the energy withdrawal, the water ice particles 15 become colder and harder.
  • the CO 2 particles 16 become porous and soft by the transition of a part of its substance in the gaseous state at the surface.
  • the gradual decrease in temperature in the cold chamber 17 assists the reconsolidation of the CO 2 particles 16 and the further increase in the hardness of the water ice particles 15.
  • the resulting by the sublimation CO 2 gas which is known to be heavier than air, remains in the cold chamber 17 and prevents the penetration of the ambient air or can be used to support the cooling in the cold chamber 17.
  • the CO 2 water ice mixture 18 with a temperature of about -70 ° C is added to the compressed air stream 22 in a metering unit 23.
  • the main compressed air stream 22 is absolutely dry (water content below 0.05g / m 3 ) and has a temperature of about +25 ° C.
  • the main compressed air stream 22 is divided, wherein a portion as dosing flow 24 to the dosing unit 23, which is located below the cold chamber 17, and there is loaded with the CO 2 irrigation ice 18.
  • the other part 25 of the main compressed air stream 22 is heated as jet stream 25 in the air heater 26 to a temperature of +50 ° C to +80 ° C and then reunited in the mixing chamber 27 with the metering 24 and led to the blasting gun 28.
  • Fig. 2 It can be seen that the solid CO 2 is delivered in blocks 38 and stored in insulated containers 39. The same applies to the water ice 40.
  • the blocks of CO 2 38 and water ice 40 are pushed to produce the CO 2 water ice mixture 41 in cooled and insulated shafts 49 for the CO 2 blocks 42 and the water ice blocks 43 and lie on the rasp 44 for CO 2 , and the rasp 45 for water ice on.
  • the rasps 44, 45 have different pitches, which are adapted to the density ratio.
  • the CO 2 particles 47 are separated from the CO 2 block 38 by means of the CO 2 rasp 44 and the water ice particles 48 are separated from the water ice block 40 by means of the water ice rasp 45.
  • the resulting water ice particles 48 are further cooled according to Example 1 to about -25 ° C and mixed in the cold chamber 17 with the CO 2 particles 47.
  • the CO 2 particles 47 are brought by means of the rotary valve 50 from the CO 2 reservoir 46 and the water ice particles 48 by means of the rotary valve 51 in the cold chamber 17.
  • the mixing ratio is set by the different speeds of the CO 2 rasp 44 and the water ice rasp 45.
  • the cooling process required to form the hard CO 2 water ice mixture 41 may be further assisted by the injection of small amounts of CO 2 snow or liquid nitrogen or compressed air. By blowing in, the overall energy exchange is improved and accelerated by the generated flow.
  • FIG. 3a . 3b purely schematically shows a third preferred embodiment of the inventive device C for producing the blasting agent according to the invention, wherein the same elements as in Fig. 1 and 2 have the same reference numerals.
  • the cylindrical Cooling unit 52 has a plurality of annular cooling levels 54, under which cooling coils 55 are located (see in particular Fig. 3b ).
  • the cooling coils 55 are connected to the cooling tubes 59 extending in the double wall 61 of the cylindrical cooling unit 52.
  • the cooling coils 55 and the cooling tubes 59 are traversed by a refrigerant mixture, which is moved by the refrigeration unit 56.
  • the CO 2 -water ice mixture 18 falls on the upper annulardeebene 57.
  • the annulardeebenen 54, 57 are not circumferentially closed, but each have after 360 ° a gap 58 through which the CO 2 irrigation water mixture 18 to the next , lower lyingdeebene 54 falls.
  • the interruptions 58 in thedeebenen 54 are staggered so that the cooling path is as long as possible.
  • An agitator 60 with special sliders 62 provides mixing in the cooling levels 54 and moves the CO 2 water ice mixture 18 on the cooling levels 54 from the point of impact to the gap 58 in the corresponding cooling level 54. After the CO 2 irrigation Mixture 18 has passed through alldeebenen 54, 57, it is mixed in the metering unit 23 to the metering 24.
  • Fig. 4 is purely schematically illustrated a fourth preferred embodiment of the device D according to the invention for producing the blasting agent according to the invention, wherein the same elements as in Fig. 1 . 2 . 3a and 3b have the same reference numerals.
  • CO 2 water ice mixture 18 consists of several individual assemblies which, procedurally and functionally related to each other and are mounted in a common frame 61.
  • the water ice conditioner 1, for generating the flake ice 2 is supplied by the pump 32 with water.
  • the spatially curved flake ice 2 falls on the small conveyor belt 30, which is moved by the motor 62 with the drive shaft 33 and guided by the guide roller 63 with the clamping device 64 and tensioned.
  • the small conveyor belt 30 conveys the flake ice 2 to the transport unit 5 and transfers it to the uppermost belt 30 of the transport belts 30 arranged several times above one another.
  • the conveyor belts 30 are located in the closed transport unit 5 and transport the flake ice 2 in several stages to the crusher plant 6.
  • the inclined conveyor belts 30 are provided with transverse to the conveyor belts 30 extending ribs 65.
  • the conveyor belts 30 run in each plane via drive shafts 33 and deflection rollers 63.
  • the drive shafts 33 are mounted in the base plate 67 and in the mounting plate 68 and are driven by a motor 69 via a toothed belt 70. Between the drive shaft 33 and the guide roller 63 is ever a cooling block 4, which is held by the support rods 71.
  • the transport unit 5 there are a plurality of fans 72 which move the CO 2 -containing air within the transport unit 5.
  • the flake ice 2 is remixed or turned over at each transition from one level to another.
  • the CO 2 -containing air moved by the blowers 72 is cooled as it flows through the cooling blocks 4 and absorbs heat when sweeping the flake ice 2.
  • the alternating flow through 25 of the cooling blocks 4 and the sweeping of the flake ice 2 on the conveyor belts 30 is supported by the mutual arrangement of the baffles 10.
  • the transport unit 5 rests on the crusher 6.
  • the crusher 6 In the crusher 6 is the fixed anvil strip 73 and the hammer shaft 74 with the hammer wheels 75, which provide the desired crushing of the flake ice 2.
  • the CO 2 mill 12 is for crushing the commercial CO 2 pellets 14.
  • the reservoir 13 for the CO 2 pellets 14.
  • the control of the level in the reservoir 13 takes place through the sensor 76.
  • the crusher 6 and the CO 2 grinder 12 are mounted on the fixed plate 77.
  • the cold chamber 17 is suspended resiliently, so that the CO 2 -water ice mixture 18 by the oscillatory movements generated by the vibrator 19 can slide freely on the cooling plates 20 to the metering unit 23 while continuing through the cooling block 36 cooled to the desired temperature.
  • the cooling block 36 is cooled by means of a special mixture of refrigerants, which is moved by the refrigeration unit 34.
  • the cooling blocks 4 are also cooled with a special mixed refrigerant, which is moved by the refrigeration unit 37.
  • the compressed air required for blasting is passed through the nozzle 78 in the heating unit 79 and divided.
  • the dosing flow 24 is passed unheated to the dosing unit 23 and there loaded with the brought to cryogenic CO 2 -water ice mixture 18.
  • the jet stream 25 is heated in the heating unit 79 and brought together in the mixing chamber 27 with the charged with the CO 2 -water ice mixture 18 metering stream 24 and directed to the blasting gun (not shown).
  • controllable comminution units By means of controllable comminution units, the size and the mixing ratio of the CO 2 - 16 and the water ice particles 15 can be set and regulated according to the type of contamination.
  • the CO 2 -water ice mixture 18 can be adjusted in its hardness and abrasiveness to the component to be cleaned and the contamination targeted.
  • the surfaces of the cleaned components are dry after cleaning and free from rust.
  • the CO 2 water ice mixture 18 can be used in conjunction with a specially prepared hot compressed air stream 22, for cleaning unheated components, while maintaining a certain temperature difference between the component and CO 2 water ice mixture 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cleaning In General (AREA)

Claims (15)

  1. Procédé destiné à la fabrication d'un agent de sablage (18 ; 41) en vue du sablage de corps, de surfaces, de compartiments intérieurs et similaires, qui présente du CO2 et de l'eau, le CO2 et l'eau étant à l'état solide, les premières particules (14, 16) solides étant générées de manière séparée à partir de CO2 et les deuxièmes particules (2, 15) solides étant générées de manière séparée à partir d'eau et étant ensuite amalgamées, en particulier mélangées, les deuxièmes particules (2) étant fractionnées avant l'amalgame, caractérisé en ce que la fragmentation des deuxièmes particules (2) a lieu à des températures comprises entre -15°C et -40°C.
  2. Procédé selon la revendication 1, caractérisé en ce que les premières particules (16) et les deuxièmes particules (15) sont fabriquées par fragmentation et/ou caractérisé en ce que les premières particules (14) sont fractionnées avant l'amalgame.
  3. Procédé selon la revendication 2, caractérisé en ce que la fragmentation des premières particules (14) a lieu à des températures comprises entre -60°C et -80 °C, de préférence à -70°C et/ou caractérisé en ce que la fragmentation des deuxièmes particules (2) à lieu à des températures comprises entre -15°C à - 30°C, en particulier à -25°C.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que les premières particules (16) présentent un dimensionnement compris entre 0,4 mm et 1 mm, de préférence entre 0,6 mm et 0,8 mm au centre de la section transversale et/ou caractérisé en ce que les deuxièmes particules (15) présentent un dimensionnement compris entre 0,6 mm et 1,2 mm, de préférence entre 0,8 mm et 1,0 mm au centre de la section transversale, de la glace en écailles étant en particulier générée.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la taille et/ou les distributions de tailles des premières particules (16) et des deuxièmes particules (15) sont ajustées respectivement de telle sorte qu'il en résulte respectivement les mêmes masses ou les mêmes répartitions de masses pour les premières particules (16) et les deuxièmes particules (15) et/ou caractérisé en ce que la taille des premières particules (16) et/ou des deuxièmes particules (15) est ajustée, lors de leur génération, dans une mesure aussi grande que la taille souhaitée dans l'agent de sablage (18), afin de compenser les pertes de tailles occasionnées lors de la fabrication de l'agent de sablage (18).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la capacité abrasive de l'agent de sablage (18 ; 41) est ajustée dans la mesure où le rapport de mélange entre les premières particules (16) et les deuxièmes particules (15), la forme des deuxièmes particules (15), la taille des deuxièmes particules (15) et/ou la température des deuxièmes particules (15) dans l'agent de sablage (18) sont ajustées de manière ciblée et/ou caractérisé en ce que le gaz CO2 généré après l'amalgame est utilisé comme gaz de protection contre le réchauffement et l'air ambiant et/ou est utilisé en vue de la réfrigération des deuxièmes particules (15).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que de la neige carbonique, de l'azote liquide et/ou de l'air comprimé congelé sont utilisés en vue de la réfrigération des deuxièmes particules (15) et/ou caractérisé en ce que les premières et les deuxièmes particules sont stockées séparément les unes des autres avant l'amalgame, de telle sorte qu'un échange de température, tout au moins partiel, peut se produire.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que les premières particules, les deuxièmes particules (2) et/ou l'agent de sablage (18) sont réfrigérés dans deux plans de refroidissement (4, 10, 20) ou plus.
  9. Procédé destiné au sablage de corps, de surfaces, de compartiments intérieurs et similaires, caractérisé en ce qu'un agent de sablage (18 ; 41) est utilisé, après avoir été fabriqué selon l'une des revendications précédentes.
  10. Procédé selon la revendication 9, caractérisé en ce que, pour le dosage de l'agent de sablage (18 ; 41), une circulation de fluide séchée, en particulier une circulation d'air comprimé, est utilisée comme flux de dosage et/ou l'agent de sablage (18 ; 41) est soumis à une circulation de fluide séchée, en particulier une circulation d'air comprimé, faisant office de flux de sablage, lequel présente une température comprise entre +40°C et +90°C, de préférence entre +50°C et +90°C, en particulier entre +70°C et +80°C.
  11. Agent de sablage destiné au sablage de corps, de surfaces, de compartiments intérieurs et similaires, qui présente du gaz CO2 solidifié et de l'eau solidifiée, caractérisé en ce que l'agent de sablage (18 ; 41) a été fabriqué au moyen d'un procédé selon l'une des revendications 1 à 8.
  12. Dispositif (A ; B ; C ; D) destiné à la fabrication d'un agent de sablage (18 ; 41) en vue du sablage de corps, de surfaces, de compartiments intérieurs et similaires, qui présente du gaz CO2 solidifié et de l'eau solidifiée, des moyens d'alimentation (30, 5, 13) étant prévus pour des premières particules (14) solides de CO2 et générées séparément et pour des deuxièmes particules (2) solides d'eau et en particulier un mélangeur (17) pour les premières particules (15) et les deuxièmes particules (15), des agents (6) destinés à la fragmentation des deuxièmes particules (2) étant prévus avant l'amalgame, caractérisé en ce que le dispositif présente des agents (4, 5) destinés à la réfrigération, afin de réaliser la fragmentation des deuxièmes particules (2) à des températures comprises entre -15°C et -40°C.
  13. Dispositif (A ; B ; C ; D) selon la revendication 12, caractérisé en ce que le dispositif est adapté afin de réaliser un procédé selon l'une des revendications 1 à 8.
  14. Dispositif destiné au sablage de corps, de surfaces, de compartiments intérieurs et similaires, comprenant des agents destinés à la préparation d'une circulation de fluide, en particulier à la circulation d'air comprimé, et des agents destinés à la préparation d'un agent de sablage, caractérisé en ce que les agents destinés à la préparation de l'agent de sablage sont conçus comme un dispositif (A ; B ; C ; D) destiné à la fabrication d'un agent de sablage (18 ; 41) selon l'une des revendications 12 ou 13.
  15. Dispositif selon la revendication 14, caractérisé en ce que des agents de dosage destinés au dosage de l'agent de sablage (18 ; 41) sont prévus, lesquels utilisent une circulation de fluide séchée, en particulier une circulation d'air comprimé, comme flux de dosage et/ou caractérisé en ce que sont prévus des agents de grenaillage destinés à soumettre l'objet devant être sablé à l'agent de sablage (18 ; 41), lesquels utilisent une circulation de fluide séchée, en particulier une circulation d'air comprimé, comme flux de sablage, lequel présente une température comprise entre +40°C et +90°C, de préférence entre +50°C et +90°C, en particulier entre +70°C et +80°C.
EP12709533.9A 2011-03-14 2012-03-12 Procédé de preparation d'un agent de grenaillage, procédé de grenaillage, agent de grenaillage, dispositif pour la preparation d'un agent de grenaillage et dispositif pour le grenaillage Not-in-force EP2694249B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102011014233 2011-03-14
DE102011106091 2011-07-01
DE201110119826 DE102011119826A1 (de) 2011-03-14 2011-12-01 Verfahren zur Herstellung eines Strahlmittels, Verfahren zum Strahlen, Strahlmittel, Vorrichtung zur Herstellung eines Strahlmittels, Vorrichtung zum Strahlen
PCT/EP2012/001105 WO2012123098A1 (fr) 2011-03-14 2012-03-12 Procédé de fabrication d'un abrasif, procédé de sablage, abrasif, dispositif de fabrication d'un abrasif, dispositif de sablage

Publications (2)

Publication Number Publication Date
EP2694249A1 EP2694249A1 (fr) 2014-02-12
EP2694249B1 true EP2694249B1 (fr) 2016-07-06

Family

ID=45769405

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12709533.9A Not-in-force EP2694249B1 (fr) 2011-03-14 2012-03-12 Procédé de preparation d'un agent de grenaillage, procédé de grenaillage, agent de grenaillage, dispositif pour la preparation d'un agent de grenaillage et dispositif pour le grenaillage

Country Status (3)

Country Link
EP (1) EP2694249B1 (fr)
DE (2) DE102011119826A1 (fr)
WO (1) WO2012123098A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086496B4 (de) * 2011-09-01 2013-04-11 Cornel Thorma Metallverarbeitungs Gmbh Strahlmittel und ein verfahren zur herstellung des strahlmittels
DE102013219585A1 (de) * 2013-09-27 2015-04-16 Carl Zeiss Smt Gmbh Optische Anordnung, insbesondere Plasma-Lichtquelle oder EUV-Lithographieanlage
DE102013224639A1 (de) 2013-11-29 2015-06-03 Lufthansa Technik Ag Verfahren und Vorrichtung zur Reinigung eines Strahltriebwerks
DE102013224635A1 (de) 2013-11-29 2015-06-03 Lufthansa Technik Ag Verfahren und Vorrichtung zur Reinigung eines Strahltriebwerks
DE202016101964U1 (de) 2015-04-20 2016-04-28 Dca Deckert Anlagenbau Gmbh Strahlvorrichtung
DE102015209994A1 (de) 2015-05-29 2016-12-15 Lufthansa Technik Ag Verfahren und Vorrichtung zur Reinigung eines Strahltriebwerks
CN110666703B (zh) * 2019-09-12 2021-04-16 武汉大学 一种闭合自生磨料射流装置及利用其的实验方法
CN115151379A (zh) 2019-12-31 2022-10-04 冷喷有限责任公司 用于增强的喷射流的方法和装置
DE202023002302U1 (de) 2023-04-18 2024-03-08 Jürgen v.d. Ohe Vorrichtung zum Reinigen von Flächen und Anlagen mit einem mechanisch wirkenden kryogenen Strahlmittel aus tiefkaltem Wassereis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655847A (en) * 1983-09-01 1987-04-07 Tsuyoshi Ichinoseki Cleaning method
JPH0669884B2 (ja) 1983-12-29 1994-09-07 石川島播磨重工業株式会社 高硬度ドライアイスの製造方法
DE3505675A1 (de) 1985-02-19 1986-08-21 Ernst Manfred Küntzel GmbH Malereibetrieb, 8000 München Verfahren zum abtragen von oberflaechen
US5785581A (en) 1995-10-19 1998-07-28 The Penn State Research Foundation Supersonic abrasive iceblasting apparatus
DE10010012A1 (de) 1999-03-05 2000-09-07 Linde Ag Verfahren und Vorrichtung zum Bestrahlen mit verschiedenartigen Strahlmitteln
DE10224778A1 (de) 2002-06-04 2003-12-18 Linde Ag Trockeneisstrahlanlage
DE10259132B4 (de) 2002-12-18 2004-09-23 Messer Griesheim Gmbh Verfahren zur Strahlreinigung von Werkstoffoberflächen
DE102006002653B4 (de) 2005-01-27 2009-10-08 Luderer Schweißtechnik GmbH Trockeneisstrahlverfahren
US20080176487A1 (en) * 2007-01-19 2008-07-24 Armstrong Jay T Portable cleaning and blasting system for multiple media types, including dry ice and grit
DE102010020619A1 (de) * 2009-05-26 2011-02-24 Ohe, Jürgen von der, Dr.-Ing. Verfahren und Vorrichtung zum Reinigen von metallischen oder nichtmetallischen Oberflächen unter Einsatz von Druckluft, einem kalten Strahlmittel, in Kombination mit einem festen Strahlmittel und/oder einem Strahlmittelgemisch
DE102010020618B4 (de) 2009-05-26 2014-05-28 Jürgen von der Ohe Verfahren zur Herstellung von CO2-Pellets oder von CO2-Partikeln mit erhöhter mechanischer Härte und Abrasivität

Also Published As

Publication number Publication date
DE102011119826A1 (de) 2012-09-20
EP2694249A1 (fr) 2014-02-12
DE202011108513U1 (de) 2012-01-30
WO2012123098A1 (fr) 2012-09-20

Similar Documents

Publication Publication Date Title
EP2694249B1 (fr) Procédé de preparation d'un agent de grenaillage, procédé de grenaillage, agent de grenaillage, dispositif pour la preparation d'un agent de grenaillage et dispositif pour le grenaillage
EP2681009B1 (fr) Méthode et dispositif pour la production d'une mélange de glace et neige sèche comme agent de projection
DE4033599C3 (de) Anlage zum Zerkleinern von weichem Material, insbesondere Altgummi
EP1980365B1 (fr) Dispositif et procédé destinés au traitement de surface ou à la manipulation de la surface au moyen d'un granulé de glace sèche
EP1100620B1 (fr) Procede et dispositif de broyage et de melange ultra-fin de materiaux solides
DE102010020619A1 (de) Verfahren und Vorrichtung zum Reinigen von metallischen oder nichtmetallischen Oberflächen unter Einsatz von Druckluft, einem kalten Strahlmittel, in Kombination mit einem festen Strahlmittel und/oder einem Strahlmittelgemisch
DE102005040420B4 (de) Abrasionsvorrichtung
WO2015074765A1 (fr) Procédé de fabrication d'un agent de sablage, procédé de sablage, agent de sablage et dispositif de fabrication de l'agent de sablage
EP0362525A2 (fr) Procédé et dispositif pour le brayage à froid
DE102020000018A1 (de) Verfahren und Vorrichtung zur Fertigung eines kryogen-mechanisch wirkenden Strahlmittels, sowie Verfahren und Vorrichtung zum Reinigen von Bauteilen mit dem kryogen-mechanisch wirkenden Strahlmittel
DE102012017906A1 (de) Strahlmittel und Verfahren zu dessen Herstellung
DE102013002636A1 (de) Vorrichtung und Verfahren zum Strahlreinigen
WO2015074766A1 (fr) Procédé et dispositif de nettoyage de turbomoteurs
DE102006047742A1 (de) Verfahren zur Dekontamination mit Trockeneis
EP0807187A1 (fr) Procede et dispositif pour refroidir du fer spongieux chaud briquete
EP3535203B1 (fr) Silo, procédé de fumigation de produit en vrac
DE2558908C3 (de) Verfahren und Vorrichtung zur Herstellung von festem Schlackengut
DE102011086496B4 (de) Strahlmittel und ein verfahren zur herstellung des strahlmittels
WO2016120317A1 (fr) Procédé de conditionnement d'engrais en granulés
WO2014124755A1 (fr) Procédé et dispositif de nettoyage au jet froid
EP3431656A1 (fr) Dispositif de traitement de gravillons de ballast ainsi que procédé correspondant
DE202009017909U1 (de) Vorrichtung zur Kühlung von Feststoffpartikeln
DE202023002302U1 (de) Vorrichtung zum Reinigen von Flächen und Anlagen mit einem mechanisch wirkenden kryogenen Strahlmittel aus tiefkaltem Wassereis
DE102019112791B3 (de) Schleifvorrichtung zum verrunden von partikeln
EP0589444B1 (fr) Procédé et appareil pour le conditionnement d'un matériau plastique réutilisable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007569

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

26N No opposition filed

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 810362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012007569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001