EP2690344A1 - Lampe électrique portative à dispositif de contrôle d'un courant d'alimentation et procédé de contrôle d'un courant d'alimentation d'une telle lampe - Google Patents

Lampe électrique portative à dispositif de contrôle d'un courant d'alimentation et procédé de contrôle d'un courant d'alimentation d'une telle lampe Download PDF

Info

Publication number
EP2690344A1
EP2690344A1 EP13354027.8A EP13354027A EP2690344A1 EP 2690344 A1 EP2690344 A1 EP 2690344A1 EP 13354027 A EP13354027 A EP 13354027A EP 2690344 A1 EP2690344 A1 EP 2690344A1
Authority
EP
European Patent Office
Prior art keywords
current
lamp
storage unit
lighting
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13354027.8A
Other languages
German (de)
English (en)
Other versions
EP2690344B1 (fr
Inventor
Christophe Marie
Stéphanie Chancelade
Nicolas Flores
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zedel SAS
Original Assignee
Zedel SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zedel SAS filed Critical Zedel SAS
Publication of EP2690344A1 publication Critical patent/EP2690344A1/fr
Application granted granted Critical
Publication of EP2690344B1 publication Critical patent/EP2690344B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules

Definitions

  • the invention relates to a portable electric lamp with a device for controlling a supply current and to a method for controlling a supply current of such a lamp, in particular a front electric lamp with compact housing.
  • small space-saving portable electric lamps comprising a lighting module housed in a housing having a compact body.
  • the lamp comprises a support provided with a strap for carrying the lamp on the head.
  • Such lamps can be provided with LEDs providing a powerful illumination, especially for lighting during daytime activities, and which are highly energy-consuming. But these lamps do not guarantee autonomy of operation to a user, regardless of its activity.
  • Operating time means a time during which the lamp can operate without new energy input or without external intervention.
  • the object of the invention is to overcome these drawbacks, and in particular to provide a means for controlling the current supplied to a lighting module of a sufficiently compact portable electric lamp, in order to guarantee the user autonomy of operation and an optimized lighting level.
  • a portable electric lamp comprising a lighting module, a compact housing enclosing an electrical energy storage unit configured to supply a power supply to the lighting module.
  • the lamp comprises means for measuring a current consumed by the lighting module, determination means configured to develop a lighting current setpoint, calculation means for calculating an average current threshold equal to the ratio between a initial capacity of the storage unit and a duration of lamp autonomy, to calculate a maximum allowed current from a difference between the consumed current and the average current threshold and to calculate a maximum current threshold allowed to from the minimum value between the lighting current setpoint and the maximum authorized current, and limiting means configured to limit the supply current to a value less than or equal to the maximum allowed current threshold.
  • the difference between the current consumed and the average current threshold makes it possible to take into account the current consumption differences which reflect the way in which the lighting module has consumed the available current, that is to say economical way or not.
  • a portable electric lamp comprising a lighting module, a compact housing enclosing an electrical energy storage unit configured to supply a power supply to the lighting module, means for measuring a current consumed by the lighting module, determination means configured to produce a lighting current setpoint, calculation means for calculating a maximum authorized current from a difference between the current consumed and a reference current and for calculating a maximum allowed current threshold from the minimum value between the lighting current setpoint and the maximum allowed current, and limiting means configured to limit the supply current to a value less than or equal to the maximum allowed current threshold.
  • the calculating means can calculate the reference current from an initial capacity of the storage unit and a duration of autonomy of the lamp.
  • the calculating means may further calculate the reference current from a remaining capacity of the storage unit and a remaining duration of use of the lamp.
  • the lamp may comprise an optical sensor configured to develop a signal representative of the illumination induced by the lamp, the determination means being configured to develop the lighting current setpoint from the developed signal.
  • External lighting in the vicinity of the lamp can also be taken into account to control the supply current in order to optimize the saving of electrical energy.
  • the measuring means can be configured to periodically measure the current consumed by the lighting module during a given period of time, and the calculation means are configured to periodically calculate the maximum allowed current and the maximum allowed current threshold. at each specified period of time.
  • the lamp may comprise estimation means configured to estimate the initial capacity of the storage unit from a coefficient representative of the aging of the storage unit estimated from a number of complete loads of the unit. storage or from an internal resistance of the storage unit.
  • a method of controlling a supply current supplied by an electrical energy storage unit to a lighting module of a portable electric lamp is provided.
  • the method comprises a development of a maximum authorized current threshold comprising a measurement of a current consumed by the lighting module, a development of a lighting current setpoint, a calculation of a mean equal current threshold. the ratio between an initial capacity of the storage unit and a duration of lamp autonomy, a calculation of a maximum allowed current from a difference between the consumed current and the average current threshold, a calculation of the maximum current threshold allowed from the minimum value between the lighting current setpoint and the maximum allowed current, the process further comprising limiting the supply current to a value less than or equal to the maximum allowable current threshold.
  • a method for controlling a supply current supplied by an electrical energy storage unit to a lighting module of a portable electric lamp comprising a development of a maximum authorized current threshold comprising a measurement of a current consumed by the lighting module, a development of a lighting current setpoint, a calculation of a maximum current allowed from a difference between the consumed current and a reference current, a calculation of the maximum current threshold allowed from the minimum value between the lighting current setpoint and the maximum authorized current, the method further comprising limiting the current of power supply at a value less than or equal to the maximum allowed current threshold.
  • the reference current can be calculated from an initial capacity of the storage unit and a duration of lamp life.
  • the lighting current setpoint may vary depending on a lighting induced by the lamp.
  • the step of developing the maximum allowable current threshold can be carried out periodically over a given period of time, and the current consumed by the lighting module is measured during the determined period of time.
  • the method may comprise an estimate of the initial capacity of the storage unit from a representative coefficient of aging of the storage unit estimated from a number of complete loads of the storage unit or from an internal resistance of the storage unit.
  • FIG. 1 schematically shows a portable electric lamp 1 comprising a lighting module 2 and a compact housing 3 enclosing an electrical energy storage unit 4, such as a battery or a battery.
  • the unit 4 is configured to supply a supply current In, via an electrical circuit 5, to the lighting module 2.
  • the unit 4 is preferably a rechargeable energy storage unit configured to store electrical energy in a chemical form during charging and to restore some of this electrical energy during the discharge.
  • the lighting module 2 preferably comprises a light-emitting diode (LED), or may also comprise several LEDs, in particular LEDs with high lighting power.
  • the portable electric lamp 1 may be a headlamp, or a flashlight, and the compact housing 3 may be made of insulating or metallic material. According to one embodiment, the lighting module 2 is separated from the compact housing 3. According to another embodiment, the lighting module 2 is included within the compact housing 3.
  • the measuring means 12 are also coupled across the terminals of the unit 4, in order to be able to measure an internal resistance Rint of the unit 4.
  • the internal resistance Rint can be measured by measuring a first voltage Vbat1 at terminals of the unit 4 and a first current consumed Icons1 by the LED. Then, a second voltage Vbat2 is measured at the terminals of the unit 4 and a second current consumed Icons2 by the LED.
  • the charge of the storage unit 4 may be complete or incomplete, and that the determined cycle time Tcycle corresponds to a discharge time of the unit in which the unit 4 supplies the current Icons to the LED.
  • the input module 8 is configured to transmit to the control device 6 input parameters entered by the user.
  • the input parameters can be, a maximum Threshold Max threshold, a minimum Threshold Threshold, and a desired duration of Autolight of the lamp 1.
  • the maximum and minimum thresholds of illumination enable user to select a lighting power interval he wishes to use for his activity.
  • the autonomy period Dauto corresponds to the duration for which the user wishes to practice his activity.
  • the control device 6 checks the value of the supply current In supplied to the LED so as to guarantee the user a minimum illumination during the autonomy period Dauto.
  • the control device 6 provides optimized lighting for maximum illumination during the autonomy period Dauto.
  • the input module 8 may be included within the housing 3, or within the lighting module 2, or may be deported within an external computer.
  • the lighting module 2 comprises a module 14 for developing a lighting setpoint.
  • the processing module 14 comprises a lighting button 15 for providing a lighting control Cmde, via a connection 16, to the control device 6.
  • the lighting control Cmde is a function of a power lighting selected by the user via the light button 15.
  • the lighting power can match a lighting power, low, strong, minimum, or maximum.
  • the illumination button 15 also allows the lamp 1 to be put into service or stopped.
  • the processor module 14 further comprises an optical sensor 17 which supplies the control device 6 via a connection 18, a signal S representative of a lighting induced by the lamp 1.
  • the signal S is representative of the light reflected by an illuminated object, in particular by the LED, and by other external light sources.
  • the optical sensor 17 reinforces the automation of the control of the supply current In because it makes it possible to automatically select the lighting power necessary to illuminate an object sufficiently.
  • the control device 6 comprises, meanwhile, a nonvolatile memory 20, an electronic clock 21, determination means 22, the measuring means 12 previously described, calculation means 23 and means 24 for limiting the current. In power supply to the LED.
  • the non-volatile memory 20 is coupled to the input module 8 by a connection 25 in order to save the parameters entered by the user.
  • the memory 20 is coupled to the calculation means 23 via a connection 26 to save other calculated parameters and to transmit the saved parameters to the calculation means 23.
  • the non-volatile memory 20 makes it possible to preserve the values of the parameters saved even after a stop of the lamp 1.
  • the measuring means 12 transmit the measured parameters Icons, CapaDem, CapaCons, to the calculation means 23 by a connection 27.
  • the electronic clock 21 is configured to supply the current time Tcurrent, which it transmits via a connection 28, to the means of calculation 23.
  • the determination means 22 elaborate a lighting current setpoint Id starting from either the received signal S or the command Cd received, and transmit the lighting current setpoint Id to the computing means 23 via a connection 30.
  • the lighting current set point Id is produced from the signal S, and it is inversely proportional to the quantity of light received by the optical sensor 17. In other words, the greater the quantity of light received by the optical sensor 17 is high and the lighting current set point Id is low. Thus, the lighting power of the LED is reduced when an object is strongly illuminated and vice versa.
  • the determination means 22 develop a lighting current setpoint Id having a constant value equal to that of an average current threshold Imoyen.
  • the calculation means 23 are configured to develop a maximum allowed current threshold Threshold MaxAuto, which they transmit via a connection 29 to the limiting means 24.
  • the maximum authorized current threshold Threshold MaxAuto corresponds to a maximum power supply current. do not overtake to ensure the operation of the lamp 1 during the desired period of autonomy Dauto.
  • the limiting means 24 are coupled by a connection 31 to the LED in order to limit the supply current In by directly controlling the LED.
  • the limiting means 24 control the management component 7 of the unit 4 to control the discharges so as to limit the supply current In to a value less than or equal to the Threshold MaxAuto.
  • the measuring means 12 periodically measure the current consumed Icons by the LED during the determined cycle time Tcycle. From the current consumed Icons measured, the calculation means 23 elaborate an intermediate parameter NEDisp, also denoted level of available electrical energy, which is representative of the way in which the lamp 1 has consumed current, that is to say economically or no.
  • the available energy level NEDisp is developed from the difference between the current consumed Icons and the average current threshold Imoyen.
  • the value of the parameter NEDisp is saved periodically at each cycle time Tcycle, and each new value of the parameter is calculated from the previous value saved. Thus, past events, in addition to the power consumption mode, are taken into account in order to determine the value of the maximum allowed current threshold Threshold MaxAuto not to be exceeded.
  • the current consumption of the LED may correspond to an overconsumption, in the case where it is considered that the current which has been consumed since the beginning of use of the lamp 1 is too important, that is to say that the current consumption has exceeded a certain threshold. Conversely, it may correspond to under-consumption in the case where it is considered that the current that has been consumed is below the determined threshold.
  • the determined threshold corresponds to the average current threshold Imoyen that can provide the storage unit during the autonomy period Dauto.
  • the calculation means 23 determine, at each new cycle time Tcycle, the new value of the intermediate parameter NEDisp from its old value, saved at the previous cycle time, and from the difference between the current consumed Icons over the time of the previous cycle and the average current threshold Imoyen.
  • the value of the NEDisp intermediate parameter is positive or zero when over-current is consumed, or negative when under-consumed.
  • the calculation means 23 develop a maximum allowed current ImaxAuto from the intermediate parameter NEDisp.
  • the ImaxAuto current corresponds to a current that must not be exceeded in order to guarantee the operating autonomy of the lamp 1.
  • the lighting of the lamp 1 is optimized by taking into account the lighting current set point. Id. More particularly, when the intermediate parameter NEDisp is positive or zero, in the case of overconsumption, the control device 6 limits the supply current In to the minimum value between the lighting current setpoint Id and the maximum current allowed ImaxAuto.
  • the control device 6 limits the supply current to the value of the current setpoint Id.
  • the control device 6 provides optimized lighting that does not exceed maximum allowed current ImaxAuto, in overconsumption, and does not exceed the id lighting current setpoint in under power consumption.
  • the maximum allowed current threshold Threshold MaxAuto is equal to the minimum value between the lighting current set point Id and the maximum authorized current ImaxAuto when the available electrical energy level NEDisp is positive or zero
  • the maximum current threshold allowed Threshold MaxAuto is equal to the lighting current set point Id when the available electrical energy level NEDisp is negative.
  • the calculation means 23 recover the value of the capacity at startup of the CapaDem storage unit, either by the measurement means 12 or by the management component 7 of the unit 4.
  • the CapaInit initial capacity corresponds to the amount of electrical energy that the storage unit 4 can restore when the lamp 1 is put into service.
  • the user enters the parameters Threshold Max, Threshold Min and Dauto from the input module 8. These parameters are then processed by the means of calculation 23 to determine their validity.
  • the maximum light threshold SeuiMax entered can not exceed a limit given by the manufacturer of the LED.
  • the minimum ThresholdMin threshold can not be less than a minimum supply current to allow the user to read a document at a reading distance of approximately 25 cm in the dark.
  • the maximum thresholds Threshold Max and minimum Threshold Min may be previously set to constant values, and not entered by the user. It is the same for the duration of autonomy Dauto.
  • the minimum Threshold Threshold is the minimum supply current that can be provided by the storage unit 4 during the autonomy period Dauto.
  • Tcycle ⁇ Dauto / 10 so as to obtain a control of the progressive In supply current.
  • the calculation means 23 recover the current consumed Icons, transmitted by the measuring means 12, and the lighting current setpoint Id transmitted by the determination means 22.
  • the calculation means 23 determine the duration of use Dutil.
  • the calculation means 23 calculate these parameters at each cycle time Tcycle.
  • CapaCons, CapaUtil, and CapaRest storage capacity state settings are determined by the management component 7 and transmitted directly to the calculation means 23.
  • the average current threshold Imoyen is also noted reference current.
  • the current Imoyen reference corresponds to an available current that can provide the storage unit 4 for the desired duration autonomy Dauto.
  • the calculation means 23 calculate the reference current Imoyen from the initial capacity of the storage unit CapaInit and the duration of autonomy of the lamp Dauto.
  • the Imoyen reference current is proportional to the ratio between the initial capacitance of the CapaInit storage unit and the autonomy duration of the Dauto lamp.
  • the reference current Imoyen CapaInit / Dauto (equation 9).
  • FIG. 2 the main steps of a method for controlling the supply current of an electric lamp are schematically represented.
  • the method can be implemented by the control device 6 which has just been described.
  • This method can be implemented in a microprocessor, in a software form or in the form of logic circuits.
  • the method comprises a first initialization step S1, a second generation step S2 of the maximum allowed current threshold Threshold MaxAuto, and a third step S11 of limiting the supply current In. initialization S1, one retrieves the data entered by the user, in particular the ThresholdMax, ThresholdMin and Dauto, and one updates some parameters.
  • the preparation step S2 is performed periodically at each cycle time Tcycle.
  • the development step S2 comprises a measurement acquisition step S3 in which, in particular, the current consumed Icons is measured during the cycle time Tcycle, and the value of the lighting current setpoint Id is determined.
  • the drawing step S2 further comprises a parameter calculation step S4, a maximum current limiting step S5, and a control step S6 of the value of the intermediate parameter NEDisp.
  • step S4 the value of the parameters necessary for calculating the maximum permitted current ImaxAuto is determined.
  • the following parameters are calculated: the intermediate parameter NEDisp, the parameter Ratio and the parameter ImaxAuto.
  • step S5 the maximum allowed current ImaxAuto is limited so that its value is in the interval [ThresholdMin; SeuilMax].
  • the control step S6 makes it possible to determine the value of the maximum allowed current threshold Threshold MaxAuto that the supply current In must not exceed in order to guarantee autonomy of operation during the duration of use of the lamp.
  • the control step S6 comprises a step S7 during which the value of the parameters NEDisp and Dutil is compared.
  • NEDisp ⁇ 0 and Dutil ⁇ Dauto that is to say that as long as the use time Dutil is less than the autonomy time Dauto, the control of the supply current In is maintained in order to guarantee the autonomy of the lamp 1.
  • the intermediate parameter NEDisp is positive or zero, it is considered that there is an overconsumption, and in this case it performs a step S8 during which the value of the current command is compared Id lighting with the maximum allowed current value ImaxAuto.
  • a step S9 is performed in which the maximum allowed current threshold Threshold MaxAuto is assigned the value of the maximum allowed current ImaxAuto, and a step S10 is carried out in which the maximum current threshold Threshold MaxAuto is assigned the value of the lighting current set point Id otherwise.
  • the step S10 is performed in which the maximum current threshold Seuil MaxAuto is assigned the value of the current setpoint.
  • Dutil ⁇ Dauto ie if the Dutil operating time is greater than or equal to the Dauto standby time, the control method of the supply current 1 takes end.
  • the supply current supplied to the LED is monitored so that the value of the supply current is less than or equal to the maximum allowed current Threshold MaxAuto.
  • a supply current is provided to the LED whose value is equal to the maximum allowed current threshold so as to optimize the lighting power as a function of the available capacity of the storage unit.
  • step S7 the control step S6
  • steps S8 and S10 the control step S11
  • step S6 is carried out again during which the steps S7 and S10 are carried out.
  • the illumination produced by the lamp 1 has been optimized so as to provide a maximum supply current during each cycle time.
  • Such a lamp provided with a device for controlling the supply current is particularly suitable for automated use of the lamp. For example, when the user wishes to illuminate his journey, without external energy input and without worrying about the setting of the lighting produced by the lamp.
  • Such a device provides illumination optimized according to what has already been consumed in current and depending on what remains to be provided during the remaining use time, while ensuring a lamp operating autonomy.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Lampe électrique portative comprenant un module d'éclairage (2), un boîtier compact (3) renfermant une unité de stockage d'énergie électrique (4) configurée pour fournir un courant d'alimentation au module d'éclairage (2), des moyens de mesure (12) d'un courant consommé par le module d'éclairage, des moyens de détermination (22) configurés pour élaborer une consigne de courant d'éclairage, des moyens de calcul (23) pour calculer un courant maximum autorisé à partir d'une différence entre le courant consommé et un courant de référence et pour calculer un seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, et des moyens de limitation (24) configurés pour limiter le courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.

Description

    Domaine technique de l'invention
  • L'invention est relative à une lampe électrique portative à dispositif de contrôle d'un courant d'alimentation et à un procédé de contrôle d'un courant d'alimentation d'une telle lampe, notamment une lampe électrique frontale à boîtier compact.
  • État de la technique
  • Actuellement, on utilise des lampes électriques portatives à faible encombrement comprenant un module d'éclairage logé dans un boîtier ayant un corps compact. Généralement, la lampe comporte un support muni d'une sangle permettant de porter la lampe sur la tête.
  • De telles lampes peuvent être munies de diodes électroluminescentes LED fournissant un éclairage puissant, notamment pour un éclairage lors d'activités diurnes, et qui sont fortement consommatrices d'énergie. Mais ces lampes ne permettent pas de garantir une autonomie de fonctionnement à un utilisateur, quelle que soit son activité. On entend par autonomie de fonctionnement, un temps pendant lequel la lampe peut fonctionner sans nouvel apport d'énergie ou sans intervention extérieure.
  • Objet de l'invention
  • L'objet de l'invention consiste à pallier ces inconvénients, et en particulier à fournir un moyen pour contrôler le courant fourni à un module d'éclairage d'une lampe électrique portative suffisamment compacte, afin de garantir à l'utilisateur une autonomie de fonctionnement et un niveau d'éclairage optimisé.
  • Selon un aspect de l'invention, il est proposé une lampe électrique portative comprenant un module d'éclairage, un boîtier compact renfermant une unité de stockage d'énergie électrique configurée pour fournir un courant d'alimentation au module d'éclairage.
  • La lampe comprend des moyens de mesure d'un courant consommé par le module d'éclairage, des moyens de détermination configurés pour élaborer une consigne de courant d'éclairage, des moyens de calcul pour calculer un seuil de courant moyen égal au rapport entre une capacité initiale de l'unité de stockage et une durée d'autonomie de la lampe, pour calculer un courant maximum autorisé à partir d'une différence entre le courant consommé et le seuil de courant moyen et pour calculer un seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, et des moyens de limitation configurés pour limiter le courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  • Ainsi, on peut déterminer un seuil de courant maximum à ne pas dépasser afin de pouvoir fournir un courant d'alimentation optimisé lors de l'utilisation de la lampe. En particulier, la différence entre le courant consommé et le seuil de courant moyen permet de prendre en compte les écarts de consommation en courant qui reflètent la façon dont le module d'éclairage a consommé le courant disponible, c'est-à-dire de façon économique ou non.
  • Ainsi, on peut optimiser le courant fourni au module d'éclairage pendant une durée d'autonomie déterminée afin de garantir une puissance d'éclairage minimum pendant cette durée.
  • Selon un aspect général de l'invention, il est proposé une lampe électrique portative comprenant un module d'éclairage, un boîtier compact renfermant une unité de stockage d'énergie électrique configurée pour fournir un courant d'alimentation au module d'éclairage, des moyens de mesure d'un courant consommé par le module d'éclairage, des moyens de détermination configurés pour élaborer une consigne de courant d'éclairage, des moyens de calcul pour calculer un courant maximum autorisé à partir d'une différence entre le courant consommé et un courant de référence et pour calculer un seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, et des moyens de limitation configurés pour limiter le courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  • Les moyens de calcul peuvent calculer le courant de référence à partir d'une capacité initiale de l'unité de stockage et d'une durée d'autonomie de la lampe.
  • Les moyens de calcul peuvent en outre calculer le courant de référence à partir d'une capacité restante de l'unité de stockage et d'une durée restante d'utilisation de la lampe.
  • La lampe peut comprendre un capteur optique configuré pour élaborer un signal représentatif de l'éclairage induit par la lampe, les moyens de détermination étant configurés pour élaborer la consigne de courant d'éclairage à partir du signal élaboré.
  • On peut également prendre en compte l'éclairage extérieur au voisinage de la lampe pour contrôler le courant d'alimentation afin d'optimiser l'économie d'énergie électrique.
  • Les moyens de mesure peuvent être configurés pour mesurer périodiquement le courant consommé par le module d'éclairage au cours d'une période de temps déterminée, et les moyens de calcul sont configurés pour calculer périodiquement le courant maximum autorisé et le seuil de courant maximum autorisé à chaque période de temps déterminée.
  • De cette manière, on affine la mesure du courant consommé pour obtenir une meilleure précision sur le calcul du seuil de courant maximum autorisé.
  • La lampe peut comprendre des moyens d'estimation configurés pour estimer la capacité initiale de l'unité de stockage à partir d'un coefficient représentatif du vieillissement de l'unité de stockage estimé à partir d'un nombre de charges complètes de l'unité de stockage ou à partir d'une résistance interne de l'unité de stockage.
  • On permet ainsi de garantir une autonomie de la lampe pendant toute la durée de vie de l'unité de stockage.
  • Selon un autre aspect de l'invention, il est proposé un procédé de contrôle d'un courant d'alimentation fourni par une unité de stockage d'énergie électrique à un module d'éclairage d'une lampe électrique portative.
  • Le procédé comprend une élaboration d'un seuil de courant maximum autorisé comportant une mesure d'un courant consommé par le module d'éclairage, une élaboration d'une consigne de courant d'éclairage, un calcul d'un seuil de courant moyen égal au rapport entre une capacité initiale de l'unité de stockage et une durée d'autonomie de la lampe, un calcul d'un courant maximum autorisé à partir d'une différence entre le courant consommé et le seuil de courant moyen, un calcul du seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, le procédé comprenant en outre une limitation du courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  • Selon un autre aspect général de l'invention, il est proposé un procédé de contrôle d'un courant d'alimentation fourni par une unité de stockage d'énergie électrique à un module d'éclairage d'une lampe électrique portative, le procédé comprenant une élaboration d'un seuil de courant maximum autorisé comportant une mesure d'un courant consommé par le module d'éclairage, une élaboration d'une consigne de courant d'éclairage, un calcul d'un courant maximum autorisé à partir d'une différence entre le courant consommé et un courant de référence, un calcul du seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, le procédé comprenant en outre une limitation du courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  • On peut calculer le courant de référence à partir d'une capacité initiale de l'unité de stockage et d'une durée d'autonomie de la lampe.
  • On peut en outre calculer le courant de référence à partir d'une capacité restante de l'unité de stockage et d'une durée restante d'utilisation de la lampe.
  • La consigne de courant d'éclairage peut varier en fonction d'un éclairage induit par la lampe.
  • L'étape d'élaboration du seuil de courant maximum autorisé peut être effectuée périodiquement au cours d'une période de temps déterminée, et on mesure le courant consommé par le module d'éclairage au cours de la période de temps déterminée.
  • Le procédé peut comprendre une estimation de la capacité initiale de l'unité de stockage à partir d'un coefficient représentatif du vieillissement de l'unité de stockage estimé à partir d'un nombre de charges complètes de l'unité de stockage ou à partir d'une résistance interne de l'unité de stockage.
  • Description sommaire des dessins
  • D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation et de mise en oeuvre de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
    • la figure 1, illustre schématiquement un mode de réalisation d'une lampe électrique portative selon l'invention ; et
    • la figure 2, illustre schématiquement les principales étapes d'un procédé de contrôle d'un courant d'alimentation de la lampe électrique portative de la figure 1.
    Description détaillée
  • Sur la figure 1, on a représenté de façon schématique une lampe électrique portative 1 comprenant un module d'éclairage 2 et un boîtier compact 3 renfermant une unité de stockage d'énergie électrique 4, telle une pile ou une batterie. L'unité 4 est configurée pour fournir un courant d'alimentation In, par l'intermédiaire d'un circuit électrique 5, au module d'éclairage 2. L'unité 4 est de préférence une unité de stockage d'énergie rechargeable configurée pour stocker une énergie électrique sous une forme chimique pendant la charge et pour restituer une partie de cette énergie électrique pendant la décharge. Le module d'éclairage 2 comporte, de préférence, une diode électroluminescente (LED), ou peut également comporter plusieurs LED, en particulier des LED à forte puissance d'éclairage. La lampe électrique portative 1 peut être une lampe frontale, ou une lampe torche, et le boîtier compact 3 peut être réalisé en matériau isolant ou métallique. Selon un mode de réalisation, le module d'éclairage 2 est séparé du boîtier compact 3. Selon un autre mode de réalisation, le module d'éclairage 2 est inclus au sein du boîtier compact 3.
  • En outre, le boîtier 3 comprend un dispositif de contrôle 6, comme par exemple une unité de commande électronique, configuré pour contrôler le courant d'alimentation In fourni par l'unité de stockage 4 au module d'éclairage 2. Le boîtier 3 peut en outre comprendre un composant de gestion 7 de l'unité de stockage 4, une résistance de mesure Rmes, et la lampe 1 peut comprendre un module d'entrées 8. Le composant de gestion 7 permet de contrôler, via une connexion 9, les charges et les décharges de l'unité 4. Le composant de gestion 7 est commandé par le dispositif de contrôle 6 par l'intermédiaire d'une connexion 10, et transmet, via une connexion 11, des paramètres d'état de l'unité 4, tels des paramètres représentatifs de la capacité de l'unité de stockage 4, comme une capacité restante de l'unité de stockage CapaRest, une capacité au démarrage de l'unité de stockage CapaDem, une capacité consommée de l'unité de stockage CapaCons. On entend ici par capacité de l'unité de stockage, la quantité d'électricité que peut restituer l'unité de stockage lors d'une décharge. La résistance de mesure Rmes permet de mesurer un courant consommé Icons correspondant au courant d'alimentation In fourni au module d'éclairage 2 pendant un temps de cycle déterminé Tcycle. La résistance Rmes est montée en série entre l'unité de stockage d'énergie électrique 4 et la LED. Le dispositif de contrôle 6 comporte des moyens de mesure 12 couplés aux bornes de la résistance Rmes. Les moyens de mesure 12 mesurent une tension Vcons aux bornes de la résistance Rmes afin de mesurer le courant consommé Icons d'après la relation : Icons = Vcons / Rmes
    Figure imgb0001

    avec :
    • Icons : le courant d'alimentation fourni à la LED au cours du temps de cycle déterminé Tcycle, c'est-à-dire le courant consommé par la LED pendant le temps Tcycle ;
    • Vcons : la tension aux bornes de la résistance Rmes ;
    • Rmes : la valeur de la résistance Rmes.
  • Par ailleurs, les moyens de mesure 12 sont également couplés aux bornes de l'unité 4, afin de pouvoir mesurer une résistance interne Rint de l'unité 4. Par exemple, on peut mesurer la résistance interne Rint en mesurant une première tension Vbat1 aux bornes de l'unité 4 et un premier courant consommé Icons1 par la LED. Puis, on mesure une deuxième tension Vbat2 aux bornes de l'unité 4 et un deuxième courant consommé Icons2 par la LED. Ainsi, on peut mesurer la valeur de la résistance interne Rint d'après la relation : Rint = Vbat 1 - Vbat 2 / Icons 1 - Icons 2 .
    Figure imgb0002
  • Grâce à la mesure de la résistance interne Rint, on peut offrir un autre mode de calcul des paramètres d'état de l'unité 4. En effet, les moyens de mesure 12 peuvent ainsi déterminer : CapaDem = Vbat_charge / Rint * Tcharge
    Figure imgb0003
    CapaCons = Vbat_f / Rint * Tcycle
    Figure imgb0004

    avec
    • CapaDem : la capacité au démarrage de l'unité de stockage, c'est-à-dire la capacité au début de l'utilisation de la lampe 1 ;
    • CapaCons : la capacité consommée de l'unité de stockage, c'est-à-dire la capacité consommée au cours du temps de cycle déterminé Tcycle ;
    • Vbat_charge : la tension de charge de l'unité 4 ;
    • Vbat_f : la tension fournie par l'unité 4 à la LED au cours du temps Tcycle ;
    • Tcharge : le temps de charge de l'unité 4.
  • On peut noter que la charge de l'unité de stockage 4 peut être complète ou incomplète, et que le temps de cycle déterminé Tcycle correspond à un temps de décharge de l'unité au cours duquel l'unité 4 fournit le courant Icons à la LED.
  • En outre, le module d'entrées 8 est configuré pour transmettre, au dispositif de contrôle 6, des paramètres d'entrée saisis par l'utilisateur. Les paramètres d'entrée peuvent être, un seuil maximum d'éclairage SeuilMax, un seuil minimum d'éclairage SeuilMin, et une durée d'autonomie souhaitée Dauto de fonctionnement de la lampe 1. Les seuils maximum et minimum d'éclairage permettent à l'utilisateur de sélectionner un intervalle de puissance d'éclairage qu'il souhaite utiliser pour son activité. La durée d'autonomie Dauto correspond, quant à elle, à la durée pour laquelle l'utilisateur souhaite pratiquer son activité. A partir, notamment des paramètres saisis par l'utilisateur, le dispositif de contrôle 6 contrôle la valeur du courant d'alimentation In fourni à la LED de façon à garantir à l'utilisateur un éclairage minimum pendant la durée d'autonomie Dauto. En outre, le dispositif de contrôle 6 fournit un éclairage optimisé pour un éclairage maximum au cours de la durée d'autonomie Dauto. Le module d'entrées 8 peut être inclus au sein du boîtier 3, ou au sein du module d'éclairage 2, ou encore être déporté au sein d'un ordinateur externe.
  • Par ailleurs, le module d'éclairage 2 comporte un module d'élaboration 14 d'une consigne d'éclairage. Le module d'élaboration 14 comprend un bouton d'éclairage 15 pour fournir une commande d'éclairage Cmde, par l'intermédiaire d'une connexion 16, au dispositif de contrôle 6. La commande d'éclairage Cmde est fonction d'une puissance d'éclairage sélectionnée par l'utilisateur via le bouton d'éclairage 15. La puissance d'éclairage peut correspondre à une puissance d'éclairage, faible, forte, minimum, ou maximum. Le bouton d'éclairage 15 permet, par ailleurs, la mise en service ou l'arrêt de la lampe 1. De préférence, le module d'élaboration 14 comporte en outre un capteur optique 17 qui fournit au dispositif de contrôle 6, via une connexion 18, un signal S représentatif d'un éclairage induit 19 par la lampe 1. En particulier, le signal S est représentatif de la lumière réfléchie par un objet éclairé, notamment par la LED, et par d'autres sources de lumière extérieures à la lampe 1. Le capteur optique 17 renforce l'automatisation du contrôle du courant d'alimentation In car il permet de sélectionner automatiquement la puissance d'éclairage nécessaire pour éclairer suffisamment un objet.
  • Le dispositif de contrôle 6 comporte, quant à lui, une mémoire non volatile 20, une horloge électronique 21, des moyens de détermination 22, les moyens de mesure 12 précédemment décrits, des moyens de calcul 23 et des moyens de limitation 24 du courant d'alimentation In fourni à la LED.
  • La mémoire non volatile 20 est couplée au module d'entrées 8 par une connexion 25 afin de sauvegarder les paramètres saisis par l'utilisateur. En outre la mémoire 20 est couplée aux moyens de calcul 23 par une connexion 26 pour sauvegarder d'autres paramètres calculés et pour transmettre les paramètres sauvegardés aux moyens de calcul 23. La mémoire non volatile 20 permet de conserver les valeurs des paramètres sauvegardés même après un arrêt de la lampe 1.
  • Les moyens de mesure 12 transmettent les paramètres mesurés Icons, CapaDem, CapaCons, aux moyens de calcul 23 par une connexion 27. L'horloge électronique 21 est configurée pour fournir le temps courant Tcourant, qu'elle transmet par une connexion 28, aux moyens de calcul 23.
  • Les moyens de détermination 22 élaborent une consigne de courant d'éclairage Id à partir, soit du signal S reçu, soit de la commande Cmde reçue, et transmettent la consigne de courant d'éclairage Id aux moyens de calcul 23 par une connexion 30. De préférence, la consigne de courant d'éclairage Id est élaborée à partir du signal S, et elle est inversement proportionnelle à la quantité de lumière reçue par le capteur optique 17. En d'autres termes, plus la quantité de lumière reçue par le capteur optique 17 est élevée et plus la consigne de courant d'éclairage Id est faible. Ainsi, on diminue la puissance d'éclairage de la LED lorsqu'un objet est fortement éclairé et inversement. Selon encore une autre variante, les moyens de détermination 22 élaborent une consigne de courant d'éclairage Id ayant une valeur constante égale à celle d'un seuil de courant moyen Imoyen.
  • Par ailleurs, les moyens de calcul 23 sont configurés pour élaborer un seuil de courant maximum autorisé SeuilMaxAuto, qu'ils transmettent via une connexion 29 aux moyens de limitation 24. Le seuil de courant maximum autorisé SeuilMaxAuto correspond à un courant d'alimentation maximum à ne pas dépasser afin de garantir le fonctionnement de la lampe 1 pendant la durée d'autonomie souhaitée Dauto. En outre, les moyens de limitation 24 sont couplés par une connexion 31 à la LED afin de limiter le courant d'alimentation In en contrôlant directement la LED. En variante, les moyens de limitation 24 commandent le composant de gestion 7 de l'unité 4 pour contrôler les décharges de façon à limiter le courant d'alimentation In à une valeur inférieure ou égale au SeuilMaxAuto.
  • De manière générale, les moyens de mesure 12 mesurent, périodiquement, le courant consommé Icons par la LED au cours du temps de cycle déterminé Tcycle. A partir du courant consommé Icons mesuré, les moyens de calcul 23 élaborent un paramètre intermédiaire NEDisp, noté également niveau d'énergie électrique disponible, qui est représentatif de la façon dont la lampe 1 a consommé du courant, c'est-à-dire de façon économique ou non. En particulier, le niveau d'énergie disponible NEDisp est élaboré à partir de la différence entre le courant consommé Icons et le seuil de courant moyen Imoyen. En outre la valeur du paramètre NEDisp est sauvegardée de façon périodique à chaque temps de cycle Tcycle, et chaque nouvelle valeur du paramètre est calculée à partir de la valeur précédente sauvegardée. Ainsi, on tient compte des événements antérieurs, en outre du mode de consommation du courant, pour déterminer la valeur du seuil de courant maximum autorisé SeuilMaxAuto à ne pas dépasser. La consommation en courant de la LED peut correspondre à une surconsommation, dans le cas où l'on considère que le courant qui a été consommé depuis le début d'utilisation de la lampe 1 est trop important, c'est-à-dire que la consommation en courant a dépassé un seuil déterminé. A l'inverse, elle peut correspondre à une sous consommation dans le cas où l'on considère que le courant qui a été consommé est inférieur au seuil déterminé. Le seuil déterminé correspond au seuil de courant moyen Imoyen que peut fournir l'unité de stockage pendant la durée d'autonomie Dauto. Les moyens de calcul 23 déterminent, à chaque nouveau temps de cycle Tcycle, la nouvelle valeur du paramètre intermédiaire NEDisp à partir de son ancienne valeur, sauvegardée au temps de cycle précédent, et de la différence entre le courant consommé Icons au cours du temps de cycle précédent et du seuil de courant moyen Imoyen. La valeur du paramètre intermédiaire NEDisp est positive ou nulle lors d'une surconsommation en courant, ou négative lors d'une sous consommation. Puis, les moyens de calcul 23 élaborent un courant maximum autorisé ImaxAuto à partir du paramètre intermédiaire NEDisp. Le courant ImaxAuto correspond à un courant qu'il ne faut pas dépasser afin de garantir l'autonomie de fonctionnement de la lampe 1. Par ailleurs, on optimise l'éclairage de la lampe 1 en tenant compte de la consigne de courant d'éclairage Id. Plus particulièrement, lorsque le paramètre intermédiaire NEDisp est positif ou nul, dans le cas d'une surconsommation, le dispositif de contrôle 6 limite le courant d'alimentation In à la valeur minimum entre la consigne de courant d'éclairage Id et le courant maximum autorisé ImaxAuto. Si le paramètre intermédiaire NEDisp est négatif, dans le cas d'une sous consommation, le dispositif de contrôle 6 limite le courant d'alimentation à la valeur de la consigne de courant Id. Ainsi, on fournit un éclairage optimisé qui ne dépasse pas le courant maximum autorisé ImaxAuto, en surconsommation, et ne dépasse pas la consigne de courant d'éclairage Id en sous consommation. En d'autres termes, le seuil de courant maximum autorisé SeuilMaxAuto est égal à la valeur minimum entre la consigne de courant d'éclairage Id et le courant maximum autorisé ImaxAuto lorsque le niveau d'énergie électrique disponible NEDisp est positif ou nul, et le seuil de courant maximum autorisé SeuilMaxAuto est égal à la consigne de courant d'éclairage Id lorsque le niveau d'énergie électrique disponible NEDisp est négatif.
  • Initialement, les moyens de calculs 23 récupèrent la valeur de la capacité au démarrage de l'unité de stockage CapaDem, soit par les moyens de mesure 12, soit par le composant de gestion 7 de l'unité 4. Avantageusement, on peut prendre en compte le vieillissement de l'unité de stockage 4 afin d'affiner la valeur du paramètre CapaDem. On peut estimer le vieillissement, par exemple en mémorisant à l'aide de la mémoire non volatile 20 le nombre de charges complètes effectuées et en utilisant un premier abaque du constructeur de l'unité 4 afin de déterminer un coefficient de vieillissement CoefVieil. Puis on estime une capacité initiale de l'unité de stockage CapaInit = CapaDem*CoefVieil (équation 5). Selon un autre mode d'estimation, on peut mesurer la résistance interne de la batterie Rint, comme décrit ci-avant à l'équation 2, et déterminer le coefficient de vieillissement CoefVieil à partir de Rint et d'un deuxième abaque du constructeur de l'unité 4. La capacité initiale CapaInit correspond à la quantité d'énergie électrique que peut restituer l'unité de stockage 4 à la mise en service de la lampe 1.
  • Puis, l'utilisateur saisit les paramètres SeuilMax, SeuilMin et Dauto à partir du module d'entrées 8. Ces paramètres sont ensuite traités par les moyens de calcul 23 pour déterminer leur validité. Par exemple, le seuil maximum d'éclairage SeuiMax saisi ne peut pas dépasser une limite donnée par le constructeur de la LED. Le seuil minimum d'éclairage SeuilMin ne peut pas être inférieur à un courant d'alimentation minimum pour permettre à l'utilisateur de lire un document, à une distance de lecture environ égale à 25 cm, dans l'obscurité. En outre, si la durée d'autonomie Dauto est supérieure à un seuil déterminé DautoMax, on limite sa valeur au seuil déterminé DautoMax = CapaInit/SeuilMin (équation 6). En variante, les seuils maximum SeuilMax et minimum SeuilMin peuvent être préalablement fixés à des valeurs constantes, et non pas saisis par l'utilisateur. Il en est de même pour la durée d'autonomie Dauto. En particulier, le seuil minimum d'éclairage SeuilMin correspond au courant d'alimentation minimum que peut fournir l'unité de stockage 4 pendant la durée d'autonomie Dauto.
  • Les moyens de calcul 23 initialisent ensuite certains paramètres à des valeurs déterminées suivantes :
    • Tinit = DateDébut, avec Tinit : temps initial qui marque le début d'utilisation de la lampe 1, et DateDébut : la date de mise en service de la lampe 1 ;
    • Dutil = 0, avec Dutil : la durée d'utilisation de la lampe 1 depuis le temps initial Tinit;
    • Tcycle : le temps de cycle, par exemple compris entre 10 ns et 1 minute ;
    • NEDisp = 0 ;
    • CapaUtil = 0, avec CapaUtil : la capacité utilisée de l'unité de stockage depuis le temps initial Tinit ;
    • ImaxAuto = SeuilMax.
  • De préférence, on a Tcycle ≤ Dauto/10 de façon à obtenir un contrôle du courant d'alimentation In progressif. Puis les moyens de calcul 23 récupèrent le courant consommé Icons, transmis par les moyens de mesure 12, et la consigne de courant d'éclairage Id transmise par les moyens de détermination 22. Les moyens de calcul 23 déterminent ensuite la durée d'utilisation Dutil. On peut, par exemple, déterminer Dutil par la relation Dutil = Dutil + Tcycle (équation 7), en incrémentant à chaque temps de cycle Tcycle le paramètre Dutil sauvegardé dans la mémoire non volatile 20. On peut encore déterminer Dutil par la relation suivante : Dutil = Tcourant + Tinit (équation 8), en récupérant la valeur du temps courant Tcourant à chaque temps de cycle Tcycle.
  • Puis, les moyens de calcul 23 calculent certains paramètres afin de déterminer le courant maximum autorisé ImaxAuto. Ainsi, les moyens de calcul 23 effectuent les calculs suivants :
    • Imoyen = CapaInit/Dauto (équation 9) ;
    • CapaCons = Icons*Tcycle (équation 10) ;
    • CapaUtil = CapaUtil + CapaCons (équation 11) ;
    • CapaRest = CapaInit - CapaUtil (équation 12) ;
    • NEDisp = NEDisp + (Icons - Imoyen*Marge)*Tcycle (équation 13) ;
    • Ratio = NEDisp/CapaRest (équation 14) ;
    • ImaxAuto = (SeuilMax-SeuilMin)*(1-Ratio) (équation 15) ;
      avec
    • Imoyen : le seuil de courant moyen ;
    • Marge : une marge de sécurité, en pourcentage, par exemple égale à 90% ;
    • Ratio : le rapport entre le niveau d'énergie disponible NEDisp et la capacité restante de l'unité de stockage CapaRest ; et
    • NEDisp : paramètre intermédiaire sans unité qui représente le mode de consommation électrique de la LED, c'est-à-dire si la consommation est économique ou non.
  • Selon un mode de réalisation, les moyens de calcul 23 calculent ces paramètres à chaque temps de cycle Tcycle. En variante, les paramètres d'état de la capacité de l'unité de stockage CapaCons, CapaUtil et CapaRest sont déterminés par le composant de gestion 7 et transmis directement aux moyens de calcul 23. Avantageusement, les moyens de calcul 23 limitent la valeur du courant maximum autorisé ImaxAuto de sorte qu'elle soit comprise dans l'intervalle [SeuilMin ; SeuiMax]. Si la valeur calculée ImaxAuto est supérieure à SeuilMax, alors ImaxAuto = SeuilMax et si la valeur calculée ImaxAuto est inférieure à SeuilMin, alors ImaxAuto = SeuilMin.
  • De manière générale, le seuil de courant moyen Imoyen est également noté courant de référence. Le courant de référence Imoyen correspond à un courant disponible que peut fournir l'unité de stockage 4 pendant la durée d'autonomie souhaitée Dauto. Les moyens de calcul 23 calculent le courant de référence Imoyen à partir de la capacité initiale de l'unité de stockage CapaInit et de la durée d'autonomie de la lampe Dauto. En particulier, le courant de référence Imoyen est proportionnel au rapport entre la capacité initiale de l'unité de stockage CapaInit et la durée d'autonomie de la lampe Dauto. Par exemple, le courant de référence Imoyen = CapaInit/Dauto (équation 9).
  • Selon un autre mode de réalisation, les moyens de calcul 23 calculent le courant de référence Imoyen à partir de la capacité restante de l'unité de stockage CapaRest et d'une durée restante d'utilisation de la lampe Drest. Par exemple, les moyens de calcul 23 calculent la durée restante d'utilisation de la lampe Drest = Dauto - Dutil. En particulier, le courant de référence Imoyen est proportionnel au rapport entre la capacité restante de l'unité de stockage CapaRest et la durée restante d'utilisation de la lampe Drest. Par exemple, le courant de référence Imoyen = CapaRest/Drest. Dans cet autre mode de réalisation, le courant de référence Imoyen varie pendant la durée d'utilisation de la lampe Dutil. Par exemple, les moyens de calcul 23 calculent le courant de référence Imoyen à chaque temps de cycle Tcycle. Puis, les moyens de calcul 23 déterminent le seuil de courant maximum autorisé SeuilMaxAuto à partir des paramètres précédents. En outre,
    • SeuilMaxAuto = Id, si NEDisp ≥ 0 et Dutil < Dauto ; et
    • SeuilMaxAuto = ImaxAuto, si NEDisp < 0 ou Dutil ≥ Dauto.
      Lorsque la LED consomme peu de courant, c'est-à-dire en sous consommation, on a économisé l'énergie stockée par l'unité 4, et on a NEDisp < 0. Dans ce cas on optimise le courant fourni à la LED en limitant le courant d'alimentation In à la valeur de la consigne de courant d'éclairage Id. A l'inverse, lorsque la LED consomme trop de courant, c'est-à-dire en surconsommation, on n'a pas assez économisé l'énergie stockée, et on a NEDisp ≥ 0. Dans ce cas on optimise le courant fourni à la LED en limitant le courant d'alimentation In à la valeur minimum entre le courant maximum autorisé ImaxAuto et la consigne de courant d'éclairage Id. On peut également envisager de fournir à la LED un courant d'alimentation In égal à la valeur du seuil de courant maximum autorisé SeuilMAxAuto.
  • Sur la figure 2, on a représenté de façon schématique les principales étapes d'un procédé de contrôle du courant d'alimentation d'une lampe électrique. Le procédé peut être mis en oeuvre par le dispositif de contrôle 6 qui vient d'être décrit. Ce procédé peut être implémenté dans un microprocesseur, sous une forme logicielle ou sous la forme de circuits logiques.
  • De façon générale, le procédé comporte une première étape d'initialisation S1, une deuxième étape d'élaboration S2 du seuil de courant maximum autorisé SeuilMaxAuto, et une troisième étape S11 de limitation du courant d'alimentation In. Lors de l'étape d'initialisation S1, on récupère les données saisies par l'utilisateur, notamment le SeuilMax, SeuilMin et Dauto, et on met à jour certains paramètres. L'étape d'élaboration S2 est effectuée périodiquement à chaque temps de cycle Tcycle. L'étape d'élaboration S2 comporte une étape d'acquisition des mesures S3 dans laquelle on mesure, notamment, le courant consommé Icons pendant le temps de cycle Tcycle, et on détermine la valeur de la consigne de courant d'éclairage Id. L'étape d'élaboration S2 comporte en outre une étape S4 de calcul de paramètres, une étape S5 de limitation du courant maximum autorisé, et une étape de contrôle S6 de la valeur du paramètre intermédiaire NEDisp. Lors de l'étape S4 de calcul des paramètres, on détermine la valeur des paramètres nécessaires au calcul du courant maximum autorisé ImaxAuto. Notamment, on calcule les paramètres suivants : le paramètre intermédiaire NEDisp, le paramètre Ratio et le paramètre ImaxAuto. Puis, lors de l'étape S5, on limite le courant maximum autorisé ImaxAuto pour que sa valeur soit comprise dans l'intervalle [SeuilMin ; SeuilMax]. En outre, l'étape de contrôle S6 permet de déterminer la valeur du seuil de courant maximum autorisé SeuilMaxAuto que le courant d'alimentation In ne doit pas dépasser afin de garantir une autonomie de fonctionnement pendant la durée d'utilisation Dauto de la lampe 1. L'étape de contrôle S6 comporte une étape S7 lors de laquelle on compare la valeur des paramètres NEDisp et Dutil.
  • Lorsque NEDisp ≥ 0 et Dutil < Dauto, c'est-à-dire que tant que le temps d'utilisation Dutil est inférieur au temps d'autonomie Dauto, on maintient le contrôle du courant d'alimentation In afin de garantir l'autonomie de la lampe 1. En outre, lorsque le paramètre intermédiaire NEDisp est positif ou nul, on considère qu'il y a une surconsommation, et dans ce cas on effectue une étape S8 au cours de laquelle on compare la valeur de la consigne de courant d'éclairage Id avec la valeur du courant maximum autorisé ImaxAuto. Si la consigne de courant d'éclairage Id est supérieure au courant maximum autorisé ImaxAuto calculé, on effectue une étape S9 dans laquelle on affecte au seuil de courant maximum autorisé SeuilMaxAuto la valeur du courant maximum autorisé ImaxAuto, et on effectue une étape S10 dans laquelle on affecte au seuil de courant maximum autorisé SeuilMaxAuto la valeur de la consigne de courant d'éclairage Id sinon.
  • Au contraire, lorsque le paramètre intermédiaire NEDisp est négatif, on considère qu'il y a une sous consommation, et dans ce cas on effectue l'étape S10 dans laquelle on affecte au seuil de courant maximum autorisé SeuilMaxAuto la valeur de la consigne de courant d'éclairage Id. Par ailleurs, lorsque Dutil ≥ Dauto, c'est-à-dire que si le temps d'utilisation Dutil est supérieur ou égal au temps d'autonomie Dauto, le procédé de contrôle du courant d'alimentation 1 prend fin.
  • Lors de l'étape de limitation S11, on contrôle le courant d'alimentation fourni à la LED de façon que la valeur du courant d'alimentation soit inférieure ou égale au seuil de courant maximum autorisé SeuilMaxAuto. De préférence, on fournit un courant d'alimentation à la LED dont la valeur est égale au seuil de courant maximum autorisé de façon à optimiser la puissance d'éclairage en fonction de la capacité disponible de l'unité de stockage. On peut noter sur la figure 2 que suite à l'étape d'initialisation S1, on effectue dans un premier temps l'étape de contrôle S6 car au début du procédé de contrôle, la valeur du paramètre NEDisp est nulle. Puis dans un deuxième temps on effectue l'étape de limitation du courant d'alimentation S11, l'étape d'élaboration S2 et à nouveau l'étape de limitation S11, périodiquement selon la période de temps Tcycle. Grâce, notamment, à la sauvegarde du paramètre intermédiaire NEDisp, le procédé garantit une autonomie même après un arrêt de la lampe 1. En outre, l'utilisateur peut éventuellement modifier les valeurs SeuiMin, SeuilMax et Dauto pendant l'utilisation de la lampe.
  • Pour illustrer les étapes du procédé qui vient d'être décrit, on peut prendre l'exemple suivant :
    • CapaInit = 2000 mAh (ou milliampère heure) ;
    • SeuiMax = 700 mA ;
    • SeuilMin = 50 mA ;
    • Dauto = 4 heures ;
    • Tcycle = 1 heure ;
    • Marge = 0,9 ;
    • Imoyen = CapaInit/Dauto = 2000/4 = 500 mA.
  • Au démarrage du procédé, lors de la première heure d'utilisation, c'est-à-dire à Dutil = 0 heure, par exemple la consigne de courant d'éclairage Id = 200 mA. On effectue donc l'étape d'initialisation S1, puis l'étape de contrôle S6 où l'on a NEDisp = 0 et ImaxAuto = SeuilMax = 700 mA. Lors de l'étape de contrôle S6, on effectue l'étape S7, puis les étapes S8 et S10. Puis on effectue l'étape S11 au cours de laquelle on limite le courant d'alimentation In à la valeur SeuilMaxAuto = Id = 200 mA. Par conséquent, lors de la première heure d'utilisation de la lampe, le courant d'alimentation In sera toujours inférieur ou égal à 200 mA, de préférence égal à 200 mA.
  • Puis, lors de la deuxième heure d'utilisation, c'est-à-dire à Dutil = 1 heure, par exemple la consigne de courant d'éclairage Id = 700 mA. En outre, la lampe 1 a consommé le courant Icons = 200 mA pendant le temps de cycle précédent Tcycle = 1 heure. On effectue ensuite l'étape de calcul S4 lors de laquelle on calcule : CapaRest = Capalnit - CapaUtil = 2000 - 200 = 1800 mAh ;
    Figure imgb0005

    et NEDisp = NEDisp + Icons - Imoyen * Marge * Tcycle = 0 + 200 - 500 * 0 , 9 * 1 = - 250.
    Figure imgb0006
  • En outre, on calcule : Ratio = NEDisp / CapaRest = - 250 / 1800 = - 0 , 1388 ;
    Figure imgb0007

    et ImaxAuto = SeuilMax - SeuilMin * 1 - Ratio = 700 - 50 * 1 + 0 , 1388 = 740 , 22 mA .
    Figure imgb0008
  • Puis on effectue à nouveau l'étape de contrôle S6 lors de laquelle on effectue les étapes S7 et S10. Puis on effectue l'étape S11 au cours de laquelle on limite le courant d'alimentation In à la valeur SeuilMaxAuto = Id = 700 mA.
  • Puis, lors de la troisième heure d'utilisation, c'est-à-dire à Dutil = 2 heures, par exemple la consigne de courant d'éclairage Id = 700 mA. En outre, la lampe 1 a consommé le courant Icons = 700 mA pendant le temps de cycle précédent Tcycle = 1 heure. On effectue ensuite l'étape de calcul S4 lors de laquelle on calcule : CapaRest = Capalnit - CapaUtil = 2000 - 200 + 700 = 1100 mAh ;
    Figure imgb0009

    et NEDisp = NEDisp + Icons - Imoyen * Marge * Tcycle = - 250 + 700 - 500 * 0 , 9 * 1 = 0.
    Figure imgb0010
  • En outre, on calcule :
    • Ratio = NEDisp/CapaRest = 0/1100 = 0 ; et
    • ImaxAuto = (SeuilMax-SeuilMin)*(1-Ratio) = (700-50)*(1-0) = 650 mA.
  • Puis on effectue les étapes S7, S8 et S9, puis l'étape S11 au cours de laquelle on limite le courant d'alimentation In à la valeur SeuilMaxAuto = ImaxAuto = 650 mA.
  • Puis, lors de la quatrième et dernière heure d'utilisation, c'est-à-dire à Dutil = 3 heures, par exemple la consigne de courant d'éclairage Id = 700 mA. En outre, la lampe 1 a consommé le courant Icons = 650 mA pendant le temps de cycle précédent Tcycle = 1 heure. On effectue ensuite l'étape de calcul S4 lors de laquelle on calcule : CapaRest = Capalnit - CapaUtil = 2000 - 200 + 700 + 650 = 450 mAh ;
    Figure imgb0011

    et NEDisp = NEDisp + Icons - Imoyen * Marge * Tcycle = 0 + 650 - 500 * 0 , 9 * 1 = 200.
    Figure imgb0012
  • En outre, on calcule : Ratio = NEDisp / CapaRest = 200 / 450 = 0 , 444 ;
    Figure imgb0013

    et ImaxAuto = SeuilMax - SeuilMin * 1 - Ratio = 700 - 50 * 1 - 0 , 444 = 361 , 4 mA .
    Figure imgb0014
  • On effectue ensuite les étapes S7, S8 et S9, puis l'étape S11 au cours de laquelle on limite le courant d'alimentation In à la valeur SeuilMaxAuto = ImaxAuto = 361,4 mA. Lors de la dernière heure d'utilisation, le courant d'alimentation In fourni à la LED est égal à 361,4 mA. Par conséquent, à la fin du procédé de contrôle, on aura CapaRest = CapaInit - CapaUtil = 2000 - (200+700+650+361,4) = 88,6 mAh. On a bien garantit un courant minimum d'éclairage égal au seuil minimum SeuilMin pendant la durée d'utilisation Dauto de la lampe. En outre, on a optimisé l'éclairage produit par la lampe 1 de façon à fournir un courant d'alimentation maximum pendant chaque temps de cycle.
  • Une telle lampe dotée d'un dispositif de contrôle du courant d'alimentation est particulièrement adaptée pour une utilisation automatisée de la lampe. Par exemple, lorsque l'utilisateur souhaite éclairer son trajet, sans apport extérieur d'énergie et sans se soucier du réglage de l'éclairage produit par la lampe. Un tel dispositif permet de fournir un éclairage optimisé en fonction de ce qui a déjà été consommé en courant et en fonction de ce qui reste à fournir pendant le temps d'utilisation restant, tout en garantissant une autonomie de fonctionnement de la lampe.

Claims (14)

  1. Lampe électrique portative comprenant un module d'éclairage (2), un boîtier compact (3) renfermant une unité de stockage d'énergie électrique (4) configurée pour fournir un courant d'alimentation au module d'éclairage (2), caractérisée en ce qu'elle comprend des moyens de mesure (12) d'un courant consommé par le module d'éclairage, des moyens de détermination (22) configurés pour élaborer une consigne de courant d'éclairage, des moyens de calcul (23) pour calculer un seuil de courant moyen égal au rapport entre une capacité initiale de l'unité de stockage (4) et une durée d'autonomie de la lampe, pour calculer un courant maximum autorisé à partir d'une différence entre le courant consommé et le seuil de courant moyen et pour calculer un seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, et des moyens de limitation (24) configurés pour limiter le courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  2. Lampe électrique portative comprenant un module d'éclairage (2), un boîtier compact (3) renfermant une unité de stockage d'énergie électrique (4) configurée pour fournir un courant d'alimentation au module d'éclairage (2), caractérisée en ce qu'elle comprend des moyens de mesure (12) d'un courant consommé par le module d'éclairage, des moyens de détermination (22) configurés pour élaborer une consigne de courant d'éclairage, des moyens de calcul (23) pour calculer un courant maximum autorisé à partir d'une différence entre le courant consommé et un courant de référence et pour calculer un seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, et des moyens de limitation (24) configurés pour limiter le courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  3. Lampe selon la revendication 2, dans laquelle les moyens de calcul (23) calculent le courant de référence à partir d'une capacité initiale de l'unité de stockage (4) et d'une durée d'autonomie de la lampe.
  4. Lampe selon la revendication 3, dans laquelle les moyens de calcul (23) calculent le courant de référence à partir d'une capacité restante de l'unité de stockage (4) et d'une durée restante d'utilisation de la lampe.
  5. Lampe selon l'une des revendications 1 à 4, comprenant un capteur optique (17) configuré pour élaborer un signal représentatif de l'éclairage induit par la lampe, les moyens de détermination (22) étant configurés pour élaborer la consigne de courant d'éclairage à partir du signal élaboré.
  6. Lampe selon l'une des revendications 1 à 5, dans laquelle les moyens de mesure (12) sont configurés pour mesurer périodiquement le courant consommé par le module d'éclairage (2) au cours d'une période de temps déterminée, et les moyens de calcul (23) sont configurés pour calculer périodiquement le courant maximum autorisé et le seuil de courant maximum autorisé à chaque période de temps déterminée.
  7. Lampe selon l'une des revendications 1 à 6, comprenant des moyens d'estimation configurés pour estimer la capacité initiale de l'unité de stockage à partir d'un coefficient représentatif du vieillissement de l'unité de stockage (4) estimé à partir d'un nombre de charges complètes de l'unité de stockage (4) ou à partir d'une résistance interne (Rint) de l'unité de stockage (4).
  8. Procédé de contrôle d'un courant d'alimentation fourni par une unité de stockage d'énergie électrique à un module d'éclairage d'une lampe électrique portative, caractérisé en ce qu'il comprend une élaboration (S2) d'un seuil de courant maximum autorisé comportant une mesure (S3) d'un courant consommé par le module d'éclairage, une élaboration d'une consigne de courant d'éclairage, un calcul (S4) d'un seuil de courant moyen égal au rapport entre une capacité initiale de l'unité de stockage et une durée d'autonomie de la lampe, un calcul (S4) d'un courant maximum autorisé à partir d'une différence entre le courant consommé et le seuil de courant moyen, un calcul (S4) du seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, le procédé comprenant en outre une limitation (S11) du courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  9. Procédé de contrôle d'un courant d'alimentation fourni par une unité de stockage d'énergie électrique à un module d'éclairage d'une lampe électrique portative, caractérisé en ce qu'il comprend une élaboration (S2) d'un seuil de courant maximum autorisé comportant une mesure (S3) d'un courant consommé par le module d'éclairage, une élaboration d'une consigne de courant d'éclairage, un calcul (S4) d'un courant maximum autorisé à partir d'une différence entre le courant consommé et un courant de référence, un calcul (S4) du seuil de courant maximum autorisé à partir de la valeur minimum entre la consigne de courant d'éclairage et le courant maximum autorisé, le procédé comprenant en outre une limitation (S11) du courant d'alimentation à une valeur inférieure ou égale au seuil de courant maximum autorisé.
  10. Procédé selon la revendication 9, dans lequel on calcule le courant de référence à partir d'une capacité initiale de l'unité de stockage et d'une durée d'autonomie de la lampe.
  11. Procédé selon la revendication 10, dans lequel on calcule le courant de référence à partir d'une capacité restante de l'unité de stockage et d'une durée restante d'utilisation de la lampe.
  12. Procédé selon l'une des revendications 8 à 11, dans lequel la consigne de courant d'éclairage varie en fonction d'un éclairage induit par la lampe.
  13. Procédé selon l'une des revendications 8 à 12, dans lequel l'étape d'élaboration (S2) du seuil de courant maximum autorisé est effectuée périodiquement au cours d'une période de temps déterminée, et on mesure (S3) le courant consommé par le module d'éclairage au cours de la période de temps déterminée.
  14. Procédé selon l'une des revendications 8 à 13, comprenant une estimation de la capacité initiale de l'unité de stockage à partir d'un coefficient représentatif du vieillissement de l'unité de stockage (4) estimé à partir d'un nombre de charges complètes de l'unité de stockage (4) ou à partir d'une résistance interne (Rint) de l'unité de stockage (4).
EP13354027.8A 2012-07-27 2013-07-10 Lampe électrique portative à dispositif de contrôle d'un courant d'alimentation et procédé de contrôle d'un courant d'alimentation d'une telle lampe Active EP2690344B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1202133A FR2993957B1 (fr) 2012-07-27 2012-07-27 Lampe electrique portative a dispositif de controle d'un courant d'alimentation et procede de controle d'un courant d'alimentation d'une telle lampe

Publications (2)

Publication Number Publication Date
EP2690344A1 true EP2690344A1 (fr) 2014-01-29
EP2690344B1 EP2690344B1 (fr) 2015-05-27

Family

ID=46852086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13354027.8A Active EP2690344B1 (fr) 2012-07-27 2013-07-10 Lampe électrique portative à dispositif de contrôle d'un courant d'alimentation et procédé de contrôle d'un courant d'alimentation d'une telle lampe

Country Status (6)

Country Link
US (1) US9326352B2 (fr)
EP (1) EP2690344B1 (fr)
CN (1) CN103582249B (fr)
ES (1) ES2543330T3 (fr)
FR (1) FR2993957B1 (fr)
TW (1) TWI626393B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094463A1 (fr) 2019-03-28 2020-10-02 Zedel Lampe frontale dotée d’un dispositif de préservation de l’autonomie d’un bloc d’alimentation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988160B1 (fr) * 2012-03-14 2014-03-28 Zedel Lampe electrique portative a boitier compact monte angulairement deplacable
CN113709938A (zh) * 2020-05-22 2021-11-26 米沃奇电动工具公司 具有自动调光功能的便携式照明装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930706A1 (fr) * 2008-04-24 2009-10-30 Zedel Soc Par Actions Simplifi Lampe d'eclairage autoregulee
US20100219775A1 (en) * 2009-01-16 2010-09-02 Mag Instruments, Inc. Portable Lighting devices
US20110227500A1 (en) * 2009-01-14 2011-09-22 West Stacey H Multi-Mode Portable Lighting Device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097379A2 (fr) * 2000-06-13 2001-12-20 Azoteq (Pty) Ltd Commutateur intelligent servant a commuter electriquement une charge
TW201038127A (en) * 2009-01-16 2010-10-16 Mag Instr Inc Portable lighting devices
KR20110101915A (ko) * 2010-03-10 2011-09-16 한국원자력연구원 축전지의 잔여용량 지시기능을 갖는 유도등 및 비상조명등
US8786197B2 (en) * 2010-10-27 2014-07-22 Tsmc Solid State Lighting Ltd. Method and system for adjusting light output from a light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930706A1 (fr) * 2008-04-24 2009-10-30 Zedel Soc Par Actions Simplifi Lampe d'eclairage autoregulee
US20110227500A1 (en) * 2009-01-14 2011-09-22 West Stacey H Multi-Mode Portable Lighting Device
US20100219775A1 (en) * 2009-01-16 2010-09-02 Mag Instruments, Inc. Portable Lighting devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3094463A1 (fr) 2019-03-28 2020-10-02 Zedel Lampe frontale dotée d’un dispositif de préservation de l’autonomie d’un bloc d’alimentation

Also Published As

Publication number Publication date
ES2543330T3 (es) 2015-08-18
CN103582249B (zh) 2017-09-12
FR2993957A1 (fr) 2014-01-31
FR2993957B1 (fr) 2014-07-25
US9326352B2 (en) 2016-04-26
EP2690344B1 (fr) 2015-05-27
TW201413152A (zh) 2014-04-01
CN103582249A (zh) 2014-02-12
TWI626393B (zh) 2018-06-11
US20140028195A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5279199B2 (ja) 充電装置及び充電制御方法
FR2966656A1 (fr) Bloc-batteries pour un vehicule
FR2841385A1 (fr) Dispositif de calcul du degre de deterioration et procede de calcul du degre de deterioration d&#39;une batterie
EP1990890A1 (fr) Procédé de charge d&#39;une batterie d&#39;un système autonome
FR2860301A1 (fr) Appareil de surveillance de l&#39;etat d&#39;une batterie d&#39;automobile
FR2909815A1 (fr) Appareil de detection du courant electrique d&#39;une batterie incorpore dans un systeme qui regule la vitesse du moteur d&#39;un vehicule et la tension electrique de sortie d&#39;un generateur electrique lors d&#39;un ralenti du moteur
EP2846394B1 (fr) Batterie intelligente munie d&#39;un circuit de gestion de la tension d&#39;alimentation
EP2476158B1 (fr) Procédé d&#39;utilisation d&#39;un système autonome connecté à une batterie
CA2280598A1 (fr) Dispositif electronique portable avec circuit de controle de la decharge d&#39;une batterie, et procede associe
EP2690344B1 (fr) Lampe électrique portative à dispositif de contrôle d&#39;un courant d&#39;alimentation et procédé de contrôle d&#39;un courant d&#39;alimentation d&#39;une telle lampe
FR2816463A1 (fr) Dispositif d&#39;alimentation d&#39;un equipement electrique en energie electrique continue
EP2963611A1 (fr) Procédé de contrôle de la puissance électrique délivrée sur un réseau électrique par au moins deux sources d&#39;énergie électrique et système électrique associé
EP1383222A1 (fr) Chargeur pour batterie
EP2395594A1 (fr) Dispositif et procédé d&#39;alimentation pour système de communication sans fil et ensemble capteur comportant un tel dispositif
WO2006058970A1 (fr) Procede d&#39;evaluation de l&#39;etat de charge d&#39;une batterie electrique
WO2020200897A1 (fr) Procédé d&#39;initialisation de l&#39;état de charge d&#39;une batterie
EP3087654B1 (fr) Procédé et système de gestion de batterie pour véhicule automobile
EP1336857B1 (fr) Système de détermination de l&#39;état de charge d&#39;une batterie, notamment pour véhicule automobile
EP3170242B1 (fr) Circuit électrique et procédé de gestion associé
EP3319200B1 (fr) Procédé et système de contrôle de charge d&#39;une batterie d&#39;un équipement électrique
FR2983970A1 (fr) Procede d&#39;alimentation d&#39;un appareil medical
FR3107942A1 (fr) Procédé de gestion d’un éclairage et éclairage correspondant
WO2008034991A1 (fr) Procede de gestion de la charge d&#39;une batterie de vehicule
FR2964747A1 (fr) Procede et systeme de supervision de fonctions electroniques d&#39;un vehicule, vehicule comprenant un systeme de supervision de fonctions electroniques
WO2018172667A1 (fr) Procédé de gestion de la consommation électrique d&#39;un équipement embarqué dans un véhicule et connecté à une batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140729

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013001859

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21L0004000000

Ipc: H05B0037020000

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101ALI20141202BHEP

Ipc: H05B 37/02 20060101AFI20141202BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 729424

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013001859

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE , CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2543330

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150818

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150527

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150928

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013001859

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 729424

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230612

Year of fee payment: 11

Ref country code: FR

Payment date: 20230608

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230712

Year of fee payment: 11

Ref country code: GB

Payment date: 20230601

Year of fee payment: 11

Ref country code: ES

Payment date: 20230808

Year of fee payment: 11

Ref country code: CH

Payment date: 20230801

Year of fee payment: 11

Ref country code: AT

Payment date: 20230626

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 11