EP2690165B1 - Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante - Google Patents

Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante Download PDF

Info

Publication number
EP2690165B1
EP2690165B1 EP12177849.2A EP12177849A EP2690165B1 EP 2690165 B1 EP2690165 B1 EP 2690165B1 EP 12177849 A EP12177849 A EP 12177849A EP 2690165 B1 EP2690165 B1 EP 2690165B1
Authority
EP
European Patent Office
Prior art keywords
detergent
mass
lubricating oil
oil composition
magnesium salicylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12177849.2A
Other languages
German (de)
English (en)
Other versions
EP2690165A1 (fr
Inventor
Robert Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP12177849.2A priority Critical patent/EP2690165B1/fr
Publication of EP2690165A1 publication Critical patent/EP2690165A1/fr
Application granted granted Critical
Publication of EP2690165B1 publication Critical patent/EP2690165B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • This invention relates to lubrication of direct injection internal combustion engines with crankcase lubricating oil compositions (or lubricants), more especially to lubrication of gasoline-fuelled direct injection engines and diesel-fuelled direct injection engines, and to use of additives in lubricating oil compositions to reduce inlet valve deposit formation.
  • crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns. It is well-known to include additives in crankcase lubricants for several purposes.
  • One type of additive that is commonly used in a lubricating oil composition for acid neutralisation is a detergent additive.
  • Many types of detergent additives are known for crankcase lubricating oil composition. Of these, the most commonly used commercially are alkali or alkaline earth metal salts of sulfonate, phenate or salicylate.
  • a lubricant with no more than 0.08 wt% phosphorous comprising a metal detergent system comprising a calcium salicylate detergent and a magnesium salicylate detergent, wherein the mass ratio of magnesium atoms to calcium atoms is greater than 1, is stated to exhibit improved wear performance despite the reduced phosphorous content.
  • the present invention resides in the use of a magnesium salicylate detergent as an additive in a lubricating oil composition to reduce inlet valve deposit formation in a direct-injected internal combustion engine, as measured according to the test set out in PV1481; 2005-02.
  • the present invention resides in the use of a lubricating oil composition containing a magnesium salicylate detergent to reduce inlet valve deposits.
  • the lubricating oil composition will comprise a lubricating oil base stock, into which a number of additives including the magnesium salicylate additive are blended.
  • the base oil and these additives are described more fully below.
  • the oil of lubricating viscosity is sometimes referred to as the base oil or base stock, and provides the primary liquid constituent of the lubricating oil composition into which additives and possibly other oils are blended.
  • a base oil may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof. It may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gas engine oil, mineral lubricating oil, motor vehicle oil and heavy duty diesel oil. Generally the viscosity of the oil ranges from 2 to 30, especially 5 to 20, mm 2 s -1 at 100°C.
  • Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydrorefined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly (1-hexenes), poly (1-octenes), poly (1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di (2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivatives, analogues and homologues thereof.
  • hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes,
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dim
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Unrefined, refined and re-refined oils can be used in the compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch-synthesised hydrocarbons made from synthesis gas containing hydrogen and carbon monoxide using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • GTL gas-to-liquid
  • Base oil may be categorised in Groups 1 to V according to the API EOLCS 1509 definition.
  • the oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of the magnesium salicylate additive and, if necessary, one or more co-additives such as described hereinafter, constituting the lubricating oil composition.
  • This preparation may be accomplished by adding the additive directly to the oil or by adding it in the form of a concentrate thereof to disperse or dissolve the additive.
  • Additives may be added to the oil by any method known to those skilled in the art, either prior to, contemporaneously with, or subsequent to, addition of other additives.
  • oil-soluble or “oil-dispersible”, or cognate terms, used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or are capable or being suspended in the oil in all proportions. They do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
  • Metal detergents are now used predominantly for their acid-neutralisation properties, and the term 'detergent' is used herein to define a material capable of providing this functions within the lubricating oil composition. They are based on metal "soaps", that is metal salts of acidic organic compounds, sometimes referred to as surfactants, and that generally comprise a polar head with a long hydrophobic tail.
  • a metal detergent provides a source of base (such as metal hydroxide or metal carboxylate), which neutralises the acidic combustion by-products such as NO x and SO x present in the oil. These acidic combustion by-products cause oxidation and thus degradation of the lubricants as well as corrosion of the engine components.
  • the metal salts of acidic organic compounds may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80.
  • TBN total base number
  • a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
  • the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
  • Such overbased detergents may have a TBN of 100 or greater, and typically will have a TBN of from 250 to 450 or more.
  • the magnesium salicylate detergent additive may be the sole detergent additive present in the lubricating oil composition.
  • the lubricating oil composition may comprise a combination of two or more alkali or alkaline earth metal-containing detergent additives.
  • the metal detergent system comprises magnesium salicylate and optionally comprises other alkali or alkaline earth metal salicylate detergents, such as, calcium salicylate.
  • each salicylate is alkyl-substituted for example with independent alkyl groups having from 8 to 30 carbon atoms and which may be linear, branched or cyclic.
  • alkyl groups there may be mentioned the following: octyl, nonyl, decyl, dodecyl, pentadecyl, octadecyl, eicosyl, docosyl, tricosyl, hexacosyl, triacontyl, dimethylcyclohexyl, ethylcyclohexyl, methylcyclohexylmethyl and cyclohexylethyl.
  • the lubricating oil composition used in the present invention comprises metal detergents that are neutral or overbased alkali or alkaline earth metal salicylates having a TBN of from 50 to 450, preferably a TBN of 50 to 250, or mixtures thereof.
  • the lubricating oil composition of the present invention may comprise other detergents, including oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • a metal particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant according to the present invention, and mixtures of calcium and/or magnesium with sodium. Combinations of detergents, whether overbased or neutral or both, may be used.
  • the lubricating oil composition includes metal detergents that are chosen from neutral or overbased calcium sulfonates having TBN of from 20 to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450, and mixtures thereof.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
  • Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
  • substantially all of the metal detergent present in the lubricating oil composition used in the present invention is either a magnesium-based detergent or a calcium-based detergent.
  • detergent present in the lubricating oil composition comprising at least 50 mass%, preferably at least 60 mass% and more preferably at least 70 mass% magnesium-based detergent.
  • the detergent present in the lubricating oil composition comprises 100 mass% magnesium-based detergent.
  • the magnesium salicylate detergent additive preferably provides the largest proportion of the detergent additive in the lubricating oil composition.
  • the detergent additive present in a lubricating oil composition used for the present invention suitably comprises at least 40 mass%, preferably at least 50 mass%, more preferably at least 60 mass% and advantageously at least 70 mass% magnesium salicylate detergent.
  • the detergent additive present in a lubricating oil composition used for the present invention may comprise no more than 95 mass%, for example, no more than 90 mass%, even no more than 85 mass% magnesium salicylate detergent.
  • the detergent additive present in a lubricating oil composition used for the present invention comprises 100 mass% magnesium salicylate detergent.
  • additives such as the following, may also be present in the lubricating oil composition used for the present invention.
  • Ashless dispersants comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed.
  • the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
  • the ashless dispersants may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and a polyalkylene polyamine.
  • Anti-wear agents may comprise dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • ZDDP zinc dihydrocarbyl dithiophosphates
  • R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals.
  • Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • the ZDDP should preferably be added to the lubricating oil compositions in amounts no greater than from about 1.1 to 1.3 mass %, based upon the total mass of the lubricating oil composition.
  • Viscosity modifiers function to impart high and low temperature operability to a lubricating oil.
  • the VM used may have that sole function, or may be multifunctional.
  • Multifunctional viscosity modifiers that also function as dispersants are also known.
  • Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
  • Oxidation inhibitors or antioxidants reduce the tendency of base stocks to deteriorate in service which deterioration can be evidenced by the products of oxidation such as sludge and varnish-like deposits on the metal surfaces and by viscosity growth.
  • oxidation inhibitors include hindered phenols, aromatic amines, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, calcium nonylphenol sulfides, ashless oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons, phosphorus esters, metal thiocarbamates and oil-soluble copper compounds as described in U.S. Patent 4,867,890 .
  • Friction Modifiers which include boundary lubricant additives that lower friction coefficient and hence improve fuel economy may be used.
  • Examples include ester-based organic friction modifiers such as partial fatty acid esters of polyhydric alcohols, for example, glycerol monooleate; and amine-based organic frication modifiers.
  • Further examples are additives that deposit molybdenum disulphide such as organo-molybdenum compounds where the molybdenum is, for example, in dinuclear or trinuclear form.
  • Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
  • Copper and lead bearing corrosion inhibitors may be used, but are typically not required with the formulation of the present invention.
  • such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof.
  • Derivatives of 1,3,4 thiadiazoles such as those described in U.S. Patent Nos. 2,719,125 ; 2,719,126 ; and 3,087,932 ; are typical.
  • Other similar materials are described in U.S. Patent Nos. 3,821,236 ; 3,904,537 ; 4,097,387 ; 4,107,059 ; 4,136,043 ; 4,188,299 ; and 4,193,882 .
  • additives are the thio and polythio sulfenamides of thiadiazoles such as those described in GB Patent Specification No. 1,560,830 .
  • Benzotriazoles derivatives also fall within this class of additives. When these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 mass % active ingredient.
  • a small amount of a demulsifying component may be used.
  • a preferred demulsifying component is described in EP 330,522 . It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
  • the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
  • Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient temperature or at an elevated temperature.
  • all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package, which is subsequently blended into base stock to make the finished lubricant.
  • the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
  • the concentrate is preferably made in accordance with the method described in US 4,938,880 .
  • the lubricating oil composition used in the present invention may employ from 2 to 20, preferably 4 to 18, and most preferably 5 to 17, mass % of the concentrate or additive package with the remainder being base stock.
  • the lubricating oil composition used in the present invention has a sulphated ash concentration of not greater than 1.5 mass %, preferably not greater than 1.2 mass% and in some embodiments, not greater than 0.10 mass% or even 0.08 mass%.
  • a lubricating oil composition used in the present invention suitably has a sulphur concentration, expressed as atoms of sulphur, of not greater than 0.3, preferably not greater than 0.2, mass %.
  • a lubricating oil composition used in the present invention may have a phosphorus content of at least 0.005 mass%, preferably at least 0.01 mass %, more preferably at least 0.04 mass%, based on the mass of the oil composition.
  • a lubricating oil composition according to the present invention may have a phosphorus content of at no more than 0.15 mass%, preferably no more than 0.12 mass% and for some applications no more than 0.09 mass%, based on the mass of the oil composition.
  • a lubricating oil composition according to the present invention may have a total base number (TBN) of between 2 and 20, preferably between 4 and 15.
  • TBN total base number
  • the invention is applicable to a range of internal combustion engines such as compression-ignited and spark-ignited, two-or four-stroke reciprocating engines.
  • the invention provides particular advantage in use with direct injection compression-ignited or spark-ignited internal combustion engines.
  • Each of the four lubricants was tested in the VW FSi test (identified by reference PV1481) to assess inlet valve deposits.
  • the test provides a measure of weight increase resulting from deposit formation on the inlet valves.
  • a VW 1.4 litre, 77 KW direct injection FSI gasoline engine is used.
  • the intake valves are weighed.
  • the test is run with the engine filled with a mass of oil corresponding to a filling volume of 3,200 cm 3 at 15 °C, with a 200ml sample of the new oil being retained as a reference sample.
  • the test run consists of 4 stages each at specific engine speed, which are repeated 1333 times, with the total running time of the test being 5998.5 minutes.
  • Lubricant 1 895
  • Lubricant 2 333
  • Lubricant 3 780
  • Lubricant 4 658

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (12)

  1. Utilisation d'un détergent du type salicylate de magnésium comme additif dans une composition d'huile lubrifiante pour réduire la formation de dépôts sur les soupapes d'admission dans un moteur à combustion interne à injection directe, de la manière mesurée suivant l'essai indiqué dans PV1481:2005-02.
  2. Utilisation suivant la revendication 1, dans laquelle la composition d'huile lubrifiante comprend une association de deux ou plus de deux additifs détergents contenant des métaux alcalins ou alcalino-terreux.
  3. Utilisation suivant la revendication 1 ou 2, dans laquelle le détergent présent dans la composition d'huile lubrifiante comprend 100 % en masse des détergents à base de magnésium.
  4. Utilisation suivant la revendication 1, 2 ou 3, dans laquelle l'additif détergent à base de salicylate de magnésium fournit la plus forte proportion de l'additif détergent dans la composition d'huile lubrifiante.
  5. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle le détergent à base de salicylate de magnésium représente au moins 40 % en masse de l'additif détergent.
  6. Utilisation suivant la revendication 5, dans laquelle le détergent à base de salicylate de magnésium représente au moins 50 % en masse de l'additif détergent.
  7. Utilisation suivant la revendication 5 ou 6, dans laquelle le détergent à base de salicylate de magnésium représente au moins 60 % en masse de l'additif détergent.
  8. Utilisation suivant la revendication 5, 6 ou 7, dans laquelle le détergent à base de salicylate de magnésium représente au moins 70 % en masse de l'additif détergent.
  9. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle l'additif détergent présent dans la composition d'huile lubrifiante ne comprend pas plus de 95 % en masse de détergent à base de salicylate de magnésium.
  10. Utilisation suivant la revendication 9, dans laquelle l'additif détergent ne comprend pas plus de 90 % en masse de détergent à base de salicylate de magnésium.
  11. Utilisation suivant la revendication 9 ou 10, dans laquelle l'additif détergent ne comprend pas plus de 85 % en masse de détergent à base de salicylate de magnésium.
  12. Utilisation suivant l'une quelconque des revendications 1 à 8, dans laquelle l'additif détergent présent dans une composition d'huile lubrifiante utilisée pour la présente invention comprend 100 % en masse de détergent à base de salicylate de magnésium.
EP12177849.2A 2012-07-25 2012-07-25 Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante Active EP2690165B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12177849.2A EP2690165B1 (fr) 2012-07-25 2012-07-25 Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12177849.2A EP2690165B1 (fr) 2012-07-25 2012-07-25 Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante

Publications (2)

Publication Number Publication Date
EP2690165A1 EP2690165A1 (fr) 2014-01-29
EP2690165B1 true EP2690165B1 (fr) 2015-07-08

Family

ID=46601685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12177849.2A Active EP2690165B1 (fr) 2012-07-25 2012-07-25 Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante

Country Status (1)

Country Link
EP (1) EP2690165B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3645679B1 (fr) * 2017-06-30 2022-08-03 Chevron Oronite Company LLC Détergents à base de magnésium pour huile lubrifiante et procédé de fabrication et d'utilisation de ces détergents

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719125A (en) 1952-12-30 1955-09-27 Standard Oil Co Oleaginous compositions non-corrosive to silver
US2719126A (en) 1952-12-30 1955-09-27 Standard Oil Co Corrosion inhibitors and compositions containing same
US3087932A (en) 1959-07-09 1963-04-30 Standard Oil Co Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole
US3821236A (en) 1972-05-03 1974-06-28 Lubrizol Corp Certain 2-halo-1,2,4-thiadiazole disulfides
US3904537A (en) 1972-05-03 1975-09-09 Lubrizol Corp Novel disulfides derived from 1,2,4-thiadiazole
US4193882A (en) 1973-07-06 1980-03-18 Mobil Oil Corporation Corrosion inhibited lubricant composition
US4136043A (en) 1973-07-19 1979-01-23 The Lubrizol Corporation Homogeneous compositions prepared from dimercaptothiadiazoles
GB1560830A (en) 1975-08-08 1980-02-13 Exxon Research Engineering Co Sulphenamides
US4097387A (en) 1976-09-03 1978-06-27 Standard Oil Company (Indiana) Olefin-dimercapto-thiadiazole compositions and process
US4107059A (en) 1977-06-27 1978-08-15 Pennwalt Corporation Polymer of 1,2,4-thiadiazole and lubricants containing it as an additive
US4188299A (en) 1978-05-17 1980-02-12 Standard Oil Company (Indiana) Oil soluble dithiophosphoric acid derivatives of mercaptothiadiazoles
GB2056482A (en) 1979-08-13 1981-03-18 Exxon Research Engineering Co Lubricating oil compositions
US4938880A (en) 1987-05-26 1990-07-03 Exxon Chemical Patents Inc. Process for preparing stable oleaginous compositions
IL89210A (en) 1988-02-26 1992-06-21 Exxon Chemical Patents Inc Lubricating oil compositions containing demulsifiers
JP3933450B2 (ja) * 2001-11-22 2007-06-20 新日本石油株式会社 内燃機関用潤滑油組成物
US6846782B2 (en) * 2003-04-04 2005-01-25 The Lubrizol Corporation Method of reducing intake valve deposits in a direct injection engine
EP1724329B1 (fr) 2005-05-20 2012-10-10 Infineum International Limited Combinaison de détergents métalliques dans des compositions d'huiles lubrifiantes
CN103237875A (zh) * 2010-10-06 2013-08-07 卢布里佐尔公司 具有防雾添加剂的润滑油组合物

Also Published As

Publication number Publication date
EP2690165A1 (fr) 2014-01-29

Similar Documents

Publication Publication Date Title
CA2686115C (fr) Detergent a base d'hydroxybenzoate de metal surbase
EP2952561B1 (fr) Compositions d'huile de lubrification
CA2547388C (fr) Lubrifiants de carter comprenant des salicylates
CA2893404C (fr) Composition d'huile de lubrification contenant des modificateurs de frottement polymeriques composes de polyolefine fonctionnalisee, de polyalkylene glycol, de polyol et d'acide polycarboxylique
CA2440797A1 (fr) Combinaison d'une huile lubrifiante a faible teneur en cendres et d'un carburant a faible teneur en soufre
CA2883416C (fr) Une composition d'huile lubrifiante
CA2893426C (fr) Compositions d'huile de lubrification comportant une huile de base, un sel de metal de dithiophosphate dihydrocarbyl et des modificateurs de frottement polymeriques derives de polyolefine fonctionnalisee, de polyalkylene glycol, de polyol et d'acide polycarboxylique
AU2004218713B2 (en) Lubricant composition
EP2690165B1 (fr) Utilisation d'un détergent de salicylate de magnésium dans une composition d'huile lubrifiante
CA2678295C (fr) Compositions d'huile lubrifiante renfermant des dithiophosphates de zinc
CA2897619C (fr) Compositions d'huile de lubrification ayant des modificateurs de frottement polymeriques
EP2607462B1 (fr) Lubrification de moteur marin
EP1724329B1 (fr) Combinaison de détergents métalliques dans des compositions d'huiles lubrifiantes
EP3018191A1 (fr) Lubrification de moteur marin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C10N 40/25 20060101ALN20141204BHEP

Ipc: C10M 159/22 20060101AFI20141204BHEP

Ipc: C10M 159/20 20060101ALI20141204BHEP

Ipc: C10N 30/04 20060101ALN20141204BHEP

Ipc: C10N 10/04 20060101ALN20141204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150330

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 735428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012008546

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 735428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150708

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012008546

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

26N No opposition filed

Effective date: 20160411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230711

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240613

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240617

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240613

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240614

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 13