EP2681055B1 - Method and security element for storing information by means of microchannels in a substrate - Google Patents

Method and security element for storing information by means of microchannels in a substrate Download PDF

Info

Publication number
EP2681055B1
EP2681055B1 EP12707529.9A EP12707529A EP2681055B1 EP 2681055 B1 EP2681055 B1 EP 2681055B1 EP 12707529 A EP12707529 A EP 12707529A EP 2681055 B1 EP2681055 B1 EP 2681055B1
Authority
EP
European Patent Office
Prior art keywords
substrate
transparent
opaque
channels
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12707529.9A
Other languages
German (de)
French (fr)
Other versions
EP2681055A2 (en
Inventor
Olga Kulikovska
Manfred Paeschke
Olaf Dressel
Jörg Fischer
André LEOPOLD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesdruckerei GmbH
Original Assignee
Bundesdruckerei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesdruckerei GmbH filed Critical Bundesdruckerei GmbH
Publication of EP2681055A2 publication Critical patent/EP2681055A2/en
Application granted granted Critical
Publication of EP2681055B1 publication Critical patent/EP2681055B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/346Perforations

Definitions

  • the invention generally relates to security elements for value and / or security documents, in particular to a method for producing a security element, which comprises at least one light-opaque substrate in a continuous area, in which information is stored by means of microchannels. Furthermore, the invention relates to a corresponding security element for a value and / or security document.
  • a security element is an entity that includes at least one security feature intended to protect an imitation, falsification, copy or manipulation of the security element itself or an article in or on which the security element is mounted.
  • Documents which have at least one security feature and / or one security element are referred to as security documents.
  • security documents comprise a multiplicity of different security features and / or security elements.
  • Security documents include, for example, ID documents, passports, visas, identity cards, identity cards, driver's licenses, vehicle registration documents, vehicle registration documents, registration certificates, company identity cards, access cards, bank cards or credit cards, but also labels protected against adulteration, tickets or the like, to name only a few.
  • a subset of the security documents, which additionally embody a value, is also referred to as a group of value documents.
  • the group of value documents includes i.a. Banknotes, postage stamps, tax stamps, stocks, securities, waybills and the like, just to name a few.
  • a group of security elements is formed by inserting recesses or perforations into a substrate.
  • a method of producing identification documents having indicia that enable identification or identification of at least one owner comprises transmitting such indicia to a solid support in the form of at least a set of points distributed as pits or bumps at discrete intervals.
  • a first set of such points represents a passport photograph of the owner.
  • a second set of points may include various symbols, such as letters, numbers, or other graphical symbols, indicating the identity, an address, or other information about the user.
  • the dots may be formed by controlled penetration of a tool into the medium of the substrate or via an interaction with a laser.
  • the dots are arranged as pits at regular intervals. In order to obtain contrasts between lighter and darker sections, it is proposed to vary their cross-section with constant spacing of the points.
  • Another embodiment provides that depressions of uniform depth are produced and the density of the dots is varied.
  • the dots may also be formed as through holes through the substrate.
  • a similar security feature is from the EP 0 936 975 B1 It is known to protect a document against counterfeiting by comprising a security feature in the form of a perforation pattern and the perforation pattern comprising holes of different sizes, the perforation pattern extending over a closed surface of the document and representing a passport photograph.
  • the perforation pattern is generated by means of laser light.
  • the information can be verified immediately by viewing the perforation pattern, for example in transmitted light. It is disadvantageous that the stored information can be changed significantly by adding or changing individual holes in the perforation patterns.
  • the invention is based on the technical object to provide a novel security element and a method for its production, which accomplishes an information storage in other ways, preferably well protected against subsequent unnoticed manipulations, yet reliably allows verification without too much effort.
  • the invention is based on the idea to encode the information in the form of light beam directions which occur in an optical imaging process, wherein the light propagation directions are "formed" in the form of transparent channels in an at least extensively extended opaque substrate.
  • the transparent channels formed in the otherwise opaque substrate or opaque volume region of a substrate thus define light propagation directions which in their entirety store information which can be converted into a graphically perceptible representation by means of imaging optics, from which the information content is visual or, if one Illustration of the graphical representation is captured, can be detected by machine.
  • An advantage of the form of storage is that the perforation pattern itself, which is produced on surfaces of the substrate, does not directly store the stored one Information or its information content and thus a manipulation on adding more transparent channels is much more difficult. For manipulation or counterfeiting, it is necessary to know at least the imaging geometry necessary for the verification and to take this into consideration when introducing additional transparent channels, if that is even possible. In order to be able to form additional transparent channels in the substrate, a volume region of the substrate must exist for the corresponding channel inclination which is free of the already existing differently inclined transparent channels.
  • a security element is any physical entity that includes at least one security feature.
  • a security feature is a feature that at least complicates or prevents mimicking, duplicating, falsifying or the like of an article.
  • Security documents are documents which comprise at least one, preferably several, in particular different, security features and / or elements. According to the above definition of a security element, each security document itself also constitutes a security element.
  • Value documents are a group of security documents that embody a value.
  • a precise distinction between value documents and those security documents that are not value documents is difficult in some areas, since, for example, bank or credit cards often themselves do not embody immediate value, but allow for the possibility of having large sums of money.
  • a precise delimitation is not essential to the invention.
  • An object or a spatial area is referred to as transparent, which transmits light, ie electromagnetic radiation, a wavelength or a wavelength range in the form of directed radiation.
  • Directed radiation has an intensity distribution which has a high intensity only in a coherent limited solid angle range. Among the other solid angles is the Intensity substantially, usually by several orders of magnitude, weaker, preferably close to zero. If such a directed radiation passes through a transparent material, the property is maintained that the intensity is concentrated in a limited solid angle range. Although the solid angle range can increase, a significant diffuse scattering does not occur. However, a weakening with respect to an intensity of the radiation passing through the transparent region or the transparent spatial region can occur. Through a transparent material through an image according to the geometric appearance is possible.
  • a material is referred to as translucent in which the described property of preserving the directional characteristic is no longer present.
  • an originally directed radiation a radiation whose intensity distribution in a large solid angle range has a clearly perceptible intensity.
  • An increase in intensity in or around the angular range which can be associated with the original direction of propagation of the directed radiation is possible, but is no longer several orders of magnitude.
  • opaque is meant the property which is a passage of light, i. electromagnetic radiation, at least for one wavelength or one or more wavelength ranges.
  • electromagnetic radiation i. electromagnetic radiation
  • materials which are transparent for example in the visible wavelength range, but opaque in the ultraviolet wavelength range.
  • a channel in the sense of the invention is understood to mean a space area which has at least one axis which runs straight through the space area.
  • a transparent channel formed in an opaque substrate constitutes in the substrate a space region penetrating the substrate which is transparent to light of at least one wavelength or wavelength range for which the substrate is otherwise opaque, the space region being geometrically formed to have one Light passage along a straight line through the space area direction or a narrow spatial angle range around this straight through the Spaces favored spatial area and makes other propagation directions of light through the channel difficult or impossible.
  • An opaque substrate at least in a contiguous volume range, is a substrate comprising a contiguous volume region having a finite non-zero extent parallel to the surface normal of the substrate and at least its entrance and exit surfaces for light of at least one wavelength or wavelength range , which impinges on the volume area parallel to surface normal, are opaque.
  • the entrance and exit surfaces are the boundary surfaces of the volume region which intersects an imaginary straight line along which directed light would propagate through the volume region, provided that volume region were transparent.
  • the volume area is opaque in its entire volume.
  • a substrate layer designed as a coextruded film which is made opaque on plane-parallel surfaces and transparent in an inner volume region lying between them, thus represents a substrate that is opaque in a coherent volume region in the sense of the definition given here. Also in their entire volume opaque films represent an opaque substrate at least in a contiguous volume range.
  • Information may be represented or stored in a variety of different ways.
  • a term such as the word "house” may be represented and stored over the printed letters house in the form of ink on a white paper.
  • Braille ie in the form of individual circular elevations over an otherwise smooth surface.
  • Other possible forms of representation consist in a binary coding of the individual characters, for example according to the ASCII code or the university code. Even if the configuration of the storage is different, all these have in common that they contain the same information content, namely the meaning of the term house.
  • this information content is displayed visually for a human being or, after acquisition of an image, for example via pattern recognition, as implemented in various OCR programs. to recognize and evaluate.
  • Light is electromagnetic radiation of a predetermined wavelength range, for example the visible wavelength range.
  • light can also be UV radiation, IR radiation or comprise a combination of radiation of different wavelength ranges.
  • a direction vector is a vector indicating an orientation in three-dimensional space.
  • space vector a distance and a direction in three-dimensional space.
  • Each space vector can be assigned exactly one straight line in three-dimensional space. This is the line on which the space vector lies. A length of the space vector is insignificant, so that space vectors that are on the same straight line are considered equal.
  • a space vector may be an object which is characterized by a point in space, for example a point in the surface plane of a substrate, and a direction vector.
  • a characterization of a transparent channel via a space vector takes place, for example, such that the point in space in an entry surface of the substrate determines the position of an entry opening and the direction vector indicates the orientation of a channel axis.
  • a method for producing a security element which according to a preferred embodiment is designed as a security document, is proposed, which comprises the steps: providing a substrate that is opaque to light at least in a continuous volume range, providing information to be stored in the form of a Set of orientations or direction vectors, storing the information in the substrate by forming transparent channels in the opaque substrate within the contiguous volume region such that each of the orientations or each of the directional vectors at least one of the transparent channels is assigned, preferably each of the orientations or each of the direction vectors are each associated with a plurality of the transparent channels, each of the channels each favoring passage of light along a space vector associated with the respective channel, preferably exclusively along the associated channel Space vector which is collinear with the orientation or direction vector to which the respective transparent channel is assigned.
  • a direction vector a vector indicating an orientation in three-dimensional space is considered.
  • a space vector is considered to be an object which, in addition to an orientation determined for example by a direction vector, additionally indicates a point in space, for example a passage point of a straight line coincident with the direction vector through a predetermined plane, for example a surface of the opaque substrate.
  • Channels formed, for example, in the opaque substrate and having the same orientation with respect to the surface or normal to the substrate and thus having the same orientation, ie collinear with a directional vector indicating the orientation in space are distinguished by the passage points of straight lines , which coincide with the corresponding space vectors in terms of their orientation.
  • a security element produced according to the proposed method for a security document comprises at least one substrate that is opaque to light in at least one contiguous volume area, wherein transparent channels for storing information are formed within the opaque volume area of the substrate, wherein it is provided that the transparent ones Channels are formed so that each of the channels each favors passage of light along a space vector associated with the transparent channel, preferably exclusively along the space vector associated with the transparent channel, the channels being formed such that along the space vectors through the transparent channels of the space vector Substrate passing through light by means of a predetermined imaging optics on a arranged in a predetermined orientation to the imaging optics screen is mapped into a graphical representation, so that an Infor content of the stored information from the graphical representation can be detected.
  • an advantage of the invention is that the inlet and / or outlet openings of the transparent channels represent patterns, if they are perceptible, which do not graphically represent the stored information. Rather, the stored information is visually discernible only when light is made available, so that it passes through the opaque substrate along the directions predetermined by the space vectors of the individual transparent channels and is imaged onto a screen by means of a predetermined imaging optics. This results in a graphic representation whose informational content is recorded by a human user. Alternatively, an image of the graphical representation can be detected and evaluated by machine, for example by means of a pattern recognition and a comparison with predetermined data.
  • the transparent channels are formed by means of laser radiation in the form of microchannels in the opaque substrate region. This means that material is removed from the opaque substrate by laser ablation. As a result, through holes are created in the opaque substrate or a flatly extended opaque area, which no longer contain any opaque substrate material.
  • Channels are designated as microchannels whose cross-sectional areas are dimensions in the micrometer range, preferably in the range between 30-500 ⁇ m, more preferably between 30-100 ⁇ m and most preferably between 75-300 ⁇ m.
  • the microchannels have circular or elliptical cross-sectional areas. The details with regard to a dimensioning of the microchannels always relate to their state before the lamination is carried out.
  • a directional selection increases the smaller a cross-sectional area of the one microchannel is perpendicular to its longitudinal extent relative to the length of the channel along this longitudinal extent.
  • the angle selection thus increases with the decrease of the diameter.
  • the intensity of the light passing through this channel at given illumination diminishes.
  • this loss of intensity can be compensated for by adding microchannels having the same orientation.
  • An advantage of the formation of the transparent channels as microchannels is that these in their entirety when viewed in both reflected and transmitted light are virtually imperceptible at the same time, since they are formed under different directions in the substrate. From a viewing direction which corresponds to one of the orientations, ie one of the direction vectors, contained in the set of orientations or direction vectors, only the transparent channels or microchannels to which a space vector is assigned, that is to say by a space vector, are observable which is collinear with the respective orientation. However, the stored information is only revealed through the entirety of the orientations formed in the document.
  • the transparent channels are formed as a micro-perforation, wherein the individual perforation holes represent the transparent channels and these are formed under different directions in the substrate and penetrate it.
  • the substrate is provided as an opaque film, which is preferably formed opaque, at least in a volume region below a planar region by the entire material thickness.
  • a film which has been made opaque completely in the entire volume is used as the substrate.
  • the opaque or at least in a volume region opaque film, which is the substrate laminated with other films to a document body. Since large pressures are exerted during the lamination on the film composite in the heated state, it is advantageous to fill the transparent channels with a transparent material prior to lamination. This can be done, for example, by the fact that the material which has a sufficient viscosity is, for example, doctored into the transparent channels.
  • the material may be fix the material. This can be done, for example, via a UV or thermally reactive filling material that is appropriately fixed after filling by means of UV radiation or thermally.
  • the transparent channels are thus filled with a transparent material at least partially, preferably completely.
  • An entrance side and an exit side can be assigned to the transparent channels, and lens elements are formed on an exit surface, which is the surface of the document body or the substrate adjacent to the exit sides of the transparent channels, in one embodiment along the space vectors associated with the respective microchannels light passing through the microchannels is imaged on a screen which is arranged at a predetermined distance and in a predetermined orientation relative to the exit surface such that on the screen the information content stored by means of the microchannels is perceptible in a graphical representation. It is thereby achieved that the security element or the security document already comprises the imaging optics necessary for the verification of the information content of the stored information.
  • providing the information to be stored in a set of orientations comprises providing the information content to be stored in the form of a graphical representation and calculating an orientation for each of the pixels necessary to represent the graphically perceptible information content, each pixel being a dot in a focal plane of a convergent lens of predetermined focal length is understood.
  • the orientation resulting for a pixel represents a spatial direction under which light from an infinite light source in the form of parallel light rays would fall on the imaging optics embodied as a converging lens and in the focal plane of the condenser lens Focusing on a point would form the corresponding pixel.
  • the transparent channels thus ideally represent, for each pixel, the rays of an infinite point light source represented by the corresponding orientation.
  • Each pixel thus corresponds to an orientation, so that one obtains a set of orientations or direction vectors which represent these orientations.
  • the dimensions of the cross-sectional areas of the microchannels are preferably selected to be smaller than a material thickness of the opaque substrate in order to obtain the highest possible angular selectivity or directional selectivity of the light passing through the microchannels.
  • the substrate is or is laminated with at least one further substrate layer to form a document body and the predetermined imaging optics are formed in the at least one further substrate layer.
  • the imaging optics is or is formed in the form of lens elements, the lens elements jointly providing the imaging property of a condenser lens.
  • Each lens element formed on the surface of the further substrate layer thus deflects the light passing through the further substrate layer in the region of the lens element in the same way as a surface element of the condenser lens would do.
  • the lens elements are formed so that they together represent an imaging characteristic of a converging lens whose central plane parallel to an exit surface of the other Substrate layer is oriented and whose central axis is in the region of a surface center of a projection of the at least one extended opaque volume region on the entrance surface of the substrate layer.
  • the central axis preferably extends through a center or geometric center of gravity of the volume region in which the transparent channels are formed.
  • the orientation of the central axis here is preferably collinear to a surface normal of the opaque substrate or the security element or security document.
  • the substrate which is opaque at least in a volume region, is integrated into a document body such that it is mounted on a substrate Entry sides of the transparent channels facing side of the opaque substrate at least one light source is arranged in the security document.
  • the light source can be designed, for example, as a light-emitting diode, for example organic light-emitting diode, as a light-emitting diode array or in the form of a differently designed display.
  • luminescent dyes are disposed in a substrate layer facing an entrance surface of the substrate, wherein the entrance surface of the substrate in which the transparent channels are formed is the surface facing the entrance sides of the transparent channels are.
  • the light source which may comprise a plurality of light sources, or light sources are concealed towards an outer surface by an opaque layer.
  • the light source which may comprise a plurality of light sources, or light sources are concealed towards an outer surface by an opaque layer.
  • a substrate 1 is shown. This is in the illustrated example in its entire volume opaque for light in a predetermined wavelength range, for example, formed in the visible wavelength range.
  • transparent channels 2.1 to 2.n are formed, which completely penetrate the opaque substrate as through holes.
  • the substrate is preferably a plastic material.
  • the transparent channels are formed in a preferred embodiment by means of a laser as microchannels.
  • Each of the transparent channels 2.1 to 2.n is assigned a space vector 4.1 to 4.n.
  • a space vector 4.1 to 4.n indicates on the one hand a direction of the microchannel, for example in the form of a solid angle, which is indicated by the angle components ⁇ , p, with respect to a surface normal 9 of the substrate 1.
  • a Room vector 4.1 to 4.n an indication which, for example, a base point 10.1 to 10.n of the space vector in a plane of an entrance surface 11 of the substrate 1 indicates.
  • a space vector 4.1 to 4.n thus characterizes a position and orientation of the transparent channel 2.1 to 2.n, to which this space vector 4.1 to 4.n is assigned.
  • the transparent channels 2.1 to 2.n are each assigned an inlet side 12.1 to 12.n at the inlet surface 11 of the substrate 1 and an outlet side 13.1 to 13.n at an outlet surface 14 of the substrate 1.
  • the transparent channels 2.1 to 2.n are designed so that they favor a passage through the substrate 1 of light, which passes through the substrate 1 along the space vector 4.1 to 4.n, which corresponds to the corresponding transparent channel 2.1 to 2.n assigned. A passage of light here deviating directions is prevented by the transparent channels 2.1 to 2.n as far as possible.
  • each of the transparent channels 2.1 to 2.n preferably only permits light along a spatial direction which is predetermined by the space vector 4.1 to 4.n assigned to the transparent channel 2.1 to 2.12.
  • the substrate 1 is illuminated with a suitable light source 6, so that light passes through the opaque substrate 1 as far as possible through all the transparent channels 2.1 to 2.n along the respectively assigned space vector 4.1 to 4.n. , The light thus enters the transparent channels 2.1 to 2.n via the inlet surface of the substrate and thus to the inlet channels 12.1 to 12.n into the corresponding channels 2.1 to 2.n and to the outlet sides 13.1 to 13.n from the Exit surface 14 of the substrate 1 again.
  • the exiting light or the light rays 15.1 to 15.n are guided onto a converging lens 7 serving as imaging optics.
  • a screen 8 is arranged, which is preferably parallel to the Exit surface 14 of the substrate 1 is oriented.
  • Light rays 15.1 to 15.n which have the same orientation, ie whose transparent channels are characterized by space vectors 4.1 to 4.n, which are collinear with one another, are imaged on the screen 8 in the same pixel 16.1 to 16.k.
  • At least one transparent channel 2.1 to 2.n must therefore exist for each pixel 16.1 to 16.k whose orientation, ie its angular coordinates ⁇ , ⁇ , corresponds with that orientation of light with respect to a surface normal 9 of the entrance surface 11 of the substrate 1 the pixel in the focal plane is mapped.
  • An information content predetermined on the screen 8 by the pixels 16.1 to 16.k is thus completely characterized by a set of orientations, which are indicated for example by direction vectors 3.1 to 3.k.
  • the number of transparent channels 2.1 to 2.n assigned to an orientation defines only a quantity of light and thus a brightness of the corresponding pixel, provided that for each of the transparent channels the associated transmission value is identical.
  • the substrate 1 thus represents a security element 20.
  • Fig. 1a is a schematic section of a substrate 1 similar to that after Fig. 1 shown in perspective.
  • Shown is a channel 2.n, which is defined by an associated space vector 4.n.
  • a coordinate system 24 is coupled to the substrate 1.
  • the x-direction and the y-direction of the Cartesian coordinate system 24 are located in the entrance surface 11 of the substrate layer 1.
  • the z-direction points into the substrate layer.
  • the channel is characterized by the coordinates x n , y n of the root point 10.n of the space vector 4.n in the entrance surface 11 and the angles ⁇ n and ⁇ n .
  • the angle ⁇ n indicates the angle of a central axis 25 of a channel projection 26 measured in the xz plane against the z direction.
  • ⁇ n gives the angle of a Central axis 27 of a channel projection 28 measured in the yz plane against the z-direction.
  • Fig. 2 a further embodiment of a security element 20 is shown, in which the imaging optics is already integrated into the security element 20.
  • the same technical features are provided in all figures with the same reference numerals.
  • the embodiment according to Fig. 2 differs in that the substrate 1 is connected at the exit surface 14 with a further substrate layer 21.
  • the compound is formed, for example, in a lamination step.
  • an outer surface 22 of the further substrate layer which is remote from the exit surface 14 is structured such that these portions of the lens element 23 follow a converging lens analogous to the convergent lens 7 Fig. 1 includes.
  • the individual lens elements 23 together represent the imaging optics, which images the light beams 15.1 to 15.n emerging from the transparent channels 2.1 to 2.n onto the pixels 16.1 to 16.k on the screen 8.
  • a main plane 17 (cf. Fig. 1 ) of the lens is in this case oriented parallel to the entry or exit surface 14 of the substrate 1.
  • a central axis 18 of the imaging optics is preferably oriented centrally with respect to that region 19 in which the transparent channels 2.1 to 2.n are formed in the substrate 1.
  • the substrate is opaque at least in the area 19 in which the channels are formed along the entire extent perpendicular to the entrance surface 11.
  • Fig. 2 offers the advantage that no separately formed imaging optics is needed for verification. For verification, only a suitable light source and a screen are necessary, which is arranged in the focal plane, which is defined by the trained in the form of lens elements 23 imaging optics.
  • a security document 30 is shown schematically, in which a substrate 1 according to Fig. 1 is integrated. Adjacent to the entrance surface 11 of the substrate 1, an additional substrate layer is arranged, which is transparent or diffused. In this additional substrate layer 31 or at an interface to yet another substrate layer 32, a light source 6 is formed in the security document 30.
  • This may, for example, be a light-emitting diode, for example an organic light-emitting diode.
  • the additional substrate layer 31 is designed to be diffusely scattering, since this ensures that in each of the transparent channels 2.1 to 2.n light is incident parallel to the space vector 4.1 to 4.n, which is assigned to the corresponding channel 2.1 to 2.n.
  • the still further substrate layer 32 is opaque in preferred embodiments, so that verification of the security feature, which is formed by the information stored in the transparent channels, can only be verified if the light source 6 is activated.
  • leads to the light source 6 and electrical contacts may be formed in the security document at a suitable location, for example through the still further substrate layer 32, which are not shown here for reasons of simplification.
  • FIG. 4 Yet another embodiment of a security document 30 is similar to that of FIG Fig. 3 shown.
  • the embodiment differs in that the light source is designed with a plurality of light sources in the form of an array, for example a light-emitting diode array.
  • a better illumination of the microchannels can be achieved.
  • it can be achieved that, in an extension of the passage direction of each of the transparent channels 2.1 to 2.n of the illuminating means 33 predetermined by the respective space vector 4.1 to 4.n.
  • the amount of light which is transmitted through the transparent channels 2.1 to 2.n be significantly increased, which significantly simplifies a verification.
  • a verification device which comprises an imaging optics, for example in the form of the converging lens 7, and a screen 8 arranged in the focal plane thereof.
  • the converging lens 7 is formed so that a top 41 can serve as a support surface for the security document 30 and the security element 20.
  • the verification device 51 additionally comprises a light source 6 Spot light source may be formed or comprise a plurality of lighting means and / or a light scatterer to provide a surface possible light source.
  • Fig. 1 to 4 illustrated embodiments are of course only exemplary embodiments.
  • the security document also the imaging optics similar to the embodiment according to Fig. 2 includes.
  • a number of films and the configuration of which a document body is formed can be varied.
  • the verification device may comprise an excitation / activation unit 52 which excites the light source 6 formed inside the security document and, if appropriate, its light source 33 for generating light.
  • This can, depending on the design of the light source by means of electromagnetic radiation (in the case of a Lumineszenslichtán or with an antenna formed LED or OLED arrangement) or by providing a voltage to contacts, not shown, for example, in an electrically operated light source, in particular in a Contacted LED or OLED are just a few examples.
  • a production of an exemplary security element designed as a security element is based on Fig. 5 again explained as an example.
  • information to be stored is provided 61.
  • This may be, for example, a so-called personalizing information, ie information that provides an indication of a person to whom the security element or security document produced is assigned.
  • the pixels required for representing the information to be stored in a graphic representation are converted into orientations or direction vectors 62.
  • These method steps together represent the method step "providing the information in the form of a set of orientations" 63.
  • an opaque substrate for example in the form of a film, provided 64. In this opaque substrate then microchannels are preferably introduced as transparent channels by means of laser radiation 65.
  • a non-compressible material such as transparent polymeric material 66.
  • This can be done for example by doctoring or by a screen printing process or other methods, such as an ink jet printing, which allow to fill the microchannels with a suitable material.
  • the opaque substrate in which the microchannels are formed, which are filled with a transparent material, joined together with the other films or substrate layers.
  • the substrate layers are first collected 68, wherein, for example, a light source with one or more bulbs can be inserted 69.
  • the assembly is completed by laminating the substrate layers together using temperature and pressure to a document body 70.
  • lens elements which form an imaging optics can be formed in an outer substrate layer 71.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Credit Cards Or The Like (AREA)
  • Burglar Alarm Systems (AREA)

Description

Die Erfindung betrifft allgemein Sicherheitselemente für Wert- und/oder Sicherheitsdokumente, insbesondere ein Verfahren zum Herstellen eines Sicherheitselements, welches mindestens ein in einem zusammenhängenden flächigen Bereich für Licht opakes Substrat umfasst, in dem mit Hilfe von Mikrokanälen eine Information gespeichert wird. Ferner betrifft die Erfindung ein entsprechendes Sicherheitselement für ein Wert- und/oder Sicherheitsdokument.The invention generally relates to security elements for value and / or security documents, in particular to a method for producing a security element, which comprises at least one light-opaque substrate in a continuous area, in which information is stored by means of microchannels. Furthermore, the invention relates to a corresponding security element for a value and / or security document.

Ein Sicherheitselement ist eine Entität, welche mindestens ein Sicherheitsmerkmal umfasst, welches eine Nachahmung, Verfälschung, eine Kopie oder Manipulation des Sicherheitselements selbst oder eines Gegenstands, in oder auf dem das Sicherheitselement angebracht ist, schützen soll. Dokumente, welche mindestens ein Sicherheitsmerkmal und/oder ein Sicherheitselement aufweisen, werden als Sicherheitsdokumente bezeichnet. In der Regel umfassen Sicherheitsdokumente eine Vielzahl von unterschiedlichen Sicherheitsmerkmalen und/oder Sicherheitselementen. Sicherheitsdokumente umfassen beispielsweise ID-Dokumente, Reisepässe, Visa, Personalausweise, Identitätskarten, Führerscheine, Fahrzeugscheine, Fahrzeugbriefe, Zulassungsbescheinigungen, Firmenausweise, Zutrittskarten, Bankkarten oder Kreditkarten aber auch gegen eine Verfälschung gesicherte Etiketten, Eintrittskarten oder Ähnliches, um nur einige aufzuzählen.A security element is an entity that includes at least one security feature intended to protect an imitation, falsification, copy or manipulation of the security element itself or an article in or on which the security element is mounted. Documents which have at least one security feature and / or one security element are referred to as security documents. As a rule, security documents comprise a multiplicity of different security features and / or security elements. Security documents include, for example, ID documents, passports, visas, identity cards, identity cards, driver's licenses, vehicle registration documents, vehicle registration documents, registration certificates, company identity cards, access cards, bank cards or credit cards, but also labels protected against adulteration, tickets or the like, to name only a few.

Eine Untergruppe der Sicherheitsdokumente, welche zusätzlich einen Wert verkörpern, wird auch als Gruppe der Wertdokumente bezeichnet. Die Gruppe der Wertdokumente umfasst u.a. Banknoten, Postwertzeichen, Steuermarken, Aktien, Wertpapiere, Frachtbriefe und Ähnliches, um ebenfalls nur einige zu nennen.A subset of the security documents, which additionally embody a value, is also referred to as a group of value documents. The group of value documents includes i.a. Banknotes, postage stamps, tax stamps, stocks, securities, waybills and the like, just to name a few.

Aus dem Stand der Technik ist eine Vielzahl von Sicherheitsmerkmalen und Sicherheitselementen bekannt, in denen eine Information codiert wird, die durch das Sicherheitsmerkmal bzw. Sicherheitselement gegen ein Nachahmen, Duplizieren oder gegen ein Verfälschen geschützt werden soll. Eine erhöhte Sicherheit gegen Verfälschungen und Manipulationen erhält man dadurch, dass die Information, welche durch das Sicherheitsmerkmal oder Sicherheitselement geschützt wird, individuell für das jeweilige Sicherheitselement bzw. das Sicherheitsdokument gewählt wird, in welche das Sicherheitselement integriert wird oder ist. Für jedes zu fälschende Sicherheitselement ist dieses dann individuell für das jeweilige Sicherheitsdokument bzw. Sicherheitselement zu fälschen.From the prior art, a variety of security features and security elements is known in which information is encoded, which is to be protected by the security feature or security element against copying, duplicating or against tampering. Increased security against falsification and manipulation is obtained by the fact that the information which is protected by the security feature or security element is selected individually for the respective security element or security document in which the security element is or is integrated. For each security element to be forged is This then individually for the respective security document or security element to fake.

Eine Gruppe von Sicherheitselementen wird ausgebildet, indem Aussparungen oder Perforationen in ein Substrat eingebracht werden.A group of security elements is formed by inserting recesses or perforations into a substrate.

Aus der FR 2 564 622 A1 ist ein Verfahren zum Herstellen von Ausweisdokumenten bekannt, die Angaben aufweisen, die das Identifizieren oder Erkennen wenigstens eines Inhabers ermöglichen. Das dort beschriebene Verfahren umfasst das Übertragen von solchen Angaben auf einen festen Träger in Form mindestens einer Menge von Punkten, die als Vertiefungen oder Erhebungen in diskreten Intervallen verteilt sind. Ein erster Satz solcher Punkte stellt beispielsweise ein Passfoto des Inhabers dar. Ein zweiter Satz von Punkten kann beispielsweise verschiedene Symbole, beispielsweise Buchstaben, Zahlen oder andere grafische Symbole umfassen, die die Identität, eine Adresse oder weitere Informationen über den Nutzer angeben. Die Punkte können durch ein gesteuertes Eindringen eines Werkzeugs in das Medium des Substrats oder über eine Wechselwirkung mit einem Laser ausgebildet werden. Die Punkte werden beispielsweise als Vertiefungen in regelmäßigen Intervallen angeordnet. Um Kontraste zwischen helleren und dunkleren Abschnitten zu erhalten, ist vorgeschlagen, bei konstantem Abstand der Punkte deren Querschnitt zu variieren. Eine andere Ausführungsform sieht vor, dass Vertiefungen einheitlicher Tiefe hergestellt werden und die Dichte der Punkte variiert wird. Die Punkte können auch als Durchgangslöcher durch das Substrat ausgebildet sein.From the FR 2 564 622 A1 For example, there is known a method of producing identification documents having indicia that enable identification or identification of at least one owner. The method described therein comprises transmitting such indicia to a solid support in the form of at least a set of points distributed as pits or bumps at discrete intervals. For example, a first set of such points represents a passport photograph of the owner. For example, a second set of points may include various symbols, such as letters, numbers, or other graphical symbols, indicating the identity, an address, or other information about the user. The dots may be formed by controlled penetration of a tool into the medium of the substrate or via an interaction with a laser. For example, the dots are arranged as pits at regular intervals. In order to obtain contrasts between lighter and darker sections, it is proposed to vary their cross-section with constant spacing of the points. Another embodiment provides that depressions of uniform depth are produced and the density of the dots is varied. The dots may also be formed as through holes through the substrate.

Ein ähnliches Sicherheitsmerkmal ist aus der EP 0 936 975 B1 bekannt, bei dem ein Dokument gegen Fälschungen geschützt wird, indem es ein Sicherheitsmerkmal in Form eines Perforationsmusters umfasst und das Perforationsmuster Löcher unterschiedlicher Größe umfasst, wobei sich das Perforationsmuster über eine geschlossene Oberfläche des Dokuments erstreckt und ein Passbild repräsentiert. Das Perforationsmuster ist mittels Laserlicht erzeugt.A similar security feature is from the EP 0 936 975 B1 It is known to protect a document against counterfeiting by comprising a security feature in the form of a perforation pattern and the perforation pattern comprising holes of different sizes, the perforation pattern extending over a closed surface of the document and representing a passport photograph. The perforation pattern is generated by means of laser light.

Bei diesen beschriebenen Ausführungsformen kann die Information unmittelbar über ein Betrachten des Perforationsmusters, beispielsweise im Durchlicht, verifiziert werden. Nachteilig ist es, dass durch ein Zufügen oder Verändern einzelner Löcher in den Perforationsmustern die gespeicherte Information deutlich verändert werden kann.In these described embodiments, the information can be verified immediately by viewing the perforation pattern, for example in transmitted light. It is disadvantageous that the stored information can be changed significantly by adding or changing individual holes in the perforation patterns.

Aus der DE 199 34 434 A1 sind ein Wert- und Sicherheitsdokument mit Perforierungen bekannt, bei denen Mikrokanäle als zusätzlicher Sicherheits- und Echtheitsnachweis angeordnet sind. Es sind Ausführungsformen beschrieben, bei denen die Mikrokanäle in unterschiedlichem Winkel zur Oberfläche des Wert- und/oder Sicherheitsdokuments eingebracht sind. Es sind Ausführungsformen beschrieben, bei denen durch die unterschiedliche Neigung der Mikrokanäle gegenüber einer Oberflächennormale erreicht werden soll, dass auch unterschiedliche Betrachtungsrichtungen existieren und aus den jeweiligen Betrachtungsrichtungen immer nur die Mikrokanäle der Mikroperforation erkennbar sind, deren Kanalachse im Wesentlichen mit einer Betrachtungsrichtung fluchtet. Auch die in der DE 199 34 434 A1 beschriebenen Ausführungsformen lassen sich teilweise nachträglich dadurch manipulieren, dass zusätzliche Mikroperforationen unter der entsprechend notwendigen Neigung gegenüber der Oberflächennormale zugefügt werden.From the DE 199 34 434 A1 are a value and security document with perforations known in which microchannels are arranged as additional security and authenticity. Embodiments are described in which the microchannels are introduced at different angles to the surface of the value and / or security document. Embodiments are described in which the different inclinations of the microchannels relative to a surface normal are to be achieved so that different viewing directions exist and from the respective viewing directions only the microchannels of the microperforation are recognizable whose channel axis is substantially aligned with a viewing direction. Also in the DE 199 34 434 A1 described embodiments can be partially subsequently manipulated by adding additional microperforations under the corresponding necessary inclination to the surface normal.

Auch aus der WO 00/43216 A1 ist ein Sicherheitsdokument mit einem Perforationsmuster bekannt, Ferner ist aus der WO 2012/046213 A1 , welches Stand der Technik nach Artikel 54(3) EPÜ ist, ein Sicherheitsdokument bekannt, welches jedoch nicht offenbart, dass das an Oberflächen des opaken Substrates entstehende Perforationsmuster nicht unmittelbar den Informationsgehalt der gespeicherten Information darstellt.Also from the WO 00/43216 A1 If a security document with a perforation pattern is known, further from the WO 2012/046213 A1 , which is state of the art under Article 54 (3) EPC, discloses a security document which does not disclose that the perforation pattern formed on surfaces of the opaque substrate does not directly represent the information content of the stored information.

Der Erfindung liegt die technische Aufgabe zugrunde, ein neuartiges Sicherheitselement und ein Verfahren zu dessen Herstellung zu schaffen, welches eine Informationsspeicherung auf andere Art und Weise bewerkstelligt, vorzugsweise gegen nachträgliche unbemerkte Manipulationen gut geschützt ist und dennoch eine Verifikation zuverlässig ohne einen allzu großen Aufwand ermöglicht.The invention is based on the technical object to provide a novel security element and a method for its production, which accomplishes an information storage in other ways, preferably well protected against subsequent unnoticed manipulations, yet reliably allows verification without too much effort.

Grundgedanke der ErfindungBasic idea of the invention

Der Erfindung liegt der Gedanke zugrunde, die Information in Form von Lichtstrahlrichtungen, welche in einem optischen Abbildungsprozess auftreten, zu codieren, wobei die Lichtausbreitungsrichtungen in Form von transparenten Kanälen in einem zumindest flächig ausgedehnten opaken Substrat "ausgebildet" werden. Durch die in dem ansonsten opaken Substrat oder opaken Volumenbereich eines Substrats ausgebildeten transparenten Kanäle werden somit Lichtausbreitungsrichtungen vorgegeben, welche in ihrer Gesamtheit eine Information speichern, die mittels einer Abbildungsoptik in eine grafisch wahrnehmbare Darstellung überführt werden kann, aus der der Informationsgehalt visuell oder, sofern eine Abbildung der grafischen Darstellung erfasst wird, maschinell erfasst werden kann.The invention is based on the idea to encode the information in the form of light beam directions which occur in an optical imaging process, wherein the light propagation directions are "formed" in the form of transparent channels in an at least extensively extended opaque substrate. The transparent channels formed in the otherwise opaque substrate or opaque volume region of a substrate thus define light propagation directions which in their entirety store information which can be converted into a graphically perceptible representation by means of imaging optics, from which the information content is visual or, if one Illustration of the graphical representation is captured, can be detected by machine.

Vorteilhaft an der Form der Speicherung ist es, dass das Perforationsmuster selbst, welches an Oberflächen des Substrates entsteht, nicht unmittelbar die gespeicherte Information bzw. dessen Informationsgehalt darstellt und somit eine Manipulation über ein Zufügen weiterer transparenter Kanäle deutlich erschwert ist. Für eine Manipulation oder Fälschung ist es notwendig, zumindest die für die Verifikation notwendige Abbildungsgeometrie zu kennen und bei einem Einbringen von zusätzlichen transparenten Kanälen, sofern dies überhaupt möglich ist, zu berücksichtigen. Um zusätzliche transparente Kanäle in dem Substrat ausbilden zu können, muss für die entsprechende Kanalneigung ein Volumenbereich des Substrats existieren, der frei von den bereits existierenden unterschiedlich geneigten transparenten Kanälen ist.An advantage of the form of storage is that the perforation pattern itself, which is produced on surfaces of the substrate, does not directly store the stored one Information or its information content and thus a manipulation on adding more transparent channels is much more difficult. For manipulation or counterfeiting, it is necessary to know at least the imaging geometry necessary for the verification and to take this into consideration when introducing additional transparent channels, if that is even possible. In order to be able to form additional transparent channels in the substrate, a volume region of the substrate must exist for the corresponding channel inclination which is free of the already existing differently inclined transparent channels.

Definitionendefinitions

Als Sicherheitselement wird jede physische Entität aufgefasst, die mindestens ein Sicherheitsmerkmal umfasst.A security element is any physical entity that includes at least one security feature.

Ein Sicherheitsmerkmal ist ein Merkmal, welches ein Nachahmen, Duplizieren, Verfälschen oder Ähnliches eines Gegenstandes zumindest erschwert oder unmöglich macht.A security feature is a feature that at least complicates or prevents mimicking, duplicating, falsifying or the like of an article.

Sicherheitsdokumente sind solche Dokumente, welche mindestens ein, vorzugsweise mehrere, insbesondere unterschiedliche, Sicherheitsmerkmale und/oder Elemente umfassen. Gemäß der obigen Definition eines Sicherheitselements stellt jedes Sicherheitsdokument selbst auch ein Sicherheitselement dar.Security documents are documents which comprise at least one, preferably several, in particular different, security features and / or elements. According to the above definition of a security element, each security document itself also constitutes a security element.

Als Wertdokumente wird eine Gruppe von Sicherheitsdokumenten bezeichnet, die einen Wert verkörpern. Eine genaue Abgrenzung zwischen Wertdokumenten und solchen Sicherheitsdokumenten, die keine Wertdokumente darstellen, ist in manchen Bereichen schwierig, da beispielsweise Bank- oder Kreditkarten häufig selbst keinen unmittelbaren Wert verkörpern, jedoch die Möglichkeit einräumen, über größere Geldbeträge zu verfügen. Eine genaue Abgrenzung ist nicht erfindungswesentlich.Value documents are a group of security documents that embody a value. A precise distinction between value documents and those security documents that are not value documents is difficult in some areas, since, for example, bank or credit cards often themselves do not embody immediate value, but allow for the possibility of having large sums of money. A precise delimitation is not essential to the invention.

Als transparent wird ein Gegenstand oder ein Raumgebiet bezeichnet, welches Licht, d.h. elektromagnetische Strahlung, einer Wellenlänge oder eines Wellenlängenbereichs in Form gerichteter Strahlung passieren lässt. Eine gerichtete Strahlung weist eine Intensitätsverteilung auf, die nur in einem zusammenhängenden begrenzten Raumwinkelbereich eine hohe Intensität aufweist. Unter den übrigen Raumwinkeln ist die Intensität wesentlich, in der Regel um mehrere Größenordnungen, schwächer, vorzugsweise nahe null. Tritt eine solche gerichtete Strahlung durch ein transparentes Material, so bleibt die Eigenschaft erhalten, dass die Intensität in einem begrenzten Raumwinkelbereich konzentriert ist. Der Raumwinkelbereich kann sich zwar vergrößern, eine nennenswerte diffuse Streuung tritt jedoch nicht auf. Eine Abschwächung hinsichtlich einer Intensität der durch den transparenten Bereich bzw. das transparente Raumgebiet tretenden Strahlung kann jedoch auftreten. Durch ein transparentes Material hindurch ist eine Abbildung gemäß der geometrischen Optik möglich.An object or a spatial area is referred to as transparent, which transmits light, ie electromagnetic radiation, a wavelength or a wavelength range in the form of directed radiation. Directed radiation has an intensity distribution which has a high intensity only in a coherent limited solid angle range. Among the other solid angles is the Intensity substantially, usually by several orders of magnitude, weaker, preferably close to zero. If such a directed radiation passes through a transparent material, the property is maintained that the intensity is concentrated in a limited solid angle range. Although the solid angle range can increase, a significant diffuse scattering does not occur. However, a weakening with respect to an intensity of the radiation passing through the transparent region or the transparent spatial region can occur. Through a transparent material through an image according to the geometric appearance is possible.

Als transluzent wird hingegen ein Material bezeichnet, bei dem die beschriebene Eigenschaft der Erhaltung der Richtungscharakteristik nicht mehr vorliegt. Hauptsächlich durch diffuse Streuung wird aus einer ursprünglich gerichteten Strahlung, eine Strahlung, deren Intensitätsverteilung in einem großen Raumwinkelbereich eine deutlich wahrnehmbare Intensität aufweist. Eine Intensitätsüberhöhung in dem oder um den Winkelbereich, der der mit der ursprünglichen Ausbreitungsrichtung der gerichteten Strahlung assoziiert werden kann, ist zwar möglich, beträgt aber nicht mehr mehrere Größenordnungen.In contrast, a material is referred to as translucent in which the described property of preserving the directional characteristic is no longer present. Mainly due to diffuse scattering, an originally directed radiation, a radiation whose intensity distribution in a large solid angle range has a clearly perceptible intensity. An increase in intensity in or around the angular range which can be associated with the original direction of propagation of the directed radiation is possible, but is no longer several orders of magnitude.

Als opak wird die Eigenschaft bezeichnet, welchen einen Durchtritt von Licht, d.h. elektromagnetischer Strahlung, zumindest für eine Wellenlänge oder einen oder mehrere Wellenlängenbereiche unterbindet. Für die Angabe, ob ein Gegenstand oder ein Raumgebiet transparent oder opak ist, ist es von Bedeutung, dass die Wellenlänge oder der Wellenlängenbereich angegeben wird, für den diese Eigenschaften untersucht werden oder gelten. Es gibt eine Vielzahl von Materialien, welche beispielsweise im sichtbaren Wellenlängenbereich transparent, jedoch im ultravioletten Wellenlängenbereich opak sind.As opaque is meant the property which is a passage of light, i. electromagnetic radiation, at least for one wavelength or one or more wavelength ranges. For indicating whether an object or a spatial area is transparent or opaque, it is important to specify the wavelength or wavelength range for which these properties are being studied or applied. There are a variety of materials which are transparent, for example in the visible wavelength range, but opaque in the ultraviolet wavelength range.

Unter einem Kanal im Sinne der Erfindung wird ein Raumgebiet verstanden, welches mindestens eine Achse aufweist, welche gradlinig durch das Raumgebiet verläuft. Ein in einem opaken Substrat ausgebildeter transparenter Kanal stellt in dem Substrat ein das Substrat durchdringendes Raumgebiet dar, welches für Licht mindestens einer Wellenlänge oder eines Wellenlängenbereichs transparent ist, für den das Substrat ansonsten opak ist, wobei das Raumgebiet geometrisch so ausgebildet ist, dass dieses einen Lichtdurchtritt entlang einer gradlinig durch das Raumgebiet verlaufenden Richtung oder eines eng begrenzten Raumwinkelbereichs um diese gradlinig durch das Raumgebiet verlaufende Richtung begünstigt und übrige Ausbreitungsrichtungen von Licht durch den Kanal hindurch erschwert oder unmöglich macht.A channel in the sense of the invention is understood to mean a space area which has at least one axis which runs straight through the space area. A transparent channel formed in an opaque substrate constitutes in the substrate a space region penetrating the substrate which is transparent to light of at least one wavelength or wavelength range for which the substrate is otherwise opaque, the space region being geometrically formed to have one Light passage along a straight line through the space area direction or a narrow spatial angle range around this straight through the Spaces favored spatial area and makes other propagation directions of light through the channel difficult or impossible.

Ein zumindest in einem zusammenhängenden Volumenbereich opakes Substrat ist ein Substrat, welches einen zusammenhängenden Volumenbereich umfasst, der gemessen parallel zur Oberflächennormale des Substrats eine endliche, von null verschiedene Ausdehnung aufweist und bei dem zumindest dessen Eintritts- und Austrittsfläche für Licht zumindest einer Wellenlänge oder eines Wellenlängenbereichs, das parallel zu Oberflächennormale auf den Volumenbereich auftrifft, opak ausgebildet sind. Die Ein- und Austrittsfläche sind die Begrenzungsflächen des Volumenbereichs, die eine gedachte Gerade schneidet, entlang derer sich gerichtetes Licht durch den Volumenbereich ausbreiten würde, sofern dieser Volumenbereich transparent wäre. Vorzugsweise ist der Volumenbereich in seinem gesamten Volumen opak ausgebildet. Eine als koextrudierte Folie ausgebildete Substratschicht, welche an planparallelen Oberflächen opak und in einem hierzwischen liegenden inneren Volumenbereich transparent ausgebildet ist, stellt somit eine Substrat dar, das in einem zusammenhängenden Volumenbereich im Sinne der hier gegebenen Definition opak ist. Auch in ihrem gesamten Volumen opak ausgebildete Folien stellen ein zumindest in einem zusammenhängenden Volumenbereich opakes Substrat dar.An opaque substrate, at least in a contiguous volume range, is a substrate comprising a contiguous volume region having a finite non-zero extent parallel to the surface normal of the substrate and at least its entrance and exit surfaces for light of at least one wavelength or wavelength range , which impinges on the volume area parallel to surface normal, are opaque. The entrance and exit surfaces are the boundary surfaces of the volume region which intersects an imaginary straight line along which directed light would propagate through the volume region, provided that volume region were transparent. Preferably, the volume area is opaque in its entire volume. A substrate layer designed as a coextruded film, which is made opaque on plane-parallel surfaces and transparent in an inner volume region lying between them, thus represents a substrate that is opaque in a coherent volume region in the sense of the definition given here. Also in their entire volume opaque films represent an opaque substrate at least in a contiguous volume range.

Eine Information kann auf vielfältige unterschiedliche Art und Weise repräsentiert oder gespeichert sein. Ein Begriff, wie beispielsweise das Wort "Haus", kann beispielsweise über die gedruckten Buchstaben H-a-u-s in Form von Druckerschwärze auf einem weißen Papier dargestellt und gespeichert sein. Ebenso ist es möglich, dieselbe Information als Brailleschrift zu codieren, d.h. in Form einzelner kreisförmiger Erhebungen über einer ansonsten glatten Oberfläche. Andere mögliche Darstellungsformen bestehen in einer Binärcodierung der einzelnen Schriftzeichen, beispielsweise gemäß dem ASCII-Code oder dem Uni-Code. Auch wenn die Ausgestaltung der Speicherung unterschiedlich ist, ist allen diesen gemein, dass diese denselben Informationsgehalt, nämlich den Sinngehalt des Begriffs Haus, umfassen. In der Darstellung, bei der dieser Begriff mittels der Schriftzeichen H-a-u-s mit Druckerschwärze auf einem beispielsweise weißen Hintergrund dargestellt ist, ist dieser Informationsgehalt visuell für einen Menschen oder nach Erfassung einer Abbildung maschinell beispielsweise über eine Mustererkennung, wie sie in verschiedenen OCR-Programmen umgesetzt ist, zu erkennen und auszuwerten.Information may be represented or stored in a variety of different ways. For example, a term such as the word "house" may be represented and stored over the printed letters house in the form of ink on a white paper. It is also possible to code the same information as Braille, ie in the form of individual circular elevations over an otherwise smooth surface. Other possible forms of representation consist in a binary coding of the individual characters, for example according to the ASCII code or the university code. Even if the configuration of the storage is different, all these have in common that they contain the same information content, namely the meaning of the term house. In the representation in which this term is represented by the characters house with printing ink on a white background, for example, this information content is displayed visually for a human being or, after acquisition of an image, for example via pattern recognition, as implemented in various OCR programs. to recognize and evaluate.

Licht ist elektromagnetische Strahlung eines vorgegebenen Wellenlängenbereichs, beispielsweise des sichtbaren Wellenlängenbereichs. Licht kann jedoch auch UV-Strahlung, IR-Strahlung sein oder eine Kombination von Strahlung unterschiedlicher Wellenlängenbereiche umfassen.Light is electromagnetic radiation of a predetermined wavelength range, for example the visible wavelength range. However, light can also be UV radiation, IR radiation or comprise a combination of radiation of different wavelength ranges.

Ein Richtungsvektor ist ein Vektor, der eine Orientierung im dreidimensionalen Raum angibt.A direction vector is a vector indicating an orientation in three-dimensional space.

Wird einem Richtungsvektor zusätzlich ein Punkt im dreidimensionalen Raum zugeordnet, so wird dieses sich ergebende mathematische Objekt hier als Raumvektor bezeichnet. Mathematisch definiert im Raumvektor eine Strecke sowie eine Richtung im dreidimensionalen Raum. Jedem Raumvektor kann im dreidimensionalen Raum genau eine Gerade zugeordnet werden. Dieses ist die Gerade, auf der der Raumvektor liegt. Eine Länge des Raumvektors ist unerheblich, so dass Raumvektoren als gleich angesehen werden, die auf derselben Geraden liegen.If a point is also assigned to a direction vector in three-dimensional space, then this resulting mathematical object is referred to here as a space vector. Mathematically defined in the space vector a distance and a direction in three-dimensional space. Each space vector can be assigned exactly one straight line in three-dimensional space. This is the line on which the space vector lies. A length of the space vector is insignificant, so that space vectors that are on the same straight line are considered equal.

Zur Veranschaulichung kann man sich als Raumvektor ein Objekt vorstellen, welches durch einen Raumpunkt, beispielsweise ein Punkt in der Oberflächenebene eines Substrats, und einen Richtungsvektor charakterisiert ist.By way of illustration, a space vector may be an object which is characterized by a point in space, for example a point in the surface plane of a substrate, and a direction vector.

Eine Charakterisierung eines transparenten Kanals über einen Raumvektor erfolgt beispielsweise so, dass der Raumpunkt in einer Eintrittsoberfläche des Substrats die Lage einer Eintrittsöffnung festlegt und der Richtungsvektor die Orientierung einer Kanalachse angibt.A characterization of a transparent channel via a space vector takes place, for example, such that the point in space in an entry surface of the substrate determines the position of an entry opening and the direction vector indicates the orientation of a channel axis.

Bevorzugte AusführungsformenPreferred embodiments

Es wird ein Verfahren zum Herstellen eines Sicherheitselements, welches gemäß einer bevorzugten Ausführungsform als Sicherheitsdokument ausgebildet ist, vorgeschlagen, welches die Schritte umfasst: Bereitstellen eines Substrat, das zumindest in einem zusammenhängenden Volumenbereich opak für Licht ausgebildet ist, Bereitstellen einer zu speichernden Information in Form eines Satzes von Orientierungen oder Richtungsvektoren, Speichern der Information in dem Substrat, indem transparente Kanäle in dem opaken Substrat innerhalb des zusammenhängenden Volumenbereichs ausgebildet werden, so dass jeder der Orientierungen oder jedem der Richtungsvektoren mindestens einer der transparenten Kanäle zugeordnet ist, vorzugsweise jeder der Orientierungen oder jedem der Richtungsvektoren jeweils mehrere der transparenten Kanäle zugeordnet sind, wobei jeder der Kanäle jeweils einen Durchtritt von Licht entlang eines dem jeweiligen Kanal zugeordneten Raumvektors begünstigt, vorzugsweise ausschließlich entlang des dem jeweiligen Kanal zugeordneten Raumvektors zulässt, der kollinear zu der Orientierung oder dem Richtungsvektor ist, der oder dem der jeweilige transparente Kanal zugeordnet ist. Als ein Richtungsvektor wird ein Vektor angesehen, der eine Orientierung im dreidimensionalen Raum angibt. Als ein Raumvektor wird ein Objekt angesehen, das neben einer beispielsweise durch einen Richtungsvektor festgelegten Orientierung zusätzlich ein Punkt im Raum angibt ist, beispielsweise einen Durchtrittspunkt einer mit dem Richtungsvektor zusammenfallenden Geraden durch eine vorgegebene Ebene, beispielsweise eine Oberfläche des opaken Substrats. Kanäle, die beispielsweise in dem opaken Substrat ausgebildet sind und dieselbe Orientierung bezüglich der Oberfläche bzw. einer Oberflächennormale des Substrats aufweisen und somit dieselbe Orientierung besitzen, d.h. kollinear zu einem Richtungsvektor sind, welcher die Orientierung im Raum angibt, unterscheiden sich durch die Durchtrittspunkte von Geraden, welche mit den entsprechenden Raumvektoren hinsichtlich ihrer Orientierung zusammenfallen. Ohne Beschränkung der Allgemeinheit wird im Folgenden angenommen, dass die Raumvektoren jeweils durch einen Punkt in der Oberflächenebene des opaken Substrats und die jeweilige Orientierung, d.h. einen Richtungsvektor, charakterisiert sind. Ein entsprechend des vorgeschlagenen Verfahrens hergestelltes Sicherheitselement für ein Sicherheitsdokument umfasst mindestens ein Substrat, das zumindest in einem zusammenhängenden Volumenbereich opak für Licht ausgebildet ist, wobei innerhalb des opaken Volumenbereichs des Substrats transparente Kanäle zur Speicherung einer Information ausgebildet sind, wobei vorgesehen ist, dass die transparenten Kanäle so ausgebildet sind, dass jeder der Kanäle jeweils einen Durchtritt von Licht entlang eines dem transparenten Kanal zugeordneten Raumvektors begünstigt, vorzugsweise ausschließlich entlang des dem transparenten Kanal zugeordneten Raumvektors zulässt, wobei die Kanäle so ausgebildet sind, dass entlang der Raumvektoren durch die transparenten Kanäle des Substrats hindurchtretendes Licht mittels einer vorgegebenen Abbildungsoptik auf einem in einer vorgegebenen Orientierung zur Abbildungsoptik angeordneten Schirm in eine grafische Darstellung abbildbar ist, so dass ein Informationsgehalt der gespeicherten Information aus der grafischen Darstellung erfasst werden kann. Ein Vorteil der Erfindung besteht darin, dass die Eintritts- und/oder Austrittsöffnungen der transparenten Kanäle Muster darstellen, sofern diese wahrnehmbar sind, welche nicht die gespeicherte Information grafisch abbilden. Die gespeicherte Information ist vielmehr erst visuell wahrnehmbar, wenn Licht zur Verfügung gestellt wird, so dass dieses entlang der durch die Raumvektoren der einzelnen transparenten Kanäle vorgegebenen Richtungen durch das opake Substrat hindurchtritt und mittels einer vorgegebenen Abbildungsoptik auf einen Schirm abgebildet wird. Auf dieser ergibt sich dann eine grafische Darstellung, deren Informationsgehalt durch einen menschlichen Nutzer erfassbär ist. Alternativ kann eine Abbildung der grafischen Darstellung erfasst und maschinell ausgewertet werden, beispielsweise mittels einer Mustererkennung und eines Vergleichs mit vorgegebenen Daten.A method for producing a security element, which according to a preferred embodiment is designed as a security document, is proposed, which comprises the steps: providing a substrate that is opaque to light at least in a continuous volume range, providing information to be stored in the form of a Set of orientations or direction vectors, storing the information in the substrate by forming transparent channels in the opaque substrate within the contiguous volume region such that each of the orientations or each of the directional vectors at least one of the transparent channels is assigned, preferably each of the orientations or each of the direction vectors are each associated with a plurality of the transparent channels, each of the channels each favoring passage of light along a space vector associated with the respective channel, preferably exclusively along the associated channel Space vector which is collinear with the orientation or direction vector to which the respective transparent channel is assigned. As a direction vector, a vector indicating an orientation in three-dimensional space is considered. A space vector is considered to be an object which, in addition to an orientation determined for example by a direction vector, additionally indicates a point in space, for example a passage point of a straight line coincident with the direction vector through a predetermined plane, for example a surface of the opaque substrate. Channels formed, for example, in the opaque substrate and having the same orientation with respect to the surface or normal to the substrate and thus having the same orientation, ie collinear with a directional vector indicating the orientation in space, are distinguished by the passage points of straight lines , which coincide with the corresponding space vectors in terms of their orientation. Without limiting the generality, it is assumed below that the space vectors are each characterized by a point in the surface plane of the opaque substrate and the respective orientation, ie a direction vector. A security element produced according to the proposed method for a security document comprises at least one substrate that is opaque to light in at least one contiguous volume area, wherein transparent channels for storing information are formed within the opaque volume area of the substrate, wherein it is provided that the transparent ones Channels are formed so that each of the channels each favors passage of light along a space vector associated with the transparent channel, preferably exclusively along the space vector associated with the transparent channel, the channels being formed such that along the space vectors through the transparent channels of the space vector Substrate passing through light by means of a predetermined imaging optics on a arranged in a predetermined orientation to the imaging optics screen is mapped into a graphical representation, so that an Infor content of the stored information from the graphical representation can be detected. An advantage of the invention is that the inlet and / or outlet openings of the transparent channels represent patterns, if they are perceptible, which do not graphically represent the stored information. Rather, the stored information is visually discernible only when light is made available, so that it passes through the opaque substrate along the directions predetermined by the space vectors of the individual transparent channels and is imaged onto a screen by means of a predetermined imaging optics. This results in a graphic representation whose informational content is recorded by a human user. Alternatively, an image of the graphical representation can be detected and evaluated by machine, for example by means of a pattern recognition and a comparison with predetermined data.

Vorzugsweise werden die transparenten Kanäle mittels Laserstrahlung in Form von Mikrokanälen in dem opaken Substratbereich ausgebildet. Dies bedeutet, dass Material aus dem opaken Substrat mittels Laserablation entfernt wird. Hierdurch werden in dem opaken Substrat bzw. einem flächig ausgedehnten opaken Bereich Durchgangslöcher geschaffen, welche kein opakes Substratmaterial mehr enthalten. Als Mikrokanäle werden Kanäle bezeichnet, deren Querschnittsflächen Abmessungen im Mikrometerbereich, vorzugsweise im Bereich zwischen 30 - 500 µm, bevorzugter zwischen 30 - 100 µm und am bevorzugtesten zwischen 75 - 300 µm betragen. Besonders bevorzugt weisen die Mikrokanäle kreisförmige oder elliptische Querschnittsflächen auf. Die Angaben hinsichtlich einer Dimensionierung der Mikrokanäle beziehen sich jeweils auf ihren Zustand vor dem Ausführen der Lamination. Allgemein gilt, dass eine Richtungsselektion zunimmt, je geringer eine Querschnittsfläche des einen Mikrokanals senkrecht zu seiner Längserstreckung im Verhältnis zu der Länge des Kanals entlang dieser Längserstreckung ist. Bei vorgegebener Materialstärke des opaken Volumenbereichs steigt die Winkelselektion somit mit der Abnahme des Durchmessers. Zugleich nimmt auch die Intensität des Lichts ab, die diesen Kanal bei vorgegebener Beleuchtung passiert. Dieser Intensitätsverlust kann jedoch durch ein Zufügen von Mikrokanälen kompensiert werden, die dieselbe Orientierung aufweisen.Preferably, the transparent channels are formed by means of laser radiation in the form of microchannels in the opaque substrate region. This means that material is removed from the opaque substrate by laser ablation. As a result, through holes are created in the opaque substrate or a flatly extended opaque area, which no longer contain any opaque substrate material. Channels are designated as microchannels whose cross-sectional areas are dimensions in the micrometer range, preferably in the range between 30-500 μm, more preferably between 30-100 μm and most preferably between 75-300 μm. Particularly preferably, the microchannels have circular or elliptical cross-sectional areas. The details with regard to a dimensioning of the microchannels always relate to their state before the lamination is carried out. In general, a directional selection increases the smaller a cross-sectional area of the one microchannel is perpendicular to its longitudinal extent relative to the length of the channel along this longitudinal extent. For a given material thickness of the opaque volume range, the angle selection thus increases with the decrease of the diameter. At the same time, the intensity of the light passing through this channel at given illumination diminishes. However, this loss of intensity can be compensated for by adding microchannels having the same orientation.

Alternativ zur Formung durch Laserstrahlung sind mechanische Verfahren, z.B. Stanzen, möglich.Alternatively to shaping by laser radiation, mechanical methods, e.g. Punching, possible.

Ein Vorteil der Ausbildung der transparenten Kanäle als Mikrokanäle besteht darin, dass diese in ihrer Gesamtheit bei einer Betrachtung sowohl im Auflicht als auch im Durchlicht quasi nicht zeitgleich wahrnehmbar sind, da diese unter unterschiedlichen Richtungen in dem Substrat ausgebildet sind. Aus einer Betrachtungsrichtung, welche einer der Orientierungen, d.h. einem der Richtungsvektoren, entspricht, die in dem Satz der Orientierungen bzw. Richtungsvektoren enthalten sind, sind jeweils nur die transparenten Kanäle bzw. Mikrokanäle beobachtbar, welchen ein Raumvektor zugeordnet ist, d.h. die durch einen Raumvektor charakterisiert sind, der kollinear zu der jeweiligen Orientierung ist. Die gespeicherte Information erschließt sich jedoch lediglich durch die Gesamtheit der in dem Dokument ausgebildeten Orientierungen.An advantage of the formation of the transparent channels as microchannels is that these in their entirety when viewed in both reflected and transmitted light are virtually imperceptible at the same time, since they are formed under different directions in the substrate. From a viewing direction which corresponds to one of the orientations, ie one of the direction vectors, contained in the set of orientations or direction vectors, only the transparent channels or microchannels to which a space vector is assigned, that is to say by a space vector, are observable which is collinear with the respective orientation. However, the stored information is only revealed through the entirety of the orientations formed in the document.

Bei einer bevorzugten Ausführungsform werden somit die transparenten Kanäle als Mikroperforation ausgebildet, wobei die einzelnen Perforationslöcher die transparenten Kanäle darstellen und diese unter unterschiedlichen Richtungen in dem Substrat ausgebildet sind und dieses durchdringen. Vorzugsweise wird das Substrat als opake Folie bereitgestellt, welche zumindest in einem Volumenbereich unterhalb eines flächigen Bereichs vorzugsweise durch die gesamte Materialstärke opak ausgebildet ist. Besonders bevorzugt wird eine vollständig im gesamten Volumen opak ausgebildete Folie als Substrat verwendet. Zur Herstellung des Sicherheitselements bzw. eines Sicherheitsdokuments wird die opake oder zumindest in einem Volumenbereich opake Folie, welche das Substrat darstellt, mit weiteren Folien zu einem Dokumentkörper laminiert. Da beim Laminieren auf den Folienverbund im erwärmten Zustand große Drücke ausgeübt werden, ist es vorteilhaft, die transparenten Kanäle vor dem Laminieren mit einem transparenten Material zu füllen. Dieses kann beispielsweise dadurch erfolgen, dass das Material, welches eine ausreichende Viskosität aufweist, in die transparenten Kanäle beispielsweise eingerakelt wird.In a preferred embodiment, therefore, the transparent channels are formed as a micro-perforation, wherein the individual perforation holes represent the transparent channels and these are formed under different directions in the substrate and penetrate it. Preferably, the substrate is provided as an opaque film, which is preferably formed opaque, at least in a volume region below a planar region by the entire material thickness. Particularly preferably, a film which has been made opaque completely in the entire volume is used as the substrate. To produce the security element or a security document, the opaque or at least in a volume region opaque film, which is the substrate, laminated with other films to a document body. Since large pressures are exerted during the lamination on the film composite in the heated state, it is advantageous to fill the transparent channels with a transparent material prior to lamination. This can be done, for example, by the fact that the material which has a sufficient viscosity is, for example, doctored into the transparent channels.

Andere Verfahrensschritte zum Füllen der transparenten Kanäle können ebenfalls verwendet werden. Beispielsweise könnten auch Siebdruckverfahren oder andere Verfahren verwendet werden, solange eine ausreichende Befüllung mit transparentem Material erfolgt, welches eine ausreichende Inkompressibilität aufweist, um beim Laminieren zu verhindern, dass die Mikroperforationen aufgrund eines quer zu dem Richtungsvektor, welchem der entsprechende Mikrokanal zugeordnet ist, wirkenden Drucks während des Laminationsvorgangs verschlossen wird.Other method steps for filling the transparent channels may also be used. For example, screen printing or other methods could be used as long as there is sufficient filling with transparent material having sufficient incompressibility to prevent the microperforations from laminating due to pressure acting across the directional vector to which the corresponding microchannel is associated is closed during the lamination process.

Zur weiteren Prozessierbarkeit kann es hilfreich sein, das Material zu fixieren. Das kann z.B. über ein UV- oder thermisch reaktives Füllmaterial geschehen, dass nach Befüllung entsprechend mittels UV-Strahlung oder thermisch fixiert wird.For further processability, it may be helpful to fix the material. This can be done, for example, via a UV or thermally reactive filling material that is appropriately fixed after filling by means of UV radiation or thermally.

Bei bevorzugten Ausführungsformen des Sicherheitselements sind somit die transparenten Kanäle mit einem transparenten Material zumindest teilweise, vorzugsweise vollständig ausgefüllt.In preferred embodiments of the security element, the transparent channels are thus filled with a transparent material at least partially, preferably completely.

Den transparenten Kanälen kann eine Eintrittsseite und eine Austrittsseite zugeordnet werden und an einer Austrittsoberfläche, welches die den Austrittseiten der transparenten Kanäle benachbarte Oberfläche des Dokumentkörpers oder des Substrats ist, werden oder sind bei einer Ausführungsform Linsenelemente ausgebildet, die gemeinsam entlang der den jeweiligen Mikrokanälen zugeordneten Raumvektoren durch die Mikrokanäle durchtretendes Licht auf einem Schirm, welcher in einem vorgegebenen Abstand und in einer vorgegebenen Orientierung relativ zu der Austrittsoberfläche angeordnet ist, so abbilden, dass auf dem Schirm der mittels der Mikrokanäle gespeicherte Informationsgehalt in einer grafischen Darstellung wahrnehmbar ist. Hierdurch wird erreicht, dass das Sicherheitselement bzw. das Sicherheitsdokument bereits die zur Verifikation des Informationsgehalts der gespeicherten Information notwendige Abbildungsoptik umfasst. Für eine Verifikation ist es nun nur noch erforderlich, eine geeignete Lichtquelle auf der den Eintrittsseiten der Kanäle zugewandten Oberfläche des Substrats bzw. Sicherheitsdokuments bereitzustellen, welche in der Lage ist, Licht zur Verfügung zu stellen, so dass durch sämtliche Kanäle jeweils Licht entsprechend der den Kanälen zugeordneten Raumvektoren fällt, um dann auf einem zusätzlich notwendigen Schirm, der in einem vorgegebenen Abstand vorzugsweise parallel orientiert zu der Austrittsoberfläche des Sicherheitselements bzw. Wertdokuments angeordnet wird, eine grafische Darstellung zu erhalten.An entrance side and an exit side can be assigned to the transparent channels, and lens elements are formed on an exit surface, which is the surface of the document body or the substrate adjacent to the exit sides of the transparent channels, in one embodiment along the space vectors associated with the respective microchannels light passing through the microchannels is imaged on a screen which is arranged at a predetermined distance and in a predetermined orientation relative to the exit surface such that on the screen the information content stored by means of the microchannels is perceptible in a graphical representation. It is thereby achieved that the security element or the security document already comprises the imaging optics necessary for the verification of the information content of the stored information. For a verification, it is now only necessary to provide a suitable light source on the surface of the substrate or security document facing the entrance sides of the channels, which is capable of providing light, so that light is emitted through all the channels in accordance with the Channels associated space vectors falls, in order then on an additional necessary screen, which is preferably arranged in a predetermined distance parallel to the exit surface of the security element or value document to obtain a graphical representation.

Vorzugsweise umfasst das Bereitstellen der zu speichernden Information in einem Satz von Orientierungen das Bereitstellen des zu speichernden Informationsgehalts in Form einer grafischen Darstellung und ein Berechnen einer Orientierung für jeden der Bildpunkte, die zum Darstellen des grafisch wahrnehmbaren Informationsgehalts notwendig sind, wobei jeder Bildpunkt als Punkt in einer Fokalebene einer Sammellinse vorgegebener Brennweite aufgefasst wird. Die sich für einen Bildpunkt ergebende Orientierung stellt eine Raumrichtung dar, unter der Licht einer im Unendlichen befindlichen Lichtquelle in Form paralleler Lichtstrahlen auf die als Sammellinse ausgebildete Abbildungsoptik fallen würde und in der Fokalebene der Sammellinse in einem Punkt fokussiert den entsprechenden Bildpunkt ausbilden würde. In dem opaken Substrat stellen die transparenten Kanäle somit idealisiert für jeden Bildpunkt die Strahlen einer im Unendlichen befindenden Punktlichtquelle dar, die durch die entsprechende Orientierung repräsentiert ist. Jeder Bildpunkt entspricht somit einer Orientierung, so dass man einen Satz von Orientierungen bzw. Richtungsvektoren erhält, welche diese Orientierungen repräsentieren. Um eine möglichst große Lichtintensität bei der Abbildung zu erhalten, ist es daher vorteilhaft, für jede der Orientierungen mehrere transparente Mikrokanäle auszubilden, deren Raumvektoren kollinear zu der entsprechenden Orientierung sind.Preferably, providing the information to be stored in a set of orientations comprises providing the information content to be stored in the form of a graphical representation and calculating an orientation for each of the pixels necessary to represent the graphically perceptible information content, each pixel being a dot in a focal plane of a convergent lens of predetermined focal length is understood. The orientation resulting for a pixel represents a spatial direction under which light from an infinite light source in the form of parallel light rays would fall on the imaging optics embodied as a converging lens and in the focal plane of the condenser lens Focusing on a point would form the corresponding pixel. In the opaque substrate, the transparent channels thus ideally represent, for each pixel, the rays of an infinite point light source represented by the corresponding orientation. Each pixel thus corresponds to an orientation, so that one obtains a set of orientations or direction vectors which represent these orientations. In order to obtain the greatest possible light intensity in the imaging, it is therefore advantageous to form for each of the orientations a plurality of transparent microchannels whose spatial vectors are collinear to the corresponding orientation.

Es versteht sich, dass die Abmessungen der Querschnittsflächen der Mikrokanäle vorzugsweise geringer als eine Materialstärke des opaken Substrats gewählt werden, um eine möglichst hohe Winkelselektivität oder Richtungsselektivität des durch die Mikrokanäle hindurchtretenden Lichts zu erhalten. Je kleiner der Querschnitt der Mikrokanäle im Verhältnis zu ihrer Länge durch das Substrat ist, desto höher ist eine Richtungsselektion des entsprechenden transparenten Kanals. Im Gegenzug verringert sich jedoch die durch den entsprechenden Kanal transmittierte Lichtmenge, so dass ein Kompromiss hinsichtlich Richtungsselektivität und transmittierter Lichtmenge gefunden werden muss. Zu beachten ist hierbei, dass die für die Orientierung transmittierte Lichtmenge mit der Anzahl der Mikrokanäle zunimmt, die dieser Orientierung zugeordnet sind und deren zugeordnete Richtungsvektoren somit kollinear zu der Orientierung bzw. dem Richtungsvektor sind, der die Orientierung angibt bzw. charakterisiert.It is understood that the dimensions of the cross-sectional areas of the microchannels are preferably selected to be smaller than a material thickness of the opaque substrate in order to obtain the highest possible angular selectivity or directional selectivity of the light passing through the microchannels. The smaller the cross section of the microchannels in relation to their length through the substrate, the higher is a directional selection of the corresponding transparent channel. In return, however, reduces the amount of light transmitted through the corresponding channel, so that a compromise in terms of directional selectivity and transmitted amount of light must be found. It should be noted that the amount of light transmitted for orientation increases with the number of microchannels associated with this orientation and their associated directional vectors are thus collinear with the orientation or direction vector indicating the orientation.

Bei einer bevorzugten Ausführungsform wird oder ist das Substrat mit mindestens einer weiteren Substratschicht zu einem Dokumentkörper laminiert und in der mindestens einen weiteren Substratschicht die vorgegebene Abbildungsoptik ausgebildet.In a preferred embodiment, the substrate is or is laminated with at least one further substrate layer to form a document body and the predetermined imaging optics are formed in the at least one further substrate layer.

Bei einer bevorzugten Ausführungsform wird oder ist die Abbildungsoptik in Form von Linsenelementen ausgebildet, wobei die Linsenelemente gemeinsam die Abbildungseigenschaft einer Sammellinse bereitstellen. Jedes an der Oberfläche der weiteren Substratschicht ausgebildete Linsenelement lenkt somit das im Bereich des Linsenelements durch die weitere Substratschicht tretende Licht so ab, wie dies ein Oberflächenelement der Sammellinse tun würde. Vorzugsweise sind die Linsenelemente so ausgebildet, dass diese gemeinsam eine Abbildungseigenschaft einer Sammellinse darstellen, deren Zentralebene parallel zu einer Austrittsoberfläche der weiteren Substratschicht orientiert ist und deren Zentralachse im Bereich eines Flächenzentrums einer Projektion des zumindest einen ausgedehnten opaken Volumenbereichs auf die Eintrittsoberfläche der Substratschicht ist. Erstreckt sich die Projektion des Volumenbereichs, in dem die transparenten Kanäle ausgebildet sind, nicht über eine gesamte Oberfläche des Sicherheitselements bzw. Sicherheitsdokuments, so verläuft die Zentralachse vorzugsweise durch einen Mittelpunkt bzw. geometrischen Schwerpunkt des Volumenbereichs, in dem die transparenten Kanäle ausgebildet sind. Die Orientierung der Zentralachse ist hierbei vorzugsweise kollinear zu einer Oberflächennormale des opaken Substrats bzw. des Sicherheitselements oder Sicherheitsdokuments.In a preferred embodiment, the imaging optics is or is formed in the form of lens elements, the lens elements jointly providing the imaging property of a condenser lens. Each lens element formed on the surface of the further substrate layer thus deflects the light passing through the further substrate layer in the region of the lens element in the same way as a surface element of the condenser lens would do. Preferably, the lens elements are formed so that they together represent an imaging characteristic of a converging lens whose central plane parallel to an exit surface of the other Substrate layer is oriented and whose central axis is in the region of a surface center of a projection of the at least one extended opaque volume region on the entrance surface of the substrate layer. If the projection of the volume region in which the transparent channels are formed does not extend over an entire surface of the security element or security document, the central axis preferably extends through a center or geometric center of gravity of the volume region in which the transparent channels are formed. The orientation of the central axis here is preferably collinear to a surface normal of the opaque substrate or the security element or security document.

Um Licht einer ausreichenden Lichtstärke und unter den benötigten Orientierungen, welche mit den durch die Richtungsvektoren vorgegebenen Raumrichtungen korrespondieren, bereitzustellen, ist bei einer Ausführungsform der Erfindung vorgesehen, dass das zumindest in einem Volumenbereich opake Substrat so in einen Dokumentkörper integriert wird, dass auf einer den Eintrittsseiten der transparenten Kanäle zugewandten Seite des opaken Substrats mindestens eine Lichtquelle in dem Sicherheitsdokument angeordnet ist. Die Lichtquelle kann beispielsweise als Leuchtdiode, beispielsweise organische Leuchtdiode, als Leuchtdiodenarray oder in Form eines andersartig ausgebildeten Displays ausgebildet sein. Bei wieder einer anderen Ausführungsform kann vorgesehen sein, dass Lumineszenzfarbstoffe in einer Substratschicht angeordnet sind, welche einer Eintrittsoberfläche des Substrats zugewandt ist, wobei die Eintrittsoberfläche des Substrats, in dem die transparenten Kanäle ausgebildet sind, jene Oberfläche ist, der die Eintrittsseiten der transparenten Kanäle zugewandt sind.In order to provide light of sufficient luminous intensity and under the required orientations which correspond to the spatial directions predefined by the direction vectors, in one embodiment of the invention it is provided that the substrate, which is opaque at least in a volume region, is integrated into a document body such that it is mounted on a substrate Entry sides of the transparent channels facing side of the opaque substrate at least one light source is arranged in the security document. The light source can be designed, for example, as a light-emitting diode, for example organic light-emitting diode, as a light-emitting diode array or in the form of a differently designed display. In yet another embodiment, it may be provided that luminescent dyes are disposed in a substrate layer facing an entrance surface of the substrate, wherein the entrance surface of the substrate in which the transparent channels are formed is the surface facing the entrance sides of the transparent channels are.

Bei einigen Ausführungsformen kann vorgesehen sein, dass die Lichtquelle, welche mehrere Leuchtmittel umfassen kann, oder Lichtquellen zu einer äußeren Oberfläche hin durch eine opake Schicht verdeckt sind. Hierdurch ist es nicht möglich, die Lichtquelle im Inneren des Dokuments von außen visuell wahrzunehmen. Dies erschwert eine Fälschung oder eine Manipulation weiter, da eine Einbringung von zusätzlichen transparenten Kanälen in das Substrat von außen in der Weise, dass diese auf ein der im Innern beispielsweise als Punktlichtquelle ausgebildetes Leuchtmittel hin orientiert sind, weiter erschwert wird.In some embodiments, it may be provided that the light source, which may comprise a plurality of light sources, or light sources are concealed towards an outer surface by an opaque layer. As a result, it is not possible to visually perceive the light source inside the document from the outside. This complicates further forgery or manipulation, since an introduction of additional transparent channels in the substrate from the outside in such a way that they are oriented towards one of the inside, for example, formed as a point light source bulb out, is further difficult.

Nachfolgend wird die Erfindung unter Bezugnahme auf eine Zeichnung näher erläutert. Hierbei zeigen:

Fig. 1
eine schematische Ansicht einer ersten Ausführungsform eines Sicherheitselements in einer Verifikationssituation;
Fig. 1a
eine schematische perspektivische Ansicht eines Ausschnitts des Substrats des Sicherheitselements;
Fig. 2
eine schematische Ansicht einer weiteren Ausführungsform eines Sicherheitselements in einer Verifikationssituation, wobei das Sicherheitselement eine zur Verifikation benötigte Abbildungsoptik umfasst;
Fig. 3
eine schematische Ansicht einer Ausführungsform eines Sicherheitsdokuments in einer Verifikationssituation, wobei das Sicherheitsdokument eine Lichtquelle umfasst;
Fig. 4
eine schematische Ansicht noch einer weiteren Ausführungsform eines Sicherheitsdokuments in einer Verifikationssituation, wobei das Sicherheitsdokument einer Lichtquelle mit mehreren Leuchtmitteln umfasst, und
Fig. 5
ein schematisches Ablaufdiagramm eines Herstellungsverfahrens.
The invention will be explained in more detail with reference to a drawing. Hereby show:
Fig. 1
a schematic view of a first embodiment of a security element in a Verificationssituation;
Fig. 1a
a schematic perspective view of a section of the substrate of the security element;
Fig. 2
a schematic view of another embodiment of a security element in a Verificationssituation, wherein the security element comprises a required for verification imaging optics;
Fig. 3
a schematic view of an embodiment of a security document in a Verificationssituation, wherein the security document comprises a light source;
Fig. 4
a schematic view of yet another embodiment of a security document in a Verificationssituation, wherein the security document comprises a light source with a plurality of bulbs, and
Fig. 5
a schematic flow diagram of a manufacturing process.

In Fig. 1 ist schematisch ein Substrat 1 dargestellt. Dieses ist im dargestellten Beispiel in seinem gesamten Volumen opak für Licht in einem vorgegebenen Wellenlängenbereich, beispielsweise im sichtbaren Wellenlängenbereich ausgebildet. In dem Substrat 1 sind transparente Kanäle 2.1 bis 2.n ausgebildet, die das opake Substrat als Durchgangslöcher vollständig durchdringen. Bei dem Substrat handelt es sich vorzugsweise um ein Kunststoffmaterial. Die transparenten Kanäle werden bei einer bevorzugten Ausführungsform mittels eines Lasers als Mikrokanäle ausgebildet. Jedem der transparenten Kanäle 2.1 bis 2.n ist ein Raumvektor 4.1 bis 4.n zugeordnet. Ein Raumvektor 4.1 bis 4.n gibt zum einen eine Richtung des Mikrokanals, beispielsweise in Form eines Raumwinkels, welcher durch die Winkelkomponenten α, p angegeben ist, bezüglich einer Oberflächennormale 9 des Substrats 1 an. Darüber hinaus umfasst ein Raumvektor 4.1 bis 4.n eine Angabe, welche beispielsweise einen Fußpunkt 10.1 bis 10.n des Raumvektors in einer Ebene einer Eintrittsoberfläche 11 des Substrats 1 angibt. Ein Raumvektor 4.1 bis 4.n charakterisiert somit eine Lage und Orientierung des transparenten Kanals 2.1 bis 2.n, dem dieser Raumvektor 4.1 bis 4.n zugeordnet ist.In Fig. 1 schematically a substrate 1 is shown. This is in the illustrated example in its entire volume opaque for light in a predetermined wavelength range, for example, formed in the visible wavelength range. In the substrate 1 transparent channels 2.1 to 2.n are formed, which completely penetrate the opaque substrate as through holes. The substrate is preferably a plastic material. The transparent channels are formed in a preferred embodiment by means of a laser as microchannels. Each of the transparent channels 2.1 to 2.n is assigned a space vector 4.1 to 4.n. A space vector 4.1 to 4.n indicates on the one hand a direction of the microchannel, for example in the form of a solid angle, which is indicated by the angle components α, p, with respect to a surface normal 9 of the substrate 1. In addition, includes a Room vector 4.1 to 4.n an indication which, for example, a base point 10.1 to 10.n of the space vector in a plane of an entrance surface 11 of the substrate 1 indicates. A space vector 4.1 to 4.n thus characterizes a position and orientation of the transparent channel 2.1 to 2.n, to which this space vector 4.1 to 4.n is assigned.

Den transparenten Kanälen 2.1 bis 2.n ist jeweils eine Eintrittsseite 12.1 bis 12.n an der Eintrittsoberfläche 11 des Substrats 1 sowie eine Austrittsseite 13.1 bis 13.n an einer Austrittsoberfläche 14 des Substrats 1 zugeordnet. Die transparenten Kanäle 2.1 bis 2.n sind so ausgestaltet, dass sie einen Durchtritt durch das Substrat 1 jeweils von Licht begünstigen, welches entlang des Raumvektors 4.1 bis 4.n durch das Substrat 1 hindurchtritt, welcher dem entsprechenden transparenten Kanal 2.1 bis 2.n zugeordnet ist. Ein Lichtdurchtritt hiervon abweichender Richtungen wird durch die transparenten Kanäle 2.1 bis 2.n möglichst weitestgehend unterbunden. Dies bedeutet, dass jeder der transparenten Kanäle 2.1 bis 2.n vorzugsweise jeweils nur Licht entlang einer Raumrichtung, welche durch den dem transparenten Kanal 2.1 bis 2.12 zugeordneten Raumvektors 4.1 bis 4.n vorgegeben ist, gestattet. Es versteht sich, dass aufgrund einer endlichen Ausdehnung quer zu der durch den entsprechenden Raumvektor 4.1 bis 4.n vorgegebenen Richtung im Verhältnis zur Länge des entsprechenden transparenten Kanals 2.1 bis 2.n parallel zu der durch den zugeordneten Raumvektor 4.1 bis 4.n vorgegebenen Richtung eine Winkelselektivität des entsprechenden transparenten Kanals 2.1 bis 2.n nur mehr oder weniger stark ist. Je größer das Verhältnis von der Länge des transparenten Kanals zu der Querschnittsfläche des transparenten Kanals ist, desto größer ist die Richtungsselektivität des entsprechenden transparenten Kanals.The transparent channels 2.1 to 2.n are each assigned an inlet side 12.1 to 12.n at the inlet surface 11 of the substrate 1 and an outlet side 13.1 to 13.n at an outlet surface 14 of the substrate 1. The transparent channels 2.1 to 2.n are designed so that they favor a passage through the substrate 1 of light, which passes through the substrate 1 along the space vector 4.1 to 4.n, which corresponds to the corresponding transparent channel 2.1 to 2.n assigned. A passage of light here deviating directions is prevented by the transparent channels 2.1 to 2.n as far as possible. This means that each of the transparent channels 2.1 to 2.n preferably only permits light along a spatial direction which is predetermined by the space vector 4.1 to 4.n assigned to the transparent channel 2.1 to 2.12. It is understood that, due to a finite extent transversely to the direction predetermined by the corresponding space vector 4.1 to 4.n in relation to the length of the corresponding transparent channel 2.1 to 2.n parallel to the predetermined by the associated space vector 4.1 to 4.n direction An angular selectivity of the corresponding transparent channel 2.1 to 2.n only more or less strong. The larger the ratio of the length of the transparent channel to the cross-sectional area of the transparent channel, the greater the directional selectivity of the corresponding transparent channel.

Über die Gesamtheit der transparenten Kanäle 2.1 bis 2.n ist in dem Substrat 1 eine Information gespeichert. Um diese verifizieren bzw. erfassen zu können, wird das Substrat 1 mit einer geeigneten Lichtquelle 6 beleuchtet, so dass möglichst durch alle transparenten Kanäle 2.1 bis 2.n Licht entlang des jeweils zugeordneten Raumvektors 4.1 bis 4.n durch das opak ausgebildete Substrat 1 hindurchtritt. Das Licht tritt somit über die Eintrittsoberfläche des Substrats in die transparenten Kanäle 2.1 bis 2.n ein und somit an den Eintrittsseiten 12.1 bis 12.n in die entsprechenden Kanäle 2.1 bis 2.n ein und an den Austrittsseiten 13.1 bis 13.n aus der Austrittsoberfläche 14 des Substrats 1 wieder aus. Zur Verifikation wird das austretende Licht bzw. die Lichtstrahlen 15.1 bis 15.n auf eine als Abbildungsoptik dienende Sammellinse 7 geführt. In einer Brennebene der Sammellinse 7 ist ein Schirm 8 angeordnet, welcher vorzugsweise parallel zur Austrittsoberfläche 14 des Substrats 1 orientiert ist. Lichtstrahlen 15.1 bis 15.n, welche dieselbe Orientierung aufweisen, d.h. deren transparente Kanäle durch Raumvektoren 4.1 bis 4.n charakterisiert sind, welche zueinander kollinear sind, werden auf dem Schirm 8 in demselben Bildpunkt 16.1 bis 16.k abgebildet. Zu jedem Bildpunkt 16.1 bis 16.k muss somit mindestens ein transparenter Kanal 2.1 bis 2.n existieren, dessen Orientierung, d.h. dessen Winkelkoordinaten α, β, bezüglich einer Oberflächennormale 9 der Eintrittsoberfläche 11 des Substrats 1 mit jener Orientierung von Licht korrespondiert, das in dem Bildpunkt in der Fokalebene abgebildet wird. Anders ausgedrückt bedeutet dies, dass zu jedem Bildpunkt 16.1 bis 16.k auf dem Schirm 8 genau eine Orientierung bzw. ein Richtungsvektor 3.1 bis 3.k existiert. Licht oder Lichtstrahlen 15.1 bis 15.n, welches oder welcher kollinear oder parallel zu dem entsprechenden Richtungsvektor 3.1 bis 3.k aus dem Substrat austritt oder austreten, wird durch die Sammellinse 7 auf den entsprechenden Bildpunkt 16.1 bis 16.k abgebildet. Dies bedeutet, dass unabhängig von der Anordnung, d.h. einer Position des Fußpunkts 10.1 bis 10.n des entsprechenden transparenten Kanals 2.1 bis 2.n nur dessen Orientierung einen Einfluss darauf hat, in welchem Bildpunkt 16.1 bis 16.k durch diesen transparenten Kanal 2.1 bis 2.n hindurchtretendes Licht 15.1 bis 15.n auf dem Schirm abgebildet wird. Ein durch die Bildpunkte 16.1 bis 16.k auf dem Schirm 8 vorgegebener Informationsgehalt ist somit durch einen Satz von Orientierungen, welche beispielsweise durch Richtungsvektoren 3.1 bis 3.k angegeben sind, vollständig charakterisiert. Die Anzahl der zu einer Orientierung zugeordneten transparenten Kanäle 2.1 bis 2.n legt lediglich eine Lichtmenge und somit eine Helligkeit des entsprechenden Bildpunktes fest, sofern für jeden der transparenten Kanäle der zugehörige Transmissionswert identisch ist. Das Substrat 1 stellt somit ein Sicherheitselement 20 dar.About the entirety of the transparent channels 2.1 to 2.n is stored in the substrate 1 information. In order to be able to verify or detect this, the substrate 1 is illuminated with a suitable light source 6, so that light passes through the opaque substrate 1 as far as possible through all the transparent channels 2.1 to 2.n along the respectively assigned space vector 4.1 to 4.n. , The light thus enters the transparent channels 2.1 to 2.n via the inlet surface of the substrate and thus to the inlet channels 12.1 to 12.n into the corresponding channels 2.1 to 2.n and to the outlet sides 13.1 to 13.n from the Exit surface 14 of the substrate 1 again. For verification, the exiting light or the light rays 15.1 to 15.n are guided onto a converging lens 7 serving as imaging optics. In a focal plane of the converging lens 7, a screen 8 is arranged, which is preferably parallel to the Exit surface 14 of the substrate 1 is oriented. Light rays 15.1 to 15.n which have the same orientation, ie whose transparent channels are characterized by space vectors 4.1 to 4.n, which are collinear with one another, are imaged on the screen 8 in the same pixel 16.1 to 16.k. At least one transparent channel 2.1 to 2.n must therefore exist for each pixel 16.1 to 16.k whose orientation, ie its angular coordinates α, β, corresponds with that orientation of light with respect to a surface normal 9 of the entrance surface 11 of the substrate 1 the pixel in the focal plane is mapped. In other words, this means that exactly one orientation or one direction vector 3.1 to 3.k exists for each pixel 16.1 to 16.k on the screen 8. Light or light rays 15.1 to 15.n, which emerges or emerge from the substrate collinearly or parallel to the corresponding directional vector 3.1 to 3.k, is imaged by the converging lens 7 onto the corresponding pixel 16.1 to 16.k. This means that, irrespective of the arrangement, ie a position of the foot point 10.1 to 10.n of the corresponding transparent channel 2.1 to 2.n, only its orientation has an influence on which pixel 16.1 to 16.k through this transparent channel 2.1 to 2.n light passing through 15.1 to 15.n is displayed on the screen. An information content predetermined on the screen 8 by the pixels 16.1 to 16.k is thus completely characterized by a set of orientations, which are indicated for example by direction vectors 3.1 to 3.k. The number of transparent channels 2.1 to 2.n assigned to an orientation defines only a quantity of light and thus a brightness of the corresponding pixel, provided that for each of the transparent channels the associated transmission value is identical. The substrate 1 thus represents a security element 20.

In Fig. 1a ist schematisch ein Volumenausschnitt eines Substrats 1 ähnlich zu dem nach Fig. 1 perspektivisch dargestellt. Gleiche technische Merkmale sind in allen Figuren mit denselben Bezugszeichen gekennzeichnet. Gezeigt ist ein Kanal 2.n, der durch einen zugeordneten Raumvektor 4.n definiert ist. Mit dem Substrat 1 ist ein Koordinatensystem 24 gekoppelt. Die x-Richtung und die y-Richtung des kartesischen Koordinatensystems 24 liegen in der Eintrittsoberfläche 11 der Substratschicht 1. Die z-Richtung weist in die Substratschicht hinein. Der Kanal ist durch die Koordinaten xn, yn des Fußpunktes 10.n des Raumvektors 4.n in der Eintrittsoberfläche 11 und die Winkel αn und ρn charakterisiert. Der Winkel αn gibt den Winkel einer Mittelachse 25 einer Kanalprojektion 26 in die x-z-Ebene gemessen gegen die z-Richtung an. Entsprechend gibt ρn den Winkel einer Mittelachse 27 einer Kanalprojektion 28 in die y-z-Ebene gemessen gegen die z-Richtung an. Es wird angemerkt, dass abweichend zu den übrigen Figuren die x-y-Ebene des Koordinatensystems 24 hier mit der Eintrittsoberfläche des Substrats 1 zusammenfällt, während in den übrigen Figuren die x-y-Ebene mit der Bildebene zusammenfällt. Es ergibt sich, dass die Festlegung willkürlich gewählt werden kann.In Fig. 1a is a schematic section of a substrate 1 similar to that after Fig. 1 shown in perspective. The same technical features are identified in all figures with the same reference numerals. Shown is a channel 2.n, which is defined by an associated space vector 4.n. A coordinate system 24 is coupled to the substrate 1. The x-direction and the y-direction of the Cartesian coordinate system 24 are located in the entrance surface 11 of the substrate layer 1. The z-direction points into the substrate layer. The channel is characterized by the coordinates x n , y n of the root point 10.n of the space vector 4.n in the entrance surface 11 and the angles α n and ρ n . The angle α n indicates the angle of a central axis 25 of a channel projection 26 measured in the xz plane against the z direction. Correspondingly, ρ n gives the angle of a Central axis 27 of a channel projection 28 measured in the yz plane against the z-direction. It is noted that, unlike the other figures, the xy plane of the coordinate system 24 here coincides with the entrance surface of the substrate 1, while in the other figures the xy plane coincides with the image plane. It turns out that the determination can be chosen arbitrarily.

In Fig. 2 ist eine weitere Ausführungsform eines Sicherheitselements 20 dargestellt, bei dem die Abbildungsoptik bereits in das Sicherheitselement 20 integriert ist. Gleiche technische Merkmale sind in allen Figuren mit denselben Bezugszeichen versehen.In Fig. 2 a further embodiment of a security element 20 is shown, in which the imaging optics is already integrated into the security element 20. The same technical features are provided in all figures with the same reference numerals.

Die Ausführungsform nach Fig. 2 unterscheidet sich dadurch, dass das Substrat 1 an der Austrittsoberfläche 14 mit einer weiteren Substratschicht 21 verbunden ist. Die Verbindung wird beispielsweise in einem Laminationsschritt ausgebildet. Hierbei wird eine von der Austrittsoberfläche 14 abgewandte äußere Oberfläche 22 der weiteren Substratschicht strukturiert, dass diese abschnittsweise Linsenelemente 23 einer Sammellinse analog zu der Sammellinse 7 nach Fig. 1 umfasst. Die einzelnen Linsenelemente 23 stellen gemeinsam die Abbildungsoptik dar, welche die aus den transparenten Kanälen 2.1 bis 2.n austretenden Lichtstrahlen 15.1 bis 15.n auf die Bildpunkte 16.1 bis 16.k auf dem Schirm 8 abbildet. Eine Hauptebene 17 (vergleiche Fig. 1) der Linse ist hierbei parallel zu der Eintritts- bzw. Austrittsoberfläche 14 des Substrats 1 orientiert. Eine Zentralachse 18 der Abbildungsoptik ist vorzugsweise mittig bezüglich jenes Bereichs 19 orientiert, in dem die transparenten Kanäle 2.1 bis 2.n in dem Substrat 1 ausgebildet sind. Bei Ausführungsformen, bei denen das Substrat nicht entlang seiner gesamten flächigen Ausdehnung opak ausgebildet ist, ist das Substrat zumindest in dem Bereich 19, in dem die Kanäle ausgebildet sind, entlang der gesamten Erstreckung senkrecht zur Eintrittsoberfläche 11 opak ausgebildet.The embodiment according to Fig. 2 differs in that the substrate 1 is connected at the exit surface 14 with a further substrate layer 21. The compound is formed, for example, in a lamination step. In this case, an outer surface 22 of the further substrate layer which is remote from the exit surface 14 is structured such that these portions of the lens element 23 follow a converging lens analogous to the convergent lens 7 Fig. 1 includes. The individual lens elements 23 together represent the imaging optics, which images the light beams 15.1 to 15.n emerging from the transparent channels 2.1 to 2.n onto the pixels 16.1 to 16.k on the screen 8. A main plane 17 (cf. Fig. 1 ) of the lens is in this case oriented parallel to the entry or exit surface 14 of the substrate 1. A central axis 18 of the imaging optics is preferably oriented centrally with respect to that region 19 in which the transparent channels 2.1 to 2.n are formed in the substrate 1. In embodiments where the substrate is not opaque along its entire areal extent, the substrate is opaque at least in the area 19 in which the channels are formed along the entire extent perpendicular to the entrance surface 11.

Die Ausführungsform nach Fig. 2 bietet den Vorteil, dass zur Verifikation keine getrennt ausgebildete Abbildungsoptik benötigt wird. Zur Verifikation sind lediglich eine geeignete Lichtquelle sowie ein Schirm notwendig, der in der Fokalebene angeordnet wird, die durch die in Form von Linsenelementen 23 ausgebildete Abbildungsoptik festgelegt ist.The embodiment according to Fig. 2 offers the advantage that no separately formed imaging optics is needed for verification. For verification, only a suitable light source and a screen are necessary, which is arranged in the focal plane, which is defined by the trained in the form of lens elements 23 imaging optics.

In Fig. 3 ist eine Ausführungsform eines Sicherheitsdokuments 30 schematisch dargestellt, in welches ein Substrat 1 gemäß Fig. 1 integriert ist. Angrenzend an die Eintrittsoberfläche 11 des Substrats 1 ist eine zusätzliche Substratschicht angeordnet, welche transparent oder diffus streuend ausgebildet ist. In dieser zusätzlichen Substratschicht 31 oder an einer Grenzfläche zu noch einer weiteren Substratschicht 32 ist eine Lichtquelle 6 in dem Sicherheitsdokument 30 ausgebildet. Hierbei kann es sich beispielsweise um eine Leuchtdiode, beispielsweise eine organische Leuchtdiode, handeln. Handelt es sich um eine Punktlichtquelle, so ist es vorteilhaft, wenn die zusätzliche Substratschicht 31 diffus streuend ausgebildet ist, da hierdurch sichergestellt wird, dass in jedem der transparenten Kanäle 2.1 bis 2.n Licht parallel zu dem Raumvektor 4.1 bis 4.n einfällt, der dem entsprechenden Kanal 2.1 bis 2.n zugeordnet ist. Die noch weitere Substratschicht 32 ist bei bevorzugten Ausführungsformen opak ausgebildet, so dass eine Verifikation des Sicherheitsmerkmals, welches durch die in den transparenten Kanälen gespeicherte Information ausgebildet ist, nur verifiziert werden kann, sofern die Lichtquelle 6 aktiviert wird. Hierzu können in dem Sicherheitsdokument an geeigneter Stelle, beispielsweise durch die noch weitere Substratschicht 32 hindurch Zuleitungen zu der Lichtquelle 6 und elektrische Kontakte ausgebildet sein, welche hier aus Vereinfachungsgründen nicht dargestellt sind.In Fig. 3 an embodiment of a security document 30 is shown schematically, in which a substrate 1 according to Fig. 1 is integrated. Adjacent to the entrance surface 11 of the substrate 1, an additional substrate layer is arranged, which is transparent or diffused. In this additional substrate layer 31 or at an interface to yet another substrate layer 32, a light source 6 is formed in the security document 30. This may, for example, be a light-emitting diode, for example an organic light-emitting diode. If it is a point light source, then it is advantageous if the additional substrate layer 31 is designed to be diffusely scattering, since this ensures that in each of the transparent channels 2.1 to 2.n light is incident parallel to the space vector 4.1 to 4.n, which is assigned to the corresponding channel 2.1 to 2.n. The still further substrate layer 32 is opaque in preferred embodiments, so that verification of the security feature, which is formed by the information stored in the transparent channels, can only be verified if the light source 6 is activated. For this purpose, leads to the light source 6 and electrical contacts may be formed in the security document at a suitable location, for example through the still further substrate layer 32, which are not shown here for reasons of simplification.

In Fig. 4 ist noch eine weitere Ausführungsform eines Sicherheitsdokuments 30 ähnlich zu dem nach Fig. 3 dargestellt. Die Ausführungsform unterscheidet sich dadurch, dass die Lichtquelle mit mehreren Leuchtmitteln in Form eines Arrays, beispielsweise eines Leuchtdiodenarrays, ausgebildet ist. Hierdurch kann eine bessere Ausleuchtung der Mikrokanäle erreicht werden. Bei geeigneter Ausgestaltung kann erreicht werden, dass in einer Verlängerung der durch den jeweiligen Raumvektor 4.1 bis 4.n vorgegebenen Durchtrittsrichtung eines jeden der transparenten Kanäle 2.1 bis 2.n eines der Leuchtmittel 33 angeordnet ist. Hierdurch kann die Lichtmenge, welche durch die transparenten Kanäle 2.1 bis 2.n transmittiert wird, deutlich erhöht werden, welches eine Verifikation deutlich vereinfacht.In Fig. 4 Yet another embodiment of a security document 30 is similar to that of FIG Fig. 3 shown. The embodiment differs in that the light source is designed with a plurality of light sources in the form of an array, for example a light-emitting diode array. As a result, a better illumination of the microchannels can be achieved. With a suitable configuration, it can be achieved that, in an extension of the passage direction of each of the transparent channels 2.1 to 2.n of the illuminating means 33 predetermined by the respective space vector 4.1 to 4.n. As a result, the amount of light which is transmitted through the transparent channels 2.1 to 2.n, be significantly increased, which significantly simplifies a verification.

Die in den Fig. 1, 3 und 4 dargestellten Ausführungsformen können am einfachsten mit einer Verifikationsvorrichtung verifiziert werden, welche eine Abbildungsoptik, beispielsweise in Form der Sammellinse 7, und einen hierzu in deren Fokalebene angeordneten Schirm 8 umfasst. Vorzugsweise ist die Sammellinse 7 so ausgebildet, dass eine Oberseite 41 als Auflagefläche für das Sicherheitsdokument 30 bzw. das Sicherheitselement 20 dienen kann. Für eine Verifikation einer Ausführungsform nach Fig. 1 umfasst die Verifikationsvorrichtung 51 zusätzlich eine Lichtquelle 6. Diese kann als Punktlichtquelle ausgebildet sein oder mehrere Leuchtmittel und/oder einen Lichtstreuer umfassen, um eine möglichst flächige Lichtquelle bereitzustellen.The in the Fig. 1 . 3 and 4 Embodiments shown can be most easily verified with a verification device, which comprises an imaging optics, for example in the form of the converging lens 7, and a screen 8 arranged in the focal plane thereof. Preferably, the converging lens 7 is formed so that a top 41 can serve as a support surface for the security document 30 and the security element 20. For a verification of an embodiment according to Fig. 1 the verification device 51 additionally comprises a light source 6 Spot light source may be formed or comprise a plurality of lighting means and / or a light scatterer to provide a surface possible light source.

Bei den in Fig. 1 bis 4 dargestellten Ausführungsformen handelt es sich selbstverständlich lediglich um beispielhafte Ausführungsformen. So können Ausführungsformen vorgesehen werden, bei denen das Sicherheitsdokument ebenfalls die Abbildungsoptik ähnlich zu der Ausführungsform nach Fig. 2 umfasst. Ferner kann eine Folienanzahl und - ausgestaltung variiert sein, aus der ein Dokumentkörper gebildet wird.At the in Fig. 1 to 4 illustrated embodiments are of course only exemplary embodiments. Thus, embodiments may be provided in which the security document also the imaging optics similar to the embodiment according to Fig. 2 includes. Furthermore, a number of films and the configuration of which a document body is formed can be varied.

Bei den Ausführungsformen nach Fig. 3 und 4 kann die Verifikationsvorrichtung eine Anregungs-/Aktivierungseinheit 52 umfassen, die die im Innern des Sicherheitsdokuments ausgebildete Lichtquelle 6 und gegebenenfalls deren Leuchtmittel 33 zur Lichterzeugung anregt. Dieses kann je nach Ausführung der Lichtquelle mittels elektromagnetischer Strahlung (im Falle einer Lumineszenslichtquelle oder bei einer mit einer Antenne ausgebildeten LED- oder OLED-Anordnung) oder mittels des Bereitstellens einer Spannung an nicht dargestellten Kontakten, beispielsweise bei einer elektrisch betriebenen Lichtquelle, insbesondere bei einer mit Kontakten versehenen LED oder OLED erfolgen, um nur einige Beispiele zu nennen.According to the embodiments 3 and 4 For example, the verification device may comprise an excitation / activation unit 52 which excites the light source 6 formed inside the security document and, if appropriate, its light source 33 for generating light. This can, depending on the design of the light source by means of electromagnetic radiation (in the case of a Lumineszenslichtquelle or with an antenna formed LED or OLED arrangement) or by providing a voltage to contacts, not shown, for example, in an electrically operated light source, in particular in a Contacted LED or OLED are just a few examples.

Eine Herstellung eines beispielhaften als Sicherheitsdokument ausgebildeten Sicherheitselements wird anhand von Fig. 5 noch einmal exemplarisch erläutert. Zunächst werden zu speichernde Informationen bereitgestellt 61. Hierbei kann es sich beispielsweise um eine so genannte personalisierende Information handeln, d.h. eine Information, die eine Angabe über eine Person bereitstellt, der das Sicherheitselement bzw. hergestellte Sicherheitsdokument zugeordnet wird. Anschließend werden die zur Darstellung der zu speichernden Information notwendigen Bildpunkte einer grafischen Darstellung in Orientierungen bzw. Richtungsvektoren umgerechnet 62. Diese Verfahrensschritte stellen zusammen gemeinsam den Verfahrensschritt "Bereitstellen der Information in Form eines Satzes von Orientierungen" dar 63. Ferner wird ein opakes Substrat, beispielsweise in Form einer Folie, bereitgestellt 64. In dieses opake Substrat werden anschließend Mikrokanäle als transparente Kanäle vorzugsweise mittels Laserstrahlung eingebracht 65. Um eine ungewollte Verschmutzung der Mikrokanäle zu vermeiden und/oder (wie im hier dargestellten Ausführungsbeispiel) um bei einer Lamination mit weiteren Substratschichten zu einem Dokumentkörper eine Deformation der ausgebildeten Mikrokanäle insbesondere jener zu vermeiden, welche nicht senkrecht zur Oberfläche des opaken Substrats orientiert sind, ist es vorteilhaft, die Mikrokanäle mit einem nicht komprimierbaren Material, beispielsweise transparentem Polymermaterial, zu verfüllen 66. Dies kann beispielsweise mittels Einrakeln oder auch eines Siebdruckverfahrens oder anderen Verfahren, beispielsweise einen Tintenstrahldruck, ausgeführt werden, welche es ermöglichen, die Mikrokanäle mit einem entsprechenden Material zu verfüllen. Um das Sicherheitsmerkmal, welches ausgebildet wird, in ein Sicherheitsdokument zu integrieren, ist es, wie bereits erwähnt, vorteilhaft, wenn das opake Substrat mit weiteren Folien zu einem Dokumentkörper zusammengefügt wird. Hierfür werden weitere Substratschichten bereitgestellt 67. Anschließend wird das opake Substrat, in dem die Mikrokanäle ausgebildet sind, welche mit einem transparenten Material verfüllt sind, mit den weiteren Folien bzw. Substratschichten zusammengefügt. Hierzu werden die Substratschichten zunächst zusammengetragen 68, wobei beispielsweise auch eine Lichtquelle mit einem oder mehreren Leuchtmitteln eingefügt werden kann 69. Anschließend wird das Zusammenfügen dadurch abgeschlossen, dass die Substratschichten unter Anwendung von Temperatur und Druck miteinander zu einem Dokumentkörper laminiert werden 70. Hierbei oder anschließend können in einer äußeren Substratschicht Linsenelemente ausgebildet werden, welche eine Abbildungsoptik ausbilden 71.A production of an exemplary security element designed as a security element is based on Fig. 5 again explained as an example. First, information to be stored is provided 61. This may be, for example, a so-called personalizing information, ie information that provides an indication of a person to whom the security element or security document produced is assigned. Subsequently, the pixels required for representing the information to be stored in a graphic representation are converted into orientations or direction vectors 62. These method steps together represent the method step "providing the information in the form of a set of orientations" 63. Furthermore, an opaque substrate, for example in the form of a film, provided 64. In this opaque substrate then microchannels are preferably introduced as transparent channels by means of laser radiation 65. To avoid unwanted contamination of the microchannels and / or (as in the embodiment shown here) in a lamination with further substrate layers a document body to avoid deformation of the trained micro-channels, in particular those which are not vertical oriented to the surface of the opaque substrate, it is advantageous to fill the microchannels with a non-compressible material, such as transparent polymeric material 66. This can be done for example by doctoring or by a screen printing process or other methods, such as an ink jet printing, which allow to fill the microchannels with a suitable material. In order to integrate the security feature which is formed into a security document, it is, as already mentioned, advantageous if the opaque substrate is joined together with further films to form a document body. For this purpose, further substrate layers are provided 67. Subsequently, the opaque substrate, in which the microchannels are formed, which are filled with a transparent material, joined together with the other films or substrate layers. For this purpose, the substrate layers are first collected 68, wherein, for example, a light source with one or more bulbs can be inserted 69. Then the assembly is completed by laminating the substrate layers together using temperature and pressure to a document body 70. This or subsequently For example, lens elements which form an imaging optics can be formed in an outer substrate layer 71.

Es versteht sich für den Fachmann, dass hier lediglich ein beispielhaftes Verfahren beschrieben ist. Einzelne Verfahrensschritte, beispielsweise das Zusammenfügen mit weiteren Substratschichten, zum Integrieren einer Lichtquelle oder ein Ausbilden von Linsenelementen können unterbleiben, um einfache Ausführungsformen des Sicherheitselements zu fertigen.It goes without saying for the person skilled in the art that only an exemplary method is described here. Individual process steps, for example joining with further substrate layers, for integrating a light source or forming lens elements can be omitted in order to produce simple embodiments of the security element.

Die in den einzelnen Ausführungsformen beschriebenen Merkmale können in beliebiger Kombination verwendet werden, um die Erfindung auszuführen.The features described in the individual embodiments may be used in any combination to practice the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Substratsubstratum
2.1 - 2.n2.1 - 2.n
transparente Kanäletransparent channels
3.1 - 3.k3.1 - 3.k
Richtungsvektorendirection vectors
4.1 - 4.n4.1 - 4.n
Raumvektorenspace vectors
66
Lichtquellelight source
77
Sammellinseconverging lens
88th
Schirmumbrella
99
Oberflächennormalesurface normal
10.1 - 10.n10.1 - 10.n
Fußpunkte der RaumvektorenFootpoints of the space vectors
1111
Eintrittsoberflächeentering surface
12.1 - 12.n12.1 - 12.n
Eintrittsseitenentry pages
13.1 - 13.n13.1 - 13.n
Austrittsseitenexit pages
1414
Austrittsoberflächeexit surface
15.1 - 15.n15.1 - 15.n
Lichtstrahlenlight rays
16.1 - 16.k16.1 - 16.k
Bildpunktepixels
1717
Hauptebene der SammellinseMain plane of the condenser lens
1818
Zentralachse der SammellinseCentral axis of the condenser lens
1919
Bereich, in dem transparente Kanäle ausgebildet sindArea in which transparent channels are formed
2020
Sicherheitselementsecurity element
2121
weiteres Substratanother substrate
2222
äußere Oberflächeouter surface
2323
Linsenelementelens elements
2424
Koordinatensystemcoordinate system
2525
Mittelachsecentral axis
2626
Kanalprojektion (x-z-Ebene)Channel projection (x-z-plane)
2727
Mittelachsecentral axis
2828
Kanalprojektion (y-z-Ebene)Channel projection (y-z plane)
3030
SicherheitsdokumentThe security document
3131
zusätzliche Substratschichtadditional substrate layer
3232
noch weitere Substratschichteven more substrate layer
3333
LeuchtmittelLamp
4141
Oberseitetop
5151
Verifikationsvorrichtungverification device
5252
Anregungs-/AktivierungseinheitExcitation / activation unit
61 - 7161 - 71
Verfahrensschrittesteps

Claims (10)

  1. Method for producing a security element (20), in particular for a security document (30), comprising the steps:
    providing a substrate, which is opaque to light at least in one continuous three-dimensional zone,
    providing information to be stored in the form of a set of orientations,
    storing the information in the substrate (1), by forming transparent channels (2.1 to 2.n) in the opaque substrate (1) within the opaque three-dimensional zone,
    such that at least one of the transparent channels (2.1 to 2.n) is associated with each of the orientations, preferably that in each case a plurality of the transparent channels (2.1 to 2.n) are associated with each of the orientations,
    wherein each of the channels (2.1 to 2.n) facilitates the travel of light along one spatial vector (4.1 to 4.n) associated with the respective channel,
    preferably allowing light to travel exclusively along the spatial vector (4.1 to 4.n) associated with the respective channel and running collinear to the orientation with which the respective channel is associated, wherein the transparent channels are formed in such a way that these light propagation directions, which in their entirety store the information which is to be stored,
    and can be transferred to by means of imaging optics into a graphically perceptible representation, from which the information content of the stored information can be acquired, wherein the perforation pattern occurring at surfaces of the opaque substrate (1) does not directly represent the information content of the stored information.
  2. Method according to claim 1, characterised in that the transparent channels (2.1 to 2.n) are formed by means of laser radiation in the form of microchannels in the opaque three-dimensional zone of the substrate (1).
  3. Method according to claim 1 or 2, characterised in that the opaque substrate (1) being opaque at least in one three-dimensional zone is provided as a film, and the substrate (1) is laminated with further films to form a document body.
  4. Method according to any one of the preceding claims, characterised in that the transparent channels (2.1 to 2.n) are filled before the lamination with a transparent material.
  5. Method according to any one of the preceding claims, characterised in that an inlet side (12.1 to 12.n) and an outlet side (13.1 to 13.n) are to be associated with the transparent channels (2.1 to 2.n), and lens elements (23) are formed at an outlet surface (14), which is the surface of the document body or the substrate (1) adjacent to the outlet sides (13.1 to 13.n), which are formed jointly along the spatial vectors (4.1 to 4.n) associated to the respective microchannels (2.1 to 2,n), such as to project the light passing through the microchannels on a screen (8), which is arranged at a predetermined orientation relative to the outlet surface (14), and are to be formed in such a way that the information content stored by means of the microchannels (2.1 to 2.n) in the graphic representation can be observed on the screen (8).
  6. Method according to any one of the preceding claims, characterised in that the provision of the information to be stored comprises a calculation of an orientation for each of the imaging points (16.1 to 16.n), which is necessary for the representation of the graphically observable information, wherein each image point (16.1 to 16.n) is acquired as a point in a focal plane of a collector lens of predetermined focal width.
  7. Security element (20) for a security document (30) comprising:
    a substrate (1), which is formed to be opaque to light at least in a cohesive three-dimensional zone;
    wherein transparent channels (2.1 to 2.n) for the storage of information are formed within the opaque three-dimensional zone of the substrate (1),
    characterised in that
    the transparent channels (2.1 to 2.n) are formed in such a way that each of the channels (2.1 to 2.n) in each case facilitates a passage of light along a spatial vector (4.1 to 4.n) associated to the transparent channel (2.1 to 2.n),
    preferably allowing light to travel exclusively along the spatial vector (4.1 to 4.n) associated with the transparent channel (2.1 to 2.n), wherein the channels (2.1 to 2.n) are formed in such a way that light which is passing along the spatial vectors (4.1 to 4.n) through the transparent channels (2.1 to 2.n) of the substrate (1) can be reproduced by means of predetermined imaging optics on a screen (8) arranged at a predetermined orientation to the imaging optics into a graphic representation, such that an information content of the stored information can be acquired from the graphic representation,
    wherein the perforation pattern occurring at surfaces of the opaque substrate (1) does not directly represent the information content of the stored information.
  8. Security element (20) according to claim 7, characterized in that the transparent channels (2.1 to 2.n) are formed as microchannels.
  9. Security element (20) according to claim 7 or 8, characterized in that the substrate (1) is laminated with at least one further substrate layer (2) to form a document body, and the predetermined imaging optics are formed in the at least one further substrate layer (21).
  10. Security element (20) according to claim 7, characterized in that the imaging optics are presented in the form of lens elements (23).
EP12707529.9A 2011-03-01 2012-03-01 Method and security element for storing information by means of microchannels in a substrate Active EP2681055B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011004933A DE102011004933B4 (en) 2011-03-01 2011-03-01 Method and security element for storing information using microchannels in a substrate
PCT/EP2012/053514 WO2012117056A2 (en) 2011-03-01 2012-03-01 Method and security element for storing information by means of microchannels in a substrate

Publications (2)

Publication Number Publication Date
EP2681055A2 EP2681055A2 (en) 2014-01-08
EP2681055B1 true EP2681055B1 (en) 2015-01-21

Family

ID=45808859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707529.9A Active EP2681055B1 (en) 2011-03-01 2012-03-01 Method and security element for storing information by means of microchannels in a substrate

Country Status (3)

Country Link
EP (1) EP2681055B1 (en)
DE (1) DE102011004933B4 (en)
WO (1) WO2012117056A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046213A1 (en) * 2010-10-08 2012-04-12 Arjowiggins Security Security structure including microperforations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564622B1 (en) * 1984-05-21 1988-08-26 Calvados Hubert PROCESS AND DEVICE FOR PRODUCING ALL NOMINATIVE DOCUMENTS AND DOCUMENTS OBTAINED
NL1004433C2 (en) * 1996-11-05 1998-05-08 Iai Bv Security feature in the form of a perforation pattern.
PT1144201E (en) * 1999-01-21 2003-07-31 Iai Bv SAFETY DOCUMENT WITH A DRILLING STANDARD
DE19934434B4 (en) * 1999-07-22 2006-10-05 Bundesdruckerei Gmbh Value and security certificate with microchannels
DE102007025860A1 (en) * 2007-06-01 2008-12-04 Ovd Kinegram Ag Security document and method for its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046213A1 (en) * 2010-10-08 2012-04-12 Arjowiggins Security Security structure including microperforations

Also Published As

Publication number Publication date
EP2681055A2 (en) 2014-01-08
WO2012117056A3 (en) 2012-12-06
DE102011004933B4 (en) 2012-10-31
WO2012117056A2 (en) 2012-09-07
DE102011004933A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
EP2681054B1 (en) Composite body and method for producing a composite body having an internal security feature
EP2869998B1 (en) Method for producing security document blanks that can be personalized in color, security documents personalized in color, and method for personalization
EP2771150B1 (en) Security element
EP1827868B1 (en) Card-shaped data carrier
EP2838737B1 (en) Optically variable security element
EP2828093B1 (en) Security document having a perforation window, and method for the production thereof
EP2643161A1 (en) Document of value and/or security document with coloured transparent security feature and method for producing the same
DE102005003958A1 (en) Security element, especially for valuable document, has reflective layer with areas that interact differently with laser radiation so reflective layer optical characteristic modification of one area enables visual characteristic recognition
DE102008028705B4 (en) Method for producing a valuable and/or security document and valuable and/or security document with a demetallized structure
EP2875963B1 (en) Security document with bend safety feature
EP2681055B1 (en) Method and security element for storing information by means of microchannels in a substrate
EP3666542B1 (en) Laminate and method for producing a laminate, and security or valuable document having an interior security feature
EP3984762A1 (en) Security element with window boom and method of manufacture
EP3554846A1 (en) Method for producing a security element with a lens grid image
EP4330051A2 (en) Security feature for a valuable document, valuable document and method of producing a security feature
EP4330050A2 (en) Security feature for a valuable document, valuable document and method of producing a security feature
EP2892728B1 (en) Composite body with inner lens array
WO2020182805A1 (en) Security inlay with tactile coating arrangement for an identity document and method for producing such a security inlay
CH707541A2 (en) Security element for securities and documents, and process for its production.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130627

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140123

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012002175

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B42D0015000000

Ipc: B42D0025000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B42D 25/00 20140101AFI20140702BHEP

Ipc: B42D 15/00 20060101ALI20140702BHEP

INTG Intention to grant announced

Effective date: 20140717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20141209

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002175

Country of ref document: DE

Effective date: 20150312

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 708984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150521

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002175

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150301

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120301

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150521

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 708984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150121

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 13

Ref country code: GB

Payment date: 20240322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240319

Year of fee payment: 13